Merge tag 'pull-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / x86 / kvm / svm / avic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21
22 #include <asm/irq_remapping.h>
23
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29
30 /* AVIC GATAG is encoded using VM and VCPU IDs */
31 #define AVIC_VCPU_ID_BITS               8
32 #define AVIC_VCPU_ID_MASK               ((1 << AVIC_VCPU_ID_BITS) - 1)
33
34 #define AVIC_VM_ID_BITS                 24
35 #define AVIC_VM_ID_NR                   (1 << AVIC_VM_ID_BITS)
36 #define AVIC_VM_ID_MASK                 ((1 << AVIC_VM_ID_BITS) - 1)
37
38 #define AVIC_GATAG(x, y)                (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
39                                                 (y & AVIC_VCPU_ID_MASK))
40 #define AVIC_GATAG_TO_VMID(x)           ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
41 #define AVIC_GATAG_TO_VCPUID(x)         (x & AVIC_VCPU_ID_MASK)
42
43 /* Note:
44  * This hash table is used to map VM_ID to a struct kvm_svm,
45  * when handling AMD IOMMU GALOG notification to schedule in
46  * a particular vCPU.
47  */
48 #define SVM_VM_DATA_HASH_BITS   8
49 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
50 static u32 next_vm_id = 0;
51 static bool next_vm_id_wrapped = 0;
52 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
53
54 /*
55  * This is a wrapper of struct amd_iommu_ir_data.
56  */
57 struct amd_svm_iommu_ir {
58         struct list_head node;  /* Used by SVM for per-vcpu ir_list */
59         void *data;             /* Storing pointer to struct amd_ir_data */
60 };
61
62
63 /* Note:
64  * This function is called from IOMMU driver to notify
65  * SVM to schedule in a particular vCPU of a particular VM.
66  */
67 int avic_ga_log_notifier(u32 ga_tag)
68 {
69         unsigned long flags;
70         struct kvm_svm *kvm_svm;
71         struct kvm_vcpu *vcpu = NULL;
72         u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
73         u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
74
75         pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
76         trace_kvm_avic_ga_log(vm_id, vcpu_id);
77
78         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
79         hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
80                 if (kvm_svm->avic_vm_id != vm_id)
81                         continue;
82                 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
83                 break;
84         }
85         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
86
87         /* Note:
88          * At this point, the IOMMU should have already set the pending
89          * bit in the vAPIC backing page. So, we just need to schedule
90          * in the vcpu.
91          */
92         if (vcpu)
93                 kvm_vcpu_wake_up(vcpu);
94
95         return 0;
96 }
97
98 void avic_vm_destroy(struct kvm *kvm)
99 {
100         unsigned long flags;
101         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
102
103         if (!enable_apicv)
104                 return;
105
106         if (kvm_svm->avic_logical_id_table_page)
107                 __free_page(kvm_svm->avic_logical_id_table_page);
108         if (kvm_svm->avic_physical_id_table_page)
109                 __free_page(kvm_svm->avic_physical_id_table_page);
110
111         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
112         hash_del(&kvm_svm->hnode);
113         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
114 }
115
116 int avic_vm_init(struct kvm *kvm)
117 {
118         unsigned long flags;
119         int err = -ENOMEM;
120         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
121         struct kvm_svm *k2;
122         struct page *p_page;
123         struct page *l_page;
124         u32 vm_id;
125
126         if (!enable_apicv)
127                 return 0;
128
129         /* Allocating physical APIC ID table (4KB) */
130         p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
131         if (!p_page)
132                 goto free_avic;
133
134         kvm_svm->avic_physical_id_table_page = p_page;
135
136         /* Allocating logical APIC ID table (4KB) */
137         l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
138         if (!l_page)
139                 goto free_avic;
140
141         kvm_svm->avic_logical_id_table_page = l_page;
142
143         spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
144  again:
145         vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
146         if (vm_id == 0) { /* id is 1-based, zero is not okay */
147                 next_vm_id_wrapped = 1;
148                 goto again;
149         }
150         /* Is it still in use? Only possible if wrapped at least once */
151         if (next_vm_id_wrapped) {
152                 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
153                         if (k2->avic_vm_id == vm_id)
154                                 goto again;
155                 }
156         }
157         kvm_svm->avic_vm_id = vm_id;
158         hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
159         spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
160
161         return 0;
162
163 free_avic:
164         avic_vm_destroy(kvm);
165         return err;
166 }
167
168 void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
169 {
170         struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
171         phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
172         phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
173         phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
174
175         vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
176         vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
177         vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
178         vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
179         vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
180
181         if (kvm_apicv_activated(svm->vcpu.kvm))
182                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
183         else
184                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
185 }
186
187 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
188                                        unsigned int index)
189 {
190         u64 *avic_physical_id_table;
191         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
192
193         if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
194                 return NULL;
195
196         avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
197
198         return &avic_physical_id_table[index];
199 }
200
201 /*
202  * Note:
203  * AVIC hardware walks the nested page table to check permissions,
204  * but does not use the SPA address specified in the leaf page
205  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
206  * field of the VMCB. Therefore, we set up the
207  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
208  */
209 static int avic_alloc_access_page(struct kvm *kvm)
210 {
211         void __user *ret;
212         int r = 0;
213
214         mutex_lock(&kvm->slots_lock);
215
216         if (kvm->arch.apic_access_memslot_enabled)
217                 goto out;
218
219         ret = __x86_set_memory_region(kvm,
220                                       APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
221                                       APIC_DEFAULT_PHYS_BASE,
222                                       PAGE_SIZE);
223         if (IS_ERR(ret)) {
224                 r = PTR_ERR(ret);
225                 goto out;
226         }
227
228         kvm->arch.apic_access_memslot_enabled = true;
229 out:
230         mutex_unlock(&kvm->slots_lock);
231         return r;
232 }
233
234 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
235 {
236         u64 *entry, new_entry;
237         int id = vcpu->vcpu_id;
238         struct vcpu_svm *svm = to_svm(vcpu);
239
240         if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
241                 return -EINVAL;
242
243         if (!vcpu->arch.apic->regs)
244                 return -EINVAL;
245
246         if (kvm_apicv_activated(vcpu->kvm)) {
247                 int ret;
248
249                 ret = avic_alloc_access_page(vcpu->kvm);
250                 if (ret)
251                         return ret;
252         }
253
254         svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
255
256         /* Setting AVIC backing page address in the phy APIC ID table */
257         entry = avic_get_physical_id_entry(vcpu, id);
258         if (!entry)
259                 return -EINVAL;
260
261         new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
262                               AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
263                               AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
264         WRITE_ONCE(*entry, new_entry);
265
266         svm->avic_physical_id_cache = entry;
267
268         return 0;
269 }
270
271 void avic_ring_doorbell(struct kvm_vcpu *vcpu)
272 {
273         /*
274          * Note, the vCPU could get migrated to a different pCPU at any point,
275          * which could result in signalling the wrong/previous pCPU.  But if
276          * that happens the vCPU is guaranteed to do a VMRUN (after being
277          * migrated) and thus will process pending interrupts, i.e. a doorbell
278          * is not needed (and the spurious one is harmless).
279          */
280         int cpu = READ_ONCE(vcpu->cpu);
281
282         if (cpu != get_cpu())
283                 wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
284         put_cpu();
285 }
286
287 /*
288  * A fast-path version of avic_kick_target_vcpus(), which attempts to match
289  * destination APIC ID to vCPU without looping through all vCPUs.
290  */
291 static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
292                                        u32 icrl, u32 icrh, u32 index)
293 {
294         u32 l1_physical_id, dest;
295         struct kvm_vcpu *target_vcpu;
296         int dest_mode = icrl & APIC_DEST_MASK;
297         int shorthand = icrl & APIC_SHORT_MASK;
298         struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
299
300         if (shorthand != APIC_DEST_NOSHORT)
301                 return -EINVAL;
302
303         if (apic_x2apic_mode(source))
304                 dest = icrh;
305         else
306                 dest = GET_APIC_DEST_FIELD(icrh);
307
308         if (dest_mode == APIC_DEST_PHYSICAL) {
309                 /* broadcast destination, use slow path */
310                 if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
311                         return -EINVAL;
312                 if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
313                         return -EINVAL;
314
315                 l1_physical_id = dest;
316
317                 if (WARN_ON_ONCE(l1_physical_id != index))
318                         return -EINVAL;
319
320         } else {
321                 u32 bitmap, cluster;
322                 int logid_index;
323
324                 if (apic_x2apic_mode(source)) {
325                         /* 16 bit dest mask, 16 bit cluster id */
326                         bitmap = dest & 0xFFFF0000;
327                         cluster = (dest >> 16) << 4;
328                 } else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
329                         /* 8 bit dest mask*/
330                         bitmap = dest;
331                         cluster = 0;
332                 } else {
333                         /* 4 bit desk mask, 4 bit cluster id */
334                         bitmap = dest & 0xF;
335                         cluster = (dest >> 4) << 2;
336                 }
337
338                 if (unlikely(!bitmap))
339                         /* guest bug: nobody to send the logical interrupt to */
340                         return 0;
341
342                 if (!is_power_of_2(bitmap))
343                         /* multiple logical destinations, use slow path */
344                         return -EINVAL;
345
346                 logid_index = cluster + __ffs(bitmap);
347
348                 if (apic_x2apic_mode(source)) {
349                         l1_physical_id = logid_index;
350                 } else {
351                         u32 *avic_logical_id_table =
352                                 page_address(kvm_svm->avic_logical_id_table_page);
353
354                         u32 logid_entry = avic_logical_id_table[logid_index];
355
356                         if (WARN_ON_ONCE(index != logid_index))
357                                 return -EINVAL;
358
359                         /* guest bug: non existing/reserved logical destination */
360                         if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
361                                 return 0;
362
363                         l1_physical_id = logid_entry &
364                                          AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
365                 }
366         }
367
368         target_vcpu = kvm_get_vcpu_by_id(kvm, l1_physical_id);
369         if (unlikely(!target_vcpu))
370                 /* guest bug: non existing vCPU is a target of this IPI*/
371                 return 0;
372
373         target_vcpu->arch.apic->irr_pending = true;
374         svm_complete_interrupt_delivery(target_vcpu,
375                                         icrl & APIC_MODE_MASK,
376                                         icrl & APIC_INT_LEVELTRIG,
377                                         icrl & APIC_VECTOR_MASK);
378         return 0;
379 }
380
381 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
382                                    u32 icrl, u32 icrh, u32 index)
383 {
384         unsigned long i;
385         struct kvm_vcpu *vcpu;
386
387         if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
388                 return;
389
390         trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
391
392         /*
393          * Wake any target vCPUs that are blocking, i.e. waiting for a wake
394          * event.  There's no need to signal doorbells, as hardware has handled
395          * vCPUs that were in guest at the time of the IPI, and vCPUs that have
396          * since entered the guest will have processed pending IRQs at VMRUN.
397          */
398         kvm_for_each_vcpu(i, vcpu, kvm) {
399                 if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
400                                         GET_APIC_DEST_FIELD(icrh),
401                                         icrl & APIC_DEST_MASK)) {
402                         vcpu->arch.apic->irr_pending = true;
403                         svm_complete_interrupt_delivery(vcpu,
404                                                         icrl & APIC_MODE_MASK,
405                                                         icrl & APIC_INT_LEVELTRIG,
406                                                         icrl & APIC_VECTOR_MASK);
407                 }
408         }
409 }
410
411 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
412 {
413         struct vcpu_svm *svm = to_svm(vcpu);
414         u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
415         u32 icrl = svm->vmcb->control.exit_info_1;
416         u32 id = svm->vmcb->control.exit_info_2 >> 32;
417         u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
418         struct kvm_lapic *apic = vcpu->arch.apic;
419
420         trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
421
422         switch (id) {
423         case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
424                 /*
425                  * Emulate IPIs that are not handled by AVIC hardware, which
426                  * only virtualizes Fixed, Edge-Triggered INTRs.  The exit is
427                  * a trap, e.g. ICR holds the correct value and RIP has been
428                  * advanced, KVM is responsible only for emulating the IPI.
429                  * Sadly, hardware may sometimes leave the BUSY flag set, in
430                  * which case KVM needs to emulate the ICR write as well in
431                  * order to clear the BUSY flag.
432                  */
433                 if (icrl & APIC_ICR_BUSY)
434                         kvm_apic_write_nodecode(vcpu, APIC_ICR);
435                 else
436                         kvm_apic_send_ipi(apic, icrl, icrh);
437                 break;
438         case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
439                 /*
440                  * At this point, we expect that the AVIC HW has already
441                  * set the appropriate IRR bits on the valid target
442                  * vcpus. So, we just need to kick the appropriate vcpu.
443                  */
444                 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
445                 break;
446         case AVIC_IPI_FAILURE_INVALID_TARGET:
447                 break;
448         case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
449                 WARN_ONCE(1, "Invalid backing page\n");
450                 break;
451         default:
452                 pr_err("Unknown IPI interception\n");
453         }
454
455         return 1;
456 }
457
458 unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
459 {
460         if (is_guest_mode(vcpu))
461                 return APICV_INHIBIT_REASON_NESTED;
462         return 0;
463 }
464
465 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
466 {
467         struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
468         int index;
469         u32 *logical_apic_id_table;
470         int dlid = GET_APIC_LOGICAL_ID(ldr);
471
472         if (!dlid)
473                 return NULL;
474
475         if (flat) { /* flat */
476                 index = ffs(dlid) - 1;
477                 if (index > 7)
478                         return NULL;
479         } else { /* cluster */
480                 int cluster = (dlid & 0xf0) >> 4;
481                 int apic = ffs(dlid & 0x0f) - 1;
482
483                 if ((apic < 0) || (apic > 7) ||
484                     (cluster >= 0xf))
485                         return NULL;
486                 index = (cluster << 2) + apic;
487         }
488
489         logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
490
491         return &logical_apic_id_table[index];
492 }
493
494 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
495 {
496         bool flat;
497         u32 *entry, new_entry;
498
499         flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
500         entry = avic_get_logical_id_entry(vcpu, ldr, flat);
501         if (!entry)
502                 return -EINVAL;
503
504         new_entry = READ_ONCE(*entry);
505         new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
506         new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
507         new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
508         WRITE_ONCE(*entry, new_entry);
509
510         return 0;
511 }
512
513 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
514 {
515         struct vcpu_svm *svm = to_svm(vcpu);
516         bool flat = svm->dfr_reg == APIC_DFR_FLAT;
517         u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
518
519         if (entry)
520                 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
521 }
522
523 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
524 {
525         int ret = 0;
526         struct vcpu_svm *svm = to_svm(vcpu);
527         u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
528         u32 id = kvm_xapic_id(vcpu->arch.apic);
529
530         if (ldr == svm->ldr_reg)
531                 return 0;
532
533         avic_invalidate_logical_id_entry(vcpu);
534
535         if (ldr)
536                 ret = avic_ldr_write(vcpu, id, ldr);
537
538         if (!ret)
539                 svm->ldr_reg = ldr;
540
541         return ret;
542 }
543
544 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
545 {
546         struct vcpu_svm *svm = to_svm(vcpu);
547         u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
548
549         if (svm->dfr_reg == dfr)
550                 return;
551
552         avic_invalidate_logical_id_entry(vcpu);
553         svm->dfr_reg = dfr;
554 }
555
556 static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
557 {
558         u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
559                                 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
560
561         switch (offset) {
562         case APIC_LDR:
563                 if (avic_handle_ldr_update(vcpu))
564                         return 0;
565                 break;
566         case APIC_DFR:
567                 avic_handle_dfr_update(vcpu);
568                 break;
569         default:
570                 break;
571         }
572
573         kvm_apic_write_nodecode(vcpu, offset);
574         return 1;
575 }
576
577 static bool is_avic_unaccelerated_access_trap(u32 offset)
578 {
579         bool ret = false;
580
581         switch (offset) {
582         case APIC_ID:
583         case APIC_EOI:
584         case APIC_RRR:
585         case APIC_LDR:
586         case APIC_DFR:
587         case APIC_SPIV:
588         case APIC_ESR:
589         case APIC_ICR:
590         case APIC_LVTT:
591         case APIC_LVTTHMR:
592         case APIC_LVTPC:
593         case APIC_LVT0:
594         case APIC_LVT1:
595         case APIC_LVTERR:
596         case APIC_TMICT:
597         case APIC_TDCR:
598                 ret = true;
599                 break;
600         default:
601                 break;
602         }
603         return ret;
604 }
605
606 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
607 {
608         struct vcpu_svm *svm = to_svm(vcpu);
609         int ret = 0;
610         u32 offset = svm->vmcb->control.exit_info_1 &
611                      AVIC_UNACCEL_ACCESS_OFFSET_MASK;
612         u32 vector = svm->vmcb->control.exit_info_2 &
613                      AVIC_UNACCEL_ACCESS_VECTOR_MASK;
614         bool write = (svm->vmcb->control.exit_info_1 >> 32) &
615                      AVIC_UNACCEL_ACCESS_WRITE_MASK;
616         bool trap = is_avic_unaccelerated_access_trap(offset);
617
618         trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
619                                             trap, write, vector);
620         if (trap) {
621                 /* Handling Trap */
622                 WARN_ONCE(!write, "svm: Handling trap read.\n");
623                 ret = avic_unaccel_trap_write(vcpu);
624         } else {
625                 /* Handling Fault */
626                 ret = kvm_emulate_instruction(vcpu, 0);
627         }
628
629         return ret;
630 }
631
632 int avic_init_vcpu(struct vcpu_svm *svm)
633 {
634         int ret;
635         struct kvm_vcpu *vcpu = &svm->vcpu;
636
637         if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
638                 return 0;
639
640         ret = avic_init_backing_page(vcpu);
641         if (ret)
642                 return ret;
643
644         INIT_LIST_HEAD(&svm->ir_list);
645         spin_lock_init(&svm->ir_list_lock);
646         svm->dfr_reg = APIC_DFR_FLAT;
647
648         return ret;
649 }
650
651 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
652 {
653         avic_handle_dfr_update(vcpu);
654         avic_handle_ldr_update(vcpu);
655 }
656
657 static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
658 {
659         int ret = 0;
660         unsigned long flags;
661         struct amd_svm_iommu_ir *ir;
662         struct vcpu_svm *svm = to_svm(vcpu);
663
664         if (!kvm_arch_has_assigned_device(vcpu->kvm))
665                 return 0;
666
667         /*
668          * Here, we go through the per-vcpu ir_list to update all existing
669          * interrupt remapping table entry targeting this vcpu.
670          */
671         spin_lock_irqsave(&svm->ir_list_lock, flags);
672
673         if (list_empty(&svm->ir_list))
674                 goto out;
675
676         list_for_each_entry(ir, &svm->ir_list, node) {
677                 if (activate)
678                         ret = amd_iommu_activate_guest_mode(ir->data);
679                 else
680                         ret = amd_iommu_deactivate_guest_mode(ir->data);
681                 if (ret)
682                         break;
683         }
684 out:
685         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
686         return ret;
687 }
688
689 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
690 {
691         unsigned long flags;
692         struct amd_svm_iommu_ir *cur;
693
694         spin_lock_irqsave(&svm->ir_list_lock, flags);
695         list_for_each_entry(cur, &svm->ir_list, node) {
696                 if (cur->data != pi->ir_data)
697                         continue;
698                 list_del(&cur->node);
699                 kfree(cur);
700                 break;
701         }
702         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
703 }
704
705 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
706 {
707         int ret = 0;
708         unsigned long flags;
709         struct amd_svm_iommu_ir *ir;
710
711         /**
712          * In some cases, the existing irte is updated and re-set,
713          * so we need to check here if it's already been * added
714          * to the ir_list.
715          */
716         if (pi->ir_data && (pi->prev_ga_tag != 0)) {
717                 struct kvm *kvm = svm->vcpu.kvm;
718                 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
719                 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
720                 struct vcpu_svm *prev_svm;
721
722                 if (!prev_vcpu) {
723                         ret = -EINVAL;
724                         goto out;
725                 }
726
727                 prev_svm = to_svm(prev_vcpu);
728                 svm_ir_list_del(prev_svm, pi);
729         }
730
731         /**
732          * Allocating new amd_iommu_pi_data, which will get
733          * add to the per-vcpu ir_list.
734          */
735         ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
736         if (!ir) {
737                 ret = -ENOMEM;
738                 goto out;
739         }
740         ir->data = pi->ir_data;
741
742         spin_lock_irqsave(&svm->ir_list_lock, flags);
743         list_add(&ir->node, &svm->ir_list);
744         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
745 out:
746         return ret;
747 }
748
749 /*
750  * Note:
751  * The HW cannot support posting multicast/broadcast
752  * interrupts to a vCPU. So, we still use legacy interrupt
753  * remapping for these kind of interrupts.
754  *
755  * For lowest-priority interrupts, we only support
756  * those with single CPU as the destination, e.g. user
757  * configures the interrupts via /proc/irq or uses
758  * irqbalance to make the interrupts single-CPU.
759  */
760 static int
761 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
762                  struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
763 {
764         struct kvm_lapic_irq irq;
765         struct kvm_vcpu *vcpu = NULL;
766
767         kvm_set_msi_irq(kvm, e, &irq);
768
769         if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
770             !kvm_irq_is_postable(&irq)) {
771                 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
772                          __func__, irq.vector);
773                 return -1;
774         }
775
776         pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
777                  irq.vector);
778         *svm = to_svm(vcpu);
779         vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
780         vcpu_info->vector = irq.vector;
781
782         return 0;
783 }
784
785 /*
786  * avic_pi_update_irte - set IRTE for Posted-Interrupts
787  *
788  * @kvm: kvm
789  * @host_irq: host irq of the interrupt
790  * @guest_irq: gsi of the interrupt
791  * @set: set or unset PI
792  * returns 0 on success, < 0 on failure
793  */
794 int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
795                         uint32_t guest_irq, bool set)
796 {
797         struct kvm_kernel_irq_routing_entry *e;
798         struct kvm_irq_routing_table *irq_rt;
799         int idx, ret = 0;
800
801         if (!kvm_arch_has_assigned_device(kvm) ||
802             !irq_remapping_cap(IRQ_POSTING_CAP))
803                 return 0;
804
805         pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
806                  __func__, host_irq, guest_irq, set);
807
808         idx = srcu_read_lock(&kvm->irq_srcu);
809         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
810
811         if (guest_irq >= irq_rt->nr_rt_entries ||
812                 hlist_empty(&irq_rt->map[guest_irq])) {
813                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
814                              guest_irq, irq_rt->nr_rt_entries);
815                 goto out;
816         }
817
818         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
819                 struct vcpu_data vcpu_info;
820                 struct vcpu_svm *svm = NULL;
821
822                 if (e->type != KVM_IRQ_ROUTING_MSI)
823                         continue;
824
825                 /**
826                  * Here, we setup with legacy mode in the following cases:
827                  * 1. When cannot target interrupt to a specific vcpu.
828                  * 2. Unsetting posted interrupt.
829                  * 3. APIC virtualization is disabled for the vcpu.
830                  * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
831                  */
832                 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
833                     kvm_vcpu_apicv_active(&svm->vcpu)) {
834                         struct amd_iommu_pi_data pi;
835
836                         /* Try to enable guest_mode in IRTE */
837                         pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
838                                             AVIC_HPA_MASK);
839                         pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
840                                                      svm->vcpu.vcpu_id);
841                         pi.is_guest_mode = true;
842                         pi.vcpu_data = &vcpu_info;
843                         ret = irq_set_vcpu_affinity(host_irq, &pi);
844
845                         /**
846                          * Here, we successfully setting up vcpu affinity in
847                          * IOMMU guest mode. Now, we need to store the posted
848                          * interrupt information in a per-vcpu ir_list so that
849                          * we can reference to them directly when we update vcpu
850                          * scheduling information in IOMMU irte.
851                          */
852                         if (!ret && pi.is_guest_mode)
853                                 svm_ir_list_add(svm, &pi);
854                 } else {
855                         /* Use legacy mode in IRTE */
856                         struct amd_iommu_pi_data pi;
857
858                         /**
859                          * Here, pi is used to:
860                          * - Tell IOMMU to use legacy mode for this interrupt.
861                          * - Retrieve ga_tag of prior interrupt remapping data.
862                          */
863                         pi.prev_ga_tag = 0;
864                         pi.is_guest_mode = false;
865                         ret = irq_set_vcpu_affinity(host_irq, &pi);
866
867                         /**
868                          * Check if the posted interrupt was previously
869                          * setup with the guest_mode by checking if the ga_tag
870                          * was cached. If so, we need to clean up the per-vcpu
871                          * ir_list.
872                          */
873                         if (!ret && pi.prev_ga_tag) {
874                                 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
875                                 struct kvm_vcpu *vcpu;
876
877                                 vcpu = kvm_get_vcpu_by_id(kvm, id);
878                                 if (vcpu)
879                                         svm_ir_list_del(to_svm(vcpu), &pi);
880                         }
881                 }
882
883                 if (!ret && svm) {
884                         trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
885                                                  e->gsi, vcpu_info.vector,
886                                                  vcpu_info.pi_desc_addr, set);
887                 }
888
889                 if (ret < 0) {
890                         pr_err("%s: failed to update PI IRTE\n", __func__);
891                         goto out;
892                 }
893         }
894
895         ret = 0;
896 out:
897         srcu_read_unlock(&kvm->irq_srcu, idx);
898         return ret;
899 }
900
901 bool avic_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
902 {
903         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
904                           BIT(APICV_INHIBIT_REASON_ABSENT) |
905                           BIT(APICV_INHIBIT_REASON_HYPERV) |
906                           BIT(APICV_INHIBIT_REASON_NESTED) |
907                           BIT(APICV_INHIBIT_REASON_IRQWIN) |
908                           BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
909                           BIT(APICV_INHIBIT_REASON_X2APIC) |
910                           BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
911                           BIT(APICV_INHIBIT_REASON_SEV)      |
912                           BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
913                           BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
914
915         return supported & BIT(reason);
916 }
917
918
919 static inline int
920 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
921 {
922         int ret = 0;
923         unsigned long flags;
924         struct amd_svm_iommu_ir *ir;
925         struct vcpu_svm *svm = to_svm(vcpu);
926
927         if (!kvm_arch_has_assigned_device(vcpu->kvm))
928                 return 0;
929
930         /*
931          * Here, we go through the per-vcpu ir_list to update all existing
932          * interrupt remapping table entry targeting this vcpu.
933          */
934         spin_lock_irqsave(&svm->ir_list_lock, flags);
935
936         if (list_empty(&svm->ir_list))
937                 goto out;
938
939         list_for_each_entry(ir, &svm->ir_list, node) {
940                 ret = amd_iommu_update_ga(cpu, r, ir->data);
941                 if (ret)
942                         break;
943         }
944 out:
945         spin_unlock_irqrestore(&svm->ir_list_lock, flags);
946         return ret;
947 }
948
949 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
950 {
951         u64 entry;
952         int h_physical_id = kvm_cpu_get_apicid(cpu);
953         struct vcpu_svm *svm = to_svm(vcpu);
954
955         lockdep_assert_preemption_disabled();
956
957         if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
958                 return;
959
960         /*
961          * No need to update anything if the vCPU is blocking, i.e. if the vCPU
962          * is being scheduled in after being preempted.  The CPU entries in the
963          * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
964          * If the vCPU was migrated, its new CPU value will be stuffed when the
965          * vCPU unblocks.
966          */
967         if (kvm_vcpu_is_blocking(vcpu))
968                 return;
969
970         entry = READ_ONCE(*(svm->avic_physical_id_cache));
971         WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
972
973         entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
974         entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
975         entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
976
977         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
978         avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
979 }
980
981 void avic_vcpu_put(struct kvm_vcpu *vcpu)
982 {
983         u64 entry;
984         struct vcpu_svm *svm = to_svm(vcpu);
985
986         lockdep_assert_preemption_disabled();
987
988         entry = READ_ONCE(*(svm->avic_physical_id_cache));
989
990         /* Nothing to do if IsRunning == '0' due to vCPU blocking. */
991         if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
992                 return;
993
994         avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
995
996         entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
997         WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
998 }
999
1000
1001 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
1002 {
1003         struct vcpu_svm *svm = to_svm(vcpu);
1004         struct vmcb *vmcb = svm->vmcb01.ptr;
1005         bool activated = kvm_vcpu_apicv_active(vcpu);
1006
1007         if (!enable_apicv)
1008                 return;
1009
1010         if (activated) {
1011                 /**
1012                  * During AVIC temporary deactivation, guest could update
1013                  * APIC ID, DFR and LDR registers, which would not be trapped
1014                  * by avic_unaccelerated_access_interception(). In this case,
1015                  * we need to check and update the AVIC logical APIC ID table
1016                  * accordingly before re-activating.
1017                  */
1018                 avic_apicv_post_state_restore(vcpu);
1019                 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1020         } else {
1021                 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
1022         }
1023         vmcb_mark_dirty(vmcb, VMCB_AVIC);
1024
1025         if (activated)
1026                 avic_vcpu_load(vcpu, vcpu->cpu);
1027         else
1028                 avic_vcpu_put(vcpu);
1029
1030         avic_set_pi_irte_mode(vcpu, activated);
1031 }
1032
1033 void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
1034 {
1035         if (!kvm_vcpu_apicv_active(vcpu))
1036                 return;
1037
1038        /*
1039         * Unload the AVIC when the vCPU is about to block, _before_
1040         * the vCPU actually blocks.
1041         *
1042         * Any IRQs that arrive before IsRunning=0 will not cause an
1043         * incomplete IPI vmexit on the source, therefore vIRR will also
1044         * be checked by kvm_vcpu_check_block() before blocking.  The
1045         * memory barrier implicit in set_current_state orders writing
1046         * IsRunning=0 before reading the vIRR.  The processor needs a
1047         * matching memory barrier on interrupt delivery between writing
1048         * IRR and reading IsRunning; the lack of this barrier might be
1049         * the cause of errata #1235).
1050         */
1051         avic_vcpu_put(vcpu);
1052 }
1053
1054 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
1055 {
1056         if (!kvm_vcpu_apicv_active(vcpu))
1057                 return;
1058
1059         avic_vcpu_load(vcpu, vcpu->cpu);
1060 }