HID: input: avoid polling stylus battery on Chromebook Pompom
[sfrench/cifs-2.6.git] / arch / x86 / kvm / reverse_cpuid.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8
9 /*
10  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11  * unknown to the kernel, but need to be directly used by KVM.  Note, these
12  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13  */
14 enum kvm_only_cpuid_leafs {
15         CPUID_12_EAX     = NCAPINTS,
16         CPUID_7_1_EDX,
17         CPUID_8000_0007_EDX,
18         CPUID_8000_0022_EAX,
19         NR_KVM_CPU_CAPS,
20
21         NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
22 };
23
24 /*
25  * Define a KVM-only feature flag.
26  *
27  * For features that are scattered by cpufeatures.h, __feature_translate() also
28  * needs to be updated to translate the kernel-defined feature into the
29  * KVM-defined feature.
30  *
31  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
32  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
33  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
34  * needed in this case.
35  */
36 #define KVM_X86_FEATURE(w, f)           ((w)*32 + (f))
37
38 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
39 #define KVM_X86_FEATURE_SGX1            KVM_X86_FEATURE(CPUID_12_EAX, 0)
40 #define KVM_X86_FEATURE_SGX2            KVM_X86_FEATURE(CPUID_12_EAX, 1)
41 #define KVM_X86_FEATURE_SGX_EDECCSSA    KVM_X86_FEATURE(CPUID_12_EAX, 11)
42
43 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
44 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
45 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
46 #define X86_FEATURE_AMX_COMPLEX         KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
47 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
48
49 /* CPUID level 0x80000007 (EDX). */
50 #define KVM_X86_FEATURE_CONSTANT_TSC    KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
51
52 /* CPUID level 0x80000022 (EAX) */
53 #define KVM_X86_FEATURE_PERFMON_V2      KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
54
55 struct cpuid_reg {
56         u32 function;
57         u32 index;
58         int reg;
59 };
60
61 static const struct cpuid_reg reverse_cpuid[] = {
62         [CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
63         [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
64         [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
65         [CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
66         [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
67         [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
68         [CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
69         [CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
70         [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
71         [CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
72         [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
73         [CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
74         [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
75         [CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
76         [CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
77         [CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
78         [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
79         [CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
80         [CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
81         [CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
82         [CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
83 };
84
85 /*
86  * Reverse CPUID and its derivatives can only be used for hardware-defined
87  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
88  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
89  * is nonsensical as the bit number/mask is an arbitrary software-defined value
90  * and can't be used by KVM to query/control guest capabilities.  And obviously
91  * the leaf being queried must have an entry in the lookup table.
92  */
93 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
94 {
95         BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
96         BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
97         BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
98         BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
99         BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
100         BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
101 }
102
103 /*
104  * Translate feature bits that are scattered in the kernel's cpufeatures word
105  * into KVM feature words that align with hardware's definitions.
106  */
107 static __always_inline u32 __feature_translate(int x86_feature)
108 {
109         if (x86_feature == X86_FEATURE_SGX1)
110                 return KVM_X86_FEATURE_SGX1;
111         else if (x86_feature == X86_FEATURE_SGX2)
112                 return KVM_X86_FEATURE_SGX2;
113         else if (x86_feature == X86_FEATURE_SGX_EDECCSSA)
114                 return KVM_X86_FEATURE_SGX_EDECCSSA;
115         else if (x86_feature == X86_FEATURE_CONSTANT_TSC)
116                 return KVM_X86_FEATURE_CONSTANT_TSC;
117         else if (x86_feature == X86_FEATURE_PERFMON_V2)
118                 return KVM_X86_FEATURE_PERFMON_V2;
119
120         return x86_feature;
121 }
122
123 static __always_inline u32 __feature_leaf(int x86_feature)
124 {
125         return __feature_translate(x86_feature) / 32;
126 }
127
128 /*
129  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
130  * the hardware defined bit number (stored in bits 4:0) and a software defined
131  * "word" (stored in bits 31:5).  The word is used to index into arrays of
132  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
133  */
134 static __always_inline u32 __feature_bit(int x86_feature)
135 {
136         x86_feature = __feature_translate(x86_feature);
137
138         reverse_cpuid_check(x86_feature / 32);
139         return 1 << (x86_feature & 31);
140 }
141
142 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
143
144 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
145 {
146         unsigned int x86_leaf = __feature_leaf(x86_feature);
147
148         reverse_cpuid_check(x86_leaf);
149         return reverse_cpuid[x86_leaf];
150 }
151
152 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
153                                                   u32 reg)
154 {
155         switch (reg) {
156         case CPUID_EAX:
157                 return &entry->eax;
158         case CPUID_EBX:
159                 return &entry->ebx;
160         case CPUID_ECX:
161                 return &entry->ecx;
162         case CPUID_EDX:
163                 return &entry->edx;
164         default:
165                 BUILD_BUG();
166                 return NULL;
167         }
168 }
169
170 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
171                                                 unsigned int x86_feature)
172 {
173         const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
174
175         return __cpuid_entry_get_reg(entry, cpuid.reg);
176 }
177
178 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
179                                            unsigned int x86_feature)
180 {
181         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
182
183         return *reg & __feature_bit(x86_feature);
184 }
185
186 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
187                                             unsigned int x86_feature)
188 {
189         return cpuid_entry_get(entry, x86_feature);
190 }
191
192 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
193                                               unsigned int x86_feature)
194 {
195         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
196
197         *reg &= ~__feature_bit(x86_feature);
198 }
199
200 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
201                                             unsigned int x86_feature)
202 {
203         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
204
205         *reg |= __feature_bit(x86_feature);
206 }
207
208 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
209                                                unsigned int x86_feature,
210                                                bool set)
211 {
212         u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
213
214         /*
215          * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
216          * compiler into using CMOV instead of Jcc when possible.
217          */
218         if (set)
219                 *reg |= __feature_bit(x86_feature);
220         else
221                 *reg &= ~__feature_bit(x86_feature);
222 }
223
224 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */