Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[sfrench/cifs-2.6.git] / arch / x86 / kvm / reverse_cpuid.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8
9 /*
10  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11  * unknown to the kernel, but need to be directly used by KVM.  Note, these
12  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13  */
14 enum kvm_only_cpuid_leafs {
15         CPUID_12_EAX     = NCAPINTS,
16         CPUID_7_1_EDX,
17         CPUID_8000_0007_EDX,
18         CPUID_8000_0022_EAX,
19         CPUID_7_2_EDX,
20         NR_KVM_CPU_CAPS,
21
22         NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
23 };
24
25 /*
26  * Define a KVM-only feature flag.
27  *
28  * For features that are scattered by cpufeatures.h, __feature_translate() also
29  * needs to be updated to translate the kernel-defined feature into the
30  * KVM-defined feature.
31  *
32  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
33  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
34  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
35  * needed in this case.
36  */
37 #define KVM_X86_FEATURE(w, f)           ((w)*32 + (f))
38
39 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
40 #define KVM_X86_FEATURE_SGX1            KVM_X86_FEATURE(CPUID_12_EAX, 0)
41 #define KVM_X86_FEATURE_SGX2            KVM_X86_FEATURE(CPUID_12_EAX, 1)
42 #define KVM_X86_FEATURE_SGX_EDECCSSA    KVM_X86_FEATURE(CPUID_12_EAX, 11)
43
44 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
45 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
46 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
47 #define X86_FEATURE_AMX_COMPLEX         KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
48 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
49
50 /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
51 #define X86_FEATURE_INTEL_PSFD          KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
52 #define X86_FEATURE_IPRED_CTRL          KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
53 #define KVM_X86_FEATURE_RRSBA_CTRL      KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
54 #define X86_FEATURE_DDPD_U              KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
55 #define X86_FEATURE_BHI_CTRL            KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
56 #define X86_FEATURE_MCDT_NO             KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
57
58 /* CPUID level 0x80000007 (EDX). */
59 #define KVM_X86_FEATURE_CONSTANT_TSC    KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
60
61 /* CPUID level 0x80000022 (EAX) */
62 #define KVM_X86_FEATURE_PERFMON_V2      KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
63
64 struct cpuid_reg {
65         u32 function;
66         u32 index;
67         int reg;
68 };
69
70 static const struct cpuid_reg reverse_cpuid[] = {
71         [CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
72         [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
73         [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
74         [CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
75         [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
76         [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
77         [CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
78         [CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
79         [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
80         [CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
81         [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
82         [CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
83         [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
84         [CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
85         [CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
86         [CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
87         [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
88         [CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
89         [CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
90         [CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
91         [CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
92         [CPUID_7_2_EDX]       = {         7, 2, CPUID_EDX},
93 };
94
95 /*
96  * Reverse CPUID and its derivatives can only be used for hardware-defined
97  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
98  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
99  * is nonsensical as the bit number/mask is an arbitrary software-defined value
100  * and can't be used by KVM to query/control guest capabilities.  And obviously
101  * the leaf being queried must have an entry in the lookup table.
102  */
103 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
104 {
105         BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
106         BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
107         BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
108         BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
109         BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
110         BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
111         BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
112         BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
113 }
114
115 /*
116  * Translate feature bits that are scattered in the kernel's cpufeatures word
117  * into KVM feature words that align with hardware's definitions.
118  */
119 static __always_inline u32 __feature_translate(int x86_feature)
120 {
121 #define KVM_X86_TRANSLATE_FEATURE(f)    \
122         case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
123
124         switch (x86_feature) {
125         KVM_X86_TRANSLATE_FEATURE(SGX1);
126         KVM_X86_TRANSLATE_FEATURE(SGX2);
127         KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
128         KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
129         KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
130         KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
131         default:
132                 return x86_feature;
133         }
134 }
135
136 static __always_inline u32 __feature_leaf(int x86_feature)
137 {
138         return __feature_translate(x86_feature) / 32;
139 }
140
141 /*
142  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
143  * the hardware defined bit number (stored in bits 4:0) and a software defined
144  * "word" (stored in bits 31:5).  The word is used to index into arrays of
145  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
146  */
147 static __always_inline u32 __feature_bit(int x86_feature)
148 {
149         x86_feature = __feature_translate(x86_feature);
150
151         reverse_cpuid_check(x86_feature / 32);
152         return 1 << (x86_feature & 31);
153 }
154
155 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
156
157 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
158 {
159         unsigned int x86_leaf = __feature_leaf(x86_feature);
160
161         reverse_cpuid_check(x86_leaf);
162         return reverse_cpuid[x86_leaf];
163 }
164
165 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
166                                                   u32 reg)
167 {
168         switch (reg) {
169         case CPUID_EAX:
170                 return &entry->eax;
171         case CPUID_EBX:
172                 return &entry->ebx;
173         case CPUID_ECX:
174                 return &entry->ecx;
175         case CPUID_EDX:
176                 return &entry->edx;
177         default:
178                 BUILD_BUG();
179                 return NULL;
180         }
181 }
182
183 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
184                                                 unsigned int x86_feature)
185 {
186         const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
187
188         return __cpuid_entry_get_reg(entry, cpuid.reg);
189 }
190
191 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
192                                            unsigned int x86_feature)
193 {
194         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
195
196         return *reg & __feature_bit(x86_feature);
197 }
198
199 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
200                                             unsigned int x86_feature)
201 {
202         return cpuid_entry_get(entry, x86_feature);
203 }
204
205 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
206                                               unsigned int x86_feature)
207 {
208         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
209
210         *reg &= ~__feature_bit(x86_feature);
211 }
212
213 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
214                                             unsigned int x86_feature)
215 {
216         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
217
218         *reg |= __feature_bit(x86_feature);
219 }
220
221 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
222                                                unsigned int x86_feature,
223                                                bool set)
224 {
225         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
226
227         /*
228          * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
229          * compiler into using CMOV instead of Jcc when possible.
230          */
231         if (set)
232                 *reg |= __feature_bit(x86_feature);
233         else
234                 *reg &= ~__feature_bit(x86_feature);
235 }
236
237 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */