Merge tag '6.6-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu / paging_tmpl.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 /*
19  * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables,
20  * as well as guest EPT tables, so the code in this file is compiled thrice,
21  * once per guest PTE type.  The per-type defines are #undef'd at the end.
22  */
23
24 #if PTTYPE == 64
25         #define pt_element_t u64
26         #define guest_walker guest_walker64
27         #define FNAME(name) paging##64_##name
28         #define PT_LEVEL_BITS 9
29         #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
30         #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
31         #define PT_HAVE_ACCESSED_DIRTY(mmu) true
32         #ifdef CONFIG_X86_64
33         #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
34         #else
35         #define PT_MAX_FULL_LEVELS 2
36         #endif
37 #elif PTTYPE == 32
38         #define pt_element_t u32
39         #define guest_walker guest_walker32
40         #define FNAME(name) paging##32_##name
41         #define PT_LEVEL_BITS 10
42         #define PT_MAX_FULL_LEVELS 2
43         #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
44         #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
45         #define PT_HAVE_ACCESSED_DIRTY(mmu) true
46
47         #define PT32_DIR_PSE36_SIZE 4
48         #define PT32_DIR_PSE36_SHIFT 13
49         #define PT32_DIR_PSE36_MASK \
50                 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
51 #elif PTTYPE == PTTYPE_EPT
52         #define pt_element_t u64
53         #define guest_walker guest_walkerEPT
54         #define FNAME(name) ept_##name
55         #define PT_LEVEL_BITS 9
56         #define PT_GUEST_DIRTY_SHIFT 9
57         #define PT_GUEST_ACCESSED_SHIFT 8
58         #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled)
59         #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
60 #else
61         #error Invalid PTTYPE value
62 #endif
63
64 /* Common logic, but per-type values.  These also need to be undefined. */
65 #define PT_BASE_ADDR_MASK       ((pt_element_t)(((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
66 #define PT_LVL_ADDR_MASK(lvl)   __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
67 #define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS)
68 #define PT_INDEX(addr, lvl)     __PT_INDEX(addr, lvl, PT_LEVEL_BITS)
69
70 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
71 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
72
73 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
74 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K)
75
76 /*
77  * The guest_walker structure emulates the behavior of the hardware page
78  * table walker.
79  */
80 struct guest_walker {
81         int level;
82         unsigned max_level;
83         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
84         pt_element_t ptes[PT_MAX_FULL_LEVELS];
85         pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
86         gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
87         pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
88         bool pte_writable[PT_MAX_FULL_LEVELS];
89         unsigned int pt_access[PT_MAX_FULL_LEVELS];
90         unsigned int pte_access;
91         gfn_t gfn;
92         struct x86_exception fault;
93 };
94
95 #if PTTYPE == 32
96 static inline gfn_t pse36_gfn_delta(u32 gpte)
97 {
98         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
99
100         return (gpte & PT32_DIR_PSE36_MASK) << shift;
101 }
102 #endif
103
104 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
105 {
106         return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
107 }
108
109 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
110                                              unsigned gpte)
111 {
112         unsigned mask;
113
114         /* dirty bit is not supported, so no need to track it */
115         if (!PT_HAVE_ACCESSED_DIRTY(mmu))
116                 return;
117
118         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
119
120         mask = (unsigned)~ACC_WRITE_MASK;
121         /* Allow write access to dirty gptes */
122         mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
123                 PT_WRITABLE_MASK;
124         *access &= mask;
125 }
126
127 static inline int FNAME(is_present_gpte)(unsigned long pte)
128 {
129 #if PTTYPE != PTTYPE_EPT
130         return pte & PT_PRESENT_MASK;
131 #else
132         return pte & 7;
133 #endif
134 }
135
136 static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
137 {
138 #if PTTYPE != PTTYPE_EPT
139         return false;
140 #else
141         return __is_bad_mt_xwr(rsvd_check, gpte);
142 #endif
143 }
144
145 static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
146 {
147         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
148                FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
149 }
150
151 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
152                                   struct kvm_mmu_page *sp, u64 *spte,
153                                   u64 gpte)
154 {
155         if (!FNAME(is_present_gpte)(gpte))
156                 goto no_present;
157
158         /* Prefetch only accessed entries (unless A/D bits are disabled). */
159         if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
160             !(gpte & PT_GUEST_ACCESSED_MASK))
161                 goto no_present;
162
163         if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K))
164                 goto no_present;
165
166         return false;
167
168 no_present:
169         drop_spte(vcpu->kvm, spte);
170         return true;
171 }
172
173 /*
174  * For PTTYPE_EPT, a page table can be executable but not readable
175  * on supported processors. Therefore, set_spte does not automatically
176  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
177  * to signify readability since it isn't used in the EPT case
178  */
179 static inline unsigned FNAME(gpte_access)(u64 gpte)
180 {
181         unsigned access;
182 #if PTTYPE == PTTYPE_EPT
183         access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
184                 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
185                 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
186 #else
187         BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
188         BUILD_BUG_ON(ACC_EXEC_MASK != 1);
189         access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
190         /* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
191         access ^= (gpte >> PT64_NX_SHIFT);
192 #endif
193
194         return access;
195 }
196
197 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
198                                              struct kvm_mmu *mmu,
199                                              struct guest_walker *walker,
200                                              gpa_t addr, int write_fault)
201 {
202         unsigned level, index;
203         pt_element_t pte, orig_pte;
204         pt_element_t __user *ptep_user;
205         gfn_t table_gfn;
206         int ret;
207
208         /* dirty/accessed bits are not supported, so no need to update them */
209         if (!PT_HAVE_ACCESSED_DIRTY(mmu))
210                 return 0;
211
212         for (level = walker->max_level; level >= walker->level; --level) {
213                 pte = orig_pte = walker->ptes[level - 1];
214                 table_gfn = walker->table_gfn[level - 1];
215                 ptep_user = walker->ptep_user[level - 1];
216                 index = offset_in_page(ptep_user) / sizeof(pt_element_t);
217                 if (!(pte & PT_GUEST_ACCESSED_MASK)) {
218                         trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
219                         pte |= PT_GUEST_ACCESSED_MASK;
220                 }
221                 if (level == walker->level && write_fault &&
222                                 !(pte & PT_GUEST_DIRTY_MASK)) {
223                         trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
224 #if PTTYPE == PTTYPE_EPT
225                         if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr))
226                                 return -EINVAL;
227 #endif
228                         pte |= PT_GUEST_DIRTY_MASK;
229                 }
230                 if (pte == orig_pte)
231                         continue;
232
233                 /*
234                  * If the slot is read-only, simply do not process the accessed
235                  * and dirty bits.  This is the correct thing to do if the slot
236                  * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
237                  * are only supported if the accessed and dirty bits are already
238                  * set in the ROM (so that MMIO writes are never needed).
239                  *
240                  * Note that NPT does not allow this at all and faults, since
241                  * it always wants nested page table entries for the guest
242                  * page tables to be writable.  And EPT works but will simply
243                  * overwrite the read-only memory to set the accessed and dirty
244                  * bits.
245                  */
246                 if (unlikely(!walker->pte_writable[level - 1]))
247                         continue;
248
249                 ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault);
250                 if (ret)
251                         return ret;
252
253                 kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
254                 walker->ptes[level - 1] = pte;
255         }
256         return 0;
257 }
258
259 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
260 {
261         unsigned pkeys = 0;
262 #if PTTYPE == 64
263         pte_t pte = {.pte = gpte};
264
265         pkeys = pte_flags_pkey(pte_flags(pte));
266 #endif
267         return pkeys;
268 }
269
270 static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu,
271                                        unsigned int level, unsigned int gpte)
272 {
273         /*
274          * For EPT and PAE paging (both variants), bit 7 is either reserved at
275          * all level or indicates a huge page (ignoring CR3/EPTP).  In either
276          * case, bit 7 being set terminates the walk.
277          */
278 #if PTTYPE == 32
279         /*
280          * 32-bit paging requires special handling because bit 7 is ignored if
281          * CR4.PSE=0, not reserved.  Clear bit 7 in the gpte if the level is
282          * greater than the last level for which bit 7 is the PAGE_SIZE bit.
283          *
284          * The RHS has bit 7 set iff level < (2 + PSE).  If it is clear, bit 7
285          * is not reserved and does not indicate a large page at this level,
286          * so clear PT_PAGE_SIZE_MASK in gpte if that is the case.
287          */
288         gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse);
289 #endif
290         /*
291          * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
292          * iff level <= PG_LEVEL_4K, which for our purpose means
293          * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
294          */
295         gpte |= level - PG_LEVEL_4K - 1;
296
297         return gpte & PT_PAGE_SIZE_MASK;
298 }
299 /*
300  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
301  */
302 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
303                                     struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
304                                     gpa_t addr, u64 access)
305 {
306         int ret;
307         pt_element_t pte;
308         pt_element_t __user *ptep_user;
309         gfn_t table_gfn;
310         u64 pt_access, pte_access;
311         unsigned index, accessed_dirty, pte_pkey;
312         u64 nested_access;
313         gpa_t pte_gpa;
314         bool have_ad;
315         int offset;
316         u64 walk_nx_mask = 0;
317         const int write_fault = access & PFERR_WRITE_MASK;
318         const int user_fault  = access & PFERR_USER_MASK;
319         const int fetch_fault = access & PFERR_FETCH_MASK;
320         u16 errcode = 0;
321         gpa_t real_gpa;
322         gfn_t gfn;
323
324         trace_kvm_mmu_pagetable_walk(addr, access);
325 retry_walk:
326         walker->level = mmu->cpu_role.base.level;
327         pte           = kvm_mmu_get_guest_pgd(vcpu, mmu);
328         have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
329
330 #if PTTYPE == 64
331         walk_nx_mask = 1ULL << PT64_NX_SHIFT;
332         if (walker->level == PT32E_ROOT_LEVEL) {
333                 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
334                 trace_kvm_mmu_paging_element(pte, walker->level);
335                 if (!FNAME(is_present_gpte)(pte))
336                         goto error;
337                 --walker->level;
338         }
339 #endif
340         walker->max_level = walker->level;
341
342         /*
343          * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
344          * by the MOV to CR instruction are treated as reads and do not cause the
345          * processor to set the dirty flag in any EPT paging-structure entry.
346          */
347         nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
348
349         pte_access = ~0;
350
351         /*
352          * Queue a page fault for injection if this assertion fails, as callers
353          * assume that walker.fault contains sane info on a walk failure.  I.e.
354          * avoid making the situation worse by inducing even worse badness
355          * between when the assertion fails and when KVM kicks the vCPU out to
356          * userspace (because the VM is bugged).
357          */
358         if (KVM_BUG_ON(is_long_mode(vcpu) && !is_pae(vcpu), vcpu->kvm))
359                 goto error;
360
361         ++walker->level;
362
363         do {
364                 struct kvm_memory_slot *slot;
365                 unsigned long host_addr;
366
367                 pt_access = pte_access;
368                 --walker->level;
369
370                 index = PT_INDEX(addr, walker->level);
371                 table_gfn = gpte_to_gfn(pte);
372                 offset    = index * sizeof(pt_element_t);
373                 pte_gpa   = gfn_to_gpa(table_gfn) + offset;
374
375                 BUG_ON(walker->level < 1);
376                 walker->table_gfn[walker->level - 1] = table_gfn;
377                 walker->pte_gpa[walker->level - 1] = pte_gpa;
378
379                 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn),
380                                              nested_access, &walker->fault);
381
382                 /*
383                  * FIXME: This can happen if emulation (for of an INS/OUTS
384                  * instruction) triggers a nested page fault.  The exit
385                  * qualification / exit info field will incorrectly have
386                  * "guest page access" as the nested page fault's cause,
387                  * instead of "guest page structure access".  To fix this,
388                  * the x86_exception struct should be augmented with enough
389                  * information to fix the exit_qualification or exit_info_1
390                  * fields.
391                  */
392                 if (unlikely(real_gpa == INVALID_GPA))
393                         return 0;
394
395                 slot = kvm_vcpu_gfn_to_memslot(vcpu, gpa_to_gfn(real_gpa));
396                 if (!kvm_is_visible_memslot(slot))
397                         goto error;
398
399                 host_addr = gfn_to_hva_memslot_prot(slot, gpa_to_gfn(real_gpa),
400                                             &walker->pte_writable[walker->level - 1]);
401                 if (unlikely(kvm_is_error_hva(host_addr)))
402                         goto error;
403
404                 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
405                 if (unlikely(__get_user(pte, ptep_user)))
406                         goto error;
407                 walker->ptep_user[walker->level - 1] = ptep_user;
408
409                 trace_kvm_mmu_paging_element(pte, walker->level);
410
411                 /*
412                  * Inverting the NX it lets us AND it like other
413                  * permission bits.
414                  */
415                 pte_access = pt_access & (pte ^ walk_nx_mask);
416
417                 if (unlikely(!FNAME(is_present_gpte)(pte)))
418                         goto error;
419
420                 if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
421                         errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
422                         goto error;
423                 }
424
425                 walker->ptes[walker->level - 1] = pte;
426
427                 /* Convert to ACC_*_MASK flags for struct guest_walker.  */
428                 walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
429         } while (!FNAME(is_last_gpte)(mmu, walker->level, pte));
430
431         pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
432         accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
433
434         /* Convert to ACC_*_MASK flags for struct guest_walker.  */
435         walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
436         errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
437         if (unlikely(errcode))
438                 goto error;
439
440         gfn = gpte_to_gfn_lvl(pte, walker->level);
441         gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
442
443 #if PTTYPE == 32
444         if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36())
445                 gfn += pse36_gfn_delta(pte);
446 #endif
447
448         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault);
449         if (real_gpa == INVALID_GPA)
450                 return 0;
451
452         walker->gfn = real_gpa >> PAGE_SHIFT;
453
454         if (!write_fault)
455                 FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
456         else
457                 /*
458                  * On a write fault, fold the dirty bit into accessed_dirty.
459                  * For modes without A/D bits support accessed_dirty will be
460                  * always clear.
461                  */
462                 accessed_dirty &= pte >>
463                         (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
464
465         if (unlikely(!accessed_dirty)) {
466                 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
467                                                         addr, write_fault);
468                 if (unlikely(ret < 0))
469                         goto error;
470                 else if (ret)
471                         goto retry_walk;
472         }
473
474         return 1;
475
476 error:
477         errcode |= write_fault | user_fault;
478         if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu)))
479                 errcode |= PFERR_FETCH_MASK;
480
481         walker->fault.vector = PF_VECTOR;
482         walker->fault.error_code_valid = true;
483         walker->fault.error_code = errcode;
484
485 #if PTTYPE == PTTYPE_EPT
486         /*
487          * Use PFERR_RSVD_MASK in error_code to tell if EPT
488          * misconfiguration requires to be injected. The detection is
489          * done by is_rsvd_bits_set() above.
490          *
491          * We set up the value of exit_qualification to inject:
492          * [2:0] - Derive from the access bits. The exit_qualification might be
493          *         out of date if it is serving an EPT misconfiguration.
494          * [5:3] - Calculated by the page walk of the guest EPT page tables
495          * [7:8] - Derived from [7:8] of real exit_qualification
496          *
497          * The other bits are set to 0.
498          */
499         if (!(errcode & PFERR_RSVD_MASK)) {
500                 vcpu->arch.exit_qualification &= (EPT_VIOLATION_GVA_IS_VALID |
501                                                   EPT_VIOLATION_GVA_TRANSLATED);
502                 if (write_fault)
503                         vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
504                 if (user_fault)
505                         vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
506                 if (fetch_fault)
507                         vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
508
509                 /*
510                  * Note, pte_access holds the raw RWX bits from the EPTE, not
511                  * ACC_*_MASK flags!
512                  */
513                 vcpu->arch.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) <<
514                                                  EPT_VIOLATION_RWX_SHIFT;
515         }
516 #endif
517         walker->fault.address = addr;
518         walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
519         walker->fault.async_page_fault = false;
520
521         trace_kvm_mmu_walker_error(walker->fault.error_code);
522         return 0;
523 }
524
525 static int FNAME(walk_addr)(struct guest_walker *walker,
526                             struct kvm_vcpu *vcpu, gpa_t addr, u64 access)
527 {
528         return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
529                                         access);
530 }
531
532 static bool
533 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
534                      u64 *spte, pt_element_t gpte)
535 {
536         struct kvm_memory_slot *slot;
537         unsigned pte_access;
538         gfn_t gfn;
539         kvm_pfn_t pfn;
540
541         if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
542                 return false;
543
544         gfn = gpte_to_gfn(gpte);
545         pte_access = sp->role.access & FNAME(gpte_access)(gpte);
546         FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
547
548         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, pte_access & ACC_WRITE_MASK);
549         if (!slot)
550                 return false;
551
552         pfn = gfn_to_pfn_memslot_atomic(slot, gfn);
553         if (is_error_pfn(pfn))
554                 return false;
555
556         mmu_set_spte(vcpu, slot, spte, pte_access, gfn, pfn, NULL);
557         kvm_release_pfn_clean(pfn);
558         return true;
559 }
560
561 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
562                                 struct guest_walker *gw, int level)
563 {
564         pt_element_t curr_pte;
565         gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
566         u64 mask;
567         int r, index;
568
569         if (level == PG_LEVEL_4K) {
570                 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
571                 base_gpa = pte_gpa & ~mask;
572                 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
573
574                 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
575                                 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
576                 curr_pte = gw->prefetch_ptes[index];
577         } else
578                 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
579                                   &curr_pte, sizeof(curr_pte));
580
581         return r || curr_pte != gw->ptes[level - 1];
582 }
583
584 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
585                                 u64 *sptep)
586 {
587         struct kvm_mmu_page *sp;
588         pt_element_t *gptep = gw->prefetch_ptes;
589         u64 *spte;
590         int i;
591
592         sp = sptep_to_sp(sptep);
593
594         if (sp->role.level > PG_LEVEL_4K)
595                 return;
596
597         /*
598          * If addresses are being invalidated, skip prefetching to avoid
599          * accidentally prefetching those addresses.
600          */
601         if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
602                 return;
603
604         if (sp->role.direct)
605                 return __direct_pte_prefetch(vcpu, sp, sptep);
606
607         i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
608         spte = sp->spt + i;
609
610         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
611                 if (spte == sptep)
612                         continue;
613
614                 if (is_shadow_present_pte(*spte))
615                         continue;
616
617                 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i]))
618                         break;
619         }
620 }
621
622 /*
623  * Fetch a shadow pte for a specific level in the paging hierarchy.
624  * If the guest tries to write a write-protected page, we need to
625  * emulate this operation, return 1 to indicate this case.
626  */
627 static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
628                          struct guest_walker *gw)
629 {
630         struct kvm_mmu_page *sp = NULL;
631         struct kvm_shadow_walk_iterator it;
632         unsigned int direct_access, access;
633         int top_level, ret;
634         gfn_t base_gfn = fault->gfn;
635
636         WARN_ON_ONCE(gw->gfn != base_gfn);
637         direct_access = gw->pte_access;
638
639         top_level = vcpu->arch.mmu->cpu_role.base.level;
640         if (top_level == PT32E_ROOT_LEVEL)
641                 top_level = PT32_ROOT_LEVEL;
642         /*
643          * Verify that the top-level gpte is still there.  Since the page
644          * is a root page, it is either write protected (and cannot be
645          * changed from now on) or it is invalid (in which case, we don't
646          * really care if it changes underneath us after this point).
647          */
648         if (FNAME(gpte_changed)(vcpu, gw, top_level))
649                 goto out_gpte_changed;
650
651         if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
652                 goto out_gpte_changed;
653
654         /*
655          * Load a new root and retry the faulting instruction in the extremely
656          * unlikely scenario that the guest root gfn became visible between
657          * loading a dummy root and handling the resulting page fault, e.g. if
658          * userspace create a memslot in the interim.
659          */
660         if (unlikely(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) {
661                 kvm_make_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu);
662                 goto out_gpte_changed;
663         }
664
665         for_each_shadow_entry(vcpu, fault->addr, it) {
666                 gfn_t table_gfn;
667
668                 clear_sp_write_flooding_count(it.sptep);
669                 if (it.level == gw->level)
670                         break;
671
672                 table_gfn = gw->table_gfn[it.level - 2];
673                 access = gw->pt_access[it.level - 2];
674                 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn,
675                                           false, access);
676
677                 if (sp != ERR_PTR(-EEXIST)) {
678                         /*
679                          * We must synchronize the pagetable before linking it
680                          * because the guest doesn't need to flush tlb when
681                          * the gpte is changed from non-present to present.
682                          * Otherwise, the guest may use the wrong mapping.
683                          *
684                          * For PG_LEVEL_4K, kvm_mmu_get_page() has already
685                          * synchronized it transiently via kvm_sync_page().
686                          *
687                          * For higher level pagetable, we synchronize it via
688                          * the slower mmu_sync_children().  If it needs to
689                          * break, some progress has been made; return
690                          * RET_PF_RETRY and retry on the next #PF.
691                          * KVM_REQ_MMU_SYNC is not necessary but it
692                          * expedites the process.
693                          */
694                         if (sp->unsync_children &&
695                             mmu_sync_children(vcpu, sp, false))
696                                 return RET_PF_RETRY;
697                 }
698
699                 /*
700                  * Verify that the gpte in the page we've just write
701                  * protected is still there.
702                  */
703                 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
704                         goto out_gpte_changed;
705
706                 if (sp != ERR_PTR(-EEXIST))
707                         link_shadow_page(vcpu, it.sptep, sp);
708
709                 if (fault->write && table_gfn == fault->gfn)
710                         fault->write_fault_to_shadow_pgtable = true;
711         }
712
713         /*
714          * Adjust the hugepage size _after_ resolving indirect shadow pages.
715          * KVM doesn't support mapping hugepages into the guest for gfns that
716          * are being shadowed by KVM, i.e. allocating a new shadow page may
717          * affect the allowed hugepage size.
718          */
719         kvm_mmu_hugepage_adjust(vcpu, fault);
720
721         trace_kvm_mmu_spte_requested(fault);
722
723         for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
724                 /*
725                  * We cannot overwrite existing page tables with an NX
726                  * large page, as the leaf could be executable.
727                  */
728                 if (fault->nx_huge_page_workaround_enabled)
729                         disallowed_hugepage_adjust(fault, *it.sptep, it.level);
730
731                 base_gfn = gfn_round_for_level(fault->gfn, it.level);
732                 if (it.level == fault->goal_level)
733                         break;
734
735                 validate_direct_spte(vcpu, it.sptep, direct_access);
736
737                 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn,
738                                           true, direct_access);
739                 if (sp == ERR_PTR(-EEXIST))
740                         continue;
741
742                 link_shadow_page(vcpu, it.sptep, sp);
743                 if (fault->huge_page_disallowed)
744                         account_nx_huge_page(vcpu->kvm, sp,
745                                              fault->req_level >= it.level);
746         }
747
748         if (WARN_ON_ONCE(it.level != fault->goal_level))
749                 return -EFAULT;
750
751         ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access,
752                            base_gfn, fault->pfn, fault);
753         if (ret == RET_PF_SPURIOUS)
754                 return ret;
755
756         FNAME(pte_prefetch)(vcpu, gw, it.sptep);
757         return ret;
758
759 out_gpte_changed:
760         return RET_PF_RETRY;
761 }
762
763 /*
764  * Page fault handler.  There are several causes for a page fault:
765  *   - there is no shadow pte for the guest pte
766  *   - write access through a shadow pte marked read only so that we can set
767  *     the dirty bit
768  *   - write access to a shadow pte marked read only so we can update the page
769  *     dirty bitmap, when userspace requests it
770  *   - mmio access; in this case we will never install a present shadow pte
771  *   - normal guest page fault due to the guest pte marked not present, not
772  *     writable, or not executable
773  *
774  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
775  *           a negative value on error.
776  */
777 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
778 {
779         struct guest_walker walker;
780         int r;
781
782         WARN_ON_ONCE(fault->is_tdp);
783
784         /*
785          * Look up the guest pte for the faulting address.
786          * If PFEC.RSVD is set, this is a shadow page fault.
787          * The bit needs to be cleared before walking guest page tables.
788          */
789         r = FNAME(walk_addr)(&walker, vcpu, fault->addr,
790                              fault->error_code & ~PFERR_RSVD_MASK);
791
792         /*
793          * The page is not mapped by the guest.  Let the guest handle it.
794          */
795         if (!r) {
796                 if (!fault->prefetch)
797                         kvm_inject_emulated_page_fault(vcpu, &walker.fault);
798
799                 return RET_PF_RETRY;
800         }
801
802         fault->gfn = walker.gfn;
803         fault->max_level = walker.level;
804         fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
805
806         if (page_fault_handle_page_track(vcpu, fault)) {
807                 shadow_page_table_clear_flood(vcpu, fault->addr);
808                 return RET_PF_EMULATE;
809         }
810
811         r = mmu_topup_memory_caches(vcpu, true);
812         if (r)
813                 return r;
814
815         r = kvm_faultin_pfn(vcpu, fault, walker.pte_access);
816         if (r != RET_PF_CONTINUE)
817                 return r;
818
819         /*
820          * Do not change pte_access if the pfn is a mmio page, otherwise
821          * we will cache the incorrect access into mmio spte.
822          */
823         if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) &&
824             !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) {
825                 walker.pte_access |= ACC_WRITE_MASK;
826                 walker.pte_access &= ~ACC_USER_MASK;
827
828                 /*
829                  * If we converted a user page to a kernel page,
830                  * so that the kernel can write to it when cr0.wp=0,
831                  * then we should prevent the kernel from executing it
832                  * if SMEP is enabled.
833                  */
834                 if (is_cr4_smep(vcpu->arch.mmu))
835                         walker.pte_access &= ~ACC_EXEC_MASK;
836         }
837
838         r = RET_PF_RETRY;
839         write_lock(&vcpu->kvm->mmu_lock);
840
841         if (is_page_fault_stale(vcpu, fault))
842                 goto out_unlock;
843
844         r = make_mmu_pages_available(vcpu);
845         if (r)
846                 goto out_unlock;
847         r = FNAME(fetch)(vcpu, fault, &walker);
848
849 out_unlock:
850         write_unlock(&vcpu->kvm->mmu_lock);
851         kvm_release_pfn_clean(fault->pfn);
852         return r;
853 }
854
855 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
856 {
857         int offset = 0;
858
859         WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
860
861         if (PTTYPE == 32)
862                 offset = sp->role.quadrant << SPTE_LEVEL_BITS;
863
864         return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
865 }
866
867 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
868 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
869                                gpa_t addr, u64 access,
870                                struct x86_exception *exception)
871 {
872         struct guest_walker walker;
873         gpa_t gpa = INVALID_GPA;
874         int r;
875
876 #ifndef CONFIG_X86_64
877         /* A 64-bit GVA should be impossible on 32-bit KVM. */
878         WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu);
879 #endif
880
881         r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access);
882
883         if (r) {
884                 gpa = gfn_to_gpa(walker.gfn);
885                 gpa |= addr & ~PAGE_MASK;
886         } else if (exception)
887                 *exception = walker.fault;
888
889         return gpa;
890 }
891
892 /*
893  * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is
894  * safe because:
895  * - The spte has a reference to the struct page, so the pfn for a given gfn
896  *   can't change unless all sptes pointing to it are nuked first.
897  *
898  * Returns
899  * < 0: failed to sync spte
900  *   0: the spte is synced and no tlb flushing is required
901  * > 0: the spte is synced and tlb flushing is required
902  */
903 static int FNAME(sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
904 {
905         bool host_writable;
906         gpa_t first_pte_gpa;
907         u64 *sptep, spte;
908         struct kvm_memory_slot *slot;
909         unsigned pte_access;
910         pt_element_t gpte;
911         gpa_t pte_gpa;
912         gfn_t gfn;
913
914         if (WARN_ON_ONCE(!sp->spt[i]))
915                 return 0;
916
917         first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
918         pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
919
920         if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
921                                        sizeof(pt_element_t)))
922                 return -1;
923
924         if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte))
925                 return 1;
926
927         gfn = gpte_to_gfn(gpte);
928         pte_access = sp->role.access;
929         pte_access &= FNAME(gpte_access)(gpte);
930         FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
931
932         if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access))
933                 return 0;
934
935         /*
936          * Drop the SPTE if the new protections would result in a RWX=0
937          * SPTE or if the gfn is changing.  The RWX=0 case only affects
938          * EPT with execute-only support, i.e. EPT without an effective
939          * "present" bit, as all other paging modes will create a
940          * read-only SPTE if pte_access is zero.
941          */
942         if ((!pte_access && !shadow_present_mask) ||
943             gfn != kvm_mmu_page_get_gfn(sp, i)) {
944                 drop_spte(vcpu->kvm, &sp->spt[i]);
945                 return 1;
946         }
947         /*
948          * Do nothing if the permissions are unchanged.  The existing SPTE is
949          * still, and prefetch_invalid_gpte() has verified that the A/D bits
950          * are set in the "new" gPTE, i.e. there is no danger of missing an A/D
951          * update due to A/D bits being set in the SPTE but not the gPTE.
952          */
953         if (kvm_mmu_page_get_access(sp, i) == pte_access)
954                 return 0;
955
956         /* Update the shadowed access bits in case they changed. */
957         kvm_mmu_page_set_access(sp, i, pte_access);
958
959         sptep = &sp->spt[i];
960         spte = *sptep;
961         host_writable = spte & shadow_host_writable_mask;
962         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
963         make_spte(vcpu, sp, slot, pte_access, gfn,
964                   spte_to_pfn(spte), spte, true, false,
965                   host_writable, &spte);
966
967         return mmu_spte_update(sptep, spte);
968 }
969
970 #undef pt_element_t
971 #undef guest_walker
972 #undef FNAME
973 #undef PT_BASE_ADDR_MASK
974 #undef PT_INDEX
975 #undef PT_LVL_ADDR_MASK
976 #undef PT_LVL_OFFSET_MASK
977 #undef PT_LEVEL_BITS
978 #undef PT_MAX_FULL_LEVELS
979 #undef gpte_to_gfn
980 #undef gpte_to_gfn_lvl
981 #undef PT_GUEST_ACCESSED_MASK
982 #undef PT_GUEST_DIRTY_MASK
983 #undef PT_GUEST_DIRTY_SHIFT
984 #undef PT_GUEST_ACCESSED_SHIFT
985 #undef PT_HAVE_ACCESSED_DIRTY