Merge tag 'soundwire-6.4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/fpu/api.h>
43
44 #include <asm/virtext.h>
45
46 #include <trace/events/ipi.h>
47
48 #include "trace.h"
49
50 #include "svm.h"
51 #include "svm_ops.h"
52
53 #include "kvm_onhyperv.h"
54 #include "svm_onhyperv.h"
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 #ifdef MODULE
60 static const struct x86_cpu_id svm_cpu_id[] = {
61         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
62         {}
63 };
64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65 #endif
66
67 #define SEG_TYPE_LDT 2
68 #define SEG_TYPE_BUSY_TSS16 3
69
70 static bool erratum_383_found __read_mostly;
71
72 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
73
74 /*
75  * Set osvw_len to higher value when updated Revision Guides
76  * are published and we know what the new status bits are
77  */
78 static uint64_t osvw_len = 4, osvw_status;
79
80 static DEFINE_PER_CPU(u64, current_tsc_ratio);
81
82 #define X2APIC_MSR(x)   (APIC_BASE_MSR + (x >> 4))
83
84 static const struct svm_direct_access_msrs {
85         u32 index;   /* Index of the MSR */
86         bool always; /* True if intercept is initially cleared */
87 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
88         { .index = MSR_STAR,                            .always = true  },
89         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
90         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
91         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
92 #ifdef CONFIG_X86_64
93         { .index = MSR_GS_BASE,                         .always = true  },
94         { .index = MSR_FS_BASE,                         .always = true  },
95         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
96         { .index = MSR_LSTAR,                           .always = true  },
97         { .index = MSR_CSTAR,                           .always = true  },
98         { .index = MSR_SYSCALL_MASK,                    .always = true  },
99 #endif
100         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
101         { .index = MSR_IA32_PRED_CMD,                   .always = false },
102         { .index = MSR_IA32_FLUSH_CMD,                  .always = false },
103         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
104         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
105         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
106         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
107         { .index = MSR_EFER,                            .always = false },
108         { .index = MSR_IA32_CR_PAT,                     .always = false },
109         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
110         { .index = MSR_TSC_AUX,                         .always = false },
111         { .index = X2APIC_MSR(APIC_ID),                 .always = false },
112         { .index = X2APIC_MSR(APIC_LVR),                .always = false },
113         { .index = X2APIC_MSR(APIC_TASKPRI),            .always = false },
114         { .index = X2APIC_MSR(APIC_ARBPRI),             .always = false },
115         { .index = X2APIC_MSR(APIC_PROCPRI),            .always = false },
116         { .index = X2APIC_MSR(APIC_EOI),                .always = false },
117         { .index = X2APIC_MSR(APIC_RRR),                .always = false },
118         { .index = X2APIC_MSR(APIC_LDR),                .always = false },
119         { .index = X2APIC_MSR(APIC_DFR),                .always = false },
120         { .index = X2APIC_MSR(APIC_SPIV),               .always = false },
121         { .index = X2APIC_MSR(APIC_ISR),                .always = false },
122         { .index = X2APIC_MSR(APIC_TMR),                .always = false },
123         { .index = X2APIC_MSR(APIC_IRR),                .always = false },
124         { .index = X2APIC_MSR(APIC_ESR),                .always = false },
125         { .index = X2APIC_MSR(APIC_ICR),                .always = false },
126         { .index = X2APIC_MSR(APIC_ICR2),               .always = false },
127
128         /*
129          * Note:
130          * AMD does not virtualize APIC TSC-deadline timer mode, but it is
131          * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
132          * the AVIC hardware would generate GP fault. Therefore, always
133          * intercept the MSR 0x832, and do not setup direct_access_msr.
134          */
135         { .index = X2APIC_MSR(APIC_LVTTHMR),            .always = false },
136         { .index = X2APIC_MSR(APIC_LVTPC),              .always = false },
137         { .index = X2APIC_MSR(APIC_LVT0),               .always = false },
138         { .index = X2APIC_MSR(APIC_LVT1),               .always = false },
139         { .index = X2APIC_MSR(APIC_LVTERR),             .always = false },
140         { .index = X2APIC_MSR(APIC_TMICT),              .always = false },
141         { .index = X2APIC_MSR(APIC_TMCCT),              .always = false },
142         { .index = X2APIC_MSR(APIC_TDCR),               .always = false },
143         { .index = MSR_INVALID,                         .always = false },
144 };
145
146 /*
147  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
148  * pause_filter_count: On processors that support Pause filtering(indicated
149  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
150  *      count value. On VMRUN this value is loaded into an internal counter.
151  *      Each time a pause instruction is executed, this counter is decremented
152  *      until it reaches zero at which time a #VMEXIT is generated if pause
153  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
154  *      Intercept Filtering for more details.
155  *      This also indicate if ple logic enabled.
156  *
157  * pause_filter_thresh: In addition, some processor families support advanced
158  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
159  *      the amount of time a guest is allowed to execute in a pause loop.
160  *      In this mode, a 16-bit pause filter threshold field is added in the
161  *      VMCB. The threshold value is a cycle count that is used to reset the
162  *      pause counter. As with simple pause filtering, VMRUN loads the pause
163  *      count value from VMCB into an internal counter. Then, on each pause
164  *      instruction the hardware checks the elapsed number of cycles since
165  *      the most recent pause instruction against the pause filter threshold.
166  *      If the elapsed cycle count is greater than the pause filter threshold,
167  *      then the internal pause count is reloaded from the VMCB and execution
168  *      continues. If the elapsed cycle count is less than the pause filter
169  *      threshold, then the internal pause count is decremented. If the count
170  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
171  *      triggered. If advanced pause filtering is supported and pause filter
172  *      threshold field is set to zero, the filter will operate in the simpler,
173  *      count only mode.
174  */
175
176 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
177 module_param(pause_filter_thresh, ushort, 0444);
178
179 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
180 module_param(pause_filter_count, ushort, 0444);
181
182 /* Default doubles per-vcpu window every exit. */
183 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
184 module_param(pause_filter_count_grow, ushort, 0444);
185
186 /* Default resets per-vcpu window every exit to pause_filter_count. */
187 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
188 module_param(pause_filter_count_shrink, ushort, 0444);
189
190 /* Default is to compute the maximum so we can never overflow. */
191 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
192 module_param(pause_filter_count_max, ushort, 0444);
193
194 /*
195  * Use nested page tables by default.  Note, NPT may get forced off by
196  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
197  */
198 bool npt_enabled = true;
199 module_param_named(npt, npt_enabled, bool, 0444);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 /* enable/disable Next RIP Save */
206 static int nrips = true;
207 module_param(nrips, int, 0444);
208
209 /* enable/disable Virtual VMLOAD VMSAVE */
210 static int vls = true;
211 module_param(vls, int, 0444);
212
213 /* enable/disable Virtual GIF */
214 int vgif = true;
215 module_param(vgif, int, 0444);
216
217 /* enable/disable LBR virtualization */
218 static int lbrv = true;
219 module_param(lbrv, int, 0444);
220
221 static int tsc_scaling = true;
222 module_param(tsc_scaling, int, 0444);
223
224 /*
225  * enable / disable AVIC.  Because the defaults differ for APICv
226  * support between VMX and SVM we cannot use module_param_named.
227  */
228 static bool avic;
229 module_param(avic, bool, 0444);
230
231 bool __read_mostly dump_invalid_vmcb;
232 module_param(dump_invalid_vmcb, bool, 0644);
233
234
235 bool intercept_smi = true;
236 module_param(intercept_smi, bool, 0444);
237
238 bool vnmi = true;
239 module_param(vnmi, bool, 0444);
240
241 static bool svm_gp_erratum_intercept = true;
242
243 static u8 rsm_ins_bytes[] = "\x0f\xaa";
244
245 static unsigned long iopm_base;
246
247 struct kvm_ldttss_desc {
248         u16 limit0;
249         u16 base0;
250         unsigned base1:8, type:5, dpl:2, p:1;
251         unsigned limit1:4, zero0:3, g:1, base2:8;
252         u32 base3;
253         u32 zero1;
254 } __attribute__((packed));
255
256 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
257
258 /*
259  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
260  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
261  *
262  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
263  * defer the restoration of TSC_AUX until the CPU returns to userspace.
264  */
265 static int tsc_aux_uret_slot __read_mostly = -1;
266
267 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
268
269 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
270 #define MSRS_RANGE_SIZE 2048
271 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
272
273 u32 svm_msrpm_offset(u32 msr)
274 {
275         u32 offset;
276         int i;
277
278         for (i = 0; i < NUM_MSR_MAPS; i++) {
279                 if (msr < msrpm_ranges[i] ||
280                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
281                         continue;
282
283                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
284                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
285
286                 /* Now we have the u8 offset - but need the u32 offset */
287                 return offset / 4;
288         }
289
290         /* MSR not in any range */
291         return MSR_INVALID;
292 }
293
294 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
295
296 static int get_npt_level(void)
297 {
298 #ifdef CONFIG_X86_64
299         return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
300 #else
301         return PT32E_ROOT_LEVEL;
302 #endif
303 }
304
305 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
306 {
307         struct vcpu_svm *svm = to_svm(vcpu);
308         u64 old_efer = vcpu->arch.efer;
309         vcpu->arch.efer = efer;
310
311         if (!npt_enabled) {
312                 /* Shadow paging assumes NX to be available.  */
313                 efer |= EFER_NX;
314
315                 if (!(efer & EFER_LMA))
316                         efer &= ~EFER_LME;
317         }
318
319         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
320                 if (!(efer & EFER_SVME)) {
321                         svm_leave_nested(vcpu);
322                         svm_set_gif(svm, true);
323                         /* #GP intercept is still needed for vmware backdoor */
324                         if (!enable_vmware_backdoor)
325                                 clr_exception_intercept(svm, GP_VECTOR);
326
327                         /*
328                          * Free the nested guest state, unless we are in SMM.
329                          * In this case we will return to the nested guest
330                          * as soon as we leave SMM.
331                          */
332                         if (!is_smm(vcpu))
333                                 svm_free_nested(svm);
334
335                 } else {
336                         int ret = svm_allocate_nested(svm);
337
338                         if (ret) {
339                                 vcpu->arch.efer = old_efer;
340                                 return ret;
341                         }
342
343                         /*
344                          * Never intercept #GP for SEV guests, KVM can't
345                          * decrypt guest memory to workaround the erratum.
346                          */
347                         if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
348                                 set_exception_intercept(svm, GP_VECTOR);
349                 }
350         }
351
352         svm->vmcb->save.efer = efer | EFER_SVME;
353         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
354         return 0;
355 }
356
357 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
358 {
359         struct vcpu_svm *svm = to_svm(vcpu);
360         u32 ret = 0;
361
362         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
363                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
364         return ret;
365 }
366
367 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
368 {
369         struct vcpu_svm *svm = to_svm(vcpu);
370
371         if (mask == 0)
372                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
373         else
374                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
375
376 }
377
378 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
379                                            bool commit_side_effects)
380 {
381         struct vcpu_svm *svm = to_svm(vcpu);
382         unsigned long old_rflags;
383
384         /*
385          * SEV-ES does not expose the next RIP. The RIP update is controlled by
386          * the type of exit and the #VC handler in the guest.
387          */
388         if (sev_es_guest(vcpu->kvm))
389                 goto done;
390
391         if (nrips && svm->vmcb->control.next_rip != 0) {
392                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
393                 svm->next_rip = svm->vmcb->control.next_rip;
394         }
395
396         if (!svm->next_rip) {
397                 if (unlikely(!commit_side_effects))
398                         old_rflags = svm->vmcb->save.rflags;
399
400                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
401                         return 0;
402
403                 if (unlikely(!commit_side_effects))
404                         svm->vmcb->save.rflags = old_rflags;
405         } else {
406                 kvm_rip_write(vcpu, svm->next_rip);
407         }
408
409 done:
410         if (likely(commit_side_effects))
411                 svm_set_interrupt_shadow(vcpu, 0);
412
413         return 1;
414 }
415
416 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
417 {
418         return __svm_skip_emulated_instruction(vcpu, true);
419 }
420
421 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
422 {
423         unsigned long rip, old_rip = kvm_rip_read(vcpu);
424         struct vcpu_svm *svm = to_svm(vcpu);
425
426         /*
427          * Due to architectural shortcomings, the CPU doesn't always provide
428          * NextRIP, e.g. if KVM intercepted an exception that occurred while
429          * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
430          * the instruction even if NextRIP is supported to acquire the next
431          * RIP so that it can be shoved into the NextRIP field, otherwise
432          * hardware will fail to advance guest RIP during event injection.
433          * Drop the exception/interrupt if emulation fails and effectively
434          * retry the instruction, it's the least awful option.  If NRIPS is
435          * in use, the skip must not commit any side effects such as clearing
436          * the interrupt shadow or RFLAGS.RF.
437          */
438         if (!__svm_skip_emulated_instruction(vcpu, !nrips))
439                 return -EIO;
440
441         rip = kvm_rip_read(vcpu);
442
443         /*
444          * Save the injection information, even when using next_rip, as the
445          * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
446          * doesn't complete due to a VM-Exit occurring while the CPU is
447          * vectoring the event.   Decoding the instruction isn't guaranteed to
448          * work as there may be no backing instruction, e.g. if the event is
449          * being injected by L1 for L2, or if the guest is patching INT3 into
450          * a different instruction.
451          */
452         svm->soft_int_injected = true;
453         svm->soft_int_csbase = svm->vmcb->save.cs.base;
454         svm->soft_int_old_rip = old_rip;
455         svm->soft_int_next_rip = rip;
456
457         if (nrips)
458                 kvm_rip_write(vcpu, old_rip);
459
460         if (static_cpu_has(X86_FEATURE_NRIPS))
461                 svm->vmcb->control.next_rip = rip;
462
463         return 0;
464 }
465
466 static void svm_inject_exception(struct kvm_vcpu *vcpu)
467 {
468         struct kvm_queued_exception *ex = &vcpu->arch.exception;
469         struct vcpu_svm *svm = to_svm(vcpu);
470
471         kvm_deliver_exception_payload(vcpu, ex);
472
473         if (kvm_exception_is_soft(ex->vector) &&
474             svm_update_soft_interrupt_rip(vcpu))
475                 return;
476
477         svm->vmcb->control.event_inj = ex->vector
478                 | SVM_EVTINJ_VALID
479                 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
480                 | SVM_EVTINJ_TYPE_EXEPT;
481         svm->vmcb->control.event_inj_err = ex->error_code;
482 }
483
484 static void svm_init_erratum_383(void)
485 {
486         u32 low, high;
487         int err;
488         u64 val;
489
490         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
491                 return;
492
493         /* Use _safe variants to not break nested virtualization */
494         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
495         if (err)
496                 return;
497
498         val |= (1ULL << 47);
499
500         low  = lower_32_bits(val);
501         high = upper_32_bits(val);
502
503         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
504
505         erratum_383_found = true;
506 }
507
508 static void svm_init_osvw(struct kvm_vcpu *vcpu)
509 {
510         /*
511          * Guests should see errata 400 and 415 as fixed (assuming that
512          * HLT and IO instructions are intercepted).
513          */
514         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
515         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
516
517         /*
518          * By increasing VCPU's osvw.length to 3 we are telling the guest that
519          * all osvw.status bits inside that length, including bit 0 (which is
520          * reserved for erratum 298), are valid. However, if host processor's
521          * osvw_len is 0 then osvw_status[0] carries no information. We need to
522          * be conservative here and therefore we tell the guest that erratum 298
523          * is present (because we really don't know).
524          */
525         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
526                 vcpu->arch.osvw.status |= 1;
527 }
528
529 static bool kvm_is_svm_supported(void)
530 {
531         int cpu = raw_smp_processor_id();
532         const char *msg;
533         u64 vm_cr;
534
535         if (!cpu_has_svm(&msg)) {
536                 pr_err("SVM not supported by CPU %d, %s\n", cpu, msg);
537                 return false;
538         }
539
540         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
541                 pr_info("KVM is unsupported when running as an SEV guest\n");
542                 return false;
543         }
544
545         rdmsrl(MSR_VM_CR, vm_cr);
546         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) {
547                 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu);
548                 return false;
549         }
550
551         return true;
552 }
553
554 static int svm_check_processor_compat(void)
555 {
556         if (!kvm_is_svm_supported())
557                 return -EIO;
558
559         return 0;
560 }
561
562 void __svm_write_tsc_multiplier(u64 multiplier)
563 {
564         preempt_disable();
565
566         if (multiplier == __this_cpu_read(current_tsc_ratio))
567                 goto out;
568
569         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
570         __this_cpu_write(current_tsc_ratio, multiplier);
571 out:
572         preempt_enable();
573 }
574
575 static void svm_hardware_disable(void)
576 {
577         /* Make sure we clean up behind us */
578         if (tsc_scaling)
579                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
580
581         cpu_svm_disable();
582
583         amd_pmu_disable_virt();
584 }
585
586 static int svm_hardware_enable(void)
587 {
588
589         struct svm_cpu_data *sd;
590         uint64_t efer;
591         struct desc_struct *gdt;
592         int me = raw_smp_processor_id();
593
594         rdmsrl(MSR_EFER, efer);
595         if (efer & EFER_SVME)
596                 return -EBUSY;
597
598         sd = per_cpu_ptr(&svm_data, me);
599         sd->asid_generation = 1;
600         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
601         sd->next_asid = sd->max_asid + 1;
602         sd->min_asid = max_sev_asid + 1;
603
604         gdt = get_current_gdt_rw();
605         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
606
607         wrmsrl(MSR_EFER, efer | EFER_SVME);
608
609         wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
610
611         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
612                 /*
613                  * Set the default value, even if we don't use TSC scaling
614                  * to avoid having stale value in the msr
615                  */
616                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
617         }
618
619
620         /*
621          * Get OSVW bits.
622          *
623          * Note that it is possible to have a system with mixed processor
624          * revisions and therefore different OSVW bits. If bits are not the same
625          * on different processors then choose the worst case (i.e. if erratum
626          * is present on one processor and not on another then assume that the
627          * erratum is present everywhere).
628          */
629         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
630                 uint64_t len, status = 0;
631                 int err;
632
633                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
634                 if (!err)
635                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
636                                                       &err);
637
638                 if (err)
639                         osvw_status = osvw_len = 0;
640                 else {
641                         if (len < osvw_len)
642                                 osvw_len = len;
643                         osvw_status |= status;
644                         osvw_status &= (1ULL << osvw_len) - 1;
645                 }
646         } else
647                 osvw_status = osvw_len = 0;
648
649         svm_init_erratum_383();
650
651         amd_pmu_enable_virt();
652
653         return 0;
654 }
655
656 static void svm_cpu_uninit(int cpu)
657 {
658         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
659
660         if (!sd->save_area)
661                 return;
662
663         kfree(sd->sev_vmcbs);
664         __free_page(sd->save_area);
665         sd->save_area_pa = 0;
666         sd->save_area = NULL;
667 }
668
669 static int svm_cpu_init(int cpu)
670 {
671         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
672         int ret = -ENOMEM;
673
674         memset(sd, 0, sizeof(struct svm_cpu_data));
675         sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
676         if (!sd->save_area)
677                 return ret;
678
679         ret = sev_cpu_init(sd);
680         if (ret)
681                 goto free_save_area;
682
683         sd->save_area_pa = __sme_page_pa(sd->save_area);
684         return 0;
685
686 free_save_area:
687         __free_page(sd->save_area);
688         sd->save_area = NULL;
689         return ret;
690
691 }
692
693 static int direct_access_msr_slot(u32 msr)
694 {
695         u32 i;
696
697         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
698                 if (direct_access_msrs[i].index == msr)
699                         return i;
700
701         return -ENOENT;
702 }
703
704 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
705                                      int write)
706 {
707         struct vcpu_svm *svm = to_svm(vcpu);
708         int slot = direct_access_msr_slot(msr);
709
710         if (slot == -ENOENT)
711                 return;
712
713         /* Set the shadow bitmaps to the desired intercept states */
714         if (read)
715                 set_bit(slot, svm->shadow_msr_intercept.read);
716         else
717                 clear_bit(slot, svm->shadow_msr_intercept.read);
718
719         if (write)
720                 set_bit(slot, svm->shadow_msr_intercept.write);
721         else
722                 clear_bit(slot, svm->shadow_msr_intercept.write);
723 }
724
725 static bool valid_msr_intercept(u32 index)
726 {
727         return direct_access_msr_slot(index) != -ENOENT;
728 }
729
730 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
731 {
732         u8 bit_write;
733         unsigned long tmp;
734         u32 offset;
735         u32 *msrpm;
736
737         /*
738          * For non-nested case:
739          * If the L01 MSR bitmap does not intercept the MSR, then we need to
740          * save it.
741          *
742          * For nested case:
743          * If the L02 MSR bitmap does not intercept the MSR, then we need to
744          * save it.
745          */
746         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
747                                       to_svm(vcpu)->msrpm;
748
749         offset    = svm_msrpm_offset(msr);
750         bit_write = 2 * (msr & 0x0f) + 1;
751         tmp       = msrpm[offset];
752
753         BUG_ON(offset == MSR_INVALID);
754
755         return !!test_bit(bit_write,  &tmp);
756 }
757
758 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
759                                         u32 msr, int read, int write)
760 {
761         struct vcpu_svm *svm = to_svm(vcpu);
762         u8 bit_read, bit_write;
763         unsigned long tmp;
764         u32 offset;
765
766         /*
767          * If this warning triggers extend the direct_access_msrs list at the
768          * beginning of the file
769          */
770         WARN_ON(!valid_msr_intercept(msr));
771
772         /* Enforce non allowed MSRs to trap */
773         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
774                 read = 0;
775
776         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
777                 write = 0;
778
779         offset    = svm_msrpm_offset(msr);
780         bit_read  = 2 * (msr & 0x0f);
781         bit_write = 2 * (msr & 0x0f) + 1;
782         tmp       = msrpm[offset];
783
784         BUG_ON(offset == MSR_INVALID);
785
786         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
787         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
788
789         msrpm[offset] = tmp;
790
791         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
792         svm->nested.force_msr_bitmap_recalc = true;
793 }
794
795 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
796                           int read, int write)
797 {
798         set_shadow_msr_intercept(vcpu, msr, read, write);
799         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
800 }
801
802 u32 *svm_vcpu_alloc_msrpm(void)
803 {
804         unsigned int order = get_order(MSRPM_SIZE);
805         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
806         u32 *msrpm;
807
808         if (!pages)
809                 return NULL;
810
811         msrpm = page_address(pages);
812         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
813
814         return msrpm;
815 }
816
817 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
818 {
819         int i;
820
821         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
822                 if (!direct_access_msrs[i].always)
823                         continue;
824                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
825         }
826 }
827
828 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
829 {
830         int i;
831
832         if (intercept == svm->x2avic_msrs_intercepted)
833                 return;
834
835         if (!x2avic_enabled ||
836             !apic_x2apic_mode(svm->vcpu.arch.apic))
837                 return;
838
839         for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
840                 int index = direct_access_msrs[i].index;
841
842                 if ((index < APIC_BASE_MSR) ||
843                     (index > APIC_BASE_MSR + 0xff))
844                         continue;
845                 set_msr_interception(&svm->vcpu, svm->msrpm, index,
846                                      !intercept, !intercept);
847         }
848
849         svm->x2avic_msrs_intercepted = intercept;
850 }
851
852 void svm_vcpu_free_msrpm(u32 *msrpm)
853 {
854         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
855 }
856
857 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
858 {
859         struct vcpu_svm *svm = to_svm(vcpu);
860         u32 i;
861
862         /*
863          * Set intercept permissions for all direct access MSRs again. They
864          * will automatically get filtered through the MSR filter, so we are
865          * back in sync after this.
866          */
867         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
868                 u32 msr = direct_access_msrs[i].index;
869                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
870                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
871
872                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
873         }
874 }
875
876 static void add_msr_offset(u32 offset)
877 {
878         int i;
879
880         for (i = 0; i < MSRPM_OFFSETS; ++i) {
881
882                 /* Offset already in list? */
883                 if (msrpm_offsets[i] == offset)
884                         return;
885
886                 /* Slot used by another offset? */
887                 if (msrpm_offsets[i] != MSR_INVALID)
888                         continue;
889
890                 /* Add offset to list */
891                 msrpm_offsets[i] = offset;
892
893                 return;
894         }
895
896         /*
897          * If this BUG triggers the msrpm_offsets table has an overflow. Just
898          * increase MSRPM_OFFSETS in this case.
899          */
900         BUG();
901 }
902
903 static void init_msrpm_offsets(void)
904 {
905         int i;
906
907         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
908
909         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
910                 u32 offset;
911
912                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
913                 BUG_ON(offset == MSR_INVALID);
914
915                 add_msr_offset(offset);
916         }
917 }
918
919 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
920 {
921         to_vmcb->save.dbgctl            = from_vmcb->save.dbgctl;
922         to_vmcb->save.br_from           = from_vmcb->save.br_from;
923         to_vmcb->save.br_to             = from_vmcb->save.br_to;
924         to_vmcb->save.last_excp_from    = from_vmcb->save.last_excp_from;
925         to_vmcb->save.last_excp_to      = from_vmcb->save.last_excp_to;
926
927         vmcb_mark_dirty(to_vmcb, VMCB_LBR);
928 }
929
930 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
931 {
932         struct vcpu_svm *svm = to_svm(vcpu);
933
934         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
935         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
936         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
937         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
938         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
939
940         /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
941         if (is_guest_mode(vcpu))
942                 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
943 }
944
945 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
946 {
947         struct vcpu_svm *svm = to_svm(vcpu);
948
949         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
950         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
951         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
952         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
953         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
954
955         /*
956          * Move the LBR msrs back to the vmcb01 to avoid copying them
957          * on nested guest entries.
958          */
959         if (is_guest_mode(vcpu))
960                 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
961 }
962
963 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
964 {
965         /*
966          * If the LBR virtualization is disabled, the LBR msrs are always
967          * kept in the vmcb01 to avoid copying them on nested guest entries.
968          *
969          * If nested, and the LBR virtualization is enabled/disabled, the msrs
970          * are moved between the vmcb01 and vmcb02 as needed.
971          */
972         struct vmcb *vmcb =
973                 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
974                         svm->vmcb : svm->vmcb01.ptr;
975
976         switch (index) {
977         case MSR_IA32_DEBUGCTLMSR:
978                 return vmcb->save.dbgctl;
979         case MSR_IA32_LASTBRANCHFROMIP:
980                 return vmcb->save.br_from;
981         case MSR_IA32_LASTBRANCHTOIP:
982                 return vmcb->save.br_to;
983         case MSR_IA32_LASTINTFROMIP:
984                 return vmcb->save.last_excp_from;
985         case MSR_IA32_LASTINTTOIP:
986                 return vmcb->save.last_excp_to;
987         default:
988                 KVM_BUG(false, svm->vcpu.kvm,
989                         "%s: Unknown MSR 0x%x", __func__, index);
990                 return 0;
991         }
992 }
993
994 void svm_update_lbrv(struct kvm_vcpu *vcpu)
995 {
996         struct vcpu_svm *svm = to_svm(vcpu);
997
998         bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
999                                            DEBUGCTLMSR_LBR;
1000
1001         bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
1002                                       LBR_CTL_ENABLE_MASK);
1003
1004         if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
1005                 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
1006                         enable_lbrv = true;
1007
1008         if (enable_lbrv == current_enable_lbrv)
1009                 return;
1010
1011         if (enable_lbrv)
1012                 svm_enable_lbrv(vcpu);
1013         else
1014                 svm_disable_lbrv(vcpu);
1015 }
1016
1017 void disable_nmi_singlestep(struct vcpu_svm *svm)
1018 {
1019         svm->nmi_singlestep = false;
1020
1021         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1022                 /* Clear our flags if they were not set by the guest */
1023                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1024                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1025                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1026                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1027         }
1028 }
1029
1030 static void grow_ple_window(struct kvm_vcpu *vcpu)
1031 {
1032         struct vcpu_svm *svm = to_svm(vcpu);
1033         struct vmcb_control_area *control = &svm->vmcb->control;
1034         int old = control->pause_filter_count;
1035
1036         if (kvm_pause_in_guest(vcpu->kvm))
1037                 return;
1038
1039         control->pause_filter_count = __grow_ple_window(old,
1040                                                         pause_filter_count,
1041                                                         pause_filter_count_grow,
1042                                                         pause_filter_count_max);
1043
1044         if (control->pause_filter_count != old) {
1045                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1046                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1047                                             control->pause_filter_count, old);
1048         }
1049 }
1050
1051 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1052 {
1053         struct vcpu_svm *svm = to_svm(vcpu);
1054         struct vmcb_control_area *control = &svm->vmcb->control;
1055         int old = control->pause_filter_count;
1056
1057         if (kvm_pause_in_guest(vcpu->kvm))
1058                 return;
1059
1060         control->pause_filter_count =
1061                                 __shrink_ple_window(old,
1062                                                     pause_filter_count,
1063                                                     pause_filter_count_shrink,
1064                                                     pause_filter_count);
1065         if (control->pause_filter_count != old) {
1066                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1067                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1068                                             control->pause_filter_count, old);
1069         }
1070 }
1071
1072 static void svm_hardware_unsetup(void)
1073 {
1074         int cpu;
1075
1076         sev_hardware_unsetup();
1077
1078         for_each_possible_cpu(cpu)
1079                 svm_cpu_uninit(cpu);
1080
1081         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1082         get_order(IOPM_SIZE));
1083         iopm_base = 0;
1084 }
1085
1086 static void init_seg(struct vmcb_seg *seg)
1087 {
1088         seg->selector = 0;
1089         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1090                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1091         seg->limit = 0xffff;
1092         seg->base = 0;
1093 }
1094
1095 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1096 {
1097         seg->selector = 0;
1098         seg->attrib = SVM_SELECTOR_P_MASK | type;
1099         seg->limit = 0xffff;
1100         seg->base = 0;
1101 }
1102
1103 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1104 {
1105         struct vcpu_svm *svm = to_svm(vcpu);
1106
1107         return svm->nested.ctl.tsc_offset;
1108 }
1109
1110 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1111 {
1112         struct vcpu_svm *svm = to_svm(vcpu);
1113
1114         return svm->tsc_ratio_msr;
1115 }
1116
1117 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1118 {
1119         struct vcpu_svm *svm = to_svm(vcpu);
1120
1121         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1122         svm->vmcb->control.tsc_offset = offset;
1123         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1124 }
1125
1126 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1127 {
1128         __svm_write_tsc_multiplier(multiplier);
1129 }
1130
1131
1132 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1133 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1134                                               struct vcpu_svm *svm)
1135 {
1136         /*
1137          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1138          * roots, or if INVPCID is disabled in the guest to inject #UD.
1139          */
1140         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1141                 if (!npt_enabled ||
1142                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1143                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1144                 else
1145                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1146         }
1147
1148         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1149                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1150                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1151                 else
1152                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
1153         }
1154 }
1155
1156 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1157 {
1158         struct vcpu_svm *svm = to_svm(vcpu);
1159
1160         if (guest_cpuid_is_intel(vcpu)) {
1161                 /*
1162                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
1163                  * accesses because the processor only stores 32 bits.
1164                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1165                  */
1166                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1167                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1168                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1169
1170                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1171                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1172
1173                 svm->v_vmload_vmsave_enabled = false;
1174         } else {
1175                 /*
1176                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
1177                  * in VMCB and clear intercepts to avoid #VMEXIT.
1178                  */
1179                 if (vls) {
1180                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1181                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1182                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1183                 }
1184                 /* No need to intercept these MSRs */
1185                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1186                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1187         }
1188 }
1189
1190 static void init_vmcb(struct kvm_vcpu *vcpu)
1191 {
1192         struct vcpu_svm *svm = to_svm(vcpu);
1193         struct vmcb *vmcb = svm->vmcb01.ptr;
1194         struct vmcb_control_area *control = &vmcb->control;
1195         struct vmcb_save_area *save = &vmcb->save;
1196
1197         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1198         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1199         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1200         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1201         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1202         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1203         if (!kvm_vcpu_apicv_active(vcpu))
1204                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1205
1206         set_dr_intercepts(svm);
1207
1208         set_exception_intercept(svm, PF_VECTOR);
1209         set_exception_intercept(svm, UD_VECTOR);
1210         set_exception_intercept(svm, MC_VECTOR);
1211         set_exception_intercept(svm, AC_VECTOR);
1212         set_exception_intercept(svm, DB_VECTOR);
1213         /*
1214          * Guest access to VMware backdoor ports could legitimately
1215          * trigger #GP because of TSS I/O permission bitmap.
1216          * We intercept those #GP and allow access to them anyway
1217          * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1218          * decrypt guest memory to decode the faulting instruction.
1219          */
1220         if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1221                 set_exception_intercept(svm, GP_VECTOR);
1222
1223         svm_set_intercept(svm, INTERCEPT_INTR);
1224         svm_set_intercept(svm, INTERCEPT_NMI);
1225
1226         if (intercept_smi)
1227                 svm_set_intercept(svm, INTERCEPT_SMI);
1228
1229         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1230         svm_set_intercept(svm, INTERCEPT_RDPMC);
1231         svm_set_intercept(svm, INTERCEPT_CPUID);
1232         svm_set_intercept(svm, INTERCEPT_INVD);
1233         svm_set_intercept(svm, INTERCEPT_INVLPG);
1234         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1235         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1236         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1237         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1238         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1239         svm_set_intercept(svm, INTERCEPT_VMRUN);
1240         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1241         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1242         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1243         svm_set_intercept(svm, INTERCEPT_STGI);
1244         svm_set_intercept(svm, INTERCEPT_CLGI);
1245         svm_set_intercept(svm, INTERCEPT_SKINIT);
1246         svm_set_intercept(svm, INTERCEPT_WBINVD);
1247         svm_set_intercept(svm, INTERCEPT_XSETBV);
1248         svm_set_intercept(svm, INTERCEPT_RDPRU);
1249         svm_set_intercept(svm, INTERCEPT_RSM);
1250
1251         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1252                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1253                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1254         }
1255
1256         if (!kvm_hlt_in_guest(vcpu->kvm))
1257                 svm_set_intercept(svm, INTERCEPT_HLT);
1258
1259         control->iopm_base_pa = __sme_set(iopm_base);
1260         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1261         control->int_ctl = V_INTR_MASKING_MASK;
1262
1263         init_seg(&save->es);
1264         init_seg(&save->ss);
1265         init_seg(&save->ds);
1266         init_seg(&save->fs);
1267         init_seg(&save->gs);
1268
1269         save->cs.selector = 0xf000;
1270         save->cs.base = 0xffff0000;
1271         /* Executable/Readable Code Segment */
1272         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1273                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1274         save->cs.limit = 0xffff;
1275
1276         save->gdtr.base = 0;
1277         save->gdtr.limit = 0xffff;
1278         save->idtr.base = 0;
1279         save->idtr.limit = 0xffff;
1280
1281         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1282         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1283
1284         if (npt_enabled) {
1285                 /* Setup VMCB for Nested Paging */
1286                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1287                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1288                 clr_exception_intercept(svm, PF_VECTOR);
1289                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1290                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1291                 save->g_pat = vcpu->arch.pat;
1292                 save->cr3 = 0;
1293         }
1294         svm->current_vmcb->asid_generation = 0;
1295         svm->asid = 0;
1296
1297         svm->nested.vmcb12_gpa = INVALID_GPA;
1298         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1299
1300         if (!kvm_pause_in_guest(vcpu->kvm)) {
1301                 control->pause_filter_count = pause_filter_count;
1302                 if (pause_filter_thresh)
1303                         control->pause_filter_thresh = pause_filter_thresh;
1304                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1305         } else {
1306                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1307         }
1308
1309         svm_recalc_instruction_intercepts(vcpu, svm);
1310
1311         /*
1312          * If the host supports V_SPEC_CTRL then disable the interception
1313          * of MSR_IA32_SPEC_CTRL.
1314          */
1315         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1316                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1317
1318         if (kvm_vcpu_apicv_active(vcpu))
1319                 avic_init_vmcb(svm, vmcb);
1320
1321         if (vnmi)
1322                 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1323
1324         if (vgif) {
1325                 svm_clr_intercept(svm, INTERCEPT_STGI);
1326                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1327                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1328         }
1329
1330         if (sev_guest(vcpu->kvm))
1331                 sev_init_vmcb(svm);
1332
1333         svm_hv_init_vmcb(vmcb);
1334         init_vmcb_after_set_cpuid(vcpu);
1335
1336         vmcb_mark_all_dirty(vmcb);
1337
1338         enable_gif(svm);
1339 }
1340
1341 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1342 {
1343         struct vcpu_svm *svm = to_svm(vcpu);
1344
1345         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1346
1347         svm_init_osvw(vcpu);
1348         vcpu->arch.microcode_version = 0x01000065;
1349         svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1350
1351         svm->nmi_masked = false;
1352         svm->awaiting_iret_completion = false;
1353
1354         if (sev_es_guest(vcpu->kvm))
1355                 sev_es_vcpu_reset(svm);
1356 }
1357
1358 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1359 {
1360         struct vcpu_svm *svm = to_svm(vcpu);
1361
1362         svm->spec_ctrl = 0;
1363         svm->virt_spec_ctrl = 0;
1364
1365         init_vmcb(vcpu);
1366
1367         if (!init_event)
1368                 __svm_vcpu_reset(vcpu);
1369 }
1370
1371 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1372 {
1373         svm->current_vmcb = target_vmcb;
1374         svm->vmcb = target_vmcb->ptr;
1375 }
1376
1377 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1378 {
1379         struct vcpu_svm *svm;
1380         struct page *vmcb01_page;
1381         struct page *vmsa_page = NULL;
1382         int err;
1383
1384         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1385         svm = to_svm(vcpu);
1386
1387         err = -ENOMEM;
1388         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1389         if (!vmcb01_page)
1390                 goto out;
1391
1392         if (sev_es_guest(vcpu->kvm)) {
1393                 /*
1394                  * SEV-ES guests require a separate VMSA page used to contain
1395                  * the encrypted register state of the guest.
1396                  */
1397                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1398                 if (!vmsa_page)
1399                         goto error_free_vmcb_page;
1400
1401                 /*
1402                  * SEV-ES guests maintain an encrypted version of their FPU
1403                  * state which is restored and saved on VMRUN and VMEXIT.
1404                  * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1405                  * do xsave/xrstor on it.
1406                  */
1407                 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1408         }
1409
1410         err = avic_init_vcpu(svm);
1411         if (err)
1412                 goto error_free_vmsa_page;
1413
1414         svm->msrpm = svm_vcpu_alloc_msrpm();
1415         if (!svm->msrpm) {
1416                 err = -ENOMEM;
1417                 goto error_free_vmsa_page;
1418         }
1419
1420         svm->x2avic_msrs_intercepted = true;
1421
1422         svm->vmcb01.ptr = page_address(vmcb01_page);
1423         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1424         svm_switch_vmcb(svm, &svm->vmcb01);
1425
1426         if (vmsa_page)
1427                 svm->sev_es.vmsa = page_address(vmsa_page);
1428
1429         svm->guest_state_loaded = false;
1430
1431         return 0;
1432
1433 error_free_vmsa_page:
1434         if (vmsa_page)
1435                 __free_page(vmsa_page);
1436 error_free_vmcb_page:
1437         __free_page(vmcb01_page);
1438 out:
1439         return err;
1440 }
1441
1442 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1443 {
1444         int i;
1445
1446         for_each_online_cpu(i)
1447                 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1448 }
1449
1450 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1451 {
1452         struct vcpu_svm *svm = to_svm(vcpu);
1453
1454         /*
1455          * The vmcb page can be recycled, causing a false negative in
1456          * svm_vcpu_load(). So, ensure that no logical CPU has this
1457          * vmcb page recorded as its current vmcb.
1458          */
1459         svm_clear_current_vmcb(svm->vmcb);
1460
1461         svm_leave_nested(vcpu);
1462         svm_free_nested(svm);
1463
1464         sev_free_vcpu(vcpu);
1465
1466         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1467         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1468 }
1469
1470 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1471 {
1472         struct vcpu_svm *svm = to_svm(vcpu);
1473         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1474
1475         if (sev_es_guest(vcpu->kvm))
1476                 sev_es_unmap_ghcb(svm);
1477
1478         if (svm->guest_state_loaded)
1479                 return;
1480
1481         /*
1482          * Save additional host state that will be restored on VMEXIT (sev-es)
1483          * or subsequent vmload of host save area.
1484          */
1485         vmsave(sd->save_area_pa);
1486         if (sev_es_guest(vcpu->kvm)) {
1487                 struct sev_es_save_area *hostsa;
1488                 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1489
1490                 sev_es_prepare_switch_to_guest(hostsa);
1491         }
1492
1493         if (tsc_scaling)
1494                 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1495
1496         if (likely(tsc_aux_uret_slot >= 0))
1497                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1498
1499         svm->guest_state_loaded = true;
1500 }
1501
1502 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1503 {
1504         to_svm(vcpu)->guest_state_loaded = false;
1505 }
1506
1507 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1508 {
1509         struct vcpu_svm *svm = to_svm(vcpu);
1510         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1511
1512         if (sd->current_vmcb != svm->vmcb) {
1513                 sd->current_vmcb = svm->vmcb;
1514                 indirect_branch_prediction_barrier();
1515         }
1516         if (kvm_vcpu_apicv_active(vcpu))
1517                 avic_vcpu_load(vcpu, cpu);
1518 }
1519
1520 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1521 {
1522         if (kvm_vcpu_apicv_active(vcpu))
1523                 avic_vcpu_put(vcpu);
1524
1525         svm_prepare_host_switch(vcpu);
1526
1527         ++vcpu->stat.host_state_reload;
1528 }
1529
1530 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1531 {
1532         struct vcpu_svm *svm = to_svm(vcpu);
1533         unsigned long rflags = svm->vmcb->save.rflags;
1534
1535         if (svm->nmi_singlestep) {
1536                 /* Hide our flags if they were not set by the guest */
1537                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1538                         rflags &= ~X86_EFLAGS_TF;
1539                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1540                         rflags &= ~X86_EFLAGS_RF;
1541         }
1542         return rflags;
1543 }
1544
1545 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1546 {
1547         if (to_svm(vcpu)->nmi_singlestep)
1548                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1549
1550        /*
1551         * Any change of EFLAGS.VM is accompanied by a reload of SS
1552         * (caused by either a task switch or an inter-privilege IRET),
1553         * so we do not need to update the CPL here.
1554         */
1555         to_svm(vcpu)->vmcb->save.rflags = rflags;
1556 }
1557
1558 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1559 {
1560         struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1561
1562         return sev_es_guest(vcpu->kvm)
1563                 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1564                 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1565 }
1566
1567 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1568 {
1569         kvm_register_mark_available(vcpu, reg);
1570
1571         switch (reg) {
1572         case VCPU_EXREG_PDPTR:
1573                 /*
1574                  * When !npt_enabled, mmu->pdptrs[] is already available since
1575                  * it is always updated per SDM when moving to CRs.
1576                  */
1577                 if (npt_enabled)
1578                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1579                 break;
1580         default:
1581                 KVM_BUG_ON(1, vcpu->kvm);
1582         }
1583 }
1584
1585 static void svm_set_vintr(struct vcpu_svm *svm)
1586 {
1587         struct vmcb_control_area *control;
1588
1589         /*
1590          * The following fields are ignored when AVIC is enabled
1591          */
1592         WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1593
1594         svm_set_intercept(svm, INTERCEPT_VINTR);
1595
1596         /*
1597          * Recalculating intercepts may have cleared the VINTR intercept.  If
1598          * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1599          * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1600          * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1601          * interrupts will never be unblocked while L2 is running.
1602          */
1603         if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1604                 return;
1605
1606         /*
1607          * This is just a dummy VINTR to actually cause a vmexit to happen.
1608          * Actual injection of virtual interrupts happens through EVENTINJ.
1609          */
1610         control = &svm->vmcb->control;
1611         control->int_vector = 0x0;
1612         control->int_ctl &= ~V_INTR_PRIO_MASK;
1613         control->int_ctl |= V_IRQ_MASK |
1614                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1615         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1616 }
1617
1618 static void svm_clear_vintr(struct vcpu_svm *svm)
1619 {
1620         svm_clr_intercept(svm, INTERCEPT_VINTR);
1621
1622         /* Drop int_ctl fields related to VINTR injection.  */
1623         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1624         if (is_guest_mode(&svm->vcpu)) {
1625                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1626
1627                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1628                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1629
1630                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1631                         V_IRQ_INJECTION_BITS_MASK;
1632
1633                 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1634         }
1635
1636         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1637 }
1638
1639 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1640 {
1641         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1642         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1643
1644         switch (seg) {
1645         case VCPU_SREG_CS: return &save->cs;
1646         case VCPU_SREG_DS: return &save->ds;
1647         case VCPU_SREG_ES: return &save->es;
1648         case VCPU_SREG_FS: return &save01->fs;
1649         case VCPU_SREG_GS: return &save01->gs;
1650         case VCPU_SREG_SS: return &save->ss;
1651         case VCPU_SREG_TR: return &save01->tr;
1652         case VCPU_SREG_LDTR: return &save01->ldtr;
1653         }
1654         BUG();
1655         return NULL;
1656 }
1657
1658 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1659 {
1660         struct vmcb_seg *s = svm_seg(vcpu, seg);
1661
1662         return s->base;
1663 }
1664
1665 static void svm_get_segment(struct kvm_vcpu *vcpu,
1666                             struct kvm_segment *var, int seg)
1667 {
1668         struct vmcb_seg *s = svm_seg(vcpu, seg);
1669
1670         var->base = s->base;
1671         var->limit = s->limit;
1672         var->selector = s->selector;
1673         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1674         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1675         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1676         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1677         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1678         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1679         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1680
1681         /*
1682          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1683          * However, the SVM spec states that the G bit is not observed by the
1684          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1685          * So let's synthesize a legal G bit for all segments, this helps
1686          * running KVM nested. It also helps cross-vendor migration, because
1687          * Intel's vmentry has a check on the 'G' bit.
1688          */
1689         var->g = s->limit > 0xfffff;
1690
1691         /*
1692          * AMD's VMCB does not have an explicit unusable field, so emulate it
1693          * for cross vendor migration purposes by "not present"
1694          */
1695         var->unusable = !var->present;
1696
1697         switch (seg) {
1698         case VCPU_SREG_TR:
1699                 /*
1700                  * Work around a bug where the busy flag in the tr selector
1701                  * isn't exposed
1702                  */
1703                 var->type |= 0x2;
1704                 break;
1705         case VCPU_SREG_DS:
1706         case VCPU_SREG_ES:
1707         case VCPU_SREG_FS:
1708         case VCPU_SREG_GS:
1709                 /*
1710                  * The accessed bit must always be set in the segment
1711                  * descriptor cache, although it can be cleared in the
1712                  * descriptor, the cached bit always remains at 1. Since
1713                  * Intel has a check on this, set it here to support
1714                  * cross-vendor migration.
1715                  */
1716                 if (!var->unusable)
1717                         var->type |= 0x1;
1718                 break;
1719         case VCPU_SREG_SS:
1720                 /*
1721                  * On AMD CPUs sometimes the DB bit in the segment
1722                  * descriptor is left as 1, although the whole segment has
1723                  * been made unusable. Clear it here to pass an Intel VMX
1724                  * entry check when cross vendor migrating.
1725                  */
1726                 if (var->unusable)
1727                         var->db = 0;
1728                 /* This is symmetric with svm_set_segment() */
1729                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1730                 break;
1731         }
1732 }
1733
1734 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1735 {
1736         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1737
1738         return save->cpl;
1739 }
1740
1741 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1742 {
1743         struct kvm_segment cs;
1744
1745         svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1746         *db = cs.db;
1747         *l = cs.l;
1748 }
1749
1750 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1751 {
1752         struct vcpu_svm *svm = to_svm(vcpu);
1753
1754         dt->size = svm->vmcb->save.idtr.limit;
1755         dt->address = svm->vmcb->save.idtr.base;
1756 }
1757
1758 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1759 {
1760         struct vcpu_svm *svm = to_svm(vcpu);
1761
1762         svm->vmcb->save.idtr.limit = dt->size;
1763         svm->vmcb->save.idtr.base = dt->address ;
1764         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1765 }
1766
1767 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1768 {
1769         struct vcpu_svm *svm = to_svm(vcpu);
1770
1771         dt->size = svm->vmcb->save.gdtr.limit;
1772         dt->address = svm->vmcb->save.gdtr.base;
1773 }
1774
1775 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1776 {
1777         struct vcpu_svm *svm = to_svm(vcpu);
1778
1779         svm->vmcb->save.gdtr.limit = dt->size;
1780         svm->vmcb->save.gdtr.base = dt->address ;
1781         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1782 }
1783
1784 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1785 {
1786         struct vcpu_svm *svm = to_svm(vcpu);
1787
1788         /*
1789          * For guests that don't set guest_state_protected, the cr3 update is
1790          * handled via kvm_mmu_load() while entering the guest. For guests
1791          * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1792          * VMCB save area now, since the save area will become the initial
1793          * contents of the VMSA, and future VMCB save area updates won't be
1794          * seen.
1795          */
1796         if (sev_es_guest(vcpu->kvm)) {
1797                 svm->vmcb->save.cr3 = cr3;
1798                 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1799         }
1800 }
1801
1802 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1803 {
1804         struct vcpu_svm *svm = to_svm(vcpu);
1805         u64 hcr0 = cr0;
1806         bool old_paging = is_paging(vcpu);
1807
1808 #ifdef CONFIG_X86_64
1809         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1810                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1811                         vcpu->arch.efer |= EFER_LMA;
1812                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1813                 }
1814
1815                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1816                         vcpu->arch.efer &= ~EFER_LMA;
1817                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1818                 }
1819         }
1820 #endif
1821         vcpu->arch.cr0 = cr0;
1822
1823         if (!npt_enabled) {
1824                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1825                 if (old_paging != is_paging(vcpu))
1826                         svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1827         }
1828
1829         /*
1830          * re-enable caching here because the QEMU bios
1831          * does not do it - this results in some delay at
1832          * reboot
1833          */
1834         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1835                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1836
1837         svm->vmcb->save.cr0 = hcr0;
1838         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1839
1840         /*
1841          * SEV-ES guests must always keep the CR intercepts cleared. CR
1842          * tracking is done using the CR write traps.
1843          */
1844         if (sev_es_guest(vcpu->kvm))
1845                 return;
1846
1847         if (hcr0 == cr0) {
1848                 /* Selective CR0 write remains on.  */
1849                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1850                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1851         } else {
1852                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1853                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1854         }
1855 }
1856
1857 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1858 {
1859         return true;
1860 }
1861
1862 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1863 {
1864         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1865         unsigned long old_cr4 = vcpu->arch.cr4;
1866
1867         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1868                 svm_flush_tlb_current(vcpu);
1869
1870         vcpu->arch.cr4 = cr4;
1871         if (!npt_enabled) {
1872                 cr4 |= X86_CR4_PAE;
1873
1874                 if (!is_paging(vcpu))
1875                         cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1876         }
1877         cr4 |= host_cr4_mce;
1878         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1879         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1880
1881         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1882                 kvm_update_cpuid_runtime(vcpu);
1883 }
1884
1885 static void svm_set_segment(struct kvm_vcpu *vcpu,
1886                             struct kvm_segment *var, int seg)
1887 {
1888         struct vcpu_svm *svm = to_svm(vcpu);
1889         struct vmcb_seg *s = svm_seg(vcpu, seg);
1890
1891         s->base = var->base;
1892         s->limit = var->limit;
1893         s->selector = var->selector;
1894         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1895         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1896         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1897         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1898         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1899         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1900         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1901         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1902
1903         /*
1904          * This is always accurate, except if SYSRET returned to a segment
1905          * with SS.DPL != 3.  Intel does not have this quirk, and always
1906          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1907          * would entail passing the CPL to userspace and back.
1908          */
1909         if (seg == VCPU_SREG_SS)
1910                 /* This is symmetric with svm_get_segment() */
1911                 svm->vmcb->save.cpl = (var->dpl & 3);
1912
1913         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1914 }
1915
1916 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1917 {
1918         struct vcpu_svm *svm = to_svm(vcpu);
1919
1920         clr_exception_intercept(svm, BP_VECTOR);
1921
1922         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1923                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1924                         set_exception_intercept(svm, BP_VECTOR);
1925         }
1926 }
1927
1928 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1929 {
1930         if (sd->next_asid > sd->max_asid) {
1931                 ++sd->asid_generation;
1932                 sd->next_asid = sd->min_asid;
1933                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1934                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1935         }
1936
1937         svm->current_vmcb->asid_generation = sd->asid_generation;
1938         svm->asid = sd->next_asid++;
1939 }
1940
1941 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1942 {
1943         struct vmcb *vmcb = svm->vmcb;
1944
1945         if (svm->vcpu.arch.guest_state_protected)
1946                 return;
1947
1948         if (unlikely(value != vmcb->save.dr6)) {
1949                 vmcb->save.dr6 = value;
1950                 vmcb_mark_dirty(vmcb, VMCB_DR);
1951         }
1952 }
1953
1954 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1955 {
1956         struct vcpu_svm *svm = to_svm(vcpu);
1957
1958         if (vcpu->arch.guest_state_protected)
1959                 return;
1960
1961         get_debugreg(vcpu->arch.db[0], 0);
1962         get_debugreg(vcpu->arch.db[1], 1);
1963         get_debugreg(vcpu->arch.db[2], 2);
1964         get_debugreg(vcpu->arch.db[3], 3);
1965         /*
1966          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1967          * because db_interception might need it.  We can do it before vmentry.
1968          */
1969         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1970         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1971         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1972         set_dr_intercepts(svm);
1973 }
1974
1975 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1976 {
1977         struct vcpu_svm *svm = to_svm(vcpu);
1978
1979         if (vcpu->arch.guest_state_protected)
1980                 return;
1981
1982         svm->vmcb->save.dr7 = value;
1983         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1984 }
1985
1986 static int pf_interception(struct kvm_vcpu *vcpu)
1987 {
1988         struct vcpu_svm *svm = to_svm(vcpu);
1989
1990         u64 fault_address = svm->vmcb->control.exit_info_2;
1991         u64 error_code = svm->vmcb->control.exit_info_1;
1992
1993         return kvm_handle_page_fault(vcpu, error_code, fault_address,
1994                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1995                         svm->vmcb->control.insn_bytes : NULL,
1996                         svm->vmcb->control.insn_len);
1997 }
1998
1999 static int npf_interception(struct kvm_vcpu *vcpu)
2000 {
2001         struct vcpu_svm *svm = to_svm(vcpu);
2002
2003         u64 fault_address = svm->vmcb->control.exit_info_2;
2004         u64 error_code = svm->vmcb->control.exit_info_1;
2005
2006         trace_kvm_page_fault(vcpu, fault_address, error_code);
2007         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2008                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2009                         svm->vmcb->control.insn_bytes : NULL,
2010                         svm->vmcb->control.insn_len);
2011 }
2012
2013 static int db_interception(struct kvm_vcpu *vcpu)
2014 {
2015         struct kvm_run *kvm_run = vcpu->run;
2016         struct vcpu_svm *svm = to_svm(vcpu);
2017
2018         if (!(vcpu->guest_debug &
2019               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2020                 !svm->nmi_singlestep) {
2021                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2022                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2023                 return 1;
2024         }
2025
2026         if (svm->nmi_singlestep) {
2027                 disable_nmi_singlestep(svm);
2028                 /* Make sure we check for pending NMIs upon entry */
2029                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2030         }
2031
2032         if (vcpu->guest_debug &
2033             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2034                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2035                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2036                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2037                 kvm_run->debug.arch.pc =
2038                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2039                 kvm_run->debug.arch.exception = DB_VECTOR;
2040                 return 0;
2041         }
2042
2043         return 1;
2044 }
2045
2046 static int bp_interception(struct kvm_vcpu *vcpu)
2047 {
2048         struct vcpu_svm *svm = to_svm(vcpu);
2049         struct kvm_run *kvm_run = vcpu->run;
2050
2051         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2052         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2053         kvm_run->debug.arch.exception = BP_VECTOR;
2054         return 0;
2055 }
2056
2057 static int ud_interception(struct kvm_vcpu *vcpu)
2058 {
2059         return handle_ud(vcpu);
2060 }
2061
2062 static int ac_interception(struct kvm_vcpu *vcpu)
2063 {
2064         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2065         return 1;
2066 }
2067
2068 static bool is_erratum_383(void)
2069 {
2070         int err, i;
2071         u64 value;
2072
2073         if (!erratum_383_found)
2074                 return false;
2075
2076         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2077         if (err)
2078                 return false;
2079
2080         /* Bit 62 may or may not be set for this mce */
2081         value &= ~(1ULL << 62);
2082
2083         if (value != 0xb600000000010015ULL)
2084                 return false;
2085
2086         /* Clear MCi_STATUS registers */
2087         for (i = 0; i < 6; ++i)
2088                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2089
2090         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2091         if (!err) {
2092                 u32 low, high;
2093
2094                 value &= ~(1ULL << 2);
2095                 low    = lower_32_bits(value);
2096                 high   = upper_32_bits(value);
2097
2098                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2099         }
2100
2101         /* Flush tlb to evict multi-match entries */
2102         __flush_tlb_all();
2103
2104         return true;
2105 }
2106
2107 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2108 {
2109         if (is_erratum_383()) {
2110                 /*
2111                  * Erratum 383 triggered. Guest state is corrupt so kill the
2112                  * guest.
2113                  */
2114                 pr_err("Guest triggered AMD Erratum 383\n");
2115
2116                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2117
2118                 return;
2119         }
2120
2121         /*
2122          * On an #MC intercept the MCE handler is not called automatically in
2123          * the host. So do it by hand here.
2124          */
2125         kvm_machine_check();
2126 }
2127
2128 static int mc_interception(struct kvm_vcpu *vcpu)
2129 {
2130         return 1;
2131 }
2132
2133 static int shutdown_interception(struct kvm_vcpu *vcpu)
2134 {
2135         struct kvm_run *kvm_run = vcpu->run;
2136         struct vcpu_svm *svm = to_svm(vcpu);
2137
2138         /*
2139          * The VM save area has already been encrypted so it
2140          * cannot be reinitialized - just terminate.
2141          */
2142         if (sev_es_guest(vcpu->kvm))
2143                 return -EINVAL;
2144
2145         /*
2146          * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2147          * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2148          * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2149          * userspace.  At a platform view, INIT is acceptable behavior as
2150          * there exist bare metal platforms that automatically INIT the CPU
2151          * in response to shutdown.
2152          */
2153         clear_page(svm->vmcb);
2154         kvm_vcpu_reset(vcpu, true);
2155
2156         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2157         return 0;
2158 }
2159
2160 static int io_interception(struct kvm_vcpu *vcpu)
2161 {
2162         struct vcpu_svm *svm = to_svm(vcpu);
2163         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2164         int size, in, string;
2165         unsigned port;
2166
2167         ++vcpu->stat.io_exits;
2168         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2169         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2170         port = io_info >> 16;
2171         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2172
2173         if (string) {
2174                 if (sev_es_guest(vcpu->kvm))
2175                         return sev_es_string_io(svm, size, port, in);
2176                 else
2177                         return kvm_emulate_instruction(vcpu, 0);
2178         }
2179
2180         svm->next_rip = svm->vmcb->control.exit_info_2;
2181
2182         return kvm_fast_pio(vcpu, size, port, in);
2183 }
2184
2185 static int nmi_interception(struct kvm_vcpu *vcpu)
2186 {
2187         return 1;
2188 }
2189
2190 static int smi_interception(struct kvm_vcpu *vcpu)
2191 {
2192         return 1;
2193 }
2194
2195 static int intr_interception(struct kvm_vcpu *vcpu)
2196 {
2197         ++vcpu->stat.irq_exits;
2198         return 1;
2199 }
2200
2201 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2202 {
2203         struct vcpu_svm *svm = to_svm(vcpu);
2204         struct vmcb *vmcb12;
2205         struct kvm_host_map map;
2206         int ret;
2207
2208         if (nested_svm_check_permissions(vcpu))
2209                 return 1;
2210
2211         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2212         if (ret) {
2213                 if (ret == -EINVAL)
2214                         kvm_inject_gp(vcpu, 0);
2215                 return 1;
2216         }
2217
2218         vmcb12 = map.hva;
2219
2220         ret = kvm_skip_emulated_instruction(vcpu);
2221
2222         if (vmload) {
2223                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2224                 svm->sysenter_eip_hi = 0;
2225                 svm->sysenter_esp_hi = 0;
2226         } else {
2227                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2228         }
2229
2230         kvm_vcpu_unmap(vcpu, &map, true);
2231
2232         return ret;
2233 }
2234
2235 static int vmload_interception(struct kvm_vcpu *vcpu)
2236 {
2237         return vmload_vmsave_interception(vcpu, true);
2238 }
2239
2240 static int vmsave_interception(struct kvm_vcpu *vcpu)
2241 {
2242         return vmload_vmsave_interception(vcpu, false);
2243 }
2244
2245 static int vmrun_interception(struct kvm_vcpu *vcpu)
2246 {
2247         if (nested_svm_check_permissions(vcpu))
2248                 return 1;
2249
2250         return nested_svm_vmrun(vcpu);
2251 }
2252
2253 enum {
2254         NONE_SVM_INSTR,
2255         SVM_INSTR_VMRUN,
2256         SVM_INSTR_VMLOAD,
2257         SVM_INSTR_VMSAVE,
2258 };
2259
2260 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2261 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2262 {
2263         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2264
2265         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2266                 return NONE_SVM_INSTR;
2267
2268         switch (ctxt->modrm) {
2269         case 0xd8: /* VMRUN */
2270                 return SVM_INSTR_VMRUN;
2271         case 0xda: /* VMLOAD */
2272                 return SVM_INSTR_VMLOAD;
2273         case 0xdb: /* VMSAVE */
2274                 return SVM_INSTR_VMSAVE;
2275         default:
2276                 break;
2277         }
2278
2279         return NONE_SVM_INSTR;
2280 }
2281
2282 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2283 {
2284         const int guest_mode_exit_codes[] = {
2285                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2286                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2287                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2288         };
2289         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2290                 [SVM_INSTR_VMRUN] = vmrun_interception,
2291                 [SVM_INSTR_VMLOAD] = vmload_interception,
2292                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2293         };
2294         struct vcpu_svm *svm = to_svm(vcpu);
2295         int ret;
2296
2297         if (is_guest_mode(vcpu)) {
2298                 /* Returns '1' or -errno on failure, '0' on success. */
2299                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2300                 if (ret)
2301                         return ret;
2302                 return 1;
2303         }
2304         return svm_instr_handlers[opcode](vcpu);
2305 }
2306
2307 /*
2308  * #GP handling code. Note that #GP can be triggered under the following two
2309  * cases:
2310  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2311  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2312  *      regions (e.g. SMM memory on host).
2313  *   2) VMware backdoor
2314  */
2315 static int gp_interception(struct kvm_vcpu *vcpu)
2316 {
2317         struct vcpu_svm *svm = to_svm(vcpu);
2318         u32 error_code = svm->vmcb->control.exit_info_1;
2319         int opcode;
2320
2321         /* Both #GP cases have zero error_code */
2322         if (error_code)
2323                 goto reinject;
2324
2325         /* Decode the instruction for usage later */
2326         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2327                 goto reinject;
2328
2329         opcode = svm_instr_opcode(vcpu);
2330
2331         if (opcode == NONE_SVM_INSTR) {
2332                 if (!enable_vmware_backdoor)
2333                         goto reinject;
2334
2335                 /*
2336                  * VMware backdoor emulation on #GP interception only handles
2337                  * IN{S}, OUT{S}, and RDPMC.
2338                  */
2339                 if (!is_guest_mode(vcpu))
2340                         return kvm_emulate_instruction(vcpu,
2341                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2342         } else {
2343                 /* All SVM instructions expect page aligned RAX */
2344                 if (svm->vmcb->save.rax & ~PAGE_MASK)
2345                         goto reinject;
2346
2347                 return emulate_svm_instr(vcpu, opcode);
2348         }
2349
2350 reinject:
2351         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2352         return 1;
2353 }
2354
2355 void svm_set_gif(struct vcpu_svm *svm, bool value)
2356 {
2357         if (value) {
2358                 /*
2359                  * If VGIF is enabled, the STGI intercept is only added to
2360                  * detect the opening of the SMI/NMI window; remove it now.
2361                  * Likewise, clear the VINTR intercept, we will set it
2362                  * again while processing KVM_REQ_EVENT if needed.
2363                  */
2364                 if (vgif)
2365                         svm_clr_intercept(svm, INTERCEPT_STGI);
2366                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2367                         svm_clear_vintr(svm);
2368
2369                 enable_gif(svm);
2370                 if (svm->vcpu.arch.smi_pending ||
2371                     svm->vcpu.arch.nmi_pending ||
2372                     kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2373                     kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2374                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2375         } else {
2376                 disable_gif(svm);
2377
2378                 /*
2379                  * After a CLGI no interrupts should come.  But if vGIF is
2380                  * in use, we still rely on the VINTR intercept (rather than
2381                  * STGI) to detect an open interrupt window.
2382                 */
2383                 if (!vgif)
2384                         svm_clear_vintr(svm);
2385         }
2386 }
2387
2388 static int stgi_interception(struct kvm_vcpu *vcpu)
2389 {
2390         int ret;
2391
2392         if (nested_svm_check_permissions(vcpu))
2393                 return 1;
2394
2395         ret = kvm_skip_emulated_instruction(vcpu);
2396         svm_set_gif(to_svm(vcpu), true);
2397         return ret;
2398 }
2399
2400 static int clgi_interception(struct kvm_vcpu *vcpu)
2401 {
2402         int ret;
2403
2404         if (nested_svm_check_permissions(vcpu))
2405                 return 1;
2406
2407         ret = kvm_skip_emulated_instruction(vcpu);
2408         svm_set_gif(to_svm(vcpu), false);
2409         return ret;
2410 }
2411
2412 static int invlpga_interception(struct kvm_vcpu *vcpu)
2413 {
2414         gva_t gva = kvm_rax_read(vcpu);
2415         u32 asid = kvm_rcx_read(vcpu);
2416
2417         /* FIXME: Handle an address size prefix. */
2418         if (!is_long_mode(vcpu))
2419                 gva = (u32)gva;
2420
2421         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2422
2423         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2424         kvm_mmu_invlpg(vcpu, gva);
2425
2426         return kvm_skip_emulated_instruction(vcpu);
2427 }
2428
2429 static int skinit_interception(struct kvm_vcpu *vcpu)
2430 {
2431         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2432
2433         kvm_queue_exception(vcpu, UD_VECTOR);
2434         return 1;
2435 }
2436
2437 static int task_switch_interception(struct kvm_vcpu *vcpu)
2438 {
2439         struct vcpu_svm *svm = to_svm(vcpu);
2440         u16 tss_selector;
2441         int reason;
2442         int int_type = svm->vmcb->control.exit_int_info &
2443                 SVM_EXITINTINFO_TYPE_MASK;
2444         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2445         uint32_t type =
2446                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2447         uint32_t idt_v =
2448                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2449         bool has_error_code = false;
2450         u32 error_code = 0;
2451
2452         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2453
2454         if (svm->vmcb->control.exit_info_2 &
2455             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2456                 reason = TASK_SWITCH_IRET;
2457         else if (svm->vmcb->control.exit_info_2 &
2458                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2459                 reason = TASK_SWITCH_JMP;
2460         else if (idt_v)
2461                 reason = TASK_SWITCH_GATE;
2462         else
2463                 reason = TASK_SWITCH_CALL;
2464
2465         if (reason == TASK_SWITCH_GATE) {
2466                 switch (type) {
2467                 case SVM_EXITINTINFO_TYPE_NMI:
2468                         vcpu->arch.nmi_injected = false;
2469                         break;
2470                 case SVM_EXITINTINFO_TYPE_EXEPT:
2471                         if (svm->vmcb->control.exit_info_2 &
2472                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2473                                 has_error_code = true;
2474                                 error_code =
2475                                         (u32)svm->vmcb->control.exit_info_2;
2476                         }
2477                         kvm_clear_exception_queue(vcpu);
2478                         break;
2479                 case SVM_EXITINTINFO_TYPE_INTR:
2480                 case SVM_EXITINTINFO_TYPE_SOFT:
2481                         kvm_clear_interrupt_queue(vcpu);
2482                         break;
2483                 default:
2484                         break;
2485                 }
2486         }
2487
2488         if (reason != TASK_SWITCH_GATE ||
2489             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2490             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2491              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2492                 if (!svm_skip_emulated_instruction(vcpu))
2493                         return 0;
2494         }
2495
2496         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2497                 int_vec = -1;
2498
2499         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2500                                has_error_code, error_code);
2501 }
2502
2503 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2504 {
2505         if (!sev_es_guest(svm->vcpu.kvm))
2506                 svm_clr_intercept(svm, INTERCEPT_IRET);
2507 }
2508
2509 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2510 {
2511         if (!sev_es_guest(svm->vcpu.kvm))
2512                 svm_set_intercept(svm, INTERCEPT_IRET);
2513 }
2514
2515 static int iret_interception(struct kvm_vcpu *vcpu)
2516 {
2517         struct vcpu_svm *svm = to_svm(vcpu);
2518
2519         ++vcpu->stat.nmi_window_exits;
2520         svm->awaiting_iret_completion = true;
2521
2522         svm_clr_iret_intercept(svm);
2523         if (!sev_es_guest(vcpu->kvm))
2524                 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2525
2526         kvm_make_request(KVM_REQ_EVENT, vcpu);
2527         return 1;
2528 }
2529
2530 static int invlpg_interception(struct kvm_vcpu *vcpu)
2531 {
2532         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2533                 return kvm_emulate_instruction(vcpu, 0);
2534
2535         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2536         return kvm_skip_emulated_instruction(vcpu);
2537 }
2538
2539 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2540 {
2541         return kvm_emulate_instruction(vcpu, 0);
2542 }
2543
2544 static int rsm_interception(struct kvm_vcpu *vcpu)
2545 {
2546         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2547 }
2548
2549 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2550                                             unsigned long val)
2551 {
2552         struct vcpu_svm *svm = to_svm(vcpu);
2553         unsigned long cr0 = vcpu->arch.cr0;
2554         bool ret = false;
2555
2556         if (!is_guest_mode(vcpu) ||
2557             (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2558                 return false;
2559
2560         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2561         val &= ~SVM_CR0_SELECTIVE_MASK;
2562
2563         if (cr0 ^ val) {
2564                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2565                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2566         }
2567
2568         return ret;
2569 }
2570
2571 #define CR_VALID (1ULL << 63)
2572
2573 static int cr_interception(struct kvm_vcpu *vcpu)
2574 {
2575         struct vcpu_svm *svm = to_svm(vcpu);
2576         int reg, cr;
2577         unsigned long val;
2578         int err;
2579
2580         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2581                 return emulate_on_interception(vcpu);
2582
2583         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2584                 return emulate_on_interception(vcpu);
2585
2586         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2587         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2588                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2589         else
2590                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2591
2592         err = 0;
2593         if (cr >= 16) { /* mov to cr */
2594                 cr -= 16;
2595                 val = kvm_register_read(vcpu, reg);
2596                 trace_kvm_cr_write(cr, val);
2597                 switch (cr) {
2598                 case 0:
2599                         if (!check_selective_cr0_intercepted(vcpu, val))
2600                                 err = kvm_set_cr0(vcpu, val);
2601                         else
2602                                 return 1;
2603
2604                         break;
2605                 case 3:
2606                         err = kvm_set_cr3(vcpu, val);
2607                         break;
2608                 case 4:
2609                         err = kvm_set_cr4(vcpu, val);
2610                         break;
2611                 case 8:
2612                         err = kvm_set_cr8(vcpu, val);
2613                         break;
2614                 default:
2615                         WARN(1, "unhandled write to CR%d", cr);
2616                         kvm_queue_exception(vcpu, UD_VECTOR);
2617                         return 1;
2618                 }
2619         } else { /* mov from cr */
2620                 switch (cr) {
2621                 case 0:
2622                         val = kvm_read_cr0(vcpu);
2623                         break;
2624                 case 2:
2625                         val = vcpu->arch.cr2;
2626                         break;
2627                 case 3:
2628                         val = kvm_read_cr3(vcpu);
2629                         break;
2630                 case 4:
2631                         val = kvm_read_cr4(vcpu);
2632                         break;
2633                 case 8:
2634                         val = kvm_get_cr8(vcpu);
2635                         break;
2636                 default:
2637                         WARN(1, "unhandled read from CR%d", cr);
2638                         kvm_queue_exception(vcpu, UD_VECTOR);
2639                         return 1;
2640                 }
2641                 kvm_register_write(vcpu, reg, val);
2642                 trace_kvm_cr_read(cr, val);
2643         }
2644         return kvm_complete_insn_gp(vcpu, err);
2645 }
2646
2647 static int cr_trap(struct kvm_vcpu *vcpu)
2648 {
2649         struct vcpu_svm *svm = to_svm(vcpu);
2650         unsigned long old_value, new_value;
2651         unsigned int cr;
2652         int ret = 0;
2653
2654         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2655
2656         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2657         switch (cr) {
2658         case 0:
2659                 old_value = kvm_read_cr0(vcpu);
2660                 svm_set_cr0(vcpu, new_value);
2661
2662                 kvm_post_set_cr0(vcpu, old_value, new_value);
2663                 break;
2664         case 4:
2665                 old_value = kvm_read_cr4(vcpu);
2666                 svm_set_cr4(vcpu, new_value);
2667
2668                 kvm_post_set_cr4(vcpu, old_value, new_value);
2669                 break;
2670         case 8:
2671                 ret = kvm_set_cr8(vcpu, new_value);
2672                 break;
2673         default:
2674                 WARN(1, "unhandled CR%d write trap", cr);
2675                 kvm_queue_exception(vcpu, UD_VECTOR);
2676                 return 1;
2677         }
2678
2679         return kvm_complete_insn_gp(vcpu, ret);
2680 }
2681
2682 static int dr_interception(struct kvm_vcpu *vcpu)
2683 {
2684         struct vcpu_svm *svm = to_svm(vcpu);
2685         int reg, dr;
2686         unsigned long val;
2687         int err = 0;
2688
2689         if (vcpu->guest_debug == 0) {
2690                 /*
2691                  * No more DR vmexits; force a reload of the debug registers
2692                  * and reenter on this instruction.  The next vmexit will
2693                  * retrieve the full state of the debug registers.
2694                  */
2695                 clr_dr_intercepts(svm);
2696                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2697                 return 1;
2698         }
2699
2700         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2701                 return emulate_on_interception(vcpu);
2702
2703         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2704         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2705         if (dr >= 16) { /* mov to DRn  */
2706                 dr -= 16;
2707                 val = kvm_register_read(vcpu, reg);
2708                 err = kvm_set_dr(vcpu, dr, val);
2709         } else {
2710                 kvm_get_dr(vcpu, dr, &val);
2711                 kvm_register_write(vcpu, reg, val);
2712         }
2713
2714         return kvm_complete_insn_gp(vcpu, err);
2715 }
2716
2717 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2718 {
2719         int r;
2720
2721         u8 cr8_prev = kvm_get_cr8(vcpu);
2722         /* instruction emulation calls kvm_set_cr8() */
2723         r = cr_interception(vcpu);
2724         if (lapic_in_kernel(vcpu))
2725                 return r;
2726         if (cr8_prev <= kvm_get_cr8(vcpu))
2727                 return r;
2728         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2729         return 0;
2730 }
2731
2732 static int efer_trap(struct kvm_vcpu *vcpu)
2733 {
2734         struct msr_data msr_info;
2735         int ret;
2736
2737         /*
2738          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2739          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2740          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2741          * the guest doesn't have X86_FEATURE_SVM.
2742          */
2743         msr_info.host_initiated = false;
2744         msr_info.index = MSR_EFER;
2745         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2746         ret = kvm_set_msr_common(vcpu, &msr_info);
2747
2748         return kvm_complete_insn_gp(vcpu, ret);
2749 }
2750
2751 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2752 {
2753         msr->data = 0;
2754
2755         switch (msr->index) {
2756         case MSR_AMD64_DE_CFG:
2757                 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2758                         msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2759                 break;
2760         default:
2761                 return KVM_MSR_RET_INVALID;
2762         }
2763
2764         return 0;
2765 }
2766
2767 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2768 {
2769         struct vcpu_svm *svm = to_svm(vcpu);
2770
2771         switch (msr_info->index) {
2772         case MSR_AMD64_TSC_RATIO:
2773                 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2774                         return 1;
2775                 msr_info->data = svm->tsc_ratio_msr;
2776                 break;
2777         case MSR_STAR:
2778                 msr_info->data = svm->vmcb01.ptr->save.star;
2779                 break;
2780 #ifdef CONFIG_X86_64
2781         case MSR_LSTAR:
2782                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2783                 break;
2784         case MSR_CSTAR:
2785                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2786                 break;
2787         case MSR_KERNEL_GS_BASE:
2788                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2789                 break;
2790         case MSR_SYSCALL_MASK:
2791                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2792                 break;
2793 #endif
2794         case MSR_IA32_SYSENTER_CS:
2795                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2796                 break;
2797         case MSR_IA32_SYSENTER_EIP:
2798                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2799                 if (guest_cpuid_is_intel(vcpu))
2800                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2801                 break;
2802         case MSR_IA32_SYSENTER_ESP:
2803                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2804                 if (guest_cpuid_is_intel(vcpu))
2805                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2806                 break;
2807         case MSR_TSC_AUX:
2808                 msr_info->data = svm->tsc_aux;
2809                 break;
2810         case MSR_IA32_DEBUGCTLMSR:
2811         case MSR_IA32_LASTBRANCHFROMIP:
2812         case MSR_IA32_LASTBRANCHTOIP:
2813         case MSR_IA32_LASTINTFROMIP:
2814         case MSR_IA32_LASTINTTOIP:
2815                 msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2816                 break;
2817         case MSR_VM_HSAVE_PA:
2818                 msr_info->data = svm->nested.hsave_msr;
2819                 break;
2820         case MSR_VM_CR:
2821                 msr_info->data = svm->nested.vm_cr_msr;
2822                 break;
2823         case MSR_IA32_SPEC_CTRL:
2824                 if (!msr_info->host_initiated &&
2825                     !guest_has_spec_ctrl_msr(vcpu))
2826                         return 1;
2827
2828                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2829                         msr_info->data = svm->vmcb->save.spec_ctrl;
2830                 else
2831                         msr_info->data = svm->spec_ctrl;
2832                 break;
2833         case MSR_AMD64_VIRT_SPEC_CTRL:
2834                 if (!msr_info->host_initiated &&
2835                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2836                         return 1;
2837
2838                 msr_info->data = svm->virt_spec_ctrl;
2839                 break;
2840         case MSR_F15H_IC_CFG: {
2841
2842                 int family, model;
2843
2844                 family = guest_cpuid_family(vcpu);
2845                 model  = guest_cpuid_model(vcpu);
2846
2847                 if (family < 0 || model < 0)
2848                         return kvm_get_msr_common(vcpu, msr_info);
2849
2850                 msr_info->data = 0;
2851
2852                 if (family == 0x15 &&
2853                     (model >= 0x2 && model < 0x20))
2854                         msr_info->data = 0x1E;
2855                 }
2856                 break;
2857         case MSR_AMD64_DE_CFG:
2858                 msr_info->data = svm->msr_decfg;
2859                 break;
2860         default:
2861                 return kvm_get_msr_common(vcpu, msr_info);
2862         }
2863         return 0;
2864 }
2865
2866 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2867 {
2868         struct vcpu_svm *svm = to_svm(vcpu);
2869         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2870                 return kvm_complete_insn_gp(vcpu, err);
2871
2872         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2873         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2874                                 X86_TRAP_GP |
2875                                 SVM_EVTINJ_TYPE_EXEPT |
2876                                 SVM_EVTINJ_VALID);
2877         return 1;
2878 }
2879
2880 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2881 {
2882         struct vcpu_svm *svm = to_svm(vcpu);
2883         int svm_dis, chg_mask;
2884
2885         if (data & ~SVM_VM_CR_VALID_MASK)
2886                 return 1;
2887
2888         chg_mask = SVM_VM_CR_VALID_MASK;
2889
2890         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2891                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2892
2893         svm->nested.vm_cr_msr &= ~chg_mask;
2894         svm->nested.vm_cr_msr |= (data & chg_mask);
2895
2896         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2897
2898         /* check for svm_disable while efer.svme is set */
2899         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2900                 return 1;
2901
2902         return 0;
2903 }
2904
2905 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2906 {
2907         struct vcpu_svm *svm = to_svm(vcpu);
2908         int ret = 0;
2909
2910         u32 ecx = msr->index;
2911         u64 data = msr->data;
2912         switch (ecx) {
2913         case MSR_AMD64_TSC_RATIO:
2914
2915                 if (!svm->tsc_scaling_enabled) {
2916
2917                         if (!msr->host_initiated)
2918                                 return 1;
2919                         /*
2920                          * In case TSC scaling is not enabled, always
2921                          * leave this MSR at the default value.
2922                          *
2923                          * Due to bug in qemu 6.2.0, it would try to set
2924                          * this msr to 0 if tsc scaling is not enabled.
2925                          * Ignore this value as well.
2926                          */
2927                         if (data != 0 && data != svm->tsc_ratio_msr)
2928                                 return 1;
2929                         break;
2930                 }
2931
2932                 if (data & SVM_TSC_RATIO_RSVD)
2933                         return 1;
2934
2935                 svm->tsc_ratio_msr = data;
2936
2937                 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2938                         nested_svm_update_tsc_ratio_msr(vcpu);
2939
2940                 break;
2941         case MSR_IA32_CR_PAT:
2942                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2943                         return 1;
2944                 vcpu->arch.pat = data;
2945                 svm->vmcb01.ptr->save.g_pat = data;
2946                 if (is_guest_mode(vcpu))
2947                         nested_vmcb02_compute_g_pat(svm);
2948                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2949                 break;
2950         case MSR_IA32_SPEC_CTRL:
2951                 if (!msr->host_initiated &&
2952                     !guest_has_spec_ctrl_msr(vcpu))
2953                         return 1;
2954
2955                 if (kvm_spec_ctrl_test_value(data))
2956                         return 1;
2957
2958                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2959                         svm->vmcb->save.spec_ctrl = data;
2960                 else
2961                         svm->spec_ctrl = data;
2962                 if (!data)
2963                         break;
2964
2965                 /*
2966                  * For non-nested:
2967                  * When it's written (to non-zero) for the first time, pass
2968                  * it through.
2969                  *
2970                  * For nested:
2971                  * The handling of the MSR bitmap for L2 guests is done in
2972                  * nested_svm_vmrun_msrpm.
2973                  * We update the L1 MSR bit as well since it will end up
2974                  * touching the MSR anyway now.
2975                  */
2976                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2977                 break;
2978         case MSR_AMD64_VIRT_SPEC_CTRL:
2979                 if (!msr->host_initiated &&
2980                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2981                         return 1;
2982
2983                 if (data & ~SPEC_CTRL_SSBD)
2984                         return 1;
2985
2986                 svm->virt_spec_ctrl = data;
2987                 break;
2988         case MSR_STAR:
2989                 svm->vmcb01.ptr->save.star = data;
2990                 break;
2991 #ifdef CONFIG_X86_64
2992         case MSR_LSTAR:
2993                 svm->vmcb01.ptr->save.lstar = data;
2994                 break;
2995         case MSR_CSTAR:
2996                 svm->vmcb01.ptr->save.cstar = data;
2997                 break;
2998         case MSR_KERNEL_GS_BASE:
2999                 svm->vmcb01.ptr->save.kernel_gs_base = data;
3000                 break;
3001         case MSR_SYSCALL_MASK:
3002                 svm->vmcb01.ptr->save.sfmask = data;
3003                 break;
3004 #endif
3005         case MSR_IA32_SYSENTER_CS:
3006                 svm->vmcb01.ptr->save.sysenter_cs = data;
3007                 break;
3008         case MSR_IA32_SYSENTER_EIP:
3009                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3010                 /*
3011                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3012                  * when we spoof an Intel vendor ID (for cross vendor migration).
3013                  * In this case we use this intercept to track the high
3014                  * 32 bit part of these msrs to support Intel's
3015                  * implementation of SYSENTER/SYSEXIT.
3016                  */
3017                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3018                 break;
3019         case MSR_IA32_SYSENTER_ESP:
3020                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3021                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3022                 break;
3023         case MSR_TSC_AUX:
3024                 /*
3025                  * TSC_AUX is usually changed only during boot and never read
3026                  * directly.  Intercept TSC_AUX instead of exposing it to the
3027                  * guest via direct_access_msrs, and switch it via user return.
3028                  */
3029                 preempt_disable();
3030                 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3031                 preempt_enable();
3032                 if (ret)
3033                         break;
3034
3035                 svm->tsc_aux = data;
3036                 break;
3037         case MSR_IA32_DEBUGCTLMSR:
3038                 if (!lbrv) {
3039                         kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3040                         break;
3041                 }
3042                 if (data & DEBUGCTL_RESERVED_BITS)
3043                         return 1;
3044
3045                 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3046                         svm->vmcb->save.dbgctl = data;
3047                 else
3048                         svm->vmcb01.ptr->save.dbgctl = data;
3049
3050                 svm_update_lbrv(vcpu);
3051
3052                 break;
3053         case MSR_VM_HSAVE_PA:
3054                 /*
3055                  * Old kernels did not validate the value written to
3056                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3057                  * value to allow live migrating buggy or malicious guests
3058                  * originating from those kernels.
3059                  */
3060                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3061                         return 1;
3062
3063                 svm->nested.hsave_msr = data & PAGE_MASK;
3064                 break;
3065         case MSR_VM_CR:
3066                 return svm_set_vm_cr(vcpu, data);
3067         case MSR_VM_IGNNE:
3068                 kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3069                 break;
3070         case MSR_AMD64_DE_CFG: {
3071                 struct kvm_msr_entry msr_entry;
3072
3073                 msr_entry.index = msr->index;
3074                 if (svm_get_msr_feature(&msr_entry))
3075                         return 1;
3076
3077                 /* Check the supported bits */
3078                 if (data & ~msr_entry.data)
3079                         return 1;
3080
3081                 /* Don't allow the guest to change a bit, #GP */
3082                 if (!msr->host_initiated && (data ^ msr_entry.data))
3083                         return 1;
3084
3085                 svm->msr_decfg = data;
3086                 break;
3087         }
3088         default:
3089                 return kvm_set_msr_common(vcpu, msr);
3090         }
3091         return ret;
3092 }
3093
3094 static int msr_interception(struct kvm_vcpu *vcpu)
3095 {
3096         if (to_svm(vcpu)->vmcb->control.exit_info_1)
3097                 return kvm_emulate_wrmsr(vcpu);
3098         else
3099                 return kvm_emulate_rdmsr(vcpu);
3100 }
3101
3102 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3103 {
3104         kvm_make_request(KVM_REQ_EVENT, vcpu);
3105         svm_clear_vintr(to_svm(vcpu));
3106
3107         /*
3108          * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3109          * In this case AVIC was temporarily disabled for
3110          * requesting the IRQ window and we have to re-enable it.
3111          *
3112          * If running nested, still remove the VM wide AVIC inhibit to
3113          * support case in which the interrupt window was requested when the
3114          * vCPU was not running nested.
3115
3116          * All vCPUs which run still run nested, will remain to have their
3117          * AVIC still inhibited due to per-cpu AVIC inhibition.
3118          */
3119         kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3120
3121         ++vcpu->stat.irq_window_exits;
3122         return 1;
3123 }
3124
3125 static int pause_interception(struct kvm_vcpu *vcpu)
3126 {
3127         bool in_kernel;
3128         /*
3129          * CPL is not made available for an SEV-ES guest, therefore
3130          * vcpu->arch.preempted_in_kernel can never be true.  Just
3131          * set in_kernel to false as well.
3132          */
3133         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3134
3135         grow_ple_window(vcpu);
3136
3137         kvm_vcpu_on_spin(vcpu, in_kernel);
3138         return kvm_skip_emulated_instruction(vcpu);
3139 }
3140
3141 static int invpcid_interception(struct kvm_vcpu *vcpu)
3142 {
3143         struct vcpu_svm *svm = to_svm(vcpu);
3144         unsigned long type;
3145         gva_t gva;
3146
3147         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3148                 kvm_queue_exception(vcpu, UD_VECTOR);
3149                 return 1;
3150         }
3151
3152         /*
3153          * For an INVPCID intercept:
3154          * EXITINFO1 provides the linear address of the memory operand.
3155          * EXITINFO2 provides the contents of the register operand.
3156          */
3157         type = svm->vmcb->control.exit_info_2;
3158         gva = svm->vmcb->control.exit_info_1;
3159
3160         return kvm_handle_invpcid(vcpu, type, gva);
3161 }
3162
3163 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3164         [SVM_EXIT_READ_CR0]                     = cr_interception,
3165         [SVM_EXIT_READ_CR3]                     = cr_interception,
3166         [SVM_EXIT_READ_CR4]                     = cr_interception,
3167         [SVM_EXIT_READ_CR8]                     = cr_interception,
3168         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3169         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3170         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3171         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3172         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3173         [SVM_EXIT_READ_DR0]                     = dr_interception,
3174         [SVM_EXIT_READ_DR1]                     = dr_interception,
3175         [SVM_EXIT_READ_DR2]                     = dr_interception,
3176         [SVM_EXIT_READ_DR3]                     = dr_interception,
3177         [SVM_EXIT_READ_DR4]                     = dr_interception,
3178         [SVM_EXIT_READ_DR5]                     = dr_interception,
3179         [SVM_EXIT_READ_DR6]                     = dr_interception,
3180         [SVM_EXIT_READ_DR7]                     = dr_interception,
3181         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3182         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3183         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3184         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3185         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3186         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3187         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3188         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3189         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3190         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3191         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3192         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3193         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3194         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3195         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3196         [SVM_EXIT_INTR]                         = intr_interception,
3197         [SVM_EXIT_NMI]                          = nmi_interception,
3198         [SVM_EXIT_SMI]                          = smi_interception,
3199         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3200         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3201         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3202         [SVM_EXIT_IRET]                         = iret_interception,
3203         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3204         [SVM_EXIT_PAUSE]                        = pause_interception,
3205         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3206         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3207         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3208         [SVM_EXIT_IOIO]                         = io_interception,
3209         [SVM_EXIT_MSR]                          = msr_interception,
3210         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3211         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3212         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3213         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3214         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3215         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3216         [SVM_EXIT_STGI]                         = stgi_interception,
3217         [SVM_EXIT_CLGI]                         = clgi_interception,
3218         [SVM_EXIT_SKINIT]                       = skinit_interception,
3219         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3220         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3221         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3222         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3223         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3224         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3225         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3226         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3227         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3228         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3229         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3230         [SVM_EXIT_NPF]                          = npf_interception,
3231         [SVM_EXIT_RSM]                          = rsm_interception,
3232         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3233         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3234         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3235 };
3236
3237 static void dump_vmcb(struct kvm_vcpu *vcpu)
3238 {
3239         struct vcpu_svm *svm = to_svm(vcpu);
3240         struct vmcb_control_area *control = &svm->vmcb->control;
3241         struct vmcb_save_area *save = &svm->vmcb->save;
3242         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3243
3244         if (!dump_invalid_vmcb) {
3245                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3246                 return;
3247         }
3248
3249         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3250                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3251         pr_err("VMCB Control Area:\n");
3252         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3253         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3254         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3255         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3256         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3257         pr_err("%-20s%08x %08x\n", "intercepts:",
3258               control->intercepts[INTERCEPT_WORD3],
3259                control->intercepts[INTERCEPT_WORD4]);
3260         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3261         pr_err("%-20s%d\n", "pause filter threshold:",
3262                control->pause_filter_thresh);
3263         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3264         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3265         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3266         pr_err("%-20s%d\n", "asid:", control->asid);
3267         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3268         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3269         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3270         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3271         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3272         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3273         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3274         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3275         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3276         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3277         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3278         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3279         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3280         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3281         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3282         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3283         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3284         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3285         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3286         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3287         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3288         pr_err("VMCB State Save Area:\n");
3289         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3290                "es:",
3291                save->es.selector, save->es.attrib,
3292                save->es.limit, save->es.base);
3293         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3294                "cs:",
3295                save->cs.selector, save->cs.attrib,
3296                save->cs.limit, save->cs.base);
3297         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3298                "ss:",
3299                save->ss.selector, save->ss.attrib,
3300                save->ss.limit, save->ss.base);
3301         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3302                "ds:",
3303                save->ds.selector, save->ds.attrib,
3304                save->ds.limit, save->ds.base);
3305         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3306                "fs:",
3307                save01->fs.selector, save01->fs.attrib,
3308                save01->fs.limit, save01->fs.base);
3309         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3310                "gs:",
3311                save01->gs.selector, save01->gs.attrib,
3312                save01->gs.limit, save01->gs.base);
3313         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3314                "gdtr:",
3315                save->gdtr.selector, save->gdtr.attrib,
3316                save->gdtr.limit, save->gdtr.base);
3317         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3318                "ldtr:",
3319                save01->ldtr.selector, save01->ldtr.attrib,
3320                save01->ldtr.limit, save01->ldtr.base);
3321         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3322                "idtr:",
3323                save->idtr.selector, save->idtr.attrib,
3324                save->idtr.limit, save->idtr.base);
3325         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3326                "tr:",
3327                save01->tr.selector, save01->tr.attrib,
3328                save01->tr.limit, save01->tr.base);
3329         pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3330                save->vmpl, save->cpl, save->efer);
3331         pr_err("%-15s %016llx %-13s %016llx\n",
3332                "cr0:", save->cr0, "cr2:", save->cr2);
3333         pr_err("%-15s %016llx %-13s %016llx\n",
3334                "cr3:", save->cr3, "cr4:", save->cr4);
3335         pr_err("%-15s %016llx %-13s %016llx\n",
3336                "dr6:", save->dr6, "dr7:", save->dr7);
3337         pr_err("%-15s %016llx %-13s %016llx\n",
3338                "rip:", save->rip, "rflags:", save->rflags);
3339         pr_err("%-15s %016llx %-13s %016llx\n",
3340                "rsp:", save->rsp, "rax:", save->rax);
3341         pr_err("%-15s %016llx %-13s %016llx\n",
3342                "star:", save01->star, "lstar:", save01->lstar);
3343         pr_err("%-15s %016llx %-13s %016llx\n",
3344                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3345         pr_err("%-15s %016llx %-13s %016llx\n",
3346                "kernel_gs_base:", save01->kernel_gs_base,
3347                "sysenter_cs:", save01->sysenter_cs);
3348         pr_err("%-15s %016llx %-13s %016llx\n",
3349                "sysenter_esp:", save01->sysenter_esp,
3350                "sysenter_eip:", save01->sysenter_eip);
3351         pr_err("%-15s %016llx %-13s %016llx\n",
3352                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3353         pr_err("%-15s %016llx %-13s %016llx\n",
3354                "br_from:", save->br_from, "br_to:", save->br_to);
3355         pr_err("%-15s %016llx %-13s %016llx\n",
3356                "excp_from:", save->last_excp_from,
3357                "excp_to:", save->last_excp_to);
3358 }
3359
3360 static bool svm_check_exit_valid(u64 exit_code)
3361 {
3362         return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3363                 svm_exit_handlers[exit_code]);
3364 }
3365
3366 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3367 {
3368         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3369         dump_vmcb(vcpu);
3370         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3371         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3372         vcpu->run->internal.ndata = 2;
3373         vcpu->run->internal.data[0] = exit_code;
3374         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3375         return 0;
3376 }
3377
3378 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3379 {
3380         if (!svm_check_exit_valid(exit_code))
3381                 return svm_handle_invalid_exit(vcpu, exit_code);
3382
3383 #ifdef CONFIG_RETPOLINE
3384         if (exit_code == SVM_EXIT_MSR)
3385                 return msr_interception(vcpu);
3386         else if (exit_code == SVM_EXIT_VINTR)
3387                 return interrupt_window_interception(vcpu);
3388         else if (exit_code == SVM_EXIT_INTR)
3389                 return intr_interception(vcpu);
3390         else if (exit_code == SVM_EXIT_HLT)
3391                 return kvm_emulate_halt(vcpu);
3392         else if (exit_code == SVM_EXIT_NPF)
3393                 return npf_interception(vcpu);
3394 #endif
3395         return svm_exit_handlers[exit_code](vcpu);
3396 }
3397
3398 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3399                               u64 *info1, u64 *info2,
3400                               u32 *intr_info, u32 *error_code)
3401 {
3402         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3403
3404         *reason = control->exit_code;
3405         *info1 = control->exit_info_1;
3406         *info2 = control->exit_info_2;
3407         *intr_info = control->exit_int_info;
3408         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3409             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3410                 *error_code = control->exit_int_info_err;
3411         else
3412                 *error_code = 0;
3413 }
3414
3415 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3416 {
3417         struct vcpu_svm *svm = to_svm(vcpu);
3418         struct kvm_run *kvm_run = vcpu->run;
3419         u32 exit_code = svm->vmcb->control.exit_code;
3420
3421         trace_kvm_exit(vcpu, KVM_ISA_SVM);
3422
3423         /* SEV-ES guests must use the CR write traps to track CR registers. */
3424         if (!sev_es_guest(vcpu->kvm)) {
3425                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3426                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3427                 if (npt_enabled)
3428                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3429         }
3430
3431         if (is_guest_mode(vcpu)) {
3432                 int vmexit;
3433
3434                 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3435
3436                 vmexit = nested_svm_exit_special(svm);
3437
3438                 if (vmexit == NESTED_EXIT_CONTINUE)
3439                         vmexit = nested_svm_exit_handled(svm);
3440
3441                 if (vmexit == NESTED_EXIT_DONE)
3442                         return 1;
3443         }
3444
3445         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3446                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3447                 kvm_run->fail_entry.hardware_entry_failure_reason
3448                         = svm->vmcb->control.exit_code;
3449                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3450                 dump_vmcb(vcpu);
3451                 return 0;
3452         }
3453
3454         if (exit_fastpath != EXIT_FASTPATH_NONE)
3455                 return 1;
3456
3457         return svm_invoke_exit_handler(vcpu, exit_code);
3458 }
3459
3460 static void reload_tss(struct kvm_vcpu *vcpu)
3461 {
3462         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3463
3464         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3465         load_TR_desc();
3466 }
3467
3468 static void pre_svm_run(struct kvm_vcpu *vcpu)
3469 {
3470         struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3471         struct vcpu_svm *svm = to_svm(vcpu);
3472
3473         /*
3474          * If the previous vmrun of the vmcb occurred on a different physical
3475          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3476          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3477          */
3478         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3479                 svm->current_vmcb->asid_generation = 0;
3480                 vmcb_mark_all_dirty(svm->vmcb);
3481                 svm->current_vmcb->cpu = vcpu->cpu;
3482         }
3483
3484         if (sev_guest(vcpu->kvm))
3485                 return pre_sev_run(svm, vcpu->cpu);
3486
3487         /* FIXME: handle wraparound of asid_generation */
3488         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3489                 new_asid(svm, sd);
3490 }
3491
3492 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3493 {
3494         struct vcpu_svm *svm = to_svm(vcpu);
3495
3496         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3497
3498         if (svm->nmi_l1_to_l2)
3499                 return;
3500
3501         svm->nmi_masked = true;
3502         svm_set_iret_intercept(svm);
3503         ++vcpu->stat.nmi_injections;
3504 }
3505
3506 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3507 {
3508         struct vcpu_svm *svm = to_svm(vcpu);
3509
3510         if (!is_vnmi_enabled(svm))
3511                 return false;
3512
3513         return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3514 }
3515
3516 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3517 {
3518         struct vcpu_svm *svm = to_svm(vcpu);
3519
3520         if (!is_vnmi_enabled(svm))
3521                 return false;
3522
3523         if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3524                 return false;
3525
3526         svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3527         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3528
3529         /*
3530          * Because the pending NMI is serviced by hardware, KVM can't know when
3531          * the NMI is "injected", but for all intents and purposes, passing the
3532          * NMI off to hardware counts as injection.
3533          */
3534         ++vcpu->stat.nmi_injections;
3535
3536         return true;
3537 }
3538
3539 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3540 {
3541         struct vcpu_svm *svm = to_svm(vcpu);
3542         u32 type;
3543
3544         if (vcpu->arch.interrupt.soft) {
3545                 if (svm_update_soft_interrupt_rip(vcpu))
3546                         return;
3547
3548                 type = SVM_EVTINJ_TYPE_SOFT;
3549         } else {
3550                 type = SVM_EVTINJ_TYPE_INTR;
3551         }
3552
3553         trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3554                            vcpu->arch.interrupt.soft, reinjected);
3555         ++vcpu->stat.irq_injections;
3556
3557         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3558                                        SVM_EVTINJ_VALID | type;
3559 }
3560
3561 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3562                                      int trig_mode, int vector)
3563 {
3564         /*
3565          * apic->apicv_active must be read after vcpu->mode.
3566          * Pairs with smp_store_release in vcpu_enter_guest.
3567          */
3568         bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3569
3570         /* Note, this is called iff the local APIC is in-kernel. */
3571         if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3572                 /* Process the interrupt via kvm_check_and_inject_events(). */
3573                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3574                 kvm_vcpu_kick(vcpu);
3575                 return;
3576         }
3577
3578         trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3579         if (in_guest_mode) {
3580                 /*
3581                  * Signal the doorbell to tell hardware to inject the IRQ.  If
3582                  * the vCPU exits the guest before the doorbell chimes, hardware
3583                  * will automatically process AVIC interrupts at the next VMRUN.
3584                  */
3585                 avic_ring_doorbell(vcpu);
3586         } else {
3587                 /*
3588                  * Wake the vCPU if it was blocking.  KVM will then detect the
3589                  * pending IRQ when checking if the vCPU has a wake event.
3590                  */
3591                 kvm_vcpu_wake_up(vcpu);
3592         }
3593 }
3594
3595 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3596                                   int trig_mode, int vector)
3597 {
3598         kvm_lapic_set_irr(vector, apic);
3599
3600         /*
3601          * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3602          * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3603          * the read of guest_mode.  This guarantees that either VMRUN will see
3604          * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3605          * will signal the doorbell if the CPU has already entered the guest.
3606          */
3607         smp_mb__after_atomic();
3608         svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3609 }
3610
3611 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3612 {
3613         struct vcpu_svm *svm = to_svm(vcpu);
3614
3615         /*
3616          * SEV-ES guests must always keep the CR intercepts cleared. CR
3617          * tracking is done using the CR write traps.
3618          */
3619         if (sev_es_guest(vcpu->kvm))
3620                 return;
3621
3622         if (nested_svm_virtualize_tpr(vcpu))
3623                 return;
3624
3625         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3626
3627         if (irr == -1)
3628                 return;
3629
3630         if (tpr >= irr)
3631                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3632 }
3633
3634 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3635 {
3636         struct vcpu_svm *svm = to_svm(vcpu);
3637
3638         if (is_vnmi_enabled(svm))
3639                 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3640         else
3641                 return svm->nmi_masked;
3642 }
3643
3644 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3645 {
3646         struct vcpu_svm *svm = to_svm(vcpu);
3647
3648         if (is_vnmi_enabled(svm)) {
3649                 if (masked)
3650                         svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3651                 else
3652                         svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3653
3654         } else {
3655                 svm->nmi_masked = masked;
3656                 if (masked)
3657                         svm_set_iret_intercept(svm);
3658                 else
3659                         svm_clr_iret_intercept(svm);
3660         }
3661 }
3662
3663 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3664 {
3665         struct vcpu_svm *svm = to_svm(vcpu);
3666         struct vmcb *vmcb = svm->vmcb;
3667
3668         if (!gif_set(svm))
3669                 return true;
3670
3671         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3672                 return false;
3673
3674         if (svm_get_nmi_mask(vcpu))
3675                 return true;
3676
3677         return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3678 }
3679
3680 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3681 {
3682         struct vcpu_svm *svm = to_svm(vcpu);
3683         if (svm->nested.nested_run_pending)
3684                 return -EBUSY;
3685
3686         if (svm_nmi_blocked(vcpu))
3687                 return 0;
3688
3689         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3690         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3691                 return -EBUSY;
3692         return 1;
3693 }
3694
3695 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3696 {
3697         struct vcpu_svm *svm = to_svm(vcpu);
3698         struct vmcb *vmcb = svm->vmcb;
3699
3700         if (!gif_set(svm))
3701                 return true;
3702
3703         if (is_guest_mode(vcpu)) {
3704                 /* As long as interrupts are being delivered...  */
3705                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3706                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3707                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3708                         return true;
3709
3710                 /* ... vmexits aren't blocked by the interrupt shadow  */
3711                 if (nested_exit_on_intr(svm))
3712                         return false;
3713         } else {
3714                 if (!svm_get_if_flag(vcpu))
3715                         return true;
3716         }
3717
3718         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3719 }
3720
3721 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3722 {
3723         struct vcpu_svm *svm = to_svm(vcpu);
3724
3725         if (svm->nested.nested_run_pending)
3726                 return -EBUSY;
3727
3728         if (svm_interrupt_blocked(vcpu))
3729                 return 0;
3730
3731         /*
3732          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3733          * e.g. if the IRQ arrived asynchronously after checking nested events.
3734          */
3735         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3736                 return -EBUSY;
3737
3738         return 1;
3739 }
3740
3741 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3742 {
3743         struct vcpu_svm *svm = to_svm(vcpu);
3744
3745         /*
3746          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3747          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3748          * get that intercept, this function will be called again though and
3749          * we'll get the vintr intercept. However, if the vGIF feature is
3750          * enabled, the STGI interception will not occur. Enable the irq
3751          * window under the assumption that the hardware will set the GIF.
3752          */
3753         if (vgif || gif_set(svm)) {
3754                 /*
3755                  * IRQ window is not needed when AVIC is enabled,
3756                  * unless we have pending ExtINT since it cannot be injected
3757                  * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3758                  * and fallback to injecting IRQ via V_IRQ.
3759                  *
3760                  * If running nested, AVIC is already locally inhibited
3761                  * on this vCPU, therefore there is no need to request
3762                  * the VM wide AVIC inhibition.
3763                  */
3764                 if (!is_guest_mode(vcpu))
3765                         kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3766
3767                 svm_set_vintr(svm);
3768         }
3769 }
3770
3771 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3772 {
3773         struct vcpu_svm *svm = to_svm(vcpu);
3774
3775         /*
3776          * KVM should never request an NMI window when vNMI is enabled, as KVM
3777          * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3778          * two NMIs arrive simultaneously, KVM will inject one and set
3779          * V_NMI_PENDING for the other.  WARN, but continue with the standard
3780          * single-step approach to try and salvage the pending NMI.
3781          */
3782         WARN_ON_ONCE(is_vnmi_enabled(svm));
3783
3784         if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3785                 return; /* IRET will cause a vm exit */
3786
3787         if (!gif_set(svm)) {
3788                 if (vgif)
3789                         svm_set_intercept(svm, INTERCEPT_STGI);
3790                 return; /* STGI will cause a vm exit */
3791         }
3792
3793         /*
3794          * Something prevents NMI from been injected. Single step over possible
3795          * problem (IRET or exception injection or interrupt shadow)
3796          */
3797         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3798         svm->nmi_singlestep = true;
3799         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3800 }
3801
3802 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3803 {
3804         struct vcpu_svm *svm = to_svm(vcpu);
3805
3806         /*
3807          * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3808          * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3809          * entries, and thus is a superset of Hyper-V's fine grained flushing.
3810          */
3811         kvm_hv_vcpu_purge_flush_tlb(vcpu);
3812
3813         /*
3814          * Flush only the current ASID even if the TLB flush was invoked via
3815          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3816          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3817          * unconditionally does a TLB flush on both nested VM-Enter and nested
3818          * VM-Exit (via kvm_mmu_reset_context()).
3819          */
3820         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3821                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3822         else
3823                 svm->current_vmcb->asid_generation--;
3824 }
3825
3826 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3827 {
3828         hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3829
3830         /*
3831          * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3832          * flush the NPT mappings via hypercall as flushing the ASID only
3833          * affects virtual to physical mappings, it does not invalidate guest
3834          * physical to host physical mappings.
3835          */
3836         if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3837                 hyperv_flush_guest_mapping(root_tdp);
3838
3839         svm_flush_tlb_asid(vcpu);
3840 }
3841
3842 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3843 {
3844         /*
3845          * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3846          * flushes should be routed to hv_flush_remote_tlbs() without requesting
3847          * a "regular" remote flush.  Reaching this point means either there's
3848          * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3849          * which might be fatal to the guest.  Yell, but try to recover.
3850          */
3851         if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3852                 hv_flush_remote_tlbs(vcpu->kvm);
3853
3854         svm_flush_tlb_asid(vcpu);
3855 }
3856
3857 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3858 {
3859         struct vcpu_svm *svm = to_svm(vcpu);
3860
3861         invlpga(gva, svm->vmcb->control.asid);
3862 }
3863
3864 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3865 {
3866         struct vcpu_svm *svm = to_svm(vcpu);
3867
3868         if (nested_svm_virtualize_tpr(vcpu))
3869                 return;
3870
3871         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3872                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3873                 kvm_set_cr8(vcpu, cr8);
3874         }
3875 }
3876
3877 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3878 {
3879         struct vcpu_svm *svm = to_svm(vcpu);
3880         u64 cr8;
3881
3882         if (nested_svm_virtualize_tpr(vcpu) ||
3883             kvm_vcpu_apicv_active(vcpu))
3884                 return;
3885
3886         cr8 = kvm_get_cr8(vcpu);
3887         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3888         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3889 }
3890
3891 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3892                                         int type)
3893 {
3894         bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3895         bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3896         struct vcpu_svm *svm = to_svm(vcpu);
3897
3898         /*
3899          * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3900          * associated with the original soft exception/interrupt.  next_rip is
3901          * cleared on all exits that can occur while vectoring an event, so KVM
3902          * needs to manually set next_rip for re-injection.  Unlike the !nrips
3903          * case below, this needs to be done if and only if KVM is re-injecting
3904          * the same event, i.e. if the event is a soft exception/interrupt,
3905          * otherwise next_rip is unused on VMRUN.
3906          */
3907         if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3908             kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3909                 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3910         /*
3911          * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3912          * injecting the soft exception/interrupt.  That advancement needs to
3913          * be unwound if vectoring didn't complete.  Note, the new event may
3914          * not be the injected event, e.g. if KVM injected an INTn, the INTn
3915          * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3916          * be the reported vectored event, but RIP still needs to be unwound.
3917          */
3918         else if (!nrips && (is_soft || is_exception) &&
3919                  kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3920                 kvm_rip_write(vcpu, svm->soft_int_old_rip);
3921 }
3922
3923 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3924 {
3925         struct vcpu_svm *svm = to_svm(vcpu);
3926         u8 vector;
3927         int type;
3928         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3929         bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3930         bool soft_int_injected = svm->soft_int_injected;
3931
3932         svm->nmi_l1_to_l2 = false;
3933         svm->soft_int_injected = false;
3934
3935         /*
3936          * If we've made progress since setting HF_IRET_MASK, we've
3937          * executed an IRET and can allow NMI injection.
3938          */
3939         if (svm->awaiting_iret_completion &&
3940             (sev_es_guest(vcpu->kvm) ||
3941              kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3942                 svm->awaiting_iret_completion = false;
3943                 svm->nmi_masked = false;
3944                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3945         }
3946
3947         vcpu->arch.nmi_injected = false;
3948         kvm_clear_exception_queue(vcpu);
3949         kvm_clear_interrupt_queue(vcpu);
3950
3951         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3952                 return;
3953
3954         kvm_make_request(KVM_REQ_EVENT, vcpu);
3955
3956         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3957         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3958
3959         if (soft_int_injected)
3960                 svm_complete_soft_interrupt(vcpu, vector, type);
3961
3962         switch (type) {
3963         case SVM_EXITINTINFO_TYPE_NMI:
3964                 vcpu->arch.nmi_injected = true;
3965                 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3966                 break;
3967         case SVM_EXITINTINFO_TYPE_EXEPT:
3968                 /*
3969                  * Never re-inject a #VC exception.
3970                  */
3971                 if (vector == X86_TRAP_VC)
3972                         break;
3973
3974                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3975                         u32 err = svm->vmcb->control.exit_int_info_err;
3976                         kvm_requeue_exception_e(vcpu, vector, err);
3977
3978                 } else
3979                         kvm_requeue_exception(vcpu, vector);
3980                 break;
3981         case SVM_EXITINTINFO_TYPE_INTR:
3982                 kvm_queue_interrupt(vcpu, vector, false);
3983                 break;
3984         case SVM_EXITINTINFO_TYPE_SOFT:
3985                 kvm_queue_interrupt(vcpu, vector, true);
3986                 break;
3987         default:
3988                 break;
3989         }
3990
3991 }
3992
3993 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3994 {
3995         struct vcpu_svm *svm = to_svm(vcpu);
3996         struct vmcb_control_area *control = &svm->vmcb->control;
3997
3998         control->exit_int_info = control->event_inj;
3999         control->exit_int_info_err = control->event_inj_err;
4000         control->event_inj = 0;
4001         svm_complete_interrupts(vcpu);
4002 }
4003
4004 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4005 {
4006         return 1;
4007 }
4008
4009 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4010 {
4011         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4012
4013         /*
4014          * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM
4015          * can't read guest memory (dereference memslots) to decode the WRMSR.
4016          */
4017         if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 &&
4018             nrips && control->next_rip)
4019                 return handle_fastpath_set_msr_irqoff(vcpu);
4020
4021         return EXIT_FASTPATH_NONE;
4022 }
4023
4024 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4025 {
4026         struct vcpu_svm *svm = to_svm(vcpu);
4027
4028         guest_state_enter_irqoff();
4029
4030         if (sev_es_guest(vcpu->kvm))
4031                 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4032         else
4033                 __svm_vcpu_run(svm, spec_ctrl_intercepted);
4034
4035         guest_state_exit_irqoff();
4036 }
4037
4038 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4039 {
4040         struct vcpu_svm *svm = to_svm(vcpu);
4041         bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4042
4043         trace_kvm_entry(vcpu);
4044
4045         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4046         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4047         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4048
4049         /*
4050          * Disable singlestep if we're injecting an interrupt/exception.
4051          * We don't want our modified rflags to be pushed on the stack where
4052          * we might not be able to easily reset them if we disabled NMI
4053          * singlestep later.
4054          */
4055         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4056                 /*
4057                  * Event injection happens before external interrupts cause a
4058                  * vmexit and interrupts are disabled here, so smp_send_reschedule
4059                  * is enough to force an immediate vmexit.
4060                  */
4061                 disable_nmi_singlestep(svm);
4062                 smp_send_reschedule(vcpu->cpu);
4063         }
4064
4065         pre_svm_run(vcpu);
4066
4067         sync_lapic_to_cr8(vcpu);
4068
4069         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4070                 svm->vmcb->control.asid = svm->asid;
4071                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4072         }
4073         svm->vmcb->save.cr2 = vcpu->arch.cr2;
4074
4075         svm_hv_update_vp_id(svm->vmcb, vcpu);
4076
4077         /*
4078          * Run with all-zero DR6 unless needed, so that we can get the exact cause
4079          * of a #DB.
4080          */
4081         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4082                 svm_set_dr6(svm, vcpu->arch.dr6);
4083         else
4084                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
4085
4086         clgi();
4087         kvm_load_guest_xsave_state(vcpu);
4088
4089         kvm_wait_lapic_expire(vcpu);
4090
4091         /*
4092          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4093          * it's non-zero. Since vmentry is serialising on affected CPUs, there
4094          * is no need to worry about the conditional branch over the wrmsr
4095          * being speculatively taken.
4096          */
4097         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4098                 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4099
4100         svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4101
4102         if (!sev_es_guest(vcpu->kvm))
4103                 reload_tss(vcpu);
4104
4105         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4106                 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4107
4108         if (!sev_es_guest(vcpu->kvm)) {
4109                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4110                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4111                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4112                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4113         }
4114         vcpu->arch.regs_dirty = 0;
4115
4116         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4117                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4118
4119         kvm_load_host_xsave_state(vcpu);
4120         stgi();
4121
4122         /* Any pending NMI will happen here */
4123
4124         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4125                 kvm_after_interrupt(vcpu);
4126
4127         sync_cr8_to_lapic(vcpu);
4128
4129         svm->next_rip = 0;
4130         if (is_guest_mode(vcpu)) {
4131                 nested_sync_control_from_vmcb02(svm);
4132
4133                 /* Track VMRUNs that have made past consistency checking */
4134                 if (svm->nested.nested_run_pending &&
4135                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4136                         ++vcpu->stat.nested_run;
4137
4138                 svm->nested.nested_run_pending = 0;
4139         }
4140
4141         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4142         vmcb_mark_all_clean(svm->vmcb);
4143
4144         /* if exit due to PF check for async PF */
4145         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4146                 vcpu->arch.apf.host_apf_flags =
4147                         kvm_read_and_reset_apf_flags();
4148
4149         vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4150
4151         /*
4152          * We need to handle MC intercepts here before the vcpu has a chance to
4153          * change the physical cpu
4154          */
4155         if (unlikely(svm->vmcb->control.exit_code ==
4156                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4157                 svm_handle_mce(vcpu);
4158
4159         svm_complete_interrupts(vcpu);
4160
4161         if (is_guest_mode(vcpu))
4162                 return EXIT_FASTPATH_NONE;
4163
4164         return svm_exit_handlers_fastpath(vcpu);
4165 }
4166
4167 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4168                              int root_level)
4169 {
4170         struct vcpu_svm *svm = to_svm(vcpu);
4171         unsigned long cr3;
4172
4173         if (npt_enabled) {
4174                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4175                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4176
4177                 hv_track_root_tdp(vcpu, root_hpa);
4178
4179                 cr3 = vcpu->arch.cr3;
4180         } else if (root_level >= PT64_ROOT_4LEVEL) {
4181                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4182         } else {
4183                 /* PCID in the guest should be impossible with a 32-bit MMU. */
4184                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4185                 cr3 = root_hpa;
4186         }
4187
4188         svm->vmcb->save.cr3 = cr3;
4189         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4190 }
4191
4192 static void
4193 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4194 {
4195         /*
4196          * Patch in the VMMCALL instruction:
4197          */
4198         hypercall[0] = 0x0f;
4199         hypercall[1] = 0x01;
4200         hypercall[2] = 0xd9;
4201 }
4202
4203 /*
4204  * The kvm parameter can be NULL (module initialization, or invocation before
4205  * VM creation). Be sure to check the kvm parameter before using it.
4206  */
4207 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4208 {
4209         switch (index) {
4210         case MSR_IA32_MCG_EXT_CTL:
4211         case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4212                 return false;
4213         case MSR_IA32_SMBASE:
4214                 if (!IS_ENABLED(CONFIG_KVM_SMM))
4215                         return false;
4216                 /* SEV-ES guests do not support SMM, so report false */
4217                 if (kvm && sev_es_guest(kvm))
4218                         return false;
4219                 break;
4220         default:
4221                 break;
4222         }
4223
4224         return true;
4225 }
4226
4227 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4228 {
4229         struct vcpu_svm *svm = to_svm(vcpu);
4230         struct kvm_cpuid_entry2 *best;
4231
4232         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4233                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
4234                                     boot_cpu_has(X86_FEATURE_XSAVES);
4235
4236         /* Update nrips enabled cache */
4237         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4238                              guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4239
4240         svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4241         svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4242
4243         svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4244
4245         svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4246                         guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4247
4248         svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4249                         guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4250
4251         svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4252
4253         svm->vnmi_enabled = vnmi && guest_cpuid_has(vcpu, X86_FEATURE_VNMI);
4254
4255         svm_recalc_instruction_intercepts(vcpu, svm);
4256
4257         if (boot_cpu_has(X86_FEATURE_IBPB))
4258                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4259                                      !!guest_has_pred_cmd_msr(vcpu));
4260
4261         if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4262                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4263                                      !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4264
4265         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4266         if (sev_guest(vcpu->kvm)) {
4267                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4268                 if (best)
4269                         vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4270         }
4271
4272         init_vmcb_after_set_cpuid(vcpu);
4273 }
4274
4275 static bool svm_has_wbinvd_exit(void)
4276 {
4277         return true;
4278 }
4279
4280 #define PRE_EX(exit)  { .exit_code = (exit), \
4281                         .stage = X86_ICPT_PRE_EXCEPT, }
4282 #define POST_EX(exit) { .exit_code = (exit), \
4283                         .stage = X86_ICPT_POST_EXCEPT, }
4284 #define POST_MEM(exit) { .exit_code = (exit), \
4285                         .stage = X86_ICPT_POST_MEMACCESS, }
4286
4287 static const struct __x86_intercept {
4288         u32 exit_code;
4289         enum x86_intercept_stage stage;
4290 } x86_intercept_map[] = {
4291         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4292         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4293         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4294         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4295         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4296         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4297         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4298         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4299         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4300         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4301         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4302         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4303         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4304         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4305         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4306         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4307         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4308         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4309         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4310         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4311         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4312         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4313         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4314         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4315         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4316         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4317         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4318         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4319         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4320         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4321         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4322         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4323         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4324         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4325         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4326         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4327         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4328         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4329         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4330         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4331         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4332         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4333         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4334         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4335         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4336         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4337         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4338 };
4339
4340 #undef PRE_EX
4341 #undef POST_EX
4342 #undef POST_MEM
4343
4344 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4345                                struct x86_instruction_info *info,
4346                                enum x86_intercept_stage stage,
4347                                struct x86_exception *exception)
4348 {
4349         struct vcpu_svm *svm = to_svm(vcpu);
4350         int vmexit, ret = X86EMUL_CONTINUE;
4351         struct __x86_intercept icpt_info;
4352         struct vmcb *vmcb = svm->vmcb;
4353
4354         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4355                 goto out;
4356
4357         icpt_info = x86_intercept_map[info->intercept];
4358
4359         if (stage != icpt_info.stage)
4360                 goto out;
4361
4362         switch (icpt_info.exit_code) {
4363         case SVM_EXIT_READ_CR0:
4364                 if (info->intercept == x86_intercept_cr_read)
4365                         icpt_info.exit_code += info->modrm_reg;
4366                 break;
4367         case SVM_EXIT_WRITE_CR0: {
4368                 unsigned long cr0, val;
4369
4370                 if (info->intercept == x86_intercept_cr_write)
4371                         icpt_info.exit_code += info->modrm_reg;
4372
4373                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4374                     info->intercept == x86_intercept_clts)
4375                         break;
4376
4377                 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4378                                         INTERCEPT_SELECTIVE_CR0)))
4379                         break;
4380
4381                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4382                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4383
4384                 if (info->intercept == x86_intercept_lmsw) {
4385                         cr0 &= 0xfUL;
4386                         val &= 0xfUL;
4387                         /* lmsw can't clear PE - catch this here */
4388                         if (cr0 & X86_CR0_PE)
4389                                 val |= X86_CR0_PE;
4390                 }
4391
4392                 if (cr0 ^ val)
4393                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4394
4395                 break;
4396         }
4397         case SVM_EXIT_READ_DR0:
4398         case SVM_EXIT_WRITE_DR0:
4399                 icpt_info.exit_code += info->modrm_reg;
4400                 break;
4401         case SVM_EXIT_MSR:
4402                 if (info->intercept == x86_intercept_wrmsr)
4403                         vmcb->control.exit_info_1 = 1;
4404                 else
4405                         vmcb->control.exit_info_1 = 0;
4406                 break;
4407         case SVM_EXIT_PAUSE:
4408                 /*
4409                  * We get this for NOP only, but pause
4410                  * is rep not, check this here
4411                  */
4412                 if (info->rep_prefix != REPE_PREFIX)
4413                         goto out;
4414                 break;
4415         case SVM_EXIT_IOIO: {
4416                 u64 exit_info;
4417                 u32 bytes;
4418
4419                 if (info->intercept == x86_intercept_in ||
4420                     info->intercept == x86_intercept_ins) {
4421                         exit_info = ((info->src_val & 0xffff) << 16) |
4422                                 SVM_IOIO_TYPE_MASK;
4423                         bytes = info->dst_bytes;
4424                 } else {
4425                         exit_info = (info->dst_val & 0xffff) << 16;
4426                         bytes = info->src_bytes;
4427                 }
4428
4429                 if (info->intercept == x86_intercept_outs ||
4430                     info->intercept == x86_intercept_ins)
4431                         exit_info |= SVM_IOIO_STR_MASK;
4432
4433                 if (info->rep_prefix)
4434                         exit_info |= SVM_IOIO_REP_MASK;
4435
4436                 bytes = min(bytes, 4u);
4437
4438                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4439
4440                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4441
4442                 vmcb->control.exit_info_1 = exit_info;
4443                 vmcb->control.exit_info_2 = info->next_rip;
4444
4445                 break;
4446         }
4447         default:
4448                 break;
4449         }
4450
4451         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4452         if (static_cpu_has(X86_FEATURE_NRIPS))
4453                 vmcb->control.next_rip  = info->next_rip;
4454         vmcb->control.exit_code = icpt_info.exit_code;
4455         vmexit = nested_svm_exit_handled(svm);
4456
4457         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4458                                            : X86EMUL_CONTINUE;
4459
4460 out:
4461         return ret;
4462 }
4463
4464 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4465 {
4466         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4467                 vcpu->arch.at_instruction_boundary = true;
4468 }
4469
4470 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4471 {
4472         if (!kvm_pause_in_guest(vcpu->kvm))
4473                 shrink_ple_window(vcpu);
4474 }
4475
4476 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4477 {
4478         /* [63:9] are reserved. */
4479         vcpu->arch.mcg_cap &= 0x1ff;
4480 }
4481
4482 #ifdef CONFIG_KVM_SMM
4483 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4484 {
4485         struct vcpu_svm *svm = to_svm(vcpu);
4486
4487         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4488         if (!gif_set(svm))
4489                 return true;
4490
4491         return is_smm(vcpu);
4492 }
4493
4494 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4495 {
4496         struct vcpu_svm *svm = to_svm(vcpu);
4497         if (svm->nested.nested_run_pending)
4498                 return -EBUSY;
4499
4500         if (svm_smi_blocked(vcpu))
4501                 return 0;
4502
4503         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4504         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4505                 return -EBUSY;
4506
4507         return 1;
4508 }
4509
4510 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4511 {
4512         struct vcpu_svm *svm = to_svm(vcpu);
4513         struct kvm_host_map map_save;
4514         int ret;
4515
4516         if (!is_guest_mode(vcpu))
4517                 return 0;
4518
4519         /*
4520          * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4521          * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4522          */
4523
4524         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4525                 return 1;
4526
4527         smram->smram64.svm_guest_flag = 1;
4528         smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4529
4530         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4531         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4532         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4533
4534         ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4535         if (ret)
4536                 return ret;
4537
4538         /*
4539          * KVM uses VMCB01 to store L1 host state while L2 runs but
4540          * VMCB01 is going to be used during SMM and thus the state will
4541          * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4542          * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4543          * format of the area is identical to guest save area offsetted
4544          * by 0x400 (matches the offset of 'struct vmcb_save_area'
4545          * within 'struct vmcb'). Note: HSAVE area may also be used by
4546          * L1 hypervisor to save additional host context (e.g. KVM does
4547          * that, see svm_prepare_switch_to_guest()) which must be
4548          * preserved.
4549          */
4550         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4551                 return 1;
4552
4553         BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4554
4555         svm_copy_vmrun_state(map_save.hva + 0x400,
4556                              &svm->vmcb01.ptr->save);
4557
4558         kvm_vcpu_unmap(vcpu, &map_save, true);
4559         return 0;
4560 }
4561
4562 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4563 {
4564         struct vcpu_svm *svm = to_svm(vcpu);
4565         struct kvm_host_map map, map_save;
4566         struct vmcb *vmcb12;
4567         int ret;
4568
4569         const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4570
4571         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4572                 return 0;
4573
4574         /* Non-zero if SMI arrived while vCPU was in guest mode. */
4575         if (!smram64->svm_guest_flag)
4576                 return 0;
4577
4578         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4579                 return 1;
4580
4581         if (!(smram64->efer & EFER_SVME))
4582                 return 1;
4583
4584         if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4585                 return 1;
4586
4587         ret = 1;
4588         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4589                 goto unmap_map;
4590
4591         if (svm_allocate_nested(svm))
4592                 goto unmap_save;
4593
4594         /*
4595          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4596          * used during SMM (see svm_enter_smm())
4597          */
4598
4599         svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4600
4601         /*
4602          * Enter the nested guest now
4603          */
4604
4605         vmcb_mark_all_dirty(svm->vmcb01.ptr);
4606
4607         vmcb12 = map.hva;
4608         nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4609         nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4610         ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4611
4612         if (ret)
4613                 goto unmap_save;
4614
4615         svm->nested.nested_run_pending = 1;
4616
4617 unmap_save:
4618         kvm_vcpu_unmap(vcpu, &map_save, true);
4619 unmap_map:
4620         kvm_vcpu_unmap(vcpu, &map, true);
4621         return ret;
4622 }
4623
4624 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4625 {
4626         struct vcpu_svm *svm = to_svm(vcpu);
4627
4628         if (!gif_set(svm)) {
4629                 if (vgif)
4630                         svm_set_intercept(svm, INTERCEPT_STGI);
4631                 /* STGI will cause a vm exit */
4632         } else {
4633                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4634         }
4635 }
4636 #endif
4637
4638 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4639                                         void *insn, int insn_len)
4640 {
4641         bool smep, smap, is_user;
4642         u64 error_code;
4643
4644         /* Emulation is always possible when KVM has access to all guest state. */
4645         if (!sev_guest(vcpu->kvm))
4646                 return true;
4647
4648         /* #UD and #GP should never be intercepted for SEV guests. */
4649         WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4650                                   EMULTYPE_TRAP_UD_FORCED |
4651                                   EMULTYPE_VMWARE_GP));
4652
4653         /*
4654          * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4655          * to guest register state.
4656          */
4657         if (sev_es_guest(vcpu->kvm))
4658                 return false;
4659
4660         /*
4661          * Emulation is possible if the instruction is already decoded, e.g.
4662          * when completing I/O after returning from userspace.
4663          */
4664         if (emul_type & EMULTYPE_NO_DECODE)
4665                 return true;
4666
4667         /*
4668          * Emulation is possible for SEV guests if and only if a prefilled
4669          * buffer containing the bytes of the intercepted instruction is
4670          * available. SEV guest memory is encrypted with a guest specific key
4671          * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4672          * decode garbage.
4673          *
4674          * Inject #UD if KVM reached this point without an instruction buffer.
4675          * In practice, this path should never be hit by a well-behaved guest,
4676          * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4677          * is still theoretically reachable, e.g. via unaccelerated fault-like
4678          * AVIC access, and needs to be handled by KVM to avoid putting the
4679          * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4680          * but its the least awful option given lack of insight into the guest.
4681          */
4682         if (unlikely(!insn)) {
4683                 kvm_queue_exception(vcpu, UD_VECTOR);
4684                 return false;
4685         }
4686
4687         /*
4688          * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4689          * will be empty if the DecodeAssist microcode cannot fetch bytes for
4690          * the faulting instruction because the code fetch itself faulted, e.g.
4691          * the guest attempted to fetch from emulated MMIO or a guest page
4692          * table used to translate CS:RIP resides in emulated MMIO.
4693          */
4694         if (likely(insn_len))
4695                 return true;
4696
4697         /*
4698          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4699          *
4700          * Errata:
4701          * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4702          * possible that CPU microcode implementing DecodeAssist will fail to
4703          * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4704          * be '0'.  This happens because microcode reads CS:RIP using a _data_
4705          * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4706          * gives up and does not fill the instruction bytes buffer.
4707          *
4708          * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4709          * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4710          * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4711          * GuestIntrBytes field of the VMCB.
4712          *
4713          * This does _not_ mean that the erratum has been encountered, as the
4714          * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4715          * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4716          * encountered a reserved/not-present #PF.
4717          *
4718          * To hit the erratum, the following conditions must be true:
4719          *    1. CR4.SMAP=1 (obviously).
4720          *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4721          *       have been hit as the guest would have encountered a SMEP
4722          *       violation #PF, not a #NPF.
4723          *    3. The #NPF is not due to a code fetch, in which case failure to
4724          *       retrieve the instruction bytes is legitimate (see abvoe).
4725          *
4726          * In addition, don't apply the erratum workaround if the #NPF occurred
4727          * while translating guest page tables (see below).
4728          */
4729         error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4730         if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4731                 goto resume_guest;
4732
4733         smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4734         smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4735         is_user = svm_get_cpl(vcpu) == 3;
4736         if (smap && (!smep || is_user)) {
4737                 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4738
4739                 /*
4740                  * If the fault occurred in userspace, arbitrarily inject #GP
4741                  * to avoid killing the guest and to hopefully avoid confusing
4742                  * the guest kernel too much, e.g. injecting #PF would not be
4743                  * coherent with respect to the guest's page tables.  Request
4744                  * triple fault if the fault occurred in the kernel as there's
4745                  * no fault that KVM can inject without confusing the guest.
4746                  * In practice, the triple fault is moot as no sane SEV kernel
4747                  * will execute from user memory while also running with SMAP=1.
4748                  */
4749                 if (is_user)
4750                         kvm_inject_gp(vcpu, 0);
4751                 else
4752                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4753         }
4754
4755 resume_guest:
4756         /*
4757          * If the erratum was not hit, simply resume the guest and let it fault
4758          * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4759          * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4760          * userspace will kill the guest, and letting the emulator read garbage
4761          * will yield random behavior and potentially corrupt the guest.
4762          *
4763          * Simply resuming the guest is technically not a violation of the SEV
4764          * architecture.  AMD's APM states that all code fetches and page table
4765          * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4766          * APM also states that encrypted accesses to MMIO are "ignored", but
4767          * doesn't explicitly define "ignored", i.e. doing nothing and letting
4768          * the guest spin is technically "ignoring" the access.
4769          */
4770         return false;
4771 }
4772
4773 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4774 {
4775         struct vcpu_svm *svm = to_svm(vcpu);
4776
4777         return !gif_set(svm);
4778 }
4779
4780 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4781 {
4782         if (!sev_es_guest(vcpu->kvm))
4783                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4784
4785         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4786 }
4787
4788 static void svm_vm_destroy(struct kvm *kvm)
4789 {
4790         avic_vm_destroy(kvm);
4791         sev_vm_destroy(kvm);
4792 }
4793
4794 static int svm_vm_init(struct kvm *kvm)
4795 {
4796         if (!pause_filter_count || !pause_filter_thresh)
4797                 kvm->arch.pause_in_guest = true;
4798
4799         if (enable_apicv) {
4800                 int ret = avic_vm_init(kvm);
4801                 if (ret)
4802                         return ret;
4803         }
4804
4805         return 0;
4806 }
4807
4808 static struct kvm_x86_ops svm_x86_ops __initdata = {
4809         .name = KBUILD_MODNAME,
4810
4811         .check_processor_compatibility = svm_check_processor_compat,
4812
4813         .hardware_unsetup = svm_hardware_unsetup,
4814         .hardware_enable = svm_hardware_enable,
4815         .hardware_disable = svm_hardware_disable,
4816         .has_emulated_msr = svm_has_emulated_msr,
4817
4818         .vcpu_create = svm_vcpu_create,
4819         .vcpu_free = svm_vcpu_free,
4820         .vcpu_reset = svm_vcpu_reset,
4821
4822         .vm_size = sizeof(struct kvm_svm),
4823         .vm_init = svm_vm_init,
4824         .vm_destroy = svm_vm_destroy,
4825
4826         .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4827         .vcpu_load = svm_vcpu_load,
4828         .vcpu_put = svm_vcpu_put,
4829         .vcpu_blocking = avic_vcpu_blocking,
4830         .vcpu_unblocking = avic_vcpu_unblocking,
4831
4832         .update_exception_bitmap = svm_update_exception_bitmap,
4833         .get_msr_feature = svm_get_msr_feature,
4834         .get_msr = svm_get_msr,
4835         .set_msr = svm_set_msr,
4836         .get_segment_base = svm_get_segment_base,
4837         .get_segment = svm_get_segment,
4838         .set_segment = svm_set_segment,
4839         .get_cpl = svm_get_cpl,
4840         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4841         .set_cr0 = svm_set_cr0,
4842         .post_set_cr3 = sev_post_set_cr3,
4843         .is_valid_cr4 = svm_is_valid_cr4,
4844         .set_cr4 = svm_set_cr4,
4845         .set_efer = svm_set_efer,
4846         .get_idt = svm_get_idt,
4847         .set_idt = svm_set_idt,
4848         .get_gdt = svm_get_gdt,
4849         .set_gdt = svm_set_gdt,
4850         .set_dr7 = svm_set_dr7,
4851         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4852         .cache_reg = svm_cache_reg,
4853         .get_rflags = svm_get_rflags,
4854         .set_rflags = svm_set_rflags,
4855         .get_if_flag = svm_get_if_flag,
4856
4857         .flush_tlb_all = svm_flush_tlb_all,
4858         .flush_tlb_current = svm_flush_tlb_current,
4859         .flush_tlb_gva = svm_flush_tlb_gva,
4860         .flush_tlb_guest = svm_flush_tlb_asid,
4861
4862         .vcpu_pre_run = svm_vcpu_pre_run,
4863         .vcpu_run = svm_vcpu_run,
4864         .handle_exit = svm_handle_exit,
4865         .skip_emulated_instruction = svm_skip_emulated_instruction,
4866         .update_emulated_instruction = NULL,
4867         .set_interrupt_shadow = svm_set_interrupt_shadow,
4868         .get_interrupt_shadow = svm_get_interrupt_shadow,
4869         .patch_hypercall = svm_patch_hypercall,
4870         .inject_irq = svm_inject_irq,
4871         .inject_nmi = svm_inject_nmi,
4872         .is_vnmi_pending = svm_is_vnmi_pending,
4873         .set_vnmi_pending = svm_set_vnmi_pending,
4874         .inject_exception = svm_inject_exception,
4875         .cancel_injection = svm_cancel_injection,
4876         .interrupt_allowed = svm_interrupt_allowed,
4877         .nmi_allowed = svm_nmi_allowed,
4878         .get_nmi_mask = svm_get_nmi_mask,
4879         .set_nmi_mask = svm_set_nmi_mask,
4880         .enable_nmi_window = svm_enable_nmi_window,
4881         .enable_irq_window = svm_enable_irq_window,
4882         .update_cr8_intercept = svm_update_cr8_intercept,
4883         .set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4884         .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4885         .apicv_post_state_restore = avic_apicv_post_state_restore,
4886         .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4887
4888         .get_exit_info = svm_get_exit_info,
4889
4890         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4891
4892         .has_wbinvd_exit = svm_has_wbinvd_exit,
4893
4894         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4895         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4896         .write_tsc_offset = svm_write_tsc_offset,
4897         .write_tsc_multiplier = svm_write_tsc_multiplier,
4898
4899         .load_mmu_pgd = svm_load_mmu_pgd,
4900
4901         .check_intercept = svm_check_intercept,
4902         .handle_exit_irqoff = svm_handle_exit_irqoff,
4903
4904         .request_immediate_exit = __kvm_request_immediate_exit,
4905
4906         .sched_in = svm_sched_in,
4907
4908         .nested_ops = &svm_nested_ops,
4909
4910         .deliver_interrupt = svm_deliver_interrupt,
4911         .pi_update_irte = avic_pi_update_irte,
4912         .setup_mce = svm_setup_mce,
4913
4914 #ifdef CONFIG_KVM_SMM
4915         .smi_allowed = svm_smi_allowed,
4916         .enter_smm = svm_enter_smm,
4917         .leave_smm = svm_leave_smm,
4918         .enable_smi_window = svm_enable_smi_window,
4919 #endif
4920
4921         .mem_enc_ioctl = sev_mem_enc_ioctl,
4922         .mem_enc_register_region = sev_mem_enc_register_region,
4923         .mem_enc_unregister_region = sev_mem_enc_unregister_region,
4924         .guest_memory_reclaimed = sev_guest_memory_reclaimed,
4925
4926         .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4927         .vm_move_enc_context_from = sev_vm_move_enc_context_from,
4928
4929         .can_emulate_instruction = svm_can_emulate_instruction,
4930
4931         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4932
4933         .msr_filter_changed = svm_msr_filter_changed,
4934         .complete_emulated_msr = svm_complete_emulated_msr,
4935
4936         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4937         .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4938 };
4939
4940 /*
4941  * The default MMIO mask is a single bit (excluding the present bit),
4942  * which could conflict with the memory encryption bit. Check for
4943  * memory encryption support and override the default MMIO mask if
4944  * memory encryption is enabled.
4945  */
4946 static __init void svm_adjust_mmio_mask(void)
4947 {
4948         unsigned int enc_bit, mask_bit;
4949         u64 msr, mask;
4950
4951         /* If there is no memory encryption support, use existing mask */
4952         if (cpuid_eax(0x80000000) < 0x8000001f)
4953                 return;
4954
4955         /* If memory encryption is not enabled, use existing mask */
4956         rdmsrl(MSR_AMD64_SYSCFG, msr);
4957         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4958                 return;
4959
4960         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4961         mask_bit = boot_cpu_data.x86_phys_bits;
4962
4963         /* Increment the mask bit if it is the same as the encryption bit */
4964         if (enc_bit == mask_bit)
4965                 mask_bit++;
4966
4967         /*
4968          * If the mask bit location is below 52, then some bits above the
4969          * physical addressing limit will always be reserved, so use the
4970          * rsvd_bits() function to generate the mask. This mask, along with
4971          * the present bit, will be used to generate a page fault with
4972          * PFER.RSV = 1.
4973          *
4974          * If the mask bit location is 52 (or above), then clear the mask.
4975          */
4976         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4977
4978         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4979 }
4980
4981 static __init void svm_set_cpu_caps(void)
4982 {
4983         kvm_set_cpu_caps();
4984
4985         kvm_caps.supported_perf_cap = 0;
4986         kvm_caps.supported_xss = 0;
4987
4988         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
4989         if (nested) {
4990                 kvm_cpu_cap_set(X86_FEATURE_SVM);
4991                 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4992
4993                 if (nrips)
4994                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4995
4996                 if (npt_enabled)
4997                         kvm_cpu_cap_set(X86_FEATURE_NPT);
4998
4999                 if (tsc_scaling)
5000                         kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5001
5002                 if (vls)
5003                         kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5004                 if (lbrv)
5005                         kvm_cpu_cap_set(X86_FEATURE_LBRV);
5006
5007                 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5008                         kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5009
5010                 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5011                         kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5012
5013                 if (vgif)
5014                         kvm_cpu_cap_set(X86_FEATURE_VGIF);
5015
5016                 if (vnmi)
5017                         kvm_cpu_cap_set(X86_FEATURE_VNMI);
5018
5019                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
5020                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5021         }
5022
5023         /* CPUID 0x80000008 */
5024         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5025             boot_cpu_has(X86_FEATURE_AMD_SSBD))
5026                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5027
5028         /* AMD PMU PERFCTR_CORE CPUID */
5029         if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
5030                 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
5031
5032         /* CPUID 0x8000001F (SME/SEV features) */
5033         sev_set_cpu_caps();
5034 }
5035
5036 static __init int svm_hardware_setup(void)
5037 {
5038         int cpu;
5039         struct page *iopm_pages;
5040         void *iopm_va;
5041         int r;
5042         unsigned int order = get_order(IOPM_SIZE);
5043
5044         /*
5045          * NX is required for shadow paging and for NPT if the NX huge pages
5046          * mitigation is enabled.
5047          */
5048         if (!boot_cpu_has(X86_FEATURE_NX)) {
5049                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
5050                 return -EOPNOTSUPP;
5051         }
5052         kvm_enable_efer_bits(EFER_NX);
5053
5054         iopm_pages = alloc_pages(GFP_KERNEL, order);
5055
5056         if (!iopm_pages)
5057                 return -ENOMEM;
5058
5059         iopm_va = page_address(iopm_pages);
5060         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5061         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5062
5063         init_msrpm_offsets();
5064
5065         kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5066                                      XFEATURE_MASK_BNDCSR);
5067
5068         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5069                 kvm_enable_efer_bits(EFER_FFXSR);
5070
5071         if (tsc_scaling) {
5072                 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5073                         tsc_scaling = false;
5074                 } else {
5075                         pr_info("TSC scaling supported\n");
5076                         kvm_caps.has_tsc_control = true;
5077                 }
5078         }
5079         kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5080         kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5081
5082         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5083
5084         if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5085                 kvm_enable_efer_bits(EFER_AUTOIBRS);
5086
5087         /* Check for pause filtering support */
5088         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5089                 pause_filter_count = 0;
5090                 pause_filter_thresh = 0;
5091         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5092                 pause_filter_thresh = 0;
5093         }
5094
5095         if (nested) {
5096                 pr_info("Nested Virtualization enabled\n");
5097                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5098         }
5099
5100         /*
5101          * KVM's MMU doesn't support using 2-level paging for itself, and thus
5102          * NPT isn't supported if the host is using 2-level paging since host
5103          * CR4 is unchanged on VMRUN.
5104          */
5105         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5106                 npt_enabled = false;
5107
5108         if (!boot_cpu_has(X86_FEATURE_NPT))
5109                 npt_enabled = false;
5110
5111         /* Force VM NPT level equal to the host's paging level */
5112         kvm_configure_mmu(npt_enabled, get_npt_level(),
5113                           get_npt_level(), PG_LEVEL_1G);
5114         pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5115
5116         /* Setup shadow_me_value and shadow_me_mask */
5117         kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5118
5119         svm_adjust_mmio_mask();
5120
5121         /*
5122          * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5123          * may be modified by svm_adjust_mmio_mask()).
5124          */
5125         sev_hardware_setup();
5126
5127         svm_hv_hardware_setup();
5128
5129         for_each_possible_cpu(cpu) {
5130                 r = svm_cpu_init(cpu);
5131                 if (r)
5132                         goto err;
5133         }
5134
5135         if (nrips) {
5136                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
5137                         nrips = false;
5138         }
5139
5140         enable_apicv = avic = avic && avic_hardware_setup();
5141
5142         if (!enable_apicv) {
5143                 svm_x86_ops.vcpu_blocking = NULL;
5144                 svm_x86_ops.vcpu_unblocking = NULL;
5145                 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5146         } else if (!x2avic_enabled) {
5147                 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5148         }
5149
5150         if (vls) {
5151                 if (!npt_enabled ||
5152                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5153                     !IS_ENABLED(CONFIG_X86_64)) {
5154                         vls = false;
5155                 } else {
5156                         pr_info("Virtual VMLOAD VMSAVE supported\n");
5157                 }
5158         }
5159
5160         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5161                 svm_gp_erratum_intercept = false;
5162
5163         if (vgif) {
5164                 if (!boot_cpu_has(X86_FEATURE_VGIF))
5165                         vgif = false;
5166                 else
5167                         pr_info("Virtual GIF supported\n");
5168         }
5169
5170         vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5171         if (vnmi)
5172                 pr_info("Virtual NMI enabled\n");
5173
5174         if (!vnmi) {
5175                 svm_x86_ops.is_vnmi_pending = NULL;
5176                 svm_x86_ops.set_vnmi_pending = NULL;
5177         }
5178
5179
5180         if (lbrv) {
5181                 if (!boot_cpu_has(X86_FEATURE_LBRV))
5182                         lbrv = false;
5183                 else
5184                         pr_info("LBR virtualization supported\n");
5185         }
5186
5187         if (!enable_pmu)
5188                 pr_info("PMU virtualization is disabled\n");
5189
5190         svm_set_cpu_caps();
5191
5192         /*
5193          * It seems that on AMD processors PTE's accessed bit is
5194          * being set by the CPU hardware before the NPF vmexit.
5195          * This is not expected behaviour and our tests fail because
5196          * of it.
5197          * A workaround here is to disable support for
5198          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5199          * In this case userspace can know if there is support using
5200          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5201          * it
5202          * If future AMD CPU models change the behaviour described above,
5203          * this variable can be changed accordingly
5204          */
5205         allow_smaller_maxphyaddr = !npt_enabled;
5206
5207         return 0;
5208
5209 err:
5210         svm_hardware_unsetup();
5211         return r;
5212 }
5213
5214
5215 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5216         .hardware_setup = svm_hardware_setup,
5217
5218         .runtime_ops = &svm_x86_ops,
5219         .pmu_ops = &amd_pmu_ops,
5220 };
5221
5222 static int __init svm_init(void)
5223 {
5224         int r;
5225
5226         __unused_size_checks();
5227
5228         if (!kvm_is_svm_supported())
5229                 return -EOPNOTSUPP;
5230
5231         r = kvm_x86_vendor_init(&svm_init_ops);
5232         if (r)
5233                 return r;
5234
5235         /*
5236          * Common KVM initialization _must_ come last, after this, /dev/kvm is
5237          * exposed to userspace!
5238          */
5239         r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5240                      THIS_MODULE);
5241         if (r)
5242                 goto err_kvm_init;
5243
5244         return 0;
5245
5246 err_kvm_init:
5247         kvm_x86_vendor_exit();
5248         return r;
5249 }
5250
5251 static void __exit svm_exit(void)
5252 {
5253         kvm_exit();
5254         kvm_x86_vendor_exit();
5255 }
5256
5257 module_init(svm_init)
5258 module_exit(svm_exit)