KVM: x86: do not scan IRR twice on APICv vmentry
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #define pr_fmt(fmt) "SVM: " fmt
19
20 #include <linux/kvm_host.h>
21
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39
40 #include <asm/apic.h>
41 #include <asm/perf_event.h>
42 #include <asm/tlbflush.h>
43 #include <asm/desc.h>
44 #include <asm/debugreg.h>
45 #include <asm/kvm_para.h>
46 #include <asm/irq_remapping.h>
47
48 #include <asm/virtext.h>
49 #include "trace.h"
50
51 #define __ex(x) __kvm_handle_fault_on_reboot(x)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id svm_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_SVM),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
61
62 #define IOPM_ALLOC_ORDER 2
63 #define MSRPM_ALLOC_ORDER 1
64
65 #define SEG_TYPE_LDT 2
66 #define SEG_TYPE_BUSY_TSS16 3
67
68 #define SVM_FEATURE_NPT            (1 <<  0)
69 #define SVM_FEATURE_LBRV           (1 <<  1)
70 #define SVM_FEATURE_SVML           (1 <<  2)
71 #define SVM_FEATURE_NRIP           (1 <<  3)
72 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
73 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
74 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
75 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
76 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
77
78 #define SVM_AVIC_DOORBELL       0xc001011b
79
80 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
81 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
82 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
83
84 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
85
86 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
87 #define TSC_RATIO_MIN           0x0000000000000001ULL
88 #define TSC_RATIO_MAX           0x000000ffffffffffULL
89
90 #define AVIC_HPA_MASK   ~((0xFFFULL << 52) | 0xFFF)
91
92 /*
93  * 0xff is broadcast, so the max index allowed for physical APIC ID
94  * table is 0xfe.  APIC IDs above 0xff are reserved.
95  */
96 #define AVIC_MAX_PHYSICAL_ID_COUNT      255
97
98 #define AVIC_UNACCEL_ACCESS_WRITE_MASK          1
99 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK         0xFF0
100 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK         0xFFFFFFFF
101
102 /* AVIC GATAG is encoded using VM and VCPU IDs */
103 #define AVIC_VCPU_ID_BITS               8
104 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
105
106 #define AVIC_VM_ID_BITS                 24
107 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
108 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
109
110 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
111                                                 (y & AVIC_VCPU_ID_MASK))
112 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
113 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
114
115 static bool erratum_383_found __read_mostly;
116
117 static const u32 host_save_user_msrs[] = {
118 #ifdef CONFIG_X86_64
119         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
120         MSR_FS_BASE,
121 #endif
122         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
123         MSR_TSC_AUX,
124 };
125
126 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
127
128 struct kvm_vcpu;
129
130 struct nested_state {
131         struct vmcb *hsave;
132         u64 hsave_msr;
133         u64 vm_cr_msr;
134         u64 vmcb;
135
136         /* These are the merged vectors */
137         u32 *msrpm;
138
139         /* gpa pointers to the real vectors */
140         u64 vmcb_msrpm;
141         u64 vmcb_iopm;
142
143         /* A VMEXIT is required but not yet emulated */
144         bool exit_required;
145
146         /* cache for intercepts of the guest */
147         u32 intercept_cr;
148         u32 intercept_dr;
149         u32 intercept_exceptions;
150         u64 intercept;
151
152         /* Nested Paging related state */
153         u64 nested_cr3;
154 };
155
156 #define MSRPM_OFFSETS   16
157 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
158
159 /*
160  * Set osvw_len to higher value when updated Revision Guides
161  * are published and we know what the new status bits are
162  */
163 static uint64_t osvw_len = 4, osvw_status;
164
165 struct vcpu_svm {
166         struct kvm_vcpu vcpu;
167         struct vmcb *vmcb;
168         unsigned long vmcb_pa;
169         struct svm_cpu_data *svm_data;
170         uint64_t asid_generation;
171         uint64_t sysenter_esp;
172         uint64_t sysenter_eip;
173         uint64_t tsc_aux;
174
175         u64 next_rip;
176
177         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
178         struct {
179                 u16 fs;
180                 u16 gs;
181                 u16 ldt;
182                 u64 gs_base;
183         } host;
184
185         u32 *msrpm;
186
187         ulong nmi_iret_rip;
188
189         struct nested_state nested;
190
191         bool nmi_singlestep;
192
193         unsigned int3_injected;
194         unsigned long int3_rip;
195         u32 apf_reason;
196
197         /* cached guest cpuid flags for faster access */
198         bool nrips_enabled      : 1;
199
200         u32 ldr_reg;
201         struct page *avic_backing_page;
202         u64 *avic_physical_id_cache;
203         bool avic_is_running;
204
205         /*
206          * Per-vcpu list of struct amd_svm_iommu_ir:
207          * This is used mainly to store interrupt remapping information used
208          * when update the vcpu affinity. This avoids the need to scan for
209          * IRTE and try to match ga_tag in the IOMMU driver.
210          */
211         struct list_head ir_list;
212         spinlock_t ir_list_lock;
213 };
214
215 /*
216  * This is a wrapper of struct amd_iommu_ir_data.
217  */
218 struct amd_svm_iommu_ir {
219         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
220         void *data;             /* Storing pointer to struct amd_ir_data */
221 };
222
223 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK    (0xFF)
224 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK                (1 << 31)
225
226 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK    (0xFFULL)
227 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK        (0xFFFFFFFFFFULL << 12)
228 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK          (1ULL << 62)
229 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK               (1ULL << 63)
230
231 static DEFINE_PER_CPU(u64, current_tsc_ratio);
232 #define TSC_RATIO_DEFAULT       0x0100000000ULL
233
234 #define MSR_INVALID                     0xffffffffU
235
236 static const struct svm_direct_access_msrs {
237         u32 index;   /* Index of the MSR */
238         bool always; /* True if intercept is always on */
239 } direct_access_msrs[] = {
240         { .index = MSR_STAR,                            .always = true  },
241         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
242 #ifdef CONFIG_X86_64
243         { .index = MSR_GS_BASE,                         .always = true  },
244         { .index = MSR_FS_BASE,                         .always = true  },
245         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
246         { .index = MSR_LSTAR,                           .always = true  },
247         { .index = MSR_CSTAR,                           .always = true  },
248         { .index = MSR_SYSCALL_MASK,                    .always = true  },
249 #endif
250         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
251         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
252         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
253         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
254         { .index = MSR_INVALID,                         .always = false },
255 };
256
257 /* enable NPT for AMD64 and X86 with PAE */
258 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
259 static bool npt_enabled = true;
260 #else
261 static bool npt_enabled;
262 #endif
263
264 /* allow nested paging (virtualized MMU) for all guests */
265 static int npt = true;
266 module_param(npt, int, S_IRUGO);
267
268 /* allow nested virtualization in KVM/SVM */
269 static int nested = true;
270 module_param(nested, int, S_IRUGO);
271
272 /* enable / disable AVIC */
273 static int avic;
274 #ifdef CONFIG_X86_LOCAL_APIC
275 module_param(avic, int, S_IRUGO);
276 #endif
277
278 /* AVIC VM ID bit masks and lock */
279 static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
280 static DEFINE_SPINLOCK(avic_vm_id_lock);
281
282 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
283 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
284 static void svm_complete_interrupts(struct vcpu_svm *svm);
285
286 static int nested_svm_exit_handled(struct vcpu_svm *svm);
287 static int nested_svm_intercept(struct vcpu_svm *svm);
288 static int nested_svm_vmexit(struct vcpu_svm *svm);
289 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
290                                       bool has_error_code, u32 error_code);
291
292 enum {
293         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
294                             pause filter count */
295         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
296         VMCB_ASID,       /* ASID */
297         VMCB_INTR,       /* int_ctl, int_vector */
298         VMCB_NPT,        /* npt_en, nCR3, gPAT */
299         VMCB_CR,         /* CR0, CR3, CR4, EFER */
300         VMCB_DR,         /* DR6, DR7 */
301         VMCB_DT,         /* GDT, IDT */
302         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
303         VMCB_CR2,        /* CR2 only */
304         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
305         VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
306                           * AVIC PHYSICAL_TABLE pointer,
307                           * AVIC LOGICAL_TABLE pointer
308                           */
309         VMCB_DIRTY_MAX,
310 };
311
312 /* TPR and CR2 are always written before VMRUN */
313 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
314
315 #define VMCB_AVIC_APIC_BAR_MASK         0xFFFFFFFFFF000ULL
316
317 static inline void mark_all_dirty(struct vmcb *vmcb)
318 {
319         vmcb->control.clean = 0;
320 }
321
322 static inline void mark_all_clean(struct vmcb *vmcb)
323 {
324         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
325                                & ~VMCB_ALWAYS_DIRTY_MASK;
326 }
327
328 static inline void mark_dirty(struct vmcb *vmcb, int bit)
329 {
330         vmcb->control.clean &= ~(1 << bit);
331 }
332
333 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
334 {
335         return container_of(vcpu, struct vcpu_svm, vcpu);
336 }
337
338 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
339 {
340         svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
341         mark_dirty(svm->vmcb, VMCB_AVIC);
342 }
343
344 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
345 {
346         struct vcpu_svm *svm = to_svm(vcpu);
347         u64 *entry = svm->avic_physical_id_cache;
348
349         if (!entry)
350                 return false;
351
352         return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
353 }
354
355 static void recalc_intercepts(struct vcpu_svm *svm)
356 {
357         struct vmcb_control_area *c, *h;
358         struct nested_state *g;
359
360         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
361
362         if (!is_guest_mode(&svm->vcpu))
363                 return;
364
365         c = &svm->vmcb->control;
366         h = &svm->nested.hsave->control;
367         g = &svm->nested;
368
369         c->intercept_cr = h->intercept_cr | g->intercept_cr;
370         c->intercept_dr = h->intercept_dr | g->intercept_dr;
371         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
372         c->intercept = h->intercept | g->intercept;
373 }
374
375 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
376 {
377         if (is_guest_mode(&svm->vcpu))
378                 return svm->nested.hsave;
379         else
380                 return svm->vmcb;
381 }
382
383 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
384 {
385         struct vmcb *vmcb = get_host_vmcb(svm);
386
387         vmcb->control.intercept_cr |= (1U << bit);
388
389         recalc_intercepts(svm);
390 }
391
392 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
393 {
394         struct vmcb *vmcb = get_host_vmcb(svm);
395
396         vmcb->control.intercept_cr &= ~(1U << bit);
397
398         recalc_intercepts(svm);
399 }
400
401 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
402 {
403         struct vmcb *vmcb = get_host_vmcb(svm);
404
405         return vmcb->control.intercept_cr & (1U << bit);
406 }
407
408 static inline void set_dr_intercepts(struct vcpu_svm *svm)
409 {
410         struct vmcb *vmcb = get_host_vmcb(svm);
411
412         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
413                 | (1 << INTERCEPT_DR1_READ)
414                 | (1 << INTERCEPT_DR2_READ)
415                 | (1 << INTERCEPT_DR3_READ)
416                 | (1 << INTERCEPT_DR4_READ)
417                 | (1 << INTERCEPT_DR5_READ)
418                 | (1 << INTERCEPT_DR6_READ)
419                 | (1 << INTERCEPT_DR7_READ)
420                 | (1 << INTERCEPT_DR0_WRITE)
421                 | (1 << INTERCEPT_DR1_WRITE)
422                 | (1 << INTERCEPT_DR2_WRITE)
423                 | (1 << INTERCEPT_DR3_WRITE)
424                 | (1 << INTERCEPT_DR4_WRITE)
425                 | (1 << INTERCEPT_DR5_WRITE)
426                 | (1 << INTERCEPT_DR6_WRITE)
427                 | (1 << INTERCEPT_DR7_WRITE);
428
429         recalc_intercepts(svm);
430 }
431
432 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
433 {
434         struct vmcb *vmcb = get_host_vmcb(svm);
435
436         vmcb->control.intercept_dr = 0;
437
438         recalc_intercepts(svm);
439 }
440
441 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
442 {
443         struct vmcb *vmcb = get_host_vmcb(svm);
444
445         vmcb->control.intercept_exceptions |= (1U << bit);
446
447         recalc_intercepts(svm);
448 }
449
450 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
451 {
452         struct vmcb *vmcb = get_host_vmcb(svm);
453
454         vmcb->control.intercept_exceptions &= ~(1U << bit);
455
456         recalc_intercepts(svm);
457 }
458
459 static inline void set_intercept(struct vcpu_svm *svm, int bit)
460 {
461         struct vmcb *vmcb = get_host_vmcb(svm);
462
463         vmcb->control.intercept |= (1ULL << bit);
464
465         recalc_intercepts(svm);
466 }
467
468 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
469 {
470         struct vmcb *vmcb = get_host_vmcb(svm);
471
472         vmcb->control.intercept &= ~(1ULL << bit);
473
474         recalc_intercepts(svm);
475 }
476
477 static inline void enable_gif(struct vcpu_svm *svm)
478 {
479         svm->vcpu.arch.hflags |= HF_GIF_MASK;
480 }
481
482 static inline void disable_gif(struct vcpu_svm *svm)
483 {
484         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
485 }
486
487 static inline bool gif_set(struct vcpu_svm *svm)
488 {
489         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
490 }
491
492 static unsigned long iopm_base;
493
494 struct kvm_ldttss_desc {
495         u16 limit0;
496         u16 base0;
497         unsigned base1:8, type:5, dpl:2, p:1;
498         unsigned limit1:4, zero0:3, g:1, base2:8;
499         u32 base3;
500         u32 zero1;
501 } __attribute__((packed));
502
503 struct svm_cpu_data {
504         int cpu;
505
506         u64 asid_generation;
507         u32 max_asid;
508         u32 next_asid;
509         struct kvm_ldttss_desc *tss_desc;
510
511         struct page *save_area;
512 };
513
514 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
515
516 struct svm_init_data {
517         int cpu;
518         int r;
519 };
520
521 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
522
523 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
524 #define MSRS_RANGE_SIZE 2048
525 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
526
527 static u32 svm_msrpm_offset(u32 msr)
528 {
529         u32 offset;
530         int i;
531
532         for (i = 0; i < NUM_MSR_MAPS; i++) {
533                 if (msr < msrpm_ranges[i] ||
534                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
535                         continue;
536
537                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
538                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
539
540                 /* Now we have the u8 offset - but need the u32 offset */
541                 return offset / 4;
542         }
543
544         /* MSR not in any range */
545         return MSR_INVALID;
546 }
547
548 #define MAX_INST_SIZE 15
549
550 static inline void clgi(void)
551 {
552         asm volatile (__ex(SVM_CLGI));
553 }
554
555 static inline void stgi(void)
556 {
557         asm volatile (__ex(SVM_STGI));
558 }
559
560 static inline void invlpga(unsigned long addr, u32 asid)
561 {
562         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
563 }
564
565 static int get_npt_level(void)
566 {
567 #ifdef CONFIG_X86_64
568         return PT64_ROOT_LEVEL;
569 #else
570         return PT32E_ROOT_LEVEL;
571 #endif
572 }
573
574 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
575 {
576         vcpu->arch.efer = efer;
577         if (!npt_enabled && !(efer & EFER_LMA))
578                 efer &= ~EFER_LME;
579
580         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
581         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
582 }
583
584 static int is_external_interrupt(u32 info)
585 {
586         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
587         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
588 }
589
590 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
591 {
592         struct vcpu_svm *svm = to_svm(vcpu);
593         u32 ret = 0;
594
595         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
596                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
597         return ret;
598 }
599
600 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
601 {
602         struct vcpu_svm *svm = to_svm(vcpu);
603
604         if (mask == 0)
605                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
606         else
607                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
608
609 }
610
611 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
612 {
613         struct vcpu_svm *svm = to_svm(vcpu);
614
615         if (svm->vmcb->control.next_rip != 0) {
616                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
617                 svm->next_rip = svm->vmcb->control.next_rip;
618         }
619
620         if (!svm->next_rip) {
621                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
622                                 EMULATE_DONE)
623                         printk(KERN_DEBUG "%s: NOP\n", __func__);
624                 return;
625         }
626         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
627                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
628                        __func__, kvm_rip_read(vcpu), svm->next_rip);
629
630         kvm_rip_write(vcpu, svm->next_rip);
631         svm_set_interrupt_shadow(vcpu, 0);
632 }
633
634 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
635                                 bool has_error_code, u32 error_code,
636                                 bool reinject)
637 {
638         struct vcpu_svm *svm = to_svm(vcpu);
639
640         /*
641          * If we are within a nested VM we'd better #VMEXIT and let the guest
642          * handle the exception
643          */
644         if (!reinject &&
645             nested_svm_check_exception(svm, nr, has_error_code, error_code))
646                 return;
647
648         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
649                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
650
651                 /*
652                  * For guest debugging where we have to reinject #BP if some
653                  * INT3 is guest-owned:
654                  * Emulate nRIP by moving RIP forward. Will fail if injection
655                  * raises a fault that is not intercepted. Still better than
656                  * failing in all cases.
657                  */
658                 skip_emulated_instruction(&svm->vcpu);
659                 rip = kvm_rip_read(&svm->vcpu);
660                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
661                 svm->int3_injected = rip - old_rip;
662         }
663
664         svm->vmcb->control.event_inj = nr
665                 | SVM_EVTINJ_VALID
666                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
667                 | SVM_EVTINJ_TYPE_EXEPT;
668         svm->vmcb->control.event_inj_err = error_code;
669 }
670
671 static void svm_init_erratum_383(void)
672 {
673         u32 low, high;
674         int err;
675         u64 val;
676
677         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
678                 return;
679
680         /* Use _safe variants to not break nested virtualization */
681         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
682         if (err)
683                 return;
684
685         val |= (1ULL << 47);
686
687         low  = lower_32_bits(val);
688         high = upper_32_bits(val);
689
690         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
691
692         erratum_383_found = true;
693 }
694
695 static void svm_init_osvw(struct kvm_vcpu *vcpu)
696 {
697         /*
698          * Guests should see errata 400 and 415 as fixed (assuming that
699          * HLT and IO instructions are intercepted).
700          */
701         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
702         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
703
704         /*
705          * By increasing VCPU's osvw.length to 3 we are telling the guest that
706          * all osvw.status bits inside that length, including bit 0 (which is
707          * reserved for erratum 298), are valid. However, if host processor's
708          * osvw_len is 0 then osvw_status[0] carries no information. We need to
709          * be conservative here and therefore we tell the guest that erratum 298
710          * is present (because we really don't know).
711          */
712         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
713                 vcpu->arch.osvw.status |= 1;
714 }
715
716 static int has_svm(void)
717 {
718         const char *msg;
719
720         if (!cpu_has_svm(&msg)) {
721                 printk(KERN_INFO "has_svm: %s\n", msg);
722                 return 0;
723         }
724
725         return 1;
726 }
727
728 static void svm_hardware_disable(void)
729 {
730         /* Make sure we clean up behind us */
731         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
732                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
733
734         cpu_svm_disable();
735
736         amd_pmu_disable_virt();
737 }
738
739 static int svm_hardware_enable(void)
740 {
741
742         struct svm_cpu_data *sd;
743         uint64_t efer;
744         struct desc_ptr gdt_descr;
745         struct desc_struct *gdt;
746         int me = raw_smp_processor_id();
747
748         rdmsrl(MSR_EFER, efer);
749         if (efer & EFER_SVME)
750                 return -EBUSY;
751
752         if (!has_svm()) {
753                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
754                 return -EINVAL;
755         }
756         sd = per_cpu(svm_data, me);
757         if (!sd) {
758                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
759                 return -EINVAL;
760         }
761
762         sd->asid_generation = 1;
763         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
764         sd->next_asid = sd->max_asid + 1;
765
766         native_store_gdt(&gdt_descr);
767         gdt = (struct desc_struct *)gdt_descr.address;
768         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
769
770         wrmsrl(MSR_EFER, efer | EFER_SVME);
771
772         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
773
774         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
775                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
776                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
777         }
778
779
780         /*
781          * Get OSVW bits.
782          *
783          * Note that it is possible to have a system with mixed processor
784          * revisions and therefore different OSVW bits. If bits are not the same
785          * on different processors then choose the worst case (i.e. if erratum
786          * is present on one processor and not on another then assume that the
787          * erratum is present everywhere).
788          */
789         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
790                 uint64_t len, status = 0;
791                 int err;
792
793                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
794                 if (!err)
795                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
796                                                       &err);
797
798                 if (err)
799                         osvw_status = osvw_len = 0;
800                 else {
801                         if (len < osvw_len)
802                                 osvw_len = len;
803                         osvw_status |= status;
804                         osvw_status &= (1ULL << osvw_len) - 1;
805                 }
806         } else
807                 osvw_status = osvw_len = 0;
808
809         svm_init_erratum_383();
810
811         amd_pmu_enable_virt();
812
813         return 0;
814 }
815
816 static void svm_cpu_uninit(int cpu)
817 {
818         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
819
820         if (!sd)
821                 return;
822
823         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
824         __free_page(sd->save_area);
825         kfree(sd);
826 }
827
828 static int svm_cpu_init(int cpu)
829 {
830         struct svm_cpu_data *sd;
831         int r;
832
833         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
834         if (!sd)
835                 return -ENOMEM;
836         sd->cpu = cpu;
837         sd->save_area = alloc_page(GFP_KERNEL);
838         r = -ENOMEM;
839         if (!sd->save_area)
840                 goto err_1;
841
842         per_cpu(svm_data, cpu) = sd;
843
844         return 0;
845
846 err_1:
847         kfree(sd);
848         return r;
849
850 }
851
852 static bool valid_msr_intercept(u32 index)
853 {
854         int i;
855
856         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
857                 if (direct_access_msrs[i].index == index)
858                         return true;
859
860         return false;
861 }
862
863 static void set_msr_interception(u32 *msrpm, unsigned msr,
864                                  int read, int write)
865 {
866         u8 bit_read, bit_write;
867         unsigned long tmp;
868         u32 offset;
869
870         /*
871          * If this warning triggers extend the direct_access_msrs list at the
872          * beginning of the file
873          */
874         WARN_ON(!valid_msr_intercept(msr));
875
876         offset    = svm_msrpm_offset(msr);
877         bit_read  = 2 * (msr & 0x0f);
878         bit_write = 2 * (msr & 0x0f) + 1;
879         tmp       = msrpm[offset];
880
881         BUG_ON(offset == MSR_INVALID);
882
883         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
884         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
885
886         msrpm[offset] = tmp;
887 }
888
889 static void svm_vcpu_init_msrpm(u32 *msrpm)
890 {
891         int i;
892
893         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
894
895         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
896                 if (!direct_access_msrs[i].always)
897                         continue;
898
899                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
900         }
901 }
902
903 static void add_msr_offset(u32 offset)
904 {
905         int i;
906
907         for (i = 0; i < MSRPM_OFFSETS; ++i) {
908
909                 /* Offset already in list? */
910                 if (msrpm_offsets[i] == offset)
911                         return;
912
913                 /* Slot used by another offset? */
914                 if (msrpm_offsets[i] != MSR_INVALID)
915                         continue;
916
917                 /* Add offset to list */
918                 msrpm_offsets[i] = offset;
919
920                 return;
921         }
922
923         /*
924          * If this BUG triggers the msrpm_offsets table has an overflow. Just
925          * increase MSRPM_OFFSETS in this case.
926          */
927         BUG();
928 }
929
930 static void init_msrpm_offsets(void)
931 {
932         int i;
933
934         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
935
936         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
937                 u32 offset;
938
939                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
940                 BUG_ON(offset == MSR_INVALID);
941
942                 add_msr_offset(offset);
943         }
944 }
945
946 static void svm_enable_lbrv(struct vcpu_svm *svm)
947 {
948         u32 *msrpm = svm->msrpm;
949
950         svm->vmcb->control.lbr_ctl = 1;
951         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
952         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
953         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
954         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
955 }
956
957 static void svm_disable_lbrv(struct vcpu_svm *svm)
958 {
959         u32 *msrpm = svm->msrpm;
960
961         svm->vmcb->control.lbr_ctl = 0;
962         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
963         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
964         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
965         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
966 }
967
968 /* Note:
969  * This hash table is used to map VM_ID to a struct kvm_arch,
970  * when handling AMD IOMMU GALOG notification to schedule in
971  * a particular vCPU.
972  */
973 #define SVM_VM_DATA_HASH_BITS   8
974 DECLARE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
975 static spinlock_t svm_vm_data_hash_lock;
976
977 /* Note:
978  * This function is called from IOMMU driver to notify
979  * SVM to schedule in a particular vCPU of a particular VM.
980  */
981 static int avic_ga_log_notifier(u32 ga_tag)
982 {
983         unsigned long flags;
984         struct kvm_arch *ka = NULL;
985         struct kvm_vcpu *vcpu = NULL;
986         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
987         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
988
989         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
990
991         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
992         hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
993                 struct kvm *kvm = container_of(ka, struct kvm, arch);
994                 struct kvm_arch *vm_data = &kvm->arch;
995
996                 if (vm_data->avic_vm_id != vm_id)
997                         continue;
998                 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
999                 break;
1000         }
1001         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1002
1003         if (!vcpu)
1004                 return 0;
1005
1006         /* Note:
1007          * At this point, the IOMMU should have already set the pending
1008          * bit in the vAPIC backing page. So, we just need to schedule
1009          * in the vcpu.
1010          */
1011         if (vcpu->mode == OUTSIDE_GUEST_MODE)
1012                 kvm_vcpu_wake_up(vcpu);
1013
1014         return 0;
1015 }
1016
1017 static __init int svm_hardware_setup(void)
1018 {
1019         int cpu;
1020         struct page *iopm_pages;
1021         void *iopm_va;
1022         int r;
1023
1024         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1025
1026         if (!iopm_pages)
1027                 return -ENOMEM;
1028
1029         iopm_va = page_address(iopm_pages);
1030         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1031         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1032
1033         init_msrpm_offsets();
1034
1035         if (boot_cpu_has(X86_FEATURE_NX))
1036                 kvm_enable_efer_bits(EFER_NX);
1037
1038         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1039                 kvm_enable_efer_bits(EFER_FFXSR);
1040
1041         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1042                 kvm_has_tsc_control = true;
1043                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1044                 kvm_tsc_scaling_ratio_frac_bits = 32;
1045         }
1046
1047         if (nested) {
1048                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1049                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1050         }
1051
1052         for_each_possible_cpu(cpu) {
1053                 r = svm_cpu_init(cpu);
1054                 if (r)
1055                         goto err;
1056         }
1057
1058         if (!boot_cpu_has(X86_FEATURE_NPT))
1059                 npt_enabled = false;
1060
1061         if (npt_enabled && !npt) {
1062                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1063                 npt_enabled = false;
1064         }
1065
1066         if (npt_enabled) {
1067                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1068                 kvm_enable_tdp();
1069         } else
1070                 kvm_disable_tdp();
1071
1072         if (avic) {
1073                 if (!npt_enabled ||
1074                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1075                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1076                         avic = false;
1077                 } else {
1078                         pr_info("AVIC enabled\n");
1079
1080                         hash_init(svm_vm_data_hash);
1081                         spin_lock_init(&svm_vm_data_hash_lock);
1082                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1083                 }
1084         }
1085
1086         return 0;
1087
1088 err:
1089         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1090         iopm_base = 0;
1091         return r;
1092 }
1093
1094 static __exit void svm_hardware_unsetup(void)
1095 {
1096         int cpu;
1097
1098         for_each_possible_cpu(cpu)
1099                 svm_cpu_uninit(cpu);
1100
1101         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1102         iopm_base = 0;
1103 }
1104
1105 static void init_seg(struct vmcb_seg *seg)
1106 {
1107         seg->selector = 0;
1108         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1109                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1110         seg->limit = 0xffff;
1111         seg->base = 0;
1112 }
1113
1114 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1115 {
1116         seg->selector = 0;
1117         seg->attrib = SVM_SELECTOR_P_MASK | type;
1118         seg->limit = 0xffff;
1119         seg->base = 0;
1120 }
1121
1122 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1123 {
1124         struct vcpu_svm *svm = to_svm(vcpu);
1125         u64 g_tsc_offset = 0;
1126
1127         if (is_guest_mode(vcpu)) {
1128                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1129                                svm->nested.hsave->control.tsc_offset;
1130                 svm->nested.hsave->control.tsc_offset = offset;
1131         } else
1132                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1133                                            svm->vmcb->control.tsc_offset,
1134                                            offset);
1135
1136         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1137
1138         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1139 }
1140
1141 static void avic_init_vmcb(struct vcpu_svm *svm)
1142 {
1143         struct vmcb *vmcb = svm->vmcb;
1144         struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1145         phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1146         phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1147         phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1148
1149         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1150         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1151         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1152         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1153         vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1154         svm->vcpu.arch.apicv_active = true;
1155 }
1156
1157 static void init_vmcb(struct vcpu_svm *svm)
1158 {
1159         struct vmcb_control_area *control = &svm->vmcb->control;
1160         struct vmcb_save_area *save = &svm->vmcb->save;
1161
1162         svm->vcpu.fpu_active = 1;
1163         svm->vcpu.arch.hflags = 0;
1164
1165         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1166         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1167         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1168         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1169         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1170         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1171         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1172                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1173
1174         set_dr_intercepts(svm);
1175
1176         set_exception_intercept(svm, PF_VECTOR);
1177         set_exception_intercept(svm, UD_VECTOR);
1178         set_exception_intercept(svm, MC_VECTOR);
1179         set_exception_intercept(svm, AC_VECTOR);
1180         set_exception_intercept(svm, DB_VECTOR);
1181
1182         set_intercept(svm, INTERCEPT_INTR);
1183         set_intercept(svm, INTERCEPT_NMI);
1184         set_intercept(svm, INTERCEPT_SMI);
1185         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1186         set_intercept(svm, INTERCEPT_RDPMC);
1187         set_intercept(svm, INTERCEPT_CPUID);
1188         set_intercept(svm, INTERCEPT_INVD);
1189         set_intercept(svm, INTERCEPT_HLT);
1190         set_intercept(svm, INTERCEPT_INVLPG);
1191         set_intercept(svm, INTERCEPT_INVLPGA);
1192         set_intercept(svm, INTERCEPT_IOIO_PROT);
1193         set_intercept(svm, INTERCEPT_MSR_PROT);
1194         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1195         set_intercept(svm, INTERCEPT_SHUTDOWN);
1196         set_intercept(svm, INTERCEPT_VMRUN);
1197         set_intercept(svm, INTERCEPT_VMMCALL);
1198         set_intercept(svm, INTERCEPT_VMLOAD);
1199         set_intercept(svm, INTERCEPT_VMSAVE);
1200         set_intercept(svm, INTERCEPT_STGI);
1201         set_intercept(svm, INTERCEPT_CLGI);
1202         set_intercept(svm, INTERCEPT_SKINIT);
1203         set_intercept(svm, INTERCEPT_WBINVD);
1204         set_intercept(svm, INTERCEPT_MONITOR);
1205         set_intercept(svm, INTERCEPT_MWAIT);
1206         set_intercept(svm, INTERCEPT_XSETBV);
1207
1208         control->iopm_base_pa = iopm_base;
1209         control->msrpm_base_pa = __pa(svm->msrpm);
1210         control->int_ctl = V_INTR_MASKING_MASK;
1211
1212         init_seg(&save->es);
1213         init_seg(&save->ss);
1214         init_seg(&save->ds);
1215         init_seg(&save->fs);
1216         init_seg(&save->gs);
1217
1218         save->cs.selector = 0xf000;
1219         save->cs.base = 0xffff0000;
1220         /* Executable/Readable Code Segment */
1221         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1222                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1223         save->cs.limit = 0xffff;
1224
1225         save->gdtr.limit = 0xffff;
1226         save->idtr.limit = 0xffff;
1227
1228         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1229         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1230
1231         svm_set_efer(&svm->vcpu, 0);
1232         save->dr6 = 0xffff0ff0;
1233         kvm_set_rflags(&svm->vcpu, 2);
1234         save->rip = 0x0000fff0;
1235         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1236
1237         /*
1238          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1239          * It also updates the guest-visible cr0 value.
1240          */
1241         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1242         kvm_mmu_reset_context(&svm->vcpu);
1243
1244         save->cr4 = X86_CR4_PAE;
1245         /* rdx = ?? */
1246
1247         if (npt_enabled) {
1248                 /* Setup VMCB for Nested Paging */
1249                 control->nested_ctl = 1;
1250                 clr_intercept(svm, INTERCEPT_INVLPG);
1251                 clr_exception_intercept(svm, PF_VECTOR);
1252                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1253                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1254                 save->g_pat = svm->vcpu.arch.pat;
1255                 save->cr3 = 0;
1256                 save->cr4 = 0;
1257         }
1258         svm->asid_generation = 0;
1259
1260         svm->nested.vmcb = 0;
1261         svm->vcpu.arch.hflags = 0;
1262
1263         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1264                 control->pause_filter_count = 3000;
1265                 set_intercept(svm, INTERCEPT_PAUSE);
1266         }
1267
1268         if (avic)
1269                 avic_init_vmcb(svm);
1270
1271         mark_all_dirty(svm->vmcb);
1272
1273         enable_gif(svm);
1274
1275 }
1276
1277 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
1278 {
1279         u64 *avic_physical_id_table;
1280         struct kvm_arch *vm_data = &vcpu->kvm->arch;
1281
1282         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1283                 return NULL;
1284
1285         avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1286
1287         return &avic_physical_id_table[index];
1288 }
1289
1290 /**
1291  * Note:
1292  * AVIC hardware walks the nested page table to check permissions,
1293  * but does not use the SPA address specified in the leaf page
1294  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1295  * field of the VMCB. Therefore, we set up the
1296  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1297  */
1298 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1299 {
1300         struct kvm *kvm = vcpu->kvm;
1301         int ret;
1302
1303         if (kvm->arch.apic_access_page_done)
1304                 return 0;
1305
1306         ret = x86_set_memory_region(kvm,
1307                                     APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1308                                     APIC_DEFAULT_PHYS_BASE,
1309                                     PAGE_SIZE);
1310         if (ret)
1311                 return ret;
1312
1313         kvm->arch.apic_access_page_done = true;
1314         return 0;
1315 }
1316
1317 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1318 {
1319         int ret;
1320         u64 *entry, new_entry;
1321         int id = vcpu->vcpu_id;
1322         struct vcpu_svm *svm = to_svm(vcpu);
1323
1324         ret = avic_init_access_page(vcpu);
1325         if (ret)
1326                 return ret;
1327
1328         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1329                 return -EINVAL;
1330
1331         if (!svm->vcpu.arch.apic->regs)
1332                 return -EINVAL;
1333
1334         svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1335
1336         /* Setting AVIC backing page address in the phy APIC ID table */
1337         entry = avic_get_physical_id_entry(vcpu, id);
1338         if (!entry)
1339                 return -EINVAL;
1340
1341         new_entry = READ_ONCE(*entry);
1342         new_entry = (page_to_phys(svm->avic_backing_page) &
1343                      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1344                      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1345         WRITE_ONCE(*entry, new_entry);
1346
1347         svm->avic_physical_id_cache = entry;
1348
1349         return 0;
1350 }
1351
1352 static inline int avic_get_next_vm_id(void)
1353 {
1354         int id;
1355
1356         spin_lock(&avic_vm_id_lock);
1357
1358         /* AVIC VM ID is one-based. */
1359         id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1360         if (id <= AVIC_VM_ID_MASK)
1361                 __set_bit(id, avic_vm_id_bitmap);
1362         else
1363                 id = -EAGAIN;
1364
1365         spin_unlock(&avic_vm_id_lock);
1366         return id;
1367 }
1368
1369 static inline int avic_free_vm_id(int id)
1370 {
1371         if (id <= 0 || id > AVIC_VM_ID_MASK)
1372                 return -EINVAL;
1373
1374         spin_lock(&avic_vm_id_lock);
1375         __clear_bit(id, avic_vm_id_bitmap);
1376         spin_unlock(&avic_vm_id_lock);
1377         return 0;
1378 }
1379
1380 static void avic_vm_destroy(struct kvm *kvm)
1381 {
1382         unsigned long flags;
1383         struct kvm_arch *vm_data = &kvm->arch;
1384
1385         avic_free_vm_id(vm_data->avic_vm_id);
1386
1387         if (vm_data->avic_logical_id_table_page)
1388                 __free_page(vm_data->avic_logical_id_table_page);
1389         if (vm_data->avic_physical_id_table_page)
1390                 __free_page(vm_data->avic_physical_id_table_page);
1391
1392         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1393         hash_del(&vm_data->hnode);
1394         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1395 }
1396
1397 static int avic_vm_init(struct kvm *kvm)
1398 {
1399         unsigned long flags;
1400         int vm_id, err = -ENOMEM;
1401         struct kvm_arch *vm_data = &kvm->arch;
1402         struct page *p_page;
1403         struct page *l_page;
1404
1405         if (!avic)
1406                 return 0;
1407
1408         vm_id = avic_get_next_vm_id();
1409         if (vm_id < 0)
1410                 return vm_id;
1411         vm_data->avic_vm_id = (u32)vm_id;
1412
1413         /* Allocating physical APIC ID table (4KB) */
1414         p_page = alloc_page(GFP_KERNEL);
1415         if (!p_page)
1416                 goto free_avic;
1417
1418         vm_data->avic_physical_id_table_page = p_page;
1419         clear_page(page_address(p_page));
1420
1421         /* Allocating logical APIC ID table (4KB) */
1422         l_page = alloc_page(GFP_KERNEL);
1423         if (!l_page)
1424                 goto free_avic;
1425
1426         vm_data->avic_logical_id_table_page = l_page;
1427         clear_page(page_address(l_page));
1428
1429         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1430         hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1431         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1432
1433         return 0;
1434
1435 free_avic:
1436         avic_vm_destroy(kvm);
1437         return err;
1438 }
1439
1440 static inline int
1441 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1442 {
1443         int ret = 0;
1444         unsigned long flags;
1445         struct amd_svm_iommu_ir *ir;
1446         struct vcpu_svm *svm = to_svm(vcpu);
1447
1448         if (!kvm_arch_has_assigned_device(vcpu->kvm))
1449                 return 0;
1450
1451         /*
1452          * Here, we go through the per-vcpu ir_list to update all existing
1453          * interrupt remapping table entry targeting this vcpu.
1454          */
1455         spin_lock_irqsave(&svm->ir_list_lock, flags);
1456
1457         if (list_empty(&svm->ir_list))
1458                 goto out;
1459
1460         list_for_each_entry(ir, &svm->ir_list, node) {
1461                 ret = amd_iommu_update_ga(cpu, r, ir->data);
1462                 if (ret)
1463                         break;
1464         }
1465 out:
1466         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1467         return ret;
1468 }
1469
1470 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1471 {
1472         u64 entry;
1473         /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1474         int h_physical_id = kvm_cpu_get_apicid(cpu);
1475         struct vcpu_svm *svm = to_svm(vcpu);
1476
1477         if (!kvm_vcpu_apicv_active(vcpu))
1478                 return;
1479
1480         if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1481                 return;
1482
1483         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1484         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1485
1486         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1487         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1488
1489         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1490         if (svm->avic_is_running)
1491                 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1492
1493         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1494         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1495                                         svm->avic_is_running);
1496 }
1497
1498 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1499 {
1500         u64 entry;
1501         struct vcpu_svm *svm = to_svm(vcpu);
1502
1503         if (!kvm_vcpu_apicv_active(vcpu))
1504                 return;
1505
1506         entry = READ_ONCE(*(svm->avic_physical_id_cache));
1507         if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1508                 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1509
1510         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1511         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1512 }
1513
1514 /**
1515  * This function is called during VCPU halt/unhalt.
1516  */
1517 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1518 {
1519         struct vcpu_svm *svm = to_svm(vcpu);
1520
1521         svm->avic_is_running = is_run;
1522         if (is_run)
1523                 avic_vcpu_load(vcpu, vcpu->cpu);
1524         else
1525                 avic_vcpu_put(vcpu);
1526 }
1527
1528 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1529 {
1530         struct vcpu_svm *svm = to_svm(vcpu);
1531         u32 dummy;
1532         u32 eax = 1;
1533
1534         if (!init_event) {
1535                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1536                                            MSR_IA32_APICBASE_ENABLE;
1537                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1538                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1539         }
1540         init_vmcb(svm);
1541
1542         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1543         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1544
1545         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1546                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1547 }
1548
1549 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1550 {
1551         struct vcpu_svm *svm;
1552         struct page *page;
1553         struct page *msrpm_pages;
1554         struct page *hsave_page;
1555         struct page *nested_msrpm_pages;
1556         int err;
1557
1558         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1559         if (!svm) {
1560                 err = -ENOMEM;
1561                 goto out;
1562         }
1563
1564         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1565         if (err)
1566                 goto free_svm;
1567
1568         err = -ENOMEM;
1569         page = alloc_page(GFP_KERNEL);
1570         if (!page)
1571                 goto uninit;
1572
1573         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1574         if (!msrpm_pages)
1575                 goto free_page1;
1576
1577         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1578         if (!nested_msrpm_pages)
1579                 goto free_page2;
1580
1581         hsave_page = alloc_page(GFP_KERNEL);
1582         if (!hsave_page)
1583                 goto free_page3;
1584
1585         if (avic) {
1586                 err = avic_init_backing_page(&svm->vcpu);
1587                 if (err)
1588                         goto free_page4;
1589
1590                 INIT_LIST_HEAD(&svm->ir_list);
1591                 spin_lock_init(&svm->ir_list_lock);
1592         }
1593
1594         /* We initialize this flag to true to make sure that the is_running
1595          * bit would be set the first time the vcpu is loaded.
1596          */
1597         svm->avic_is_running = true;
1598
1599         svm->nested.hsave = page_address(hsave_page);
1600
1601         svm->msrpm = page_address(msrpm_pages);
1602         svm_vcpu_init_msrpm(svm->msrpm);
1603
1604         svm->nested.msrpm = page_address(nested_msrpm_pages);
1605         svm_vcpu_init_msrpm(svm->nested.msrpm);
1606
1607         svm->vmcb = page_address(page);
1608         clear_page(svm->vmcb);
1609         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1610         svm->asid_generation = 0;
1611         init_vmcb(svm);
1612
1613         svm_init_osvw(&svm->vcpu);
1614
1615         return &svm->vcpu;
1616
1617 free_page4:
1618         __free_page(hsave_page);
1619 free_page3:
1620         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1621 free_page2:
1622         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1623 free_page1:
1624         __free_page(page);
1625 uninit:
1626         kvm_vcpu_uninit(&svm->vcpu);
1627 free_svm:
1628         kmem_cache_free(kvm_vcpu_cache, svm);
1629 out:
1630         return ERR_PTR(err);
1631 }
1632
1633 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1634 {
1635         struct vcpu_svm *svm = to_svm(vcpu);
1636
1637         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1638         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1639         __free_page(virt_to_page(svm->nested.hsave));
1640         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1641         kvm_vcpu_uninit(vcpu);
1642         kmem_cache_free(kvm_vcpu_cache, svm);
1643 }
1644
1645 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1646 {
1647         struct vcpu_svm *svm = to_svm(vcpu);
1648         int i;
1649
1650         if (unlikely(cpu != vcpu->cpu)) {
1651                 svm->asid_generation = 0;
1652                 mark_all_dirty(svm->vmcb);
1653         }
1654
1655 #ifdef CONFIG_X86_64
1656         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1657 #endif
1658         savesegment(fs, svm->host.fs);
1659         savesegment(gs, svm->host.gs);
1660         svm->host.ldt = kvm_read_ldt();
1661
1662         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1663                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1664
1665         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1666                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1667                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1668                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1669                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1670                 }
1671         }
1672         /* This assumes that the kernel never uses MSR_TSC_AUX */
1673         if (static_cpu_has(X86_FEATURE_RDTSCP))
1674                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1675
1676         avic_vcpu_load(vcpu, cpu);
1677 }
1678
1679 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1680 {
1681         struct vcpu_svm *svm = to_svm(vcpu);
1682         int i;
1683
1684         avic_vcpu_put(vcpu);
1685
1686         ++vcpu->stat.host_state_reload;
1687         kvm_load_ldt(svm->host.ldt);
1688 #ifdef CONFIG_X86_64
1689         loadsegment(fs, svm->host.fs);
1690         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1691         load_gs_index(svm->host.gs);
1692 #else
1693 #ifdef CONFIG_X86_32_LAZY_GS
1694         loadsegment(gs, svm->host.gs);
1695 #endif
1696 #endif
1697         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1698                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1699 }
1700
1701 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1702 {
1703         avic_set_running(vcpu, false);
1704 }
1705
1706 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1707 {
1708         avic_set_running(vcpu, true);
1709 }
1710
1711 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1712 {
1713         return to_svm(vcpu)->vmcb->save.rflags;
1714 }
1715
1716 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1717 {
1718        /*
1719         * Any change of EFLAGS.VM is accompanied by a reload of SS
1720         * (caused by either a task switch or an inter-privilege IRET),
1721         * so we do not need to update the CPL here.
1722         */
1723         to_svm(vcpu)->vmcb->save.rflags = rflags;
1724 }
1725
1726 static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
1727 {
1728         return 0;
1729 }
1730
1731 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1732 {
1733         switch (reg) {
1734         case VCPU_EXREG_PDPTR:
1735                 BUG_ON(!npt_enabled);
1736                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1737                 break;
1738         default:
1739                 BUG();
1740         }
1741 }
1742
1743 static void svm_set_vintr(struct vcpu_svm *svm)
1744 {
1745         set_intercept(svm, INTERCEPT_VINTR);
1746 }
1747
1748 static void svm_clear_vintr(struct vcpu_svm *svm)
1749 {
1750         clr_intercept(svm, INTERCEPT_VINTR);
1751 }
1752
1753 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1754 {
1755         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1756
1757         switch (seg) {
1758         case VCPU_SREG_CS: return &save->cs;
1759         case VCPU_SREG_DS: return &save->ds;
1760         case VCPU_SREG_ES: return &save->es;
1761         case VCPU_SREG_FS: return &save->fs;
1762         case VCPU_SREG_GS: return &save->gs;
1763         case VCPU_SREG_SS: return &save->ss;
1764         case VCPU_SREG_TR: return &save->tr;
1765         case VCPU_SREG_LDTR: return &save->ldtr;
1766         }
1767         BUG();
1768         return NULL;
1769 }
1770
1771 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1772 {
1773         struct vmcb_seg *s = svm_seg(vcpu, seg);
1774
1775         return s->base;
1776 }
1777
1778 static void svm_get_segment(struct kvm_vcpu *vcpu,
1779                             struct kvm_segment *var, int seg)
1780 {
1781         struct vmcb_seg *s = svm_seg(vcpu, seg);
1782
1783         var->base = s->base;
1784         var->limit = s->limit;
1785         var->selector = s->selector;
1786         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1787         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1788         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1789         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1790         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1791         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1792         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1793
1794         /*
1795          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1796          * However, the SVM spec states that the G bit is not observed by the
1797          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1798          * So let's synthesize a legal G bit for all segments, this helps
1799          * running KVM nested. It also helps cross-vendor migration, because
1800          * Intel's vmentry has a check on the 'G' bit.
1801          */
1802         var->g = s->limit > 0xfffff;
1803
1804         /*
1805          * AMD's VMCB does not have an explicit unusable field, so emulate it
1806          * for cross vendor migration purposes by "not present"
1807          */
1808         var->unusable = !var->present || (var->type == 0);
1809
1810         switch (seg) {
1811         case VCPU_SREG_TR:
1812                 /*
1813                  * Work around a bug where the busy flag in the tr selector
1814                  * isn't exposed
1815                  */
1816                 var->type |= 0x2;
1817                 break;
1818         case VCPU_SREG_DS:
1819         case VCPU_SREG_ES:
1820         case VCPU_SREG_FS:
1821         case VCPU_SREG_GS:
1822                 /*
1823                  * The accessed bit must always be set in the segment
1824                  * descriptor cache, although it can be cleared in the
1825                  * descriptor, the cached bit always remains at 1. Since
1826                  * Intel has a check on this, set it here to support
1827                  * cross-vendor migration.
1828                  */
1829                 if (!var->unusable)
1830                         var->type |= 0x1;
1831                 break;
1832         case VCPU_SREG_SS:
1833                 /*
1834                  * On AMD CPUs sometimes the DB bit in the segment
1835                  * descriptor is left as 1, although the whole segment has
1836                  * been made unusable. Clear it here to pass an Intel VMX
1837                  * entry check when cross vendor migrating.
1838                  */
1839                 if (var->unusable)
1840                         var->db = 0;
1841                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1842                 break;
1843         }
1844 }
1845
1846 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1847 {
1848         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1849
1850         return save->cpl;
1851 }
1852
1853 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1854 {
1855         struct vcpu_svm *svm = to_svm(vcpu);
1856
1857         dt->size = svm->vmcb->save.idtr.limit;
1858         dt->address = svm->vmcb->save.idtr.base;
1859 }
1860
1861 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1862 {
1863         struct vcpu_svm *svm = to_svm(vcpu);
1864
1865         svm->vmcb->save.idtr.limit = dt->size;
1866         svm->vmcb->save.idtr.base = dt->address ;
1867         mark_dirty(svm->vmcb, VMCB_DT);
1868 }
1869
1870 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1871 {
1872         struct vcpu_svm *svm = to_svm(vcpu);
1873
1874         dt->size = svm->vmcb->save.gdtr.limit;
1875         dt->address = svm->vmcb->save.gdtr.base;
1876 }
1877
1878 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1879 {
1880         struct vcpu_svm *svm = to_svm(vcpu);
1881
1882         svm->vmcb->save.gdtr.limit = dt->size;
1883         svm->vmcb->save.gdtr.base = dt->address ;
1884         mark_dirty(svm->vmcb, VMCB_DT);
1885 }
1886
1887 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1888 {
1889 }
1890
1891 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1892 {
1893 }
1894
1895 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1896 {
1897 }
1898
1899 static void update_cr0_intercept(struct vcpu_svm *svm)
1900 {
1901         ulong gcr0 = svm->vcpu.arch.cr0;
1902         u64 *hcr0 = &svm->vmcb->save.cr0;
1903
1904         if (!svm->vcpu.fpu_active)
1905                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1906         else
1907                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1908                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1909
1910         mark_dirty(svm->vmcb, VMCB_CR);
1911
1912         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1913                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1914                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1915         } else {
1916                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1917                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1918         }
1919 }
1920
1921 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1922 {
1923         struct vcpu_svm *svm = to_svm(vcpu);
1924
1925 #ifdef CONFIG_X86_64
1926         if (vcpu->arch.efer & EFER_LME) {
1927                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1928                         vcpu->arch.efer |= EFER_LMA;
1929                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1930                 }
1931
1932                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1933                         vcpu->arch.efer &= ~EFER_LMA;
1934                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1935                 }
1936         }
1937 #endif
1938         vcpu->arch.cr0 = cr0;
1939
1940         if (!npt_enabled)
1941                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1942
1943         if (!vcpu->fpu_active)
1944                 cr0 |= X86_CR0_TS;
1945         /*
1946          * re-enable caching here because the QEMU bios
1947          * does not do it - this results in some delay at
1948          * reboot
1949          */
1950         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1951                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1952         svm->vmcb->save.cr0 = cr0;
1953         mark_dirty(svm->vmcb, VMCB_CR);
1954         update_cr0_intercept(svm);
1955 }
1956
1957 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1958 {
1959         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1960         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1961
1962         if (cr4 & X86_CR4_VMXE)
1963                 return 1;
1964
1965         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1966                 svm_flush_tlb(vcpu);
1967
1968         vcpu->arch.cr4 = cr4;
1969         if (!npt_enabled)
1970                 cr4 |= X86_CR4_PAE;
1971         cr4 |= host_cr4_mce;
1972         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1973         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1974         return 0;
1975 }
1976
1977 static void svm_set_segment(struct kvm_vcpu *vcpu,
1978                             struct kvm_segment *var, int seg)
1979 {
1980         struct vcpu_svm *svm = to_svm(vcpu);
1981         struct vmcb_seg *s = svm_seg(vcpu, seg);
1982
1983         s->base = var->base;
1984         s->limit = var->limit;
1985         s->selector = var->selector;
1986         if (var->unusable)
1987                 s->attrib = 0;
1988         else {
1989                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1990                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1991                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1992                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1993                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1994                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1995                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1996                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1997         }
1998
1999         /*
2000          * This is always accurate, except if SYSRET returned to a segment
2001          * with SS.DPL != 3.  Intel does not have this quirk, and always
2002          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2003          * would entail passing the CPL to userspace and back.
2004          */
2005         if (seg == VCPU_SREG_SS)
2006                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2007
2008         mark_dirty(svm->vmcb, VMCB_SEG);
2009 }
2010
2011 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2012 {
2013         struct vcpu_svm *svm = to_svm(vcpu);
2014
2015         clr_exception_intercept(svm, BP_VECTOR);
2016
2017         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2018                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2019                         set_exception_intercept(svm, BP_VECTOR);
2020         } else
2021                 vcpu->guest_debug = 0;
2022 }
2023
2024 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2025 {
2026         if (sd->next_asid > sd->max_asid) {
2027                 ++sd->asid_generation;
2028                 sd->next_asid = 1;
2029                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2030         }
2031
2032         svm->asid_generation = sd->asid_generation;
2033         svm->vmcb->control.asid = sd->next_asid++;
2034
2035         mark_dirty(svm->vmcb, VMCB_ASID);
2036 }
2037
2038 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2039 {
2040         return to_svm(vcpu)->vmcb->save.dr6;
2041 }
2042
2043 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2044 {
2045         struct vcpu_svm *svm = to_svm(vcpu);
2046
2047         svm->vmcb->save.dr6 = value;
2048         mark_dirty(svm->vmcb, VMCB_DR);
2049 }
2050
2051 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2052 {
2053         struct vcpu_svm *svm = to_svm(vcpu);
2054
2055         get_debugreg(vcpu->arch.db[0], 0);
2056         get_debugreg(vcpu->arch.db[1], 1);
2057         get_debugreg(vcpu->arch.db[2], 2);
2058         get_debugreg(vcpu->arch.db[3], 3);
2059         vcpu->arch.dr6 = svm_get_dr6(vcpu);
2060         vcpu->arch.dr7 = svm->vmcb->save.dr7;
2061
2062         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2063         set_dr_intercepts(svm);
2064 }
2065
2066 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2067 {
2068         struct vcpu_svm *svm = to_svm(vcpu);
2069
2070         svm->vmcb->save.dr7 = value;
2071         mark_dirty(svm->vmcb, VMCB_DR);
2072 }
2073
2074 static int pf_interception(struct vcpu_svm *svm)
2075 {
2076         u64 fault_address = svm->vmcb->control.exit_info_2;
2077         u64 error_code;
2078         int r = 1;
2079
2080         switch (svm->apf_reason) {
2081         default:
2082                 error_code = svm->vmcb->control.exit_info_1;
2083
2084                 trace_kvm_page_fault(fault_address, error_code);
2085                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
2086                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
2087                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2088                         svm->vmcb->control.insn_bytes,
2089                         svm->vmcb->control.insn_len);
2090                 break;
2091         case KVM_PV_REASON_PAGE_NOT_PRESENT:
2092                 svm->apf_reason = 0;
2093                 local_irq_disable();
2094                 kvm_async_pf_task_wait(fault_address);
2095                 local_irq_enable();
2096                 break;
2097         case KVM_PV_REASON_PAGE_READY:
2098                 svm->apf_reason = 0;
2099                 local_irq_disable();
2100                 kvm_async_pf_task_wake(fault_address);
2101                 local_irq_enable();
2102                 break;
2103         }
2104         return r;
2105 }
2106
2107 static int db_interception(struct vcpu_svm *svm)
2108 {
2109         struct kvm_run *kvm_run = svm->vcpu.run;
2110
2111         if (!(svm->vcpu.guest_debug &
2112               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2113                 !svm->nmi_singlestep) {
2114                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2115                 return 1;
2116         }
2117
2118         if (svm->nmi_singlestep) {
2119                 svm->nmi_singlestep = false;
2120                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
2121                         svm->vmcb->save.rflags &=
2122                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2123         }
2124
2125         if (svm->vcpu.guest_debug &
2126             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2127                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2128                 kvm_run->debug.arch.pc =
2129                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2130                 kvm_run->debug.arch.exception = DB_VECTOR;
2131                 return 0;
2132         }
2133
2134         return 1;
2135 }
2136
2137 static int bp_interception(struct vcpu_svm *svm)
2138 {
2139         struct kvm_run *kvm_run = svm->vcpu.run;
2140
2141         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2142         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2143         kvm_run->debug.arch.exception = BP_VECTOR;
2144         return 0;
2145 }
2146
2147 static int ud_interception(struct vcpu_svm *svm)
2148 {
2149         int er;
2150
2151         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2152         if (er != EMULATE_DONE)
2153                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2154         return 1;
2155 }
2156
2157 static int ac_interception(struct vcpu_svm *svm)
2158 {
2159         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2160         return 1;
2161 }
2162
2163 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
2164 {
2165         struct vcpu_svm *svm = to_svm(vcpu);
2166
2167         clr_exception_intercept(svm, NM_VECTOR);
2168
2169         svm->vcpu.fpu_active = 1;
2170         update_cr0_intercept(svm);
2171 }
2172
2173 static int nm_interception(struct vcpu_svm *svm)
2174 {
2175         svm_fpu_activate(&svm->vcpu);
2176         return 1;
2177 }
2178
2179 static bool is_erratum_383(void)
2180 {
2181         int err, i;
2182         u64 value;
2183
2184         if (!erratum_383_found)
2185                 return false;
2186
2187         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2188         if (err)
2189                 return false;
2190
2191         /* Bit 62 may or may not be set for this mce */
2192         value &= ~(1ULL << 62);
2193
2194         if (value != 0xb600000000010015ULL)
2195                 return false;
2196
2197         /* Clear MCi_STATUS registers */
2198         for (i = 0; i < 6; ++i)
2199                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2200
2201         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2202         if (!err) {
2203                 u32 low, high;
2204
2205                 value &= ~(1ULL << 2);
2206                 low    = lower_32_bits(value);
2207                 high   = upper_32_bits(value);
2208
2209                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2210         }
2211
2212         /* Flush tlb to evict multi-match entries */
2213         __flush_tlb_all();
2214
2215         return true;
2216 }
2217
2218 static void svm_handle_mce(struct vcpu_svm *svm)
2219 {
2220         if (is_erratum_383()) {
2221                 /*
2222                  * Erratum 383 triggered. Guest state is corrupt so kill the
2223                  * guest.
2224                  */
2225                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2226
2227                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2228
2229                 return;
2230         }
2231
2232         /*
2233          * On an #MC intercept the MCE handler is not called automatically in
2234          * the host. So do it by hand here.
2235          */
2236         asm volatile (
2237                 "int $0x12\n");
2238         /* not sure if we ever come back to this point */
2239
2240         return;
2241 }
2242
2243 static int mc_interception(struct vcpu_svm *svm)
2244 {
2245         return 1;
2246 }
2247
2248 static int shutdown_interception(struct vcpu_svm *svm)
2249 {
2250         struct kvm_run *kvm_run = svm->vcpu.run;
2251
2252         /*
2253          * VMCB is undefined after a SHUTDOWN intercept
2254          * so reinitialize it.
2255          */
2256         clear_page(svm->vmcb);
2257         init_vmcb(svm);
2258
2259         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2260         return 0;
2261 }
2262
2263 static int io_interception(struct vcpu_svm *svm)
2264 {
2265         struct kvm_vcpu *vcpu = &svm->vcpu;
2266         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2267         int size, in, string;
2268         unsigned port;
2269
2270         ++svm->vcpu.stat.io_exits;
2271         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2272         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2273         if (string)
2274                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2275
2276         port = io_info >> 16;
2277         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2278         svm->next_rip = svm->vmcb->control.exit_info_2;
2279         skip_emulated_instruction(&svm->vcpu);
2280
2281         return in ? kvm_fast_pio_in(vcpu, size, port)
2282                   : kvm_fast_pio_out(vcpu, size, port);
2283 }
2284
2285 static int nmi_interception(struct vcpu_svm *svm)
2286 {
2287         return 1;
2288 }
2289
2290 static int intr_interception(struct vcpu_svm *svm)
2291 {
2292         ++svm->vcpu.stat.irq_exits;
2293         return 1;
2294 }
2295
2296 static int nop_on_interception(struct vcpu_svm *svm)
2297 {
2298         return 1;
2299 }
2300
2301 static int halt_interception(struct vcpu_svm *svm)
2302 {
2303         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2304         return kvm_emulate_halt(&svm->vcpu);
2305 }
2306
2307 static int vmmcall_interception(struct vcpu_svm *svm)
2308 {
2309         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2310         return kvm_emulate_hypercall(&svm->vcpu);
2311 }
2312
2313 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2314 {
2315         struct vcpu_svm *svm = to_svm(vcpu);
2316
2317         return svm->nested.nested_cr3;
2318 }
2319
2320 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2321 {
2322         struct vcpu_svm *svm = to_svm(vcpu);
2323         u64 cr3 = svm->nested.nested_cr3;
2324         u64 pdpte;
2325         int ret;
2326
2327         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2328                                        offset_in_page(cr3) + index * 8, 8);
2329         if (ret)
2330                 return 0;
2331         return pdpte;
2332 }
2333
2334 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2335                                    unsigned long root)
2336 {
2337         struct vcpu_svm *svm = to_svm(vcpu);
2338
2339         svm->vmcb->control.nested_cr3 = root;
2340         mark_dirty(svm->vmcb, VMCB_NPT);
2341         svm_flush_tlb(vcpu);
2342 }
2343
2344 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2345                                        struct x86_exception *fault)
2346 {
2347         struct vcpu_svm *svm = to_svm(vcpu);
2348
2349         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2350                 /*
2351                  * TODO: track the cause of the nested page fault, and
2352                  * correctly fill in the high bits of exit_info_1.
2353                  */
2354                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2355                 svm->vmcb->control.exit_code_hi = 0;
2356                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2357                 svm->vmcb->control.exit_info_2 = fault->address;
2358         }
2359
2360         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2361         svm->vmcb->control.exit_info_1 |= fault->error_code;
2362
2363         /*
2364          * The present bit is always zero for page structure faults on real
2365          * hardware.
2366          */
2367         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2368                 svm->vmcb->control.exit_info_1 &= ~1;
2369
2370         nested_svm_vmexit(svm);
2371 }
2372
2373 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2374 {
2375         WARN_ON(mmu_is_nested(vcpu));
2376         kvm_init_shadow_mmu(vcpu);
2377         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2378         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2379         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2380         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2381         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2382         reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2383         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2384 }
2385
2386 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2387 {
2388         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2389 }
2390
2391 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2392 {
2393         if (!(svm->vcpu.arch.efer & EFER_SVME)
2394             || !is_paging(&svm->vcpu)) {
2395                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2396                 return 1;
2397         }
2398
2399         if (svm->vmcb->save.cpl) {
2400                 kvm_inject_gp(&svm->vcpu, 0);
2401                 return 1;
2402         }
2403
2404        return 0;
2405 }
2406
2407 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2408                                       bool has_error_code, u32 error_code)
2409 {
2410         int vmexit;
2411
2412         if (!is_guest_mode(&svm->vcpu))
2413                 return 0;
2414
2415         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2416         svm->vmcb->control.exit_code_hi = 0;
2417         svm->vmcb->control.exit_info_1 = error_code;
2418         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2419
2420         vmexit = nested_svm_intercept(svm);
2421         if (vmexit == NESTED_EXIT_DONE)
2422                 svm->nested.exit_required = true;
2423
2424         return vmexit;
2425 }
2426
2427 /* This function returns true if it is save to enable the irq window */
2428 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2429 {
2430         if (!is_guest_mode(&svm->vcpu))
2431                 return true;
2432
2433         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2434                 return true;
2435
2436         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2437                 return false;
2438
2439         /*
2440          * if vmexit was already requested (by intercepted exception
2441          * for instance) do not overwrite it with "external interrupt"
2442          * vmexit.
2443          */
2444         if (svm->nested.exit_required)
2445                 return false;
2446
2447         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2448         svm->vmcb->control.exit_info_1 = 0;
2449         svm->vmcb->control.exit_info_2 = 0;
2450
2451         if (svm->nested.intercept & 1ULL) {
2452                 /*
2453                  * The #vmexit can't be emulated here directly because this
2454                  * code path runs with irqs and preemption disabled. A
2455                  * #vmexit emulation might sleep. Only signal request for
2456                  * the #vmexit here.
2457                  */
2458                 svm->nested.exit_required = true;
2459                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2460                 return false;
2461         }
2462
2463         return true;
2464 }
2465
2466 /* This function returns true if it is save to enable the nmi window */
2467 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2468 {
2469         if (!is_guest_mode(&svm->vcpu))
2470                 return true;
2471
2472         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2473                 return true;
2474
2475         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2476         svm->nested.exit_required = true;
2477
2478         return false;
2479 }
2480
2481 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2482 {
2483         struct page *page;
2484
2485         might_sleep();
2486
2487         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2488         if (is_error_page(page))
2489                 goto error;
2490
2491         *_page = page;
2492
2493         return kmap(page);
2494
2495 error:
2496         kvm_inject_gp(&svm->vcpu, 0);
2497
2498         return NULL;
2499 }
2500
2501 static void nested_svm_unmap(struct page *page)
2502 {
2503         kunmap(page);
2504         kvm_release_page_dirty(page);
2505 }
2506
2507 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2508 {
2509         unsigned port, size, iopm_len;
2510         u16 val, mask;
2511         u8 start_bit;
2512         u64 gpa;
2513
2514         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2515                 return NESTED_EXIT_HOST;
2516
2517         port = svm->vmcb->control.exit_info_1 >> 16;
2518         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2519                 SVM_IOIO_SIZE_SHIFT;
2520         gpa  = svm->nested.vmcb_iopm + (port / 8);
2521         start_bit = port % 8;
2522         iopm_len = (start_bit + size > 8) ? 2 : 1;
2523         mask = (0xf >> (4 - size)) << start_bit;
2524         val = 0;
2525
2526         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2527                 return NESTED_EXIT_DONE;
2528
2529         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2530 }
2531
2532 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2533 {
2534         u32 offset, msr, value;
2535         int write, mask;
2536
2537         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2538                 return NESTED_EXIT_HOST;
2539
2540         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2541         offset = svm_msrpm_offset(msr);
2542         write  = svm->vmcb->control.exit_info_1 & 1;
2543         mask   = 1 << ((2 * (msr & 0xf)) + write);
2544
2545         if (offset == MSR_INVALID)
2546                 return NESTED_EXIT_DONE;
2547
2548         /* Offset is in 32 bit units but need in 8 bit units */
2549         offset *= 4;
2550
2551         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2552                 return NESTED_EXIT_DONE;
2553
2554         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2555 }
2556
2557 static int nested_svm_exit_special(struct vcpu_svm *svm)
2558 {
2559         u32 exit_code = svm->vmcb->control.exit_code;
2560
2561         switch (exit_code) {
2562         case SVM_EXIT_INTR:
2563         case SVM_EXIT_NMI:
2564         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2565                 return NESTED_EXIT_HOST;
2566         case SVM_EXIT_NPF:
2567                 /* For now we are always handling NPFs when using them */
2568                 if (npt_enabled)
2569                         return NESTED_EXIT_HOST;
2570                 break;
2571         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2572                 /* When we're shadowing, trap PFs, but not async PF */
2573                 if (!npt_enabled && svm->apf_reason == 0)
2574                         return NESTED_EXIT_HOST;
2575                 break;
2576         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2577                 nm_interception(svm);
2578                 break;
2579         default:
2580                 break;
2581         }
2582
2583         return NESTED_EXIT_CONTINUE;
2584 }
2585
2586 /*
2587  * If this function returns true, this #vmexit was already handled
2588  */
2589 static int nested_svm_intercept(struct vcpu_svm *svm)
2590 {
2591         u32 exit_code = svm->vmcb->control.exit_code;
2592         int vmexit = NESTED_EXIT_HOST;
2593
2594         switch (exit_code) {
2595         case SVM_EXIT_MSR:
2596                 vmexit = nested_svm_exit_handled_msr(svm);
2597                 break;
2598         case SVM_EXIT_IOIO:
2599                 vmexit = nested_svm_intercept_ioio(svm);
2600                 break;
2601         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2602                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2603                 if (svm->nested.intercept_cr & bit)
2604                         vmexit = NESTED_EXIT_DONE;
2605                 break;
2606         }
2607         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2608                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2609                 if (svm->nested.intercept_dr & bit)
2610                         vmexit = NESTED_EXIT_DONE;
2611                 break;
2612         }
2613         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2614                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2615                 if (svm->nested.intercept_exceptions & excp_bits)
2616                         vmexit = NESTED_EXIT_DONE;
2617                 /* async page fault always cause vmexit */
2618                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2619                          svm->apf_reason != 0)
2620                         vmexit = NESTED_EXIT_DONE;
2621                 break;
2622         }
2623         case SVM_EXIT_ERR: {
2624                 vmexit = NESTED_EXIT_DONE;
2625                 break;
2626         }
2627         default: {
2628                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2629                 if (svm->nested.intercept & exit_bits)
2630                         vmexit = NESTED_EXIT_DONE;
2631         }
2632         }
2633
2634         return vmexit;
2635 }
2636
2637 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2638 {
2639         int vmexit;
2640
2641         vmexit = nested_svm_intercept(svm);
2642
2643         if (vmexit == NESTED_EXIT_DONE)
2644                 nested_svm_vmexit(svm);
2645
2646         return vmexit;
2647 }
2648
2649 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2650 {
2651         struct vmcb_control_area *dst  = &dst_vmcb->control;
2652         struct vmcb_control_area *from = &from_vmcb->control;
2653
2654         dst->intercept_cr         = from->intercept_cr;
2655         dst->intercept_dr         = from->intercept_dr;
2656         dst->intercept_exceptions = from->intercept_exceptions;
2657         dst->intercept            = from->intercept;
2658         dst->iopm_base_pa         = from->iopm_base_pa;
2659         dst->msrpm_base_pa        = from->msrpm_base_pa;
2660         dst->tsc_offset           = from->tsc_offset;
2661         dst->asid                 = from->asid;
2662         dst->tlb_ctl              = from->tlb_ctl;
2663         dst->int_ctl              = from->int_ctl;
2664         dst->int_vector           = from->int_vector;
2665         dst->int_state            = from->int_state;
2666         dst->exit_code            = from->exit_code;
2667         dst->exit_code_hi         = from->exit_code_hi;
2668         dst->exit_info_1          = from->exit_info_1;
2669         dst->exit_info_2          = from->exit_info_2;
2670         dst->exit_int_info        = from->exit_int_info;
2671         dst->exit_int_info_err    = from->exit_int_info_err;
2672         dst->nested_ctl           = from->nested_ctl;
2673         dst->event_inj            = from->event_inj;
2674         dst->event_inj_err        = from->event_inj_err;
2675         dst->nested_cr3           = from->nested_cr3;
2676         dst->lbr_ctl              = from->lbr_ctl;
2677 }
2678
2679 static int nested_svm_vmexit(struct vcpu_svm *svm)
2680 {
2681         struct vmcb *nested_vmcb;
2682         struct vmcb *hsave = svm->nested.hsave;
2683         struct vmcb *vmcb = svm->vmcb;
2684         struct page *page;
2685
2686         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2687                                        vmcb->control.exit_info_1,
2688                                        vmcb->control.exit_info_2,
2689                                        vmcb->control.exit_int_info,
2690                                        vmcb->control.exit_int_info_err,
2691                                        KVM_ISA_SVM);
2692
2693         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2694         if (!nested_vmcb)
2695                 return 1;
2696
2697         /* Exit Guest-Mode */
2698         leave_guest_mode(&svm->vcpu);
2699         svm->nested.vmcb = 0;
2700
2701         /* Give the current vmcb to the guest */
2702         disable_gif(svm);
2703
2704         nested_vmcb->save.es     = vmcb->save.es;
2705         nested_vmcb->save.cs     = vmcb->save.cs;
2706         nested_vmcb->save.ss     = vmcb->save.ss;
2707         nested_vmcb->save.ds     = vmcb->save.ds;
2708         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2709         nested_vmcb->save.idtr   = vmcb->save.idtr;
2710         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2711         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2712         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2713         nested_vmcb->save.cr2    = vmcb->save.cr2;
2714         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2715         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2716         nested_vmcb->save.rip    = vmcb->save.rip;
2717         nested_vmcb->save.rsp    = vmcb->save.rsp;
2718         nested_vmcb->save.rax    = vmcb->save.rax;
2719         nested_vmcb->save.dr7    = vmcb->save.dr7;
2720         nested_vmcb->save.dr6    = vmcb->save.dr6;
2721         nested_vmcb->save.cpl    = vmcb->save.cpl;
2722
2723         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2724         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2725         nested_vmcb->control.int_state         = vmcb->control.int_state;
2726         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2727         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2728         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2729         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2730         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2731         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2732
2733         if (svm->nrips_enabled)
2734                 nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2735
2736         /*
2737          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2738          * to make sure that we do not lose injected events. So check event_inj
2739          * here and copy it to exit_int_info if it is valid.
2740          * Exit_int_info and event_inj can't be both valid because the case
2741          * below only happens on a VMRUN instruction intercept which has
2742          * no valid exit_int_info set.
2743          */
2744         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2745                 struct vmcb_control_area *nc = &nested_vmcb->control;
2746
2747                 nc->exit_int_info     = vmcb->control.event_inj;
2748                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2749         }
2750
2751         nested_vmcb->control.tlb_ctl           = 0;
2752         nested_vmcb->control.event_inj         = 0;
2753         nested_vmcb->control.event_inj_err     = 0;
2754
2755         /* We always set V_INTR_MASKING and remember the old value in hflags */
2756         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2757                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2758
2759         /* Restore the original control entries */
2760         copy_vmcb_control_area(vmcb, hsave);
2761
2762         kvm_clear_exception_queue(&svm->vcpu);
2763         kvm_clear_interrupt_queue(&svm->vcpu);
2764
2765         svm->nested.nested_cr3 = 0;
2766
2767         /* Restore selected save entries */
2768         svm->vmcb->save.es = hsave->save.es;
2769         svm->vmcb->save.cs = hsave->save.cs;
2770         svm->vmcb->save.ss = hsave->save.ss;
2771         svm->vmcb->save.ds = hsave->save.ds;
2772         svm->vmcb->save.gdtr = hsave->save.gdtr;
2773         svm->vmcb->save.idtr = hsave->save.idtr;
2774         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2775         svm_set_efer(&svm->vcpu, hsave->save.efer);
2776         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2777         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2778         if (npt_enabled) {
2779                 svm->vmcb->save.cr3 = hsave->save.cr3;
2780                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2781         } else {
2782                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2783         }
2784         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2785         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2786         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2787         svm->vmcb->save.dr7 = 0;
2788         svm->vmcb->save.cpl = 0;
2789         svm->vmcb->control.exit_int_info = 0;
2790
2791         mark_all_dirty(svm->vmcb);
2792
2793         nested_svm_unmap(page);
2794
2795         nested_svm_uninit_mmu_context(&svm->vcpu);
2796         kvm_mmu_reset_context(&svm->vcpu);
2797         kvm_mmu_load(&svm->vcpu);
2798
2799         return 0;
2800 }
2801
2802 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2803 {
2804         /*
2805          * This function merges the msr permission bitmaps of kvm and the
2806          * nested vmcb. It is optimized in that it only merges the parts where
2807          * the kvm msr permission bitmap may contain zero bits
2808          */
2809         int i;
2810
2811         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2812                 return true;
2813
2814         for (i = 0; i < MSRPM_OFFSETS; i++) {
2815                 u32 value, p;
2816                 u64 offset;
2817
2818                 if (msrpm_offsets[i] == 0xffffffff)
2819                         break;
2820
2821                 p      = msrpm_offsets[i];
2822                 offset = svm->nested.vmcb_msrpm + (p * 4);
2823
2824                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2825                         return false;
2826
2827                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2828         }
2829
2830         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2831
2832         return true;
2833 }
2834
2835 static bool nested_vmcb_checks(struct vmcb *vmcb)
2836 {
2837         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2838                 return false;
2839
2840         if (vmcb->control.asid == 0)
2841                 return false;
2842
2843         if (vmcb->control.nested_ctl && !npt_enabled)
2844                 return false;
2845
2846         return true;
2847 }
2848
2849 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2850 {
2851         struct vmcb *nested_vmcb;
2852         struct vmcb *hsave = svm->nested.hsave;
2853         struct vmcb *vmcb = svm->vmcb;
2854         struct page *page;
2855         u64 vmcb_gpa;
2856
2857         vmcb_gpa = svm->vmcb->save.rax;
2858
2859         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2860         if (!nested_vmcb)
2861                 return false;
2862
2863         if (!nested_vmcb_checks(nested_vmcb)) {
2864                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2865                 nested_vmcb->control.exit_code_hi = 0;
2866                 nested_vmcb->control.exit_info_1  = 0;
2867                 nested_vmcb->control.exit_info_2  = 0;
2868
2869                 nested_svm_unmap(page);
2870
2871                 return false;
2872         }
2873
2874         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2875                                nested_vmcb->save.rip,
2876                                nested_vmcb->control.int_ctl,
2877                                nested_vmcb->control.event_inj,
2878                                nested_vmcb->control.nested_ctl);
2879
2880         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2881                                     nested_vmcb->control.intercept_cr >> 16,
2882                                     nested_vmcb->control.intercept_exceptions,
2883                                     nested_vmcb->control.intercept);
2884
2885         /* Clear internal status */
2886         kvm_clear_exception_queue(&svm->vcpu);
2887         kvm_clear_interrupt_queue(&svm->vcpu);
2888
2889         /*
2890          * Save the old vmcb, so we don't need to pick what we save, but can
2891          * restore everything when a VMEXIT occurs
2892          */
2893         hsave->save.es     = vmcb->save.es;
2894         hsave->save.cs     = vmcb->save.cs;
2895         hsave->save.ss     = vmcb->save.ss;
2896         hsave->save.ds     = vmcb->save.ds;
2897         hsave->save.gdtr   = vmcb->save.gdtr;
2898         hsave->save.idtr   = vmcb->save.idtr;
2899         hsave->save.efer   = svm->vcpu.arch.efer;
2900         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2901         hsave->save.cr4    = svm->vcpu.arch.cr4;
2902         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2903         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2904         hsave->save.rsp    = vmcb->save.rsp;
2905         hsave->save.rax    = vmcb->save.rax;
2906         if (npt_enabled)
2907                 hsave->save.cr3    = vmcb->save.cr3;
2908         else
2909                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2910
2911         copy_vmcb_control_area(hsave, vmcb);
2912
2913         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2914                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2915         else
2916                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2917
2918         if (nested_vmcb->control.nested_ctl) {
2919                 kvm_mmu_unload(&svm->vcpu);
2920                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2921                 nested_svm_init_mmu_context(&svm->vcpu);
2922         }
2923
2924         /* Load the nested guest state */
2925         svm->vmcb->save.es = nested_vmcb->save.es;
2926         svm->vmcb->save.cs = nested_vmcb->save.cs;
2927         svm->vmcb->save.ss = nested_vmcb->save.ss;
2928         svm->vmcb->save.ds = nested_vmcb->save.ds;
2929         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2930         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2931         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2932         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2933         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2934         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2935         if (npt_enabled) {
2936                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2937                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2938         } else
2939                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2940
2941         /* Guest paging mode is active - reset mmu */
2942         kvm_mmu_reset_context(&svm->vcpu);
2943
2944         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2945         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2946         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2947         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2948
2949         /* In case we don't even reach vcpu_run, the fields are not updated */
2950         svm->vmcb->save.rax = nested_vmcb->save.rax;
2951         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2952         svm->vmcb->save.rip = nested_vmcb->save.rip;
2953         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2954         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2955         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2956
2957         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2958         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2959
2960         /* cache intercepts */
2961         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2962         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2963         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2964         svm->nested.intercept            = nested_vmcb->control.intercept;
2965
2966         svm_flush_tlb(&svm->vcpu);
2967         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2968         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2969                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2970         else
2971                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2972
2973         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2974                 /* We only want the cr8 intercept bits of the guest */
2975                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2976                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2977         }
2978
2979         /* We don't want to see VMMCALLs from a nested guest */
2980         clr_intercept(svm, INTERCEPT_VMMCALL);
2981
2982         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2983         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2984         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2985         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2986         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2987         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2988
2989         nested_svm_unmap(page);
2990
2991         /* Enter Guest-Mode */
2992         enter_guest_mode(&svm->vcpu);
2993
2994         /*
2995          * Merge guest and host intercepts - must be called  with vcpu in
2996          * guest-mode to take affect here
2997          */
2998         recalc_intercepts(svm);
2999
3000         svm->nested.vmcb = vmcb_gpa;
3001
3002         enable_gif(svm);
3003
3004         mark_all_dirty(svm->vmcb);
3005
3006         return true;
3007 }
3008
3009 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3010 {
3011         to_vmcb->save.fs = from_vmcb->save.fs;
3012         to_vmcb->save.gs = from_vmcb->save.gs;
3013         to_vmcb->save.tr = from_vmcb->save.tr;
3014         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3015         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3016         to_vmcb->save.star = from_vmcb->save.star;
3017         to_vmcb->save.lstar = from_vmcb->save.lstar;
3018         to_vmcb->save.cstar = from_vmcb->save.cstar;
3019         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3020         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3021         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3022         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3023 }
3024
3025 static int vmload_interception(struct vcpu_svm *svm)
3026 {
3027         struct vmcb *nested_vmcb;
3028         struct page *page;
3029
3030         if (nested_svm_check_permissions(svm))
3031                 return 1;
3032
3033         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3034         if (!nested_vmcb)
3035                 return 1;
3036
3037         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3038         skip_emulated_instruction(&svm->vcpu);
3039
3040         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3041         nested_svm_unmap(page);
3042
3043         return 1;
3044 }
3045
3046 static int vmsave_interception(struct vcpu_svm *svm)
3047 {
3048         struct vmcb *nested_vmcb;
3049         struct page *page;
3050
3051         if (nested_svm_check_permissions(svm))
3052                 return 1;
3053
3054         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3055         if (!nested_vmcb)
3056                 return 1;
3057
3058         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3059         skip_emulated_instruction(&svm->vcpu);
3060
3061         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3062         nested_svm_unmap(page);
3063
3064         return 1;
3065 }
3066
3067 static int vmrun_interception(struct vcpu_svm *svm)
3068 {
3069         if (nested_svm_check_permissions(svm))
3070                 return 1;
3071
3072         /* Save rip after vmrun instruction */
3073         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3074
3075         if (!nested_svm_vmrun(svm))
3076                 return 1;
3077
3078         if (!nested_svm_vmrun_msrpm(svm))
3079                 goto failed;
3080
3081         return 1;
3082
3083 failed:
3084
3085         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3086         svm->vmcb->control.exit_code_hi = 0;
3087         svm->vmcb->control.exit_info_1  = 0;
3088         svm->vmcb->control.exit_info_2  = 0;
3089
3090         nested_svm_vmexit(svm);
3091
3092         return 1;
3093 }
3094
3095 static int stgi_interception(struct vcpu_svm *svm)
3096 {
3097         if (nested_svm_check_permissions(svm))
3098                 return 1;
3099
3100         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3101         skip_emulated_instruction(&svm->vcpu);
3102         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3103
3104         enable_gif(svm);
3105
3106         return 1;
3107 }
3108
3109 static int clgi_interception(struct vcpu_svm *svm)
3110 {
3111         if (nested_svm_check_permissions(svm))
3112                 return 1;
3113
3114         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3115         skip_emulated_instruction(&svm->vcpu);
3116
3117         disable_gif(svm);
3118
3119         /* After a CLGI no interrupts should come */
3120         if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3121                 svm_clear_vintr(svm);
3122                 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3123                 mark_dirty(svm->vmcb, VMCB_INTR);
3124         }
3125
3126         return 1;
3127 }
3128
3129 static int invlpga_interception(struct vcpu_svm *svm)
3130 {
3131         struct kvm_vcpu *vcpu = &svm->vcpu;
3132
3133         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3134                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3135
3136         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3137         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3138
3139         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3140         skip_emulated_instruction(&svm->vcpu);
3141         return 1;
3142 }
3143
3144 static int skinit_interception(struct vcpu_svm *svm)
3145 {
3146         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3147
3148         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3149         return 1;
3150 }
3151
3152 static int wbinvd_interception(struct vcpu_svm *svm)
3153 {
3154         return kvm_emulate_wbinvd(&svm->vcpu);
3155 }
3156
3157 static int xsetbv_interception(struct vcpu_svm *svm)
3158 {
3159         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3160         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3161
3162         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3163                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3164                 skip_emulated_instruction(&svm->vcpu);
3165         }
3166
3167         return 1;
3168 }
3169
3170 static int task_switch_interception(struct vcpu_svm *svm)
3171 {
3172         u16 tss_selector;
3173         int reason;
3174         int int_type = svm->vmcb->control.exit_int_info &
3175                 SVM_EXITINTINFO_TYPE_MASK;
3176         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3177         uint32_t type =
3178                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3179         uint32_t idt_v =
3180                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3181         bool has_error_code = false;
3182         u32 error_code = 0;
3183
3184         tss_selector = (u16)svm->vmcb->control.exit_info_1;
3185
3186         if (svm->vmcb->control.exit_info_2 &
3187             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3188                 reason = TASK_SWITCH_IRET;
3189         else if (svm->vmcb->control.exit_info_2 &
3190                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3191                 reason = TASK_SWITCH_JMP;
3192         else if (idt_v)
3193                 reason = TASK_SWITCH_GATE;
3194         else
3195                 reason = TASK_SWITCH_CALL;
3196
3197         if (reason == TASK_SWITCH_GATE) {
3198                 switch (type) {
3199                 case SVM_EXITINTINFO_TYPE_NMI:
3200                         svm->vcpu.arch.nmi_injected = false;
3201                         break;
3202                 case SVM_EXITINTINFO_TYPE_EXEPT:
3203                         if (svm->vmcb->control.exit_info_2 &
3204                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3205                                 has_error_code = true;
3206                                 error_code =
3207                                         (u32)svm->vmcb->control.exit_info_2;
3208                         }
3209                         kvm_clear_exception_queue(&svm->vcpu);
3210                         break;
3211                 case SVM_EXITINTINFO_TYPE_INTR:
3212                         kvm_clear_interrupt_queue(&svm->vcpu);
3213                         break;
3214                 default:
3215                         break;
3216                 }
3217         }
3218
3219         if (reason != TASK_SWITCH_GATE ||
3220             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3221             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3222              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3223                 skip_emulated_instruction(&svm->vcpu);
3224
3225         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3226                 int_vec = -1;
3227
3228         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3229                                 has_error_code, error_code) == EMULATE_FAIL) {
3230                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3231                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3232                 svm->vcpu.run->internal.ndata = 0;
3233                 return 0;
3234         }
3235         return 1;
3236 }
3237
3238 static int cpuid_interception(struct vcpu_svm *svm)
3239 {
3240         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3241         return kvm_emulate_cpuid(&svm->vcpu);
3242 }
3243
3244 static int iret_interception(struct vcpu_svm *svm)
3245 {
3246         ++svm->vcpu.stat.nmi_window_exits;
3247         clr_intercept(svm, INTERCEPT_IRET);
3248         svm->vcpu.arch.hflags |= HF_IRET_MASK;
3249         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3250         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3251         return 1;
3252 }
3253
3254 static int invlpg_interception(struct vcpu_svm *svm)
3255 {
3256         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3257                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3258
3259         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3260         skip_emulated_instruction(&svm->vcpu);
3261         return 1;
3262 }
3263
3264 static int emulate_on_interception(struct vcpu_svm *svm)
3265 {
3266         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3267 }
3268
3269 static int rdpmc_interception(struct vcpu_svm *svm)
3270 {
3271         int err;
3272
3273         if (!static_cpu_has(X86_FEATURE_NRIPS))
3274                 return emulate_on_interception(svm);
3275
3276         err = kvm_rdpmc(&svm->vcpu);
3277         return kvm_complete_insn_gp(&svm->vcpu, err);
3278 }
3279
3280 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3281                                             unsigned long val)
3282 {
3283         unsigned long cr0 = svm->vcpu.arch.cr0;
3284         bool ret = false;
3285         u64 intercept;
3286
3287         intercept = svm->nested.intercept;
3288
3289         if (!is_guest_mode(&svm->vcpu) ||
3290             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3291                 return false;
3292
3293         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3294         val &= ~SVM_CR0_SELECTIVE_MASK;
3295
3296         if (cr0 ^ val) {
3297                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3298                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3299         }
3300
3301         return ret;
3302 }
3303
3304 #define CR_VALID (1ULL << 63)
3305
3306 static int cr_interception(struct vcpu_svm *svm)
3307 {
3308         int reg, cr;
3309         unsigned long val;
3310         int err;
3311
3312         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3313                 return emulate_on_interception(svm);
3314
3315         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3316                 return emulate_on_interception(svm);
3317
3318         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3319         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3320                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3321         else
3322                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3323
3324         err = 0;
3325         if (cr >= 16) { /* mov to cr */
3326                 cr -= 16;
3327                 val = kvm_register_read(&svm->vcpu, reg);
3328                 switch (cr) {
3329                 case 0:
3330                         if (!check_selective_cr0_intercepted(svm, val))
3331                                 err = kvm_set_cr0(&svm->vcpu, val);
3332                         else
3333                                 return 1;
3334
3335                         break;
3336                 case 3:
3337                         err = kvm_set_cr3(&svm->vcpu, val);
3338                         break;
3339                 case 4:
3340                         err = kvm_set_cr4(&svm->vcpu, val);
3341                         break;
3342                 case 8:
3343                         err = kvm_set_cr8(&svm->vcpu, val);
3344                         break;
3345                 default:
3346                         WARN(1, "unhandled write to CR%d", cr);
3347                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3348                         return 1;
3349                 }
3350         } else { /* mov from cr */
3351                 switch (cr) {
3352                 case 0:
3353                         val = kvm_read_cr0(&svm->vcpu);
3354                         break;
3355                 case 2:
3356                         val = svm->vcpu.arch.cr2;
3357                         break;
3358                 case 3:
3359                         val = kvm_read_cr3(&svm->vcpu);
3360                         break;
3361                 case 4:
3362                         val = kvm_read_cr4(&svm->vcpu);
3363                         break;
3364                 case 8:
3365                         val = kvm_get_cr8(&svm->vcpu);
3366                         break;
3367                 default:
3368                         WARN(1, "unhandled read from CR%d", cr);
3369                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3370                         return 1;
3371                 }
3372                 kvm_register_write(&svm->vcpu, reg, val);
3373         }
3374         return kvm_complete_insn_gp(&svm->vcpu, err);
3375 }
3376
3377 static int dr_interception(struct vcpu_svm *svm)
3378 {
3379         int reg, dr;
3380         unsigned long val;
3381
3382         if (svm->vcpu.guest_debug == 0) {
3383                 /*
3384                  * No more DR vmexits; force a reload of the debug registers
3385                  * and reenter on this instruction.  The next vmexit will
3386                  * retrieve the full state of the debug registers.
3387                  */
3388                 clr_dr_intercepts(svm);
3389                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3390                 return 1;
3391         }
3392
3393         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3394                 return emulate_on_interception(svm);
3395
3396         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3397         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3398
3399         if (dr >= 16) { /* mov to DRn */
3400                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3401                         return 1;
3402                 val = kvm_register_read(&svm->vcpu, reg);
3403                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3404         } else {
3405                 if (!kvm_require_dr(&svm->vcpu, dr))
3406                         return 1;
3407                 kvm_get_dr(&svm->vcpu, dr, &val);
3408                 kvm_register_write(&svm->vcpu, reg, val);
3409         }
3410
3411         skip_emulated_instruction(&svm->vcpu);
3412
3413         return 1;
3414 }
3415
3416 static int cr8_write_interception(struct vcpu_svm *svm)
3417 {
3418         struct kvm_run *kvm_run = svm->vcpu.run;
3419         int r;
3420
3421         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3422         /* instruction emulation calls kvm_set_cr8() */
3423         r = cr_interception(svm);
3424         if (lapic_in_kernel(&svm->vcpu))
3425                 return r;
3426         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3427                 return r;
3428         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3429         return 0;
3430 }
3431
3432 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3433 {
3434         struct vcpu_svm *svm = to_svm(vcpu);
3435
3436         switch (msr_info->index) {
3437         case MSR_IA32_TSC: {
3438                 msr_info->data = svm->vmcb->control.tsc_offset +
3439                         kvm_scale_tsc(vcpu, rdtsc());
3440
3441                 break;
3442         }
3443         case MSR_STAR:
3444                 msr_info->data = svm->vmcb->save.star;
3445                 break;
3446 #ifdef CONFIG_X86_64
3447         case MSR_LSTAR:
3448                 msr_info->data = svm->vmcb->save.lstar;
3449                 break;
3450         case MSR_CSTAR:
3451                 msr_info->data = svm->vmcb->save.cstar;
3452                 break;
3453         case MSR_KERNEL_GS_BASE:
3454                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3455                 break;
3456         case MSR_SYSCALL_MASK:
3457                 msr_info->data = svm->vmcb->save.sfmask;
3458                 break;
3459 #endif
3460         case MSR_IA32_SYSENTER_CS:
3461                 msr_info->data = svm->vmcb->save.sysenter_cs;
3462                 break;
3463         case MSR_IA32_SYSENTER_EIP:
3464                 msr_info->data = svm->sysenter_eip;
3465                 break;
3466         case MSR_IA32_SYSENTER_ESP:
3467                 msr_info->data = svm->sysenter_esp;
3468                 break;
3469         case MSR_TSC_AUX:
3470                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3471                         return 1;
3472                 msr_info->data = svm->tsc_aux;
3473                 break;
3474         /*
3475          * Nobody will change the following 5 values in the VMCB so we can
3476          * safely return them on rdmsr. They will always be 0 until LBRV is
3477          * implemented.
3478          */
3479         case MSR_IA32_DEBUGCTLMSR:
3480                 msr_info->data = svm->vmcb->save.dbgctl;
3481                 break;
3482         case MSR_IA32_LASTBRANCHFROMIP:
3483                 msr_info->data = svm->vmcb->save.br_from;
3484                 break;
3485         case MSR_IA32_LASTBRANCHTOIP:
3486                 msr_info->data = svm->vmcb->save.br_to;
3487                 break;
3488         case MSR_IA32_LASTINTFROMIP:
3489                 msr_info->data = svm->vmcb->save.last_excp_from;
3490                 break;
3491         case MSR_IA32_LASTINTTOIP:
3492                 msr_info->data = svm->vmcb->save.last_excp_to;
3493                 break;
3494         case MSR_VM_HSAVE_PA:
3495                 msr_info->data = svm->nested.hsave_msr;
3496                 break;
3497         case MSR_VM_CR:
3498                 msr_info->data = svm->nested.vm_cr_msr;
3499                 break;
3500         case MSR_IA32_UCODE_REV:
3501                 msr_info->data = 0x01000065;
3502                 break;
3503         case MSR_F15H_IC_CFG: {
3504
3505                 int family, model;
3506
3507                 family = guest_cpuid_family(vcpu);
3508                 model  = guest_cpuid_model(vcpu);
3509
3510                 if (family < 0 || model < 0)
3511                         return kvm_get_msr_common(vcpu, msr_info);
3512
3513                 msr_info->data = 0;
3514
3515                 if (family == 0x15 &&
3516                     (model >= 0x2 && model < 0x20))
3517                         msr_info->data = 0x1E;
3518                 }
3519                 break;
3520         default:
3521                 return kvm_get_msr_common(vcpu, msr_info);
3522         }
3523         return 0;
3524 }
3525
3526 static int rdmsr_interception(struct vcpu_svm *svm)
3527 {
3528         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3529         struct msr_data msr_info;
3530
3531         msr_info.index = ecx;
3532         msr_info.host_initiated = false;
3533         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3534                 trace_kvm_msr_read_ex(ecx);
3535                 kvm_inject_gp(&svm->vcpu, 0);
3536         } else {
3537                 trace_kvm_msr_read(ecx, msr_info.data);
3538
3539                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3540                                    msr_info.data & 0xffffffff);
3541                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3542                                    msr_info.data >> 32);
3543                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3544                 skip_emulated_instruction(&svm->vcpu);
3545         }
3546         return 1;
3547 }
3548
3549 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3550 {
3551         struct vcpu_svm *svm = to_svm(vcpu);
3552         int svm_dis, chg_mask;
3553
3554         if (data & ~SVM_VM_CR_VALID_MASK)
3555                 return 1;
3556
3557         chg_mask = SVM_VM_CR_VALID_MASK;
3558
3559         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3560                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3561
3562         svm->nested.vm_cr_msr &= ~chg_mask;
3563         svm->nested.vm_cr_msr |= (data & chg_mask);
3564
3565         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3566
3567         /* check for svm_disable while efer.svme is set */
3568         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3569                 return 1;
3570
3571         return 0;
3572 }
3573
3574 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3575 {
3576         struct vcpu_svm *svm = to_svm(vcpu);
3577
3578         u32 ecx = msr->index;
3579         u64 data = msr->data;
3580         switch (ecx) {
3581         case MSR_IA32_TSC:
3582                 kvm_write_tsc(vcpu, msr);
3583                 break;
3584         case MSR_STAR:
3585                 svm->vmcb->save.star = data;
3586                 break;
3587 #ifdef CONFIG_X86_64
3588         case MSR_LSTAR:
3589                 svm->vmcb->save.lstar = data;
3590                 break;
3591         case MSR_CSTAR:
3592                 svm->vmcb->save.cstar = data;
3593                 break;
3594         case MSR_KERNEL_GS_BASE:
3595                 svm->vmcb->save.kernel_gs_base = data;
3596                 break;
3597         case MSR_SYSCALL_MASK:
3598                 svm->vmcb->save.sfmask = data;
3599                 break;
3600 #endif
3601         case MSR_IA32_SYSENTER_CS:
3602                 svm->vmcb->save.sysenter_cs = data;
3603                 break;
3604         case MSR_IA32_SYSENTER_EIP:
3605                 svm->sysenter_eip = data;
3606                 svm->vmcb->save.sysenter_eip = data;
3607                 break;
3608         case MSR_IA32_SYSENTER_ESP:
3609                 svm->sysenter_esp = data;
3610                 svm->vmcb->save.sysenter_esp = data;
3611                 break;
3612         case MSR_TSC_AUX:
3613                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3614                         return 1;
3615
3616                 /*
3617                  * This is rare, so we update the MSR here instead of using
3618                  * direct_access_msrs.  Doing that would require a rdmsr in
3619                  * svm_vcpu_put.
3620                  */
3621                 svm->tsc_aux = data;
3622                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3623                 break;
3624         case MSR_IA32_DEBUGCTLMSR:
3625                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3626                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3627                                     __func__, data);
3628                         break;
3629                 }
3630                 if (data & DEBUGCTL_RESERVED_BITS)
3631                         return 1;
3632
3633                 svm->vmcb->save.dbgctl = data;
3634                 mark_dirty(svm->vmcb, VMCB_LBR);
3635                 if (data & (1ULL<<0))
3636                         svm_enable_lbrv(svm);
3637                 else
3638                         svm_disable_lbrv(svm);
3639                 break;
3640         case MSR_VM_HSAVE_PA:
3641                 svm->nested.hsave_msr = data;
3642                 break;
3643         case MSR_VM_CR:
3644                 return svm_set_vm_cr(vcpu, data);
3645         case MSR_VM_IGNNE:
3646                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3647                 break;
3648         case MSR_IA32_APICBASE:
3649                 if (kvm_vcpu_apicv_active(vcpu))
3650                         avic_update_vapic_bar(to_svm(vcpu), data);
3651                 /* Follow through */
3652         default:
3653                 return kvm_set_msr_common(vcpu, msr);
3654         }
3655         return 0;
3656 }
3657
3658 static int wrmsr_interception(struct vcpu_svm *svm)
3659 {
3660         struct msr_data msr;
3661         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3662         u64 data = kvm_read_edx_eax(&svm->vcpu);
3663
3664         msr.data = data;
3665         msr.index = ecx;
3666         msr.host_initiated = false;
3667
3668         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3669         if (kvm_set_msr(&svm->vcpu, &msr)) {
3670                 trace_kvm_msr_write_ex(ecx, data);
3671                 kvm_inject_gp(&svm->vcpu, 0);
3672         } else {
3673                 trace_kvm_msr_write(ecx, data);
3674                 skip_emulated_instruction(&svm->vcpu);
3675         }
3676         return 1;
3677 }
3678
3679 static int msr_interception(struct vcpu_svm *svm)
3680 {
3681         if (svm->vmcb->control.exit_info_1)
3682                 return wrmsr_interception(svm);
3683         else
3684                 return rdmsr_interception(svm);
3685 }
3686
3687 static int interrupt_window_interception(struct vcpu_svm *svm)
3688 {
3689         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3690         svm_clear_vintr(svm);
3691         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3692         mark_dirty(svm->vmcb, VMCB_INTR);
3693         ++svm->vcpu.stat.irq_window_exits;
3694         return 1;
3695 }
3696
3697 static int pause_interception(struct vcpu_svm *svm)
3698 {
3699         kvm_vcpu_on_spin(&(svm->vcpu));
3700         return 1;
3701 }
3702
3703 static int nop_interception(struct vcpu_svm *svm)
3704 {
3705         skip_emulated_instruction(&(svm->vcpu));
3706         return 1;
3707 }
3708
3709 static int monitor_interception(struct vcpu_svm *svm)
3710 {
3711         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3712         return nop_interception(svm);
3713 }
3714
3715 static int mwait_interception(struct vcpu_svm *svm)
3716 {
3717         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3718         return nop_interception(svm);
3719 }
3720
3721 enum avic_ipi_failure_cause {
3722         AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3723         AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3724         AVIC_IPI_FAILURE_INVALID_TARGET,
3725         AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3726 };
3727
3728 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3729 {
3730         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3731         u32 icrl = svm->vmcb->control.exit_info_1;
3732         u32 id = svm->vmcb->control.exit_info_2 >> 32;
3733         u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3734         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3735
3736         trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3737
3738         switch (id) {
3739         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3740                 /*
3741                  * AVIC hardware handles the generation of
3742                  * IPIs when the specified Message Type is Fixed
3743                  * (also known as fixed delivery mode) and
3744                  * the Trigger Mode is edge-triggered. The hardware
3745                  * also supports self and broadcast delivery modes
3746                  * specified via the Destination Shorthand(DSH)
3747                  * field of the ICRL. Logical and physical APIC ID
3748                  * formats are supported. All other IPI types cause
3749                  * a #VMEXIT, which needs to emulated.
3750                  */
3751                 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3752                 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3753                 break;
3754         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3755                 int i;
3756                 struct kvm_vcpu *vcpu;
3757                 struct kvm *kvm = svm->vcpu.kvm;
3758                 struct kvm_lapic *apic = svm->vcpu.arch.apic;
3759
3760                 /*
3761                  * At this point, we expect that the AVIC HW has already
3762                  * set the appropriate IRR bits on the valid target
3763                  * vcpus. So, we just need to kick the appropriate vcpu.
3764                  */
3765                 kvm_for_each_vcpu(i, vcpu, kvm) {
3766                         bool m = kvm_apic_match_dest(vcpu, apic,
3767                                                      icrl & KVM_APIC_SHORT_MASK,
3768                                                      GET_APIC_DEST_FIELD(icrh),
3769                                                      icrl & KVM_APIC_DEST_MASK);
3770
3771                         if (m && !avic_vcpu_is_running(vcpu))
3772                                 kvm_vcpu_wake_up(vcpu);
3773                 }
3774                 break;
3775         }
3776         case AVIC_IPI_FAILURE_INVALID_TARGET:
3777                 break;
3778         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3779                 WARN_ONCE(1, "Invalid backing page\n");
3780                 break;
3781         default:
3782                 pr_err("Unknown IPI interception\n");
3783         }
3784
3785         return 1;
3786 }
3787
3788 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3789 {
3790         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3791         int index;
3792         u32 *logical_apic_id_table;
3793         int dlid = GET_APIC_LOGICAL_ID(ldr);
3794
3795         if (!dlid)
3796                 return NULL;
3797
3798         if (flat) { /* flat */
3799                 index = ffs(dlid) - 1;
3800                 if (index > 7)
3801                         return NULL;
3802         } else { /* cluster */
3803                 int cluster = (dlid & 0xf0) >> 4;
3804                 int apic = ffs(dlid & 0x0f) - 1;
3805
3806                 if ((apic < 0) || (apic > 7) ||
3807                     (cluster >= 0xf))
3808                         return NULL;
3809                 index = (cluster << 2) + apic;
3810         }
3811
3812         logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3813
3814         return &logical_apic_id_table[index];
3815 }
3816
3817 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3818                           bool valid)
3819 {
3820         bool flat;
3821         u32 *entry, new_entry;
3822
3823         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3824         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3825         if (!entry)
3826                 return -EINVAL;
3827
3828         new_entry = READ_ONCE(*entry);
3829         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3830         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3831         if (valid)
3832                 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3833         else
3834                 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3835         WRITE_ONCE(*entry, new_entry);
3836
3837         return 0;
3838 }
3839
3840 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3841 {
3842         int ret;
3843         struct vcpu_svm *svm = to_svm(vcpu);
3844         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3845
3846         if (!ldr)
3847                 return 1;
3848
3849         ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3850         if (ret && svm->ldr_reg) {
3851                 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3852                 svm->ldr_reg = 0;
3853         } else {
3854                 svm->ldr_reg = ldr;
3855         }
3856         return ret;
3857 }
3858
3859 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3860 {
3861         u64 *old, *new;
3862         struct vcpu_svm *svm = to_svm(vcpu);
3863         u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3864         u32 id = (apic_id_reg >> 24) & 0xff;
3865
3866         if (vcpu->vcpu_id == id)
3867                 return 0;
3868
3869         old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3870         new = avic_get_physical_id_entry(vcpu, id);
3871         if (!new || !old)
3872                 return 1;
3873
3874         /* We need to move physical_id_entry to new offset */
3875         *new = *old;
3876         *old = 0ULL;
3877         to_svm(vcpu)->avic_physical_id_cache = new;
3878
3879         /*
3880          * Also update the guest physical APIC ID in the logical
3881          * APIC ID table entry if already setup the LDR.
3882          */
3883         if (svm->ldr_reg)
3884                 avic_handle_ldr_update(vcpu);
3885
3886         return 0;
3887 }
3888
3889 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3890 {
3891         struct vcpu_svm *svm = to_svm(vcpu);
3892         struct kvm_arch *vm_data = &vcpu->kvm->arch;
3893         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3894         u32 mod = (dfr >> 28) & 0xf;
3895
3896         /*
3897          * We assume that all local APICs are using the same type.
3898          * If this changes, we need to flush the AVIC logical
3899          * APID id table.
3900          */
3901         if (vm_data->ldr_mode == mod)
3902                 return 0;
3903
3904         clear_page(page_address(vm_data->avic_logical_id_table_page));
3905         vm_data->ldr_mode = mod;
3906
3907         if (svm->ldr_reg)
3908                 avic_handle_ldr_update(vcpu);
3909         return 0;
3910 }
3911
3912 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3913 {
3914         struct kvm_lapic *apic = svm->vcpu.arch.apic;
3915         u32 offset = svm->vmcb->control.exit_info_1 &
3916                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3917
3918         switch (offset) {
3919         case APIC_ID:
3920                 if (avic_handle_apic_id_update(&svm->vcpu))
3921                         return 0;
3922                 break;
3923         case APIC_LDR:
3924                 if (avic_handle_ldr_update(&svm->vcpu))
3925                         return 0;
3926                 break;
3927         case APIC_DFR:
3928                 avic_handle_dfr_update(&svm->vcpu);
3929                 break;
3930         default:
3931                 break;
3932         }
3933
3934         kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3935
3936         return 1;
3937 }
3938
3939 static bool is_avic_unaccelerated_access_trap(u32 offset)
3940 {
3941         bool ret = false;
3942
3943         switch (offset) {
3944         case APIC_ID:
3945         case APIC_EOI:
3946         case APIC_RRR:
3947         case APIC_LDR:
3948         case APIC_DFR:
3949         case APIC_SPIV:
3950         case APIC_ESR:
3951         case APIC_ICR:
3952         case APIC_LVTT:
3953         case APIC_LVTTHMR:
3954         case APIC_LVTPC:
3955         case APIC_LVT0:
3956         case APIC_LVT1:
3957         case APIC_LVTERR:
3958         case APIC_TMICT:
3959         case APIC_TDCR:
3960                 ret = true;
3961                 break;
3962         default:
3963                 break;
3964         }
3965         return ret;
3966 }
3967
3968 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
3969 {
3970         int ret = 0;
3971         u32 offset = svm->vmcb->control.exit_info_1 &
3972                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3973         u32 vector = svm->vmcb->control.exit_info_2 &
3974                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
3975         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
3976                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
3977         bool trap = is_avic_unaccelerated_access_trap(offset);
3978
3979         trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
3980                                             trap, write, vector);
3981         if (trap) {
3982                 /* Handling Trap */
3983                 WARN_ONCE(!write, "svm: Handling trap read.\n");
3984                 ret = avic_unaccel_trap_write(svm);
3985         } else {
3986                 /* Handling Fault */
3987                 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
3988         }
3989
3990         return ret;
3991 }
3992
3993 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3994         [SVM_EXIT_READ_CR0]                     = cr_interception,
3995         [SVM_EXIT_READ_CR3]                     = cr_interception,
3996         [SVM_EXIT_READ_CR4]                     = cr_interception,
3997         [SVM_EXIT_READ_CR8]                     = cr_interception,
3998         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3999         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
4000         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
4001         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
4002         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
4003         [SVM_EXIT_READ_DR0]                     = dr_interception,
4004         [SVM_EXIT_READ_DR1]                     = dr_interception,
4005         [SVM_EXIT_READ_DR2]                     = dr_interception,
4006         [SVM_EXIT_READ_DR3]                     = dr_interception,
4007         [SVM_EXIT_READ_DR4]                     = dr_interception,
4008         [SVM_EXIT_READ_DR5]                     = dr_interception,
4009         [SVM_EXIT_READ_DR6]                     = dr_interception,
4010         [SVM_EXIT_READ_DR7]                     = dr_interception,
4011         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
4012         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
4013         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
4014         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
4015         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
4016         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
4017         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
4018         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
4019         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
4020         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
4021         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
4022         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
4023         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
4024         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
4025         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
4026         [SVM_EXIT_INTR]                         = intr_interception,
4027         [SVM_EXIT_NMI]                          = nmi_interception,
4028         [SVM_EXIT_SMI]                          = nop_on_interception,
4029         [SVM_EXIT_INIT]                         = nop_on_interception,
4030         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
4031         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
4032         [SVM_EXIT_CPUID]                        = cpuid_interception,
4033         [SVM_EXIT_IRET]                         = iret_interception,
4034         [SVM_EXIT_INVD]                         = emulate_on_interception,
4035         [SVM_EXIT_PAUSE]                        = pause_interception,
4036         [SVM_EXIT_HLT]                          = halt_interception,
4037         [SVM_EXIT_INVLPG]                       = invlpg_interception,
4038         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
4039         [SVM_EXIT_IOIO]                         = io_interception,
4040         [SVM_EXIT_MSR]                          = msr_interception,
4041         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
4042         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
4043         [SVM_EXIT_VMRUN]                        = vmrun_interception,
4044         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
4045         [SVM_EXIT_VMLOAD]                       = vmload_interception,
4046         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
4047         [SVM_EXIT_STGI]                         = stgi_interception,
4048         [SVM_EXIT_CLGI]                         = clgi_interception,
4049         [SVM_EXIT_SKINIT]                       = skinit_interception,
4050         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
4051         [SVM_EXIT_MONITOR]                      = monitor_interception,
4052         [SVM_EXIT_MWAIT]                        = mwait_interception,
4053         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
4054         [SVM_EXIT_NPF]                          = pf_interception,
4055         [SVM_EXIT_RSM]                          = emulate_on_interception,
4056         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
4057         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
4058 };
4059
4060 static void dump_vmcb(struct kvm_vcpu *vcpu)
4061 {
4062         struct vcpu_svm *svm = to_svm(vcpu);
4063         struct vmcb_control_area *control = &svm->vmcb->control;
4064         struct vmcb_save_area *save = &svm->vmcb->save;
4065
4066         pr_err("VMCB Control Area:\n");
4067         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4068         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4069         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4070         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4071         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4072         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4073         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4074         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4075         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4076         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4077         pr_err("%-20s%d\n", "asid:", control->asid);
4078         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4079         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4080         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4081         pr_err("%-20s%08x\n", "int_state:", control->int_state);
4082         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4083         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4084         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4085         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4086         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4087         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4088         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4089         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4090         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4091         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4092         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
4093         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4094         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4095         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4096         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4097         pr_err("VMCB State Save Area:\n");
4098         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4099                "es:",
4100                save->es.selector, save->es.attrib,
4101                save->es.limit, save->es.base);
4102         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4103                "cs:",
4104                save->cs.selector, save->cs.attrib,
4105                save->cs.limit, save->cs.base);
4106         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4107                "ss:",
4108                save->ss.selector, save->ss.attrib,
4109                save->ss.limit, save->ss.base);
4110         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4111                "ds:",
4112                save->ds.selector, save->ds.attrib,
4113                save->ds.limit, save->ds.base);
4114         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4115                "fs:",
4116                save->fs.selector, save->fs.attrib,
4117                save->fs.limit, save->fs.base);
4118         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4119                "gs:",
4120                save->gs.selector, save->gs.attrib,
4121                save->gs.limit, save->gs.base);
4122         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4123                "gdtr:",
4124                save->gdtr.selector, save->gdtr.attrib,
4125                save->gdtr.limit, save->gdtr.base);
4126         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4127                "ldtr:",
4128                save->ldtr.selector, save->ldtr.attrib,
4129                save->ldtr.limit, save->ldtr.base);
4130         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4131                "idtr:",
4132                save->idtr.selector, save->idtr.attrib,
4133                save->idtr.limit, save->idtr.base);
4134         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4135                "tr:",
4136                save->tr.selector, save->tr.attrib,
4137                save->tr.limit, save->tr.base);
4138         pr_err("cpl:            %d                efer:         %016llx\n",
4139                 save->cpl, save->efer);
4140         pr_err("%-15s %016llx %-13s %016llx\n",
4141                "cr0:", save->cr0, "cr2:", save->cr2);
4142         pr_err("%-15s %016llx %-13s %016llx\n",
4143                "cr3:", save->cr3, "cr4:", save->cr4);
4144         pr_err("%-15s %016llx %-13s %016llx\n",
4145                "dr6:", save->dr6, "dr7:", save->dr7);
4146         pr_err("%-15s %016llx %-13s %016llx\n",
4147                "rip:", save->rip, "rflags:", save->rflags);
4148         pr_err("%-15s %016llx %-13s %016llx\n",
4149                "rsp:", save->rsp, "rax:", save->rax);
4150         pr_err("%-15s %016llx %-13s %016llx\n",
4151                "star:", save->star, "lstar:", save->lstar);
4152         pr_err("%-15s %016llx %-13s %016llx\n",
4153                "cstar:", save->cstar, "sfmask:", save->sfmask);
4154         pr_err("%-15s %016llx %-13s %016llx\n",
4155                "kernel_gs_base:", save->kernel_gs_base,
4156                "sysenter_cs:", save->sysenter_cs);
4157         pr_err("%-15s %016llx %-13s %016llx\n",
4158                "sysenter_esp:", save->sysenter_esp,
4159                "sysenter_eip:", save->sysenter_eip);
4160         pr_err("%-15s %016llx %-13s %016llx\n",
4161                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4162         pr_err("%-15s %016llx %-13s %016llx\n",
4163                "br_from:", save->br_from, "br_to:", save->br_to);
4164         pr_err("%-15s %016llx %-13s %016llx\n",
4165                "excp_from:", save->last_excp_from,
4166                "excp_to:", save->last_excp_to);
4167 }
4168
4169 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4170 {
4171         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4172
4173         *info1 = control->exit_info_1;
4174         *info2 = control->exit_info_2;
4175 }
4176
4177 static int handle_exit(struct kvm_vcpu *vcpu)
4178 {
4179         struct vcpu_svm *svm = to_svm(vcpu);
4180         struct kvm_run *kvm_run = vcpu->run;
4181         u32 exit_code = svm->vmcb->control.exit_code;
4182
4183         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4184
4185         vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
4186
4187         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4188                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4189         if (npt_enabled)
4190                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4191
4192         if (unlikely(svm->nested.exit_required)) {
4193                 nested_svm_vmexit(svm);
4194                 svm->nested.exit_required = false;
4195
4196                 return 1;
4197         }
4198
4199         if (is_guest_mode(vcpu)) {
4200                 int vmexit;
4201
4202                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4203                                         svm->vmcb->control.exit_info_1,
4204                                         svm->vmcb->control.exit_info_2,
4205                                         svm->vmcb->control.exit_int_info,
4206                                         svm->vmcb->control.exit_int_info_err,
4207                                         KVM_ISA_SVM);
4208
4209                 vmexit = nested_svm_exit_special(svm);
4210
4211                 if (vmexit == NESTED_EXIT_CONTINUE)
4212                         vmexit = nested_svm_exit_handled(svm);
4213
4214                 if (vmexit == NESTED_EXIT_DONE)
4215                         return 1;
4216         }
4217
4218         svm_complete_interrupts(svm);
4219
4220         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4221                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4222                 kvm_run->fail_entry.hardware_entry_failure_reason
4223                         = svm->vmcb->control.exit_code;
4224                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4225                 dump_vmcb(vcpu);
4226                 return 0;
4227         }
4228
4229         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4230             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4231             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4232             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4233                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4234                        "exit_code 0x%x\n",
4235                        __func__, svm->vmcb->control.exit_int_info,
4236                        exit_code);
4237
4238         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4239             || !svm_exit_handlers[exit_code]) {
4240                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4241                 kvm_queue_exception(vcpu, UD_VECTOR);
4242                 return 1;
4243         }
4244
4245         return svm_exit_handlers[exit_code](svm);
4246 }
4247
4248 static void reload_tss(struct kvm_vcpu *vcpu)
4249 {
4250         int cpu = raw_smp_processor_id();
4251
4252         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4253         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4254         load_TR_desc();
4255 }
4256
4257 static void pre_svm_run(struct vcpu_svm *svm)
4258 {
4259         int cpu = raw_smp_processor_id();
4260
4261         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4262
4263         /* FIXME: handle wraparound of asid_generation */
4264         if (svm->asid_generation != sd->asid_generation)
4265                 new_asid(svm, sd);
4266 }
4267
4268 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4269 {
4270         struct vcpu_svm *svm = to_svm(vcpu);
4271
4272         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4273         vcpu->arch.hflags |= HF_NMI_MASK;
4274         set_intercept(svm, INTERCEPT_IRET);
4275         ++vcpu->stat.nmi_injections;
4276 }
4277
4278 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4279 {
4280         struct vmcb_control_area *control;
4281
4282         /* The following fields are ignored when AVIC is enabled */
4283         control = &svm->vmcb->control;
4284         control->int_vector = irq;
4285         control->int_ctl &= ~V_INTR_PRIO_MASK;
4286         control->int_ctl |= V_IRQ_MASK |
4287                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4288         mark_dirty(svm->vmcb, VMCB_INTR);
4289 }
4290
4291 static void svm_set_irq(struct kvm_vcpu *vcpu)
4292 {
4293         struct vcpu_svm *svm = to_svm(vcpu);
4294
4295         BUG_ON(!(gif_set(svm)));
4296
4297         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4298         ++vcpu->stat.irq_injections;
4299
4300         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4301                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4302 }
4303
4304 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4305 {
4306         return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4307 }
4308
4309 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4310 {
4311         struct vcpu_svm *svm = to_svm(vcpu);
4312
4313         if (svm_nested_virtualize_tpr(vcpu) ||
4314             kvm_vcpu_apicv_active(vcpu))
4315                 return;
4316
4317         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4318
4319         if (irr == -1)
4320                 return;
4321
4322         if (tpr >= irr)
4323                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4324 }
4325
4326 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4327 {
4328         return;
4329 }
4330
4331 static bool svm_get_enable_apicv(void)
4332 {
4333         return avic;
4334 }
4335
4336 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4337 {
4338 }
4339
4340 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4341 {
4342 }
4343
4344 /* Note: Currently only used by Hyper-V. */
4345 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4346 {
4347         struct vcpu_svm *svm = to_svm(vcpu);
4348         struct vmcb *vmcb = svm->vmcb;
4349
4350         if (!avic)
4351                 return;
4352
4353         vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4354         mark_dirty(vmcb, VMCB_INTR);
4355 }
4356
4357 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4358 {
4359         return;
4360 }
4361
4362 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4363 {
4364         kvm_lapic_set_irr(vec, vcpu->arch.apic);
4365         smp_mb__after_atomic();
4366
4367         if (avic_vcpu_is_running(vcpu))
4368                 wrmsrl(SVM_AVIC_DOORBELL,
4369                        kvm_cpu_get_apicid(vcpu->cpu));
4370         else
4371                 kvm_vcpu_wake_up(vcpu);
4372 }
4373
4374 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4375 {
4376         unsigned long flags;
4377         struct amd_svm_iommu_ir *cur;
4378
4379         spin_lock_irqsave(&svm->ir_list_lock, flags);
4380         list_for_each_entry(cur, &svm->ir_list, node) {
4381                 if (cur->data != pi->ir_data)
4382                         continue;
4383                 list_del(&cur->node);
4384                 kfree(cur);
4385                 break;
4386         }
4387         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4388 }
4389
4390 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4391 {
4392         int ret = 0;
4393         unsigned long flags;
4394         struct amd_svm_iommu_ir *ir;
4395
4396         /**
4397          * In some cases, the existing irte is updaed and re-set,
4398          * so we need to check here if it's already been * added
4399          * to the ir_list.
4400          */
4401         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4402                 struct kvm *kvm = svm->vcpu.kvm;
4403                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4404                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4405                 struct vcpu_svm *prev_svm;
4406
4407                 if (!prev_vcpu) {
4408                         ret = -EINVAL;
4409                         goto out;
4410                 }
4411
4412                 prev_svm = to_svm(prev_vcpu);
4413                 svm_ir_list_del(prev_svm, pi);
4414         }
4415
4416         /**
4417          * Allocating new amd_iommu_pi_data, which will get
4418          * add to the per-vcpu ir_list.
4419          */
4420         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4421         if (!ir) {
4422                 ret = -ENOMEM;
4423                 goto out;
4424         }
4425         ir->data = pi->ir_data;
4426
4427         spin_lock_irqsave(&svm->ir_list_lock, flags);
4428         list_add(&ir->node, &svm->ir_list);
4429         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4430 out:
4431         return ret;
4432 }
4433
4434 /**
4435  * Note:
4436  * The HW cannot support posting multicast/broadcast
4437  * interrupts to a vCPU. So, we still use legacy interrupt
4438  * remapping for these kind of interrupts.
4439  *
4440  * For lowest-priority interrupts, we only support
4441  * those with single CPU as the destination, e.g. user
4442  * configures the interrupts via /proc/irq or uses
4443  * irqbalance to make the interrupts single-CPU.
4444  */
4445 static int
4446 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4447                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4448 {
4449         struct kvm_lapic_irq irq;
4450         struct kvm_vcpu *vcpu = NULL;
4451
4452         kvm_set_msi_irq(kvm, e, &irq);
4453
4454         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4455                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4456                          __func__, irq.vector);
4457                 return -1;
4458         }
4459
4460         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4461                  irq.vector);
4462         *svm = to_svm(vcpu);
4463         vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4464         vcpu_info->vector = irq.vector;
4465
4466         return 0;
4467 }
4468
4469 /*
4470  * svm_update_pi_irte - set IRTE for Posted-Interrupts
4471  *
4472  * @kvm: kvm
4473  * @host_irq: host irq of the interrupt
4474  * @guest_irq: gsi of the interrupt
4475  * @set: set or unset PI
4476  * returns 0 on success, < 0 on failure
4477  */
4478 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4479                               uint32_t guest_irq, bool set)
4480 {
4481         struct kvm_kernel_irq_routing_entry *e;
4482         struct kvm_irq_routing_table *irq_rt;
4483         int idx, ret = -EINVAL;
4484
4485         if (!kvm_arch_has_assigned_device(kvm) ||
4486             !irq_remapping_cap(IRQ_POSTING_CAP))
4487                 return 0;
4488
4489         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4490                  __func__, host_irq, guest_irq, set);
4491
4492         idx = srcu_read_lock(&kvm->irq_srcu);
4493         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4494         WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4495
4496         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4497                 struct vcpu_data vcpu_info;
4498                 struct vcpu_svm *svm = NULL;
4499
4500                 if (e->type != KVM_IRQ_ROUTING_MSI)
4501                         continue;
4502
4503                 /**
4504                  * Here, we setup with legacy mode in the following cases:
4505                  * 1. When cannot target interrupt to a specific vcpu.
4506                  * 2. Unsetting posted interrupt.
4507                  * 3. APIC virtialization is disabled for the vcpu.
4508                  */
4509                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4510                     kvm_vcpu_apicv_active(&svm->vcpu)) {
4511                         struct amd_iommu_pi_data pi;
4512
4513                         /* Try to enable guest_mode in IRTE */
4514                         pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4515                         pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4516                                                      svm->vcpu.vcpu_id);
4517                         pi.is_guest_mode = true;
4518                         pi.vcpu_data = &vcpu_info;
4519                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4520
4521                         /**
4522                          * Here, we successfully setting up vcpu affinity in
4523                          * IOMMU guest mode. Now, we need to store the posted
4524                          * interrupt information in a per-vcpu ir_list so that
4525                          * we can reference to them directly when we update vcpu
4526                          * scheduling information in IOMMU irte.
4527                          */
4528                         if (!ret && pi.is_guest_mode)
4529                                 svm_ir_list_add(svm, &pi);
4530                 } else {
4531                         /* Use legacy mode in IRTE */
4532                         struct amd_iommu_pi_data pi;
4533
4534                         /**
4535                          * Here, pi is used to:
4536                          * - Tell IOMMU to use legacy mode for this interrupt.
4537                          * - Retrieve ga_tag of prior interrupt remapping data.
4538                          */
4539                         pi.is_guest_mode = false;
4540                         ret = irq_set_vcpu_affinity(host_irq, &pi);
4541
4542                         /**
4543                          * Check if the posted interrupt was previously
4544                          * setup with the guest_mode by checking if the ga_tag
4545                          * was cached. If so, we need to clean up the per-vcpu
4546                          * ir_list.
4547                          */
4548                         if (!ret && pi.prev_ga_tag) {
4549                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4550                                 struct kvm_vcpu *vcpu;
4551
4552                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
4553                                 if (vcpu)
4554                                         svm_ir_list_del(to_svm(vcpu), &pi);
4555                         }
4556                 }
4557
4558                 if (!ret && svm) {
4559                         trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4560                                                  host_irq, e->gsi,
4561                                                  vcpu_info.vector,
4562                                                  vcpu_info.pi_desc_addr, set);
4563                 }
4564
4565                 if (ret < 0) {
4566                         pr_err("%s: failed to update PI IRTE\n", __func__);
4567                         goto out;
4568                 }
4569         }
4570
4571         ret = 0;
4572 out:
4573         srcu_read_unlock(&kvm->irq_srcu, idx);
4574         return ret;
4575 }
4576
4577 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4578 {
4579         struct vcpu_svm *svm = to_svm(vcpu);
4580         struct vmcb *vmcb = svm->vmcb;
4581         int ret;
4582         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4583               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4584         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4585
4586         return ret;
4587 }
4588
4589 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4590 {
4591         struct vcpu_svm *svm = to_svm(vcpu);
4592
4593         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4594 }
4595
4596 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4597 {
4598         struct vcpu_svm *svm = to_svm(vcpu);
4599
4600         if (masked) {
4601                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4602                 set_intercept(svm, INTERCEPT_IRET);
4603         } else {
4604                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4605                 clr_intercept(svm, INTERCEPT_IRET);
4606         }
4607 }
4608
4609 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4610 {
4611         struct vcpu_svm *svm = to_svm(vcpu);
4612         struct vmcb *vmcb = svm->vmcb;
4613         int ret;
4614
4615         if (!gif_set(svm) ||
4616              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4617                 return 0;
4618
4619         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4620
4621         if (is_guest_mode(vcpu))
4622                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4623
4624         return ret;
4625 }
4626
4627 static void enable_irq_window(struct kvm_vcpu *vcpu)
4628 {
4629         struct vcpu_svm *svm = to_svm(vcpu);
4630
4631         if (kvm_vcpu_apicv_active(vcpu))
4632                 return;
4633
4634         /*
4635          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4636          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4637          * get that intercept, this function will be called again though and
4638          * we'll get the vintr intercept.
4639          */
4640         if (gif_set(svm) && nested_svm_intr(svm)) {
4641                 svm_set_vintr(svm);
4642                 svm_inject_irq(svm, 0x0);
4643         }
4644 }
4645
4646 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4647 {
4648         struct vcpu_svm *svm = to_svm(vcpu);
4649
4650         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4651             == HF_NMI_MASK)
4652                 return; /* IRET will cause a vm exit */
4653
4654         /*
4655          * Something prevents NMI from been injected. Single step over possible
4656          * problem (IRET or exception injection or interrupt shadow)
4657          */
4658         svm->nmi_singlestep = true;
4659         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4660 }
4661
4662 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4663 {
4664         return 0;
4665 }
4666
4667 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4668 {
4669         struct vcpu_svm *svm = to_svm(vcpu);
4670
4671         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4672                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4673         else
4674                 svm->asid_generation--;
4675 }
4676
4677 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4678 {
4679 }
4680
4681 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4682 {
4683         struct vcpu_svm *svm = to_svm(vcpu);
4684
4685         if (svm_nested_virtualize_tpr(vcpu))
4686                 return;
4687
4688         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4689                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4690                 kvm_set_cr8(vcpu, cr8);
4691         }
4692 }
4693
4694 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4695 {
4696         struct vcpu_svm *svm = to_svm(vcpu);
4697         u64 cr8;
4698
4699         if (svm_nested_virtualize_tpr(vcpu) ||
4700             kvm_vcpu_apicv_active(vcpu))
4701                 return;
4702
4703         cr8 = kvm_get_cr8(vcpu);
4704         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4705         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4706 }
4707
4708 static void svm_complete_interrupts(struct vcpu_svm *svm)
4709 {
4710         u8 vector;
4711         int type;
4712         u32 exitintinfo = svm->vmcb->control.exit_int_info;
4713         unsigned int3_injected = svm->int3_injected;
4714
4715         svm->int3_injected = 0;
4716
4717         /*
4718          * If we've made progress since setting HF_IRET_MASK, we've
4719          * executed an IRET and can allow NMI injection.
4720          */
4721         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4722             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4723                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4724                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4725         }
4726
4727         svm->vcpu.arch.nmi_injected = false;
4728         kvm_clear_exception_queue(&svm->vcpu);
4729         kvm_clear_interrupt_queue(&svm->vcpu);
4730
4731         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4732                 return;
4733
4734         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4735
4736         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4737         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4738
4739         switch (type) {
4740         case SVM_EXITINTINFO_TYPE_NMI:
4741                 svm->vcpu.arch.nmi_injected = true;
4742                 break;
4743         case SVM_EXITINTINFO_TYPE_EXEPT:
4744                 /*
4745                  * In case of software exceptions, do not reinject the vector,
4746                  * but re-execute the instruction instead. Rewind RIP first
4747                  * if we emulated INT3 before.
4748                  */
4749                 if (kvm_exception_is_soft(vector)) {
4750                         if (vector == BP_VECTOR && int3_injected &&
4751                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4752                                 kvm_rip_write(&svm->vcpu,
4753                                               kvm_rip_read(&svm->vcpu) -
4754                                               int3_injected);
4755                         break;
4756                 }
4757                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4758                         u32 err = svm->vmcb->control.exit_int_info_err;
4759                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
4760
4761                 } else
4762                         kvm_requeue_exception(&svm->vcpu, vector);
4763                 break;
4764         case SVM_EXITINTINFO_TYPE_INTR:
4765                 kvm_queue_interrupt(&svm->vcpu, vector, false);
4766                 break;
4767         default:
4768                 break;
4769         }
4770 }
4771
4772 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4773 {
4774         struct vcpu_svm *svm = to_svm(vcpu);
4775         struct vmcb_control_area *control = &svm->vmcb->control;
4776
4777         control->exit_int_info = control->event_inj;
4778         control->exit_int_info_err = control->event_inj_err;
4779         control->event_inj = 0;
4780         svm_complete_interrupts(svm);
4781 }
4782
4783 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4784 {
4785         struct vcpu_svm *svm = to_svm(vcpu);
4786
4787         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4788         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4789         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4790
4791         /*
4792          * A vmexit emulation is required before the vcpu can be executed
4793          * again.
4794          */
4795         if (unlikely(svm->nested.exit_required))
4796                 return;
4797
4798         pre_svm_run(svm);
4799
4800         sync_lapic_to_cr8(vcpu);
4801
4802         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4803
4804         clgi();
4805
4806         local_irq_enable();
4807
4808         asm volatile (
4809                 "push %%" _ASM_BP "; \n\t"
4810                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4811                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4812                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4813                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4814                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4815                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4816 #ifdef CONFIG_X86_64
4817                 "mov %c[r8](%[svm]),  %%r8  \n\t"
4818                 "mov %c[r9](%[svm]),  %%r9  \n\t"
4819                 "mov %c[r10](%[svm]), %%r10 \n\t"
4820                 "mov %c[r11](%[svm]), %%r11 \n\t"
4821                 "mov %c[r12](%[svm]), %%r12 \n\t"
4822                 "mov %c[r13](%[svm]), %%r13 \n\t"
4823                 "mov %c[r14](%[svm]), %%r14 \n\t"
4824                 "mov %c[r15](%[svm]), %%r15 \n\t"
4825 #endif
4826
4827                 /* Enter guest mode */
4828                 "push %%" _ASM_AX " \n\t"
4829                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4830                 __ex(SVM_VMLOAD) "\n\t"
4831                 __ex(SVM_VMRUN) "\n\t"
4832                 __ex(SVM_VMSAVE) "\n\t"
4833                 "pop %%" _ASM_AX " \n\t"
4834
4835                 /* Save guest registers, load host registers */
4836                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4837                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4838                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4839                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4840                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4841                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4842 #ifdef CONFIG_X86_64
4843                 "mov %%r8,  %c[r8](%[svm]) \n\t"
4844                 "mov %%r9,  %c[r9](%[svm]) \n\t"
4845                 "mov %%r10, %c[r10](%[svm]) \n\t"
4846                 "mov %%r11, %c[r11](%[svm]) \n\t"
4847                 "mov %%r12, %c[r12](%[svm]) \n\t"
4848                 "mov %%r13, %c[r13](%[svm]) \n\t"
4849                 "mov %%r14, %c[r14](%[svm]) \n\t"
4850                 "mov %%r15, %c[r15](%[svm]) \n\t"
4851 #endif
4852                 "pop %%" _ASM_BP
4853                 :
4854                 : [svm]"a"(svm),
4855                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4856                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4857                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4858                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4859                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4860                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4861                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4862 #ifdef CONFIG_X86_64
4863                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4864                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4865                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4866                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4867                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4868                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4869                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4870                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4871 #endif
4872                 : "cc", "memory"
4873 #ifdef CONFIG_X86_64
4874                 , "rbx", "rcx", "rdx", "rsi", "rdi"
4875                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4876 #else
4877                 , "ebx", "ecx", "edx", "esi", "edi"
4878 #endif
4879                 );
4880
4881 #ifdef CONFIG_X86_64
4882         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4883 #else
4884         loadsegment(fs, svm->host.fs);
4885 #ifndef CONFIG_X86_32_LAZY_GS
4886         loadsegment(gs, svm->host.gs);
4887 #endif
4888 #endif
4889
4890         reload_tss(vcpu);
4891
4892         local_irq_disable();
4893
4894         vcpu->arch.cr2 = svm->vmcb->save.cr2;
4895         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4896         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4897         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4898
4899         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4900                 kvm_before_handle_nmi(&svm->vcpu);
4901
4902         stgi();
4903
4904         /* Any pending NMI will happen here */
4905
4906         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4907                 kvm_after_handle_nmi(&svm->vcpu);
4908
4909         sync_cr8_to_lapic(vcpu);
4910
4911         svm->next_rip = 0;
4912
4913         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4914
4915         /* if exit due to PF check for async PF */
4916         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4917                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4918
4919         if (npt_enabled) {
4920                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4921                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4922         }
4923
4924         /*
4925          * We need to handle MC intercepts here before the vcpu has a chance to
4926          * change the physical cpu
4927          */
4928         if (unlikely(svm->vmcb->control.exit_code ==
4929                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4930                 svm_handle_mce(svm);
4931
4932         mark_all_clean(svm->vmcb);
4933 }
4934
4935 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4936 {
4937         struct vcpu_svm *svm = to_svm(vcpu);
4938
4939         svm->vmcb->save.cr3 = root;
4940         mark_dirty(svm->vmcb, VMCB_CR);
4941         svm_flush_tlb(vcpu);
4942 }
4943
4944 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4945 {
4946         struct vcpu_svm *svm = to_svm(vcpu);
4947
4948         svm->vmcb->control.nested_cr3 = root;
4949         mark_dirty(svm->vmcb, VMCB_NPT);
4950
4951         /* Also sync guest cr3 here in case we live migrate */
4952         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4953         mark_dirty(svm->vmcb, VMCB_CR);
4954
4955         svm_flush_tlb(vcpu);
4956 }
4957
4958 static int is_disabled(void)
4959 {
4960         u64 vm_cr;
4961
4962         rdmsrl(MSR_VM_CR, vm_cr);
4963         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4964                 return 1;
4965
4966         return 0;
4967 }
4968
4969 static void
4970 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4971 {
4972         /*
4973          * Patch in the VMMCALL instruction:
4974          */
4975         hypercall[0] = 0x0f;
4976         hypercall[1] = 0x01;
4977         hypercall[2] = 0xd9;
4978 }
4979
4980 static void svm_check_processor_compat(void *rtn)
4981 {
4982         *(int *)rtn = 0;
4983 }
4984
4985 static bool svm_cpu_has_accelerated_tpr(void)
4986 {
4987         return false;
4988 }
4989
4990 static bool svm_has_high_real_mode_segbase(void)
4991 {
4992         return true;
4993 }
4994
4995 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4996 {
4997         return 0;
4998 }
4999
5000 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5001 {
5002         struct vcpu_svm *svm = to_svm(vcpu);
5003         struct kvm_cpuid_entry2 *entry;
5004
5005         /* Update nrips enabled cache */
5006         svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
5007
5008         if (!kvm_vcpu_apicv_active(vcpu))
5009                 return;
5010
5011         entry = kvm_find_cpuid_entry(vcpu, 1, 0);
5012         if (entry)
5013                 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5014 }
5015
5016 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5017 {
5018         switch (func) {
5019         case 0x1:
5020                 if (avic)
5021                         entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5022                 break;
5023         case 0x80000001:
5024                 if (nested)
5025                         entry->ecx |= (1 << 2); /* Set SVM bit */
5026                 break;
5027         case 0x8000000A:
5028                 entry->eax = 1; /* SVM revision 1 */
5029                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5030                                    ASID emulation to nested SVM */
5031                 entry->ecx = 0; /* Reserved */
5032                 entry->edx = 0; /* Per default do not support any
5033                                    additional features */
5034
5035                 /* Support next_rip if host supports it */
5036                 if (boot_cpu_has(X86_FEATURE_NRIPS))
5037                         entry->edx |= SVM_FEATURE_NRIP;
5038
5039                 /* Support NPT for the guest if enabled */
5040                 if (npt_enabled)
5041                         entry->edx |= SVM_FEATURE_NPT;
5042
5043                 break;
5044         }
5045 }
5046
5047 static int svm_get_lpage_level(void)
5048 {
5049         return PT_PDPE_LEVEL;
5050 }
5051
5052 static bool svm_rdtscp_supported(void)
5053 {
5054         return boot_cpu_has(X86_FEATURE_RDTSCP);
5055 }
5056
5057 static bool svm_invpcid_supported(void)
5058 {
5059         return false;
5060 }
5061
5062 static bool svm_mpx_supported(void)
5063 {
5064         return false;
5065 }
5066
5067 static bool svm_xsaves_supported(void)
5068 {
5069         return false;
5070 }
5071
5072 static bool svm_has_wbinvd_exit(void)
5073 {
5074         return true;
5075 }
5076
5077 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
5078 {
5079         struct vcpu_svm *svm = to_svm(vcpu);
5080
5081         set_exception_intercept(svm, NM_VECTOR);
5082         update_cr0_intercept(svm);
5083 }
5084
5085 #define PRE_EX(exit)  { .exit_code = (exit), \
5086                         .stage = X86_ICPT_PRE_EXCEPT, }
5087 #define POST_EX(exit) { .exit_code = (exit), \
5088                         .stage = X86_ICPT_POST_EXCEPT, }
5089 #define POST_MEM(exit) { .exit_code = (exit), \
5090                         .stage = X86_ICPT_POST_MEMACCESS, }
5091
5092 static const struct __x86_intercept {
5093         u32 exit_code;
5094         enum x86_intercept_stage stage;
5095 } x86_intercept_map[] = {
5096         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
5097         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
5098         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
5099         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
5100         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
5101         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
5102         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
5103         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
5104         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
5105         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
5106         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
5107         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
5108         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
5109         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
5110         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
5111         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
5112         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
5113         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
5114         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
5115         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
5116         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
5117         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
5118         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
5119         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
5120         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
5121         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
5122         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
5123         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
5124         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
5125         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
5126         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
5127         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
5128         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
5129         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
5130         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
5131         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
5132         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
5133         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
5134         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
5135         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
5136         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
5137         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
5138         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
5139         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
5140         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
5141         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
5142 };
5143
5144 #undef PRE_EX
5145 #undef POST_EX
5146 #undef POST_MEM
5147
5148 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5149                                struct x86_instruction_info *info,
5150                                enum x86_intercept_stage stage)
5151 {
5152         struct vcpu_svm *svm = to_svm(vcpu);
5153         int vmexit, ret = X86EMUL_CONTINUE;
5154         struct __x86_intercept icpt_info;
5155         struct vmcb *vmcb = svm->vmcb;
5156
5157         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5158                 goto out;
5159
5160         icpt_info = x86_intercept_map[info->intercept];
5161
5162         if (stage != icpt_info.stage)
5163                 goto out;
5164
5165         switch (icpt_info.exit_code) {
5166         case SVM_EXIT_READ_CR0:
5167                 if (info->intercept == x86_intercept_cr_read)
5168                         icpt_info.exit_code += info->modrm_reg;
5169                 break;
5170         case SVM_EXIT_WRITE_CR0: {
5171                 unsigned long cr0, val;
5172                 u64 intercept;
5173
5174                 if (info->intercept == x86_intercept_cr_write)
5175                         icpt_info.exit_code += info->modrm_reg;
5176
5177                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5178                     info->intercept == x86_intercept_clts)
5179                         break;
5180
5181                 intercept = svm->nested.intercept;
5182
5183                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5184                         break;
5185
5186                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5187                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
5188
5189                 if (info->intercept == x86_intercept_lmsw) {
5190                         cr0 &= 0xfUL;
5191                         val &= 0xfUL;
5192                         /* lmsw can't clear PE - catch this here */
5193                         if (cr0 & X86_CR0_PE)
5194                                 val |= X86_CR0_PE;
5195                 }
5196
5197                 if (cr0 ^ val)
5198                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5199
5200                 break;
5201         }
5202         case SVM_EXIT_READ_DR0:
5203         case SVM_EXIT_WRITE_DR0:
5204                 icpt_info.exit_code += info->modrm_reg;
5205                 break;
5206         case SVM_EXIT_MSR:
5207                 if (info->intercept == x86_intercept_wrmsr)
5208                         vmcb->control.exit_info_1 = 1;
5209                 else
5210                         vmcb->control.exit_info_1 = 0;
5211                 break;
5212         case SVM_EXIT_PAUSE:
5213                 /*
5214                  * We get this for NOP only, but pause
5215                  * is rep not, check this here
5216                  */
5217                 if (info->rep_prefix != REPE_PREFIX)
5218                         goto out;
5219         case SVM_EXIT_IOIO: {
5220                 u64 exit_info;
5221                 u32 bytes;
5222
5223                 if (info->intercept == x86_intercept_in ||
5224                     info->intercept == x86_intercept_ins) {
5225                         exit_info = ((info->src_val & 0xffff) << 16) |
5226                                 SVM_IOIO_TYPE_MASK;
5227                         bytes = info->dst_bytes;
5228                 } else {
5229                         exit_info = (info->dst_val & 0xffff) << 16;
5230                         bytes = info->src_bytes;
5231                 }
5232
5233                 if (info->intercept == x86_intercept_outs ||
5234                     info->intercept == x86_intercept_ins)
5235                         exit_info |= SVM_IOIO_STR_MASK;
5236
5237                 if (info->rep_prefix)
5238                         exit_info |= SVM_IOIO_REP_MASK;
5239
5240                 bytes = min(bytes, 4u);
5241
5242                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5243
5244                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5245
5246                 vmcb->control.exit_info_1 = exit_info;
5247                 vmcb->control.exit_info_2 = info->next_rip;
5248
5249                 break;
5250         }
5251         default:
5252                 break;
5253         }
5254
5255         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5256         if (static_cpu_has(X86_FEATURE_NRIPS))
5257                 vmcb->control.next_rip  = info->next_rip;
5258         vmcb->control.exit_code = icpt_info.exit_code;
5259         vmexit = nested_svm_exit_handled(svm);
5260
5261         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5262                                            : X86EMUL_CONTINUE;
5263
5264 out:
5265         return ret;
5266 }
5267
5268 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5269 {
5270         local_irq_enable();
5271         /*
5272          * We must have an instruction with interrupts enabled, so
5273          * the timer interrupt isn't delayed by the interrupt shadow.
5274          */
5275         asm("nop");
5276         local_irq_disable();
5277 }
5278
5279 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5280 {
5281 }
5282
5283 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5284 {
5285         if (avic_handle_apic_id_update(vcpu) != 0)
5286                 return;
5287         if (avic_handle_dfr_update(vcpu) != 0)
5288                 return;
5289         avic_handle_ldr_update(vcpu);
5290 }
5291
5292 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5293         .cpu_has_kvm_support = has_svm,
5294         .disabled_by_bios = is_disabled,
5295         .hardware_setup = svm_hardware_setup,
5296         .hardware_unsetup = svm_hardware_unsetup,
5297         .check_processor_compatibility = svm_check_processor_compat,
5298         .hardware_enable = svm_hardware_enable,
5299         .hardware_disable = svm_hardware_disable,
5300         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5301         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5302
5303         .vcpu_create = svm_create_vcpu,
5304         .vcpu_free = svm_free_vcpu,
5305         .vcpu_reset = svm_vcpu_reset,
5306
5307         .vm_init = avic_vm_init,
5308         .vm_destroy = avic_vm_destroy,
5309
5310         .prepare_guest_switch = svm_prepare_guest_switch,
5311         .vcpu_load = svm_vcpu_load,
5312         .vcpu_put = svm_vcpu_put,
5313         .vcpu_blocking = svm_vcpu_blocking,
5314         .vcpu_unblocking = svm_vcpu_unblocking,
5315
5316         .update_bp_intercept = update_bp_intercept,
5317         .get_msr = svm_get_msr,
5318         .set_msr = svm_set_msr,
5319         .get_segment_base = svm_get_segment_base,
5320         .get_segment = svm_get_segment,
5321         .set_segment = svm_set_segment,
5322         .get_cpl = svm_get_cpl,
5323         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5324         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5325         .decache_cr3 = svm_decache_cr3,
5326         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5327         .set_cr0 = svm_set_cr0,
5328         .set_cr3 = svm_set_cr3,
5329         .set_cr4 = svm_set_cr4,
5330         .set_efer = svm_set_efer,
5331         .get_idt = svm_get_idt,
5332         .set_idt = svm_set_idt,
5333         .get_gdt = svm_get_gdt,
5334         .set_gdt = svm_set_gdt,
5335         .get_dr6 = svm_get_dr6,
5336         .set_dr6 = svm_set_dr6,
5337         .set_dr7 = svm_set_dr7,
5338         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5339         .cache_reg = svm_cache_reg,
5340         .get_rflags = svm_get_rflags,
5341         .set_rflags = svm_set_rflags,
5342
5343         .get_pkru = svm_get_pkru,
5344
5345         .fpu_activate = svm_fpu_activate,
5346         .fpu_deactivate = svm_fpu_deactivate,
5347
5348         .tlb_flush = svm_flush_tlb,
5349
5350         .run = svm_vcpu_run,
5351         .handle_exit = handle_exit,
5352         .skip_emulated_instruction = skip_emulated_instruction,
5353         .set_interrupt_shadow = svm_set_interrupt_shadow,
5354         .get_interrupt_shadow = svm_get_interrupt_shadow,
5355         .patch_hypercall = svm_patch_hypercall,
5356         .set_irq = svm_set_irq,
5357         .set_nmi = svm_inject_nmi,
5358         .queue_exception = svm_queue_exception,
5359         .cancel_injection = svm_cancel_injection,
5360         .interrupt_allowed = svm_interrupt_allowed,
5361         .nmi_allowed = svm_nmi_allowed,
5362         .get_nmi_mask = svm_get_nmi_mask,
5363         .set_nmi_mask = svm_set_nmi_mask,
5364         .enable_nmi_window = enable_nmi_window,
5365         .enable_irq_window = enable_irq_window,
5366         .update_cr8_intercept = update_cr8_intercept,
5367         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5368         .get_enable_apicv = svm_get_enable_apicv,
5369         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5370         .load_eoi_exitmap = svm_load_eoi_exitmap,
5371         .hwapic_irr_update = svm_hwapic_irr_update,
5372         .hwapic_isr_update = svm_hwapic_isr_update,
5373         .apicv_post_state_restore = avic_post_state_restore,
5374
5375         .set_tss_addr = svm_set_tss_addr,
5376         .get_tdp_level = get_npt_level,
5377         .get_mt_mask = svm_get_mt_mask,
5378
5379         .get_exit_info = svm_get_exit_info,
5380
5381         .get_lpage_level = svm_get_lpage_level,
5382
5383         .cpuid_update = svm_cpuid_update,
5384
5385         .rdtscp_supported = svm_rdtscp_supported,
5386         .invpcid_supported = svm_invpcid_supported,
5387         .mpx_supported = svm_mpx_supported,
5388         .xsaves_supported = svm_xsaves_supported,
5389
5390         .set_supported_cpuid = svm_set_supported_cpuid,
5391
5392         .has_wbinvd_exit = svm_has_wbinvd_exit,
5393
5394         .write_tsc_offset = svm_write_tsc_offset,
5395
5396         .set_tdp_cr3 = set_tdp_cr3,
5397
5398         .check_intercept = svm_check_intercept,
5399         .handle_external_intr = svm_handle_external_intr,
5400
5401         .sched_in = svm_sched_in,
5402
5403         .pmu_ops = &amd_pmu_ops,
5404         .deliver_posted_interrupt = svm_deliver_avic_intr,
5405         .update_pi_irte = svm_update_pi_irte,
5406 };
5407
5408 static int __init svm_init(void)
5409 {
5410         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5411                         __alignof__(struct vcpu_svm), THIS_MODULE);
5412 }
5413
5414 static void __exit svm_exit(void)
5415 {
5416         kvm_exit();
5417 }
5418
5419 module_init(svm_init)
5420 module_exit(svm_exit)