Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include "irq.h"
20 #include "ioapic.h"
21 #include "mmu.h"
22 #include "mmu_internal.h"
23 #include "tdp_mmu.h"
24 #include "x86.h"
25 #include "kvm_cache_regs.h"
26 #include "smm.h"
27 #include "kvm_emulate.h"
28 #include "page_track.h"
29 #include "cpuid.h"
30 #include "spte.h"
31
32 #include <linux/kvm_host.h>
33 #include <linux/types.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/highmem.h>
37 #include <linux/moduleparam.h>
38 #include <linux/export.h>
39 #include <linux/swap.h>
40 #include <linux/hugetlb.h>
41 #include <linux/compiler.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/sched/signal.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/kern_levels.h>
48 #include <linux/kstrtox.h>
49 #include <linux/kthread.h>
50 #include <linux/wordpart.h>
51
52 #include <asm/page.h>
53 #include <asm/memtype.h>
54 #include <asm/cmpxchg.h>
55 #include <asm/io.h>
56 #include <asm/set_memory.h>
57 #include <asm/spec-ctrl.h>
58 #include <asm/vmx.h>
59
60 #include "trace.h"
61
62 static bool nx_hugepage_mitigation_hard_disabled;
63
64 int __read_mostly nx_huge_pages = -1;
65 static uint __read_mostly nx_huge_pages_recovery_period_ms;
66 #ifdef CONFIG_PREEMPT_RT
67 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
68 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69 #else
70 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71 #endif
72
73 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76
77 static const struct kernel_param_ops nx_huge_pages_ops = {
78         .set = set_nx_huge_pages,
79         .get = get_nx_huge_pages,
80 };
81
82 static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83         .set = set_nx_huge_pages_recovery_param,
84         .get = param_get_uint,
85 };
86
87 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
89 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90                 &nx_huge_pages_recovery_ratio, 0644);
91 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92 module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93                 &nx_huge_pages_recovery_period_ms, 0644);
94 __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95
96 static bool __read_mostly force_flush_and_sync_on_reuse;
97 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98
99 /*
100  * When setting this variable to true it enables Two-Dimensional-Paging
101  * where the hardware walks 2 page tables:
102  * 1. the guest-virtual to guest-physical
103  * 2. while doing 1. it walks guest-physical to host-physical
104  * If the hardware supports that we don't need to do shadow paging.
105  */
106 bool tdp_enabled = false;
107
108 static bool __ro_after_init tdp_mmu_allowed;
109
110 #ifdef CONFIG_X86_64
111 bool __read_mostly tdp_mmu_enabled = true;
112 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113 #endif
114
115 static int max_huge_page_level __read_mostly;
116 static int tdp_root_level __read_mostly;
117 static int max_tdp_level __read_mostly;
118
119 #define PTE_PREFETCH_NUM                8
120
121 #include <trace/events/kvm.h>
122
123 /* make pte_list_desc fit well in cache lines */
124 #define PTE_LIST_EXT 14
125
126 /*
127  * struct pte_list_desc is the core data structure used to implement a custom
128  * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
129  * given GFN when used in the context of rmaps.  Using a custom list allows KVM
130  * to optimize for the common case where many GFNs will have at most a handful
131  * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
132  * memory footprint, which in turn improves runtime performance by exploiting
133  * cache locality.
134  *
135  * A list is comprised of one or more pte_list_desc objects (descriptors).
136  * Each individual descriptor stores up to PTE_LIST_EXT SPTEs.  If a descriptor
137  * is full and a new SPTEs needs to be added, a new descriptor is allocated and
138  * becomes the head of the list.  This means that by definitions, all tail
139  * descriptors are full.
140  *
141  * Note, the meta data fields are deliberately placed at the start of the
142  * structure to optimize the cacheline layout; accessing the descriptor will
143  * touch only a single cacheline so long as @spte_count<=6 (or if only the
144  * descriptors metadata is accessed).
145  */
146 struct pte_list_desc {
147         struct pte_list_desc *more;
148         /* The number of PTEs stored in _this_ descriptor. */
149         u32 spte_count;
150         /* The number of PTEs stored in all tails of this descriptor. */
151         u32 tail_count;
152         u64 *sptes[PTE_LIST_EXT];
153 };
154
155 struct kvm_shadow_walk_iterator {
156         u64 addr;
157         hpa_t shadow_addr;
158         u64 *sptep;
159         int level;
160         unsigned index;
161 };
162
163 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
164         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
165                                          (_root), (_addr));                \
166              shadow_walk_okay(&(_walker));                                 \
167              shadow_walk_next(&(_walker)))
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static void mmu_spte_set(u64 *sptep, u64 spte);
185
186 struct kvm_mmu_role_regs {
187         const unsigned long cr0;
188         const unsigned long cr4;
189         const u64 efer;
190 };
191
192 #define CREATE_TRACE_POINTS
193 #include "mmutrace.h"
194
195 /*
196  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
197  * reading from the role_regs.  Once the root_role is constructed, it becomes
198  * the single source of truth for the MMU's state.
199  */
200 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
201 static inline bool __maybe_unused                                       \
202 ____is_##reg##_##name(const struct kvm_mmu_role_regs *regs)             \
203 {                                                                       \
204         return !!(regs->reg & flag);                                    \
205 }
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216
217 /*
218  * The MMU itself (with a valid role) is the single source of truth for the
219  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
220  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221  * and the vCPU may be incorrect/irrelevant.
222  */
223 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
224 static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)        \
225 {                                                               \
226         return !!(mmu->cpu_role. base_or_ext . reg##_##name);   \
227 }
228 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
230 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
231 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
232 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
233 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
234 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235 BUILD_MMU_ROLE_ACCESSOR(ext,  efer, lma);
236
237 static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238 {
239         return mmu->cpu_role.base.level > 0;
240 }
241
242 static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243 {
244         return !mmu->cpu_role.base.has_4_byte_gpte;
245 }
246
247 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248 {
249         struct kvm_mmu_role_regs regs = {
250                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252                 .efer = vcpu->arch.efer,
253         };
254
255         return regs;
256 }
257
258 static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259 {
260         return kvm_read_cr3(vcpu);
261 }
262
263 static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264                                                   struct kvm_mmu *mmu)
265 {
266         if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267                 return kvm_read_cr3(vcpu);
268
269         return mmu->get_guest_pgd(vcpu);
270 }
271
272 static inline bool kvm_available_flush_remote_tlbs_range(void)
273 {
274 #if IS_ENABLED(CONFIG_HYPERV)
275         return kvm_x86_ops.flush_remote_tlbs_range;
276 #else
277         return false;
278 #endif
279 }
280
281 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
282
283 /* Flush the range of guest memory mapped by the given SPTE. */
284 static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
285 {
286         struct kvm_mmu_page *sp = sptep_to_sp(sptep);
287         gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(sptep));
288
289         kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
290 }
291
292 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293                            unsigned int access)
294 {
295         u64 spte = make_mmio_spte(vcpu, gfn, access);
296
297         trace_mark_mmio_spte(sptep, gfn, spte);
298         mmu_spte_set(sptep, spte);
299 }
300
301 static gfn_t get_mmio_spte_gfn(u64 spte)
302 {
303         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
304
305         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
306                & shadow_nonpresent_or_rsvd_mask;
307
308         return gpa >> PAGE_SHIFT;
309 }
310
311 static unsigned get_mmio_spte_access(u64 spte)
312 {
313         return spte & shadow_mmio_access_mask;
314 }
315
316 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
317 {
318         u64 kvm_gen, spte_gen, gen;
319
320         gen = kvm_vcpu_memslots(vcpu)->generation;
321         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
322                 return false;
323
324         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
325         spte_gen = get_mmio_spte_generation(spte);
326
327         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
328         return likely(kvm_gen == spte_gen);
329 }
330
331 static int is_cpuid_PSE36(void)
332 {
333         return 1;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339         WRITE_ONCE(*sptep, spte);
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344         WRITE_ONCE(*sptep, spte);
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349         return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354         return READ_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358         struct {
359                 u32 spte_low;
360                 u32 spte_high;
361         };
362         u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
368
369         if (is_shadow_present_pte(spte))
370                 return;
371
372         /* Ensure the spte is completely set before we increase the count */
373         smp_wmb();
374         sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379         union split_spte *ssptep, sspte;
380
381         ssptep = (union split_spte *)sptep;
382         sspte = (union split_spte)spte;
383
384         ssptep->spte_high = sspte.spte_high;
385
386         /*
387          * If we map the spte from nonpresent to present, We should store
388          * the high bits firstly, then set present bit, so cpu can not
389          * fetch this spte while we are setting the spte.
390          */
391         smp_wmb();
392
393         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398         union split_spte *ssptep, sspte;
399
400         ssptep = (union split_spte *)sptep;
401         sspte = (union split_spte)spte;
402
403         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
404
405         /*
406          * If we map the spte from present to nonpresent, we should clear
407          * present bit firstly to avoid vcpu fetch the old high bits.
408          */
409         smp_wmb();
410
411         ssptep->spte_high = sspte.spte_high;
412         count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417         union split_spte *ssptep, sspte, orig;
418
419         ssptep = (union split_spte *)sptep;
420         sspte = (union split_spte)spte;
421
422         /* xchg acts as a barrier before the setting of the high bits */
423         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424         orig.spte_high = ssptep->spte_high;
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427
428         return orig.spte;
429 }
430
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte (mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmap
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
452         union split_spte spte, *orig = (union split_spte *)sptep;
453         int count;
454
455 retry:
456         count = sp->clear_spte_count;
457         smp_rmb();
458
459         spte.spte_low = orig->spte_low;
460         smp_rmb();
461
462         spte.spte_high = orig->spte_high;
463         smp_rmb();
464
465         if (unlikely(spte.spte_low != orig->spte_low ||
466               count != sp->clear_spte_count))
467                 goto retry;
468
469         return spte.spte;
470 }
471 #endif
472
473 /* Rules for using mmu_spte_set:
474  * Set the sptep from nonpresent to present.
475  * Note: the sptep being assigned *must* be either not present
476  * or in a state where the hardware will not attempt to update
477  * the spte.
478  */
479 static void mmu_spte_set(u64 *sptep, u64 new_spte)
480 {
481         WARN_ON_ONCE(is_shadow_present_pte(*sptep));
482         __set_spte(sptep, new_spte);
483 }
484
485 /*
486  * Update the SPTE (excluding the PFN), but do not track changes in its
487  * accessed/dirty status.
488  */
489 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
490 {
491         u64 old_spte = *sptep;
492
493         WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
494         check_spte_writable_invariants(new_spte);
495
496         if (!is_shadow_present_pte(old_spte)) {
497                 mmu_spte_set(sptep, new_spte);
498                 return old_spte;
499         }
500
501         if (!spte_has_volatile_bits(old_spte))
502                 __update_clear_spte_fast(sptep, new_spte);
503         else
504                 old_spte = __update_clear_spte_slow(sptep, new_spte);
505
506         WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
507
508         return old_spte;
509 }
510
511 /* Rules for using mmu_spte_update:
512  * Update the state bits, it means the mapped pfn is not changed.
513  *
514  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
515  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
516  * spte, even though the writable spte might be cached on a CPU's TLB.
517  *
518  * Returns true if the TLB needs to be flushed
519  */
520 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
521 {
522         bool flush = false;
523         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
524
525         if (!is_shadow_present_pte(old_spte))
526                 return false;
527
528         /*
529          * For the spte updated out of mmu-lock is safe, since
530          * we always atomically update it, see the comments in
531          * spte_has_volatile_bits().
532          */
533         if (is_mmu_writable_spte(old_spte) &&
534               !is_writable_pte(new_spte))
535                 flush = true;
536
537         /*
538          * Flush TLB when accessed/dirty states are changed in the page tables,
539          * to guarantee consistency between TLB and page tables.
540          */
541
542         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
543                 flush = true;
544                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
545         }
546
547         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
548                 flush = true;
549                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
550         }
551
552         return flush;
553 }
554
555 /*
556  * Rules for using mmu_spte_clear_track_bits:
557  * It sets the sptep from present to nonpresent, and track the
558  * state bits, it is used to clear the last level sptep.
559  * Returns the old PTE.
560  */
561 static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
562 {
563         kvm_pfn_t pfn;
564         u64 old_spte = *sptep;
565         int level = sptep_to_sp(sptep)->role.level;
566         struct page *page;
567
568         if (!is_shadow_present_pte(old_spte) ||
569             !spte_has_volatile_bits(old_spte))
570                 __update_clear_spte_fast(sptep, 0ull);
571         else
572                 old_spte = __update_clear_spte_slow(sptep, 0ull);
573
574         if (!is_shadow_present_pte(old_spte))
575                 return old_spte;
576
577         kvm_update_page_stats(kvm, level, -1);
578
579         pfn = spte_to_pfn(old_spte);
580
581         /*
582          * KVM doesn't hold a reference to any pages mapped into the guest, and
583          * instead uses the mmu_notifier to ensure that KVM unmaps any pages
584          * before they are reclaimed.  Sanity check that, if the pfn is backed
585          * by a refcounted page, the refcount is elevated.
586          */
587         page = kvm_pfn_to_refcounted_page(pfn);
588         WARN_ON_ONCE(page && !page_count(page));
589
590         if (is_accessed_spte(old_spte))
591                 kvm_set_pfn_accessed(pfn);
592
593         if (is_dirty_spte(old_spte))
594                 kvm_set_pfn_dirty(pfn);
595
596         return old_spte;
597 }
598
599 /*
600  * Rules for using mmu_spte_clear_no_track:
601  * Directly clear spte without caring the state bits of sptep,
602  * it is used to set the upper level spte.
603  */
604 static void mmu_spte_clear_no_track(u64 *sptep)
605 {
606         __update_clear_spte_fast(sptep, 0ull);
607 }
608
609 static u64 mmu_spte_get_lockless(u64 *sptep)
610 {
611         return __get_spte_lockless(sptep);
612 }
613
614 /* Returns the Accessed status of the PTE and resets it at the same time. */
615 static bool mmu_spte_age(u64 *sptep)
616 {
617         u64 spte = mmu_spte_get_lockless(sptep);
618
619         if (!is_accessed_spte(spte))
620                 return false;
621
622         if (spte_ad_enabled(spte)) {
623                 clear_bit((ffs(shadow_accessed_mask) - 1),
624                           (unsigned long *)sptep);
625         } else {
626                 /*
627                  * Capture the dirty status of the page, so that it doesn't get
628                  * lost when the SPTE is marked for access tracking.
629                  */
630                 if (is_writable_pte(spte))
631                         kvm_set_pfn_dirty(spte_to_pfn(spte));
632
633                 spte = mark_spte_for_access_track(spte);
634                 mmu_spte_update_no_track(sptep, spte);
635         }
636
637         return true;
638 }
639
640 static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
641 {
642         return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
643 }
644
645 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
646 {
647         if (is_tdp_mmu_active(vcpu)) {
648                 kvm_tdp_mmu_walk_lockless_begin();
649         } else {
650                 /*
651                  * Prevent page table teardown by making any free-er wait during
652                  * kvm_flush_remote_tlbs() IPI to all active vcpus.
653                  */
654                 local_irq_disable();
655
656                 /*
657                  * Make sure a following spte read is not reordered ahead of the write
658                  * to vcpu->mode.
659                  */
660                 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
661         }
662 }
663
664 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
665 {
666         if (is_tdp_mmu_active(vcpu)) {
667                 kvm_tdp_mmu_walk_lockless_end();
668         } else {
669                 /*
670                  * Make sure the write to vcpu->mode is not reordered in front of
671                  * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
672                  * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
673                  */
674                 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
675                 local_irq_enable();
676         }
677 }
678
679 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
680 {
681         int r;
682
683         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
684         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
685                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
686         if (r)
687                 return r;
688         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
689                                        PT64_ROOT_MAX_LEVEL);
690         if (r)
691                 return r;
692         if (maybe_indirect) {
693                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
694                                                PT64_ROOT_MAX_LEVEL);
695                 if (r)
696                         return r;
697         }
698         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
699                                           PT64_ROOT_MAX_LEVEL);
700 }
701
702 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
703 {
704         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
705         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
706         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
707         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
708 }
709
710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714
715 static bool sp_has_gptes(struct kvm_mmu_page *sp);
716
717 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
718 {
719         if (sp->role.passthrough)
720                 return sp->gfn;
721
722         if (!sp->role.direct)
723                 return sp->shadowed_translation[index] >> PAGE_SHIFT;
724
725         return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
726 }
727
728 /*
729  * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
730  * that the SPTE itself may have a more constrained access permissions that
731  * what the guest enforces. For example, a guest may create an executable
732  * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
733  */
734 static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
735 {
736         if (sp_has_gptes(sp))
737                 return sp->shadowed_translation[index] & ACC_ALL;
738
739         /*
740          * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
741          * KVM is not shadowing any guest page tables, so the "guest access
742          * permissions" are just ACC_ALL.
743          *
744          * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
745          * is shadowing a guest huge page with small pages, the guest access
746          * permissions being shadowed are the access permissions of the huge
747          * page.
748          *
749          * In both cases, sp->role.access contains the correct access bits.
750          */
751         return sp->role.access;
752 }
753
754 static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
755                                          gfn_t gfn, unsigned int access)
756 {
757         if (sp_has_gptes(sp)) {
758                 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
759                 return;
760         }
761
762         WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
763                   "access mismatch under %s page %llx (expected %u, got %u)\n",
764                   sp->role.passthrough ? "passthrough" : "direct",
765                   sp->gfn, kvm_mmu_page_get_access(sp, index), access);
766
767         WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
768                   "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
769                   sp->role.passthrough ? "passthrough" : "direct",
770                   sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
771 }
772
773 static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
774                                     unsigned int access)
775 {
776         gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
777
778         kvm_mmu_page_set_translation(sp, index, gfn, access);
779 }
780
781 /*
782  * Return the pointer to the large page information for a given gfn,
783  * handling slots that are not large page aligned.
784  */
785 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
786                 const struct kvm_memory_slot *slot, int level)
787 {
788         unsigned long idx;
789
790         idx = gfn_to_index(gfn, slot->base_gfn, level);
791         return &slot->arch.lpage_info[level - 2][idx];
792 }
793
794 /*
795  * The most significant bit in disallow_lpage tracks whether or not memory
796  * attributes are mixed, i.e. not identical for all gfns at the current level.
797  * The lower order bits are used to refcount other cases where a hugepage is
798  * disallowed, e.g. if KVM has shadow a page table at the gfn.
799  */
800 #define KVM_LPAGE_MIXED_FLAG    BIT(31)
801
802 static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
803                                             gfn_t gfn, int count)
804 {
805         struct kvm_lpage_info *linfo;
806         int old, i;
807
808         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
809                 linfo = lpage_info_slot(gfn, slot, i);
810
811                 old = linfo->disallow_lpage;
812                 linfo->disallow_lpage += count;
813                 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
814         }
815 }
816
817 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
818 {
819         update_gfn_disallow_lpage_count(slot, gfn, 1);
820 }
821
822 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
823 {
824         update_gfn_disallow_lpage_count(slot, gfn, -1);
825 }
826
827 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
828 {
829         struct kvm_memslots *slots;
830         struct kvm_memory_slot *slot;
831         gfn_t gfn;
832
833         kvm->arch.indirect_shadow_pages++;
834         gfn = sp->gfn;
835         slots = kvm_memslots_for_spte_role(kvm, sp->role);
836         slot = __gfn_to_memslot(slots, gfn);
837
838         /* the non-leaf shadow pages are keeping readonly. */
839         if (sp->role.level > PG_LEVEL_4K)
840                 return __kvm_write_track_add_gfn(kvm, slot, gfn);
841
842         kvm_mmu_gfn_disallow_lpage(slot, gfn);
843
844         if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
845                 kvm_flush_remote_tlbs_gfn(kvm, gfn, PG_LEVEL_4K);
846 }
847
848 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
849 {
850         /*
851          * If it's possible to replace the shadow page with an NX huge page,
852          * i.e. if the shadow page is the only thing currently preventing KVM
853          * from using a huge page, add the shadow page to the list of "to be
854          * zapped for NX recovery" pages.  Note, the shadow page can already be
855          * on the list if KVM is reusing an existing shadow page, i.e. if KVM
856          * links a shadow page at multiple points.
857          */
858         if (!list_empty(&sp->possible_nx_huge_page_link))
859                 return;
860
861         ++kvm->stat.nx_lpage_splits;
862         list_add_tail(&sp->possible_nx_huge_page_link,
863                       &kvm->arch.possible_nx_huge_pages);
864 }
865
866 static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
867                                  bool nx_huge_page_possible)
868 {
869         sp->nx_huge_page_disallowed = true;
870
871         if (nx_huge_page_possible)
872                 track_possible_nx_huge_page(kvm, sp);
873 }
874
875 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
876 {
877         struct kvm_memslots *slots;
878         struct kvm_memory_slot *slot;
879         gfn_t gfn;
880
881         kvm->arch.indirect_shadow_pages--;
882         gfn = sp->gfn;
883         slots = kvm_memslots_for_spte_role(kvm, sp->role);
884         slot = __gfn_to_memslot(slots, gfn);
885         if (sp->role.level > PG_LEVEL_4K)
886                 return __kvm_write_track_remove_gfn(kvm, slot, gfn);
887
888         kvm_mmu_gfn_allow_lpage(slot, gfn);
889 }
890
891 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
892 {
893         if (list_empty(&sp->possible_nx_huge_page_link))
894                 return;
895
896         --kvm->stat.nx_lpage_splits;
897         list_del_init(&sp->possible_nx_huge_page_link);
898 }
899
900 static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
901 {
902         sp->nx_huge_page_disallowed = false;
903
904         untrack_possible_nx_huge_page(kvm, sp);
905 }
906
907 static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
908                                                            gfn_t gfn,
909                                                            bool no_dirty_log)
910 {
911         struct kvm_memory_slot *slot;
912
913         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
914         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
915                 return NULL;
916         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
917                 return NULL;
918
919         return slot;
920 }
921
922 /*
923  * About rmap_head encoding:
924  *
925  * If the bit zero of rmap_head->val is clear, then it points to the only spte
926  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
927  * pte_list_desc containing more mappings.
928  */
929
930 /*
931  * Returns the number of pointers in the rmap chain, not counting the new one.
932  */
933 static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
934                         struct kvm_rmap_head *rmap_head)
935 {
936         struct pte_list_desc *desc;
937         int count = 0;
938
939         if (!rmap_head->val) {
940                 rmap_head->val = (unsigned long)spte;
941         } else if (!(rmap_head->val & 1)) {
942                 desc = kvm_mmu_memory_cache_alloc(cache);
943                 desc->sptes[0] = (u64 *)rmap_head->val;
944                 desc->sptes[1] = spte;
945                 desc->spte_count = 2;
946                 desc->tail_count = 0;
947                 rmap_head->val = (unsigned long)desc | 1;
948                 ++count;
949         } else {
950                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
951                 count = desc->tail_count + desc->spte_count;
952
953                 /*
954                  * If the previous head is full, allocate a new head descriptor
955                  * as tail descriptors are always kept full.
956                  */
957                 if (desc->spte_count == PTE_LIST_EXT) {
958                         desc = kvm_mmu_memory_cache_alloc(cache);
959                         desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960                         desc->spte_count = 0;
961                         desc->tail_count = count;
962                         rmap_head->val = (unsigned long)desc | 1;
963                 }
964                 desc->sptes[desc->spte_count++] = spte;
965         }
966         return count;
967 }
968
969 static void pte_list_desc_remove_entry(struct kvm *kvm,
970                                        struct kvm_rmap_head *rmap_head,
971                                        struct pte_list_desc *desc, int i)
972 {
973         struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
974         int j = head_desc->spte_count - 1;
975
976         /*
977          * The head descriptor should never be empty.  A new head is added only
978          * when adding an entry and the previous head is full, and heads are
979          * removed (this flow) when they become empty.
980          */
981         KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
982
983         /*
984          * Replace the to-be-freed SPTE with the last valid entry from the head
985          * descriptor to ensure that tail descriptors are full at all times.
986          * Note, this also means that tail_count is stable for each descriptor.
987          */
988         desc->sptes[i] = head_desc->sptes[j];
989         head_desc->sptes[j] = NULL;
990         head_desc->spte_count--;
991         if (head_desc->spte_count)
992                 return;
993
994         /*
995          * The head descriptor is empty.  If there are no tail descriptors,
996          * nullify the rmap head to mark the list as empty, else point the rmap
997          * head at the next descriptor, i.e. the new head.
998          */
999         if (!head_desc->more)
1000                 rmap_head->val = 0;
1001         else
1002                 rmap_head->val = (unsigned long)head_desc->more | 1;
1003         mmu_free_pte_list_desc(head_desc);
1004 }
1005
1006 static void pte_list_remove(struct kvm *kvm, u64 *spte,
1007                             struct kvm_rmap_head *rmap_head)
1008 {
1009         struct pte_list_desc *desc;
1010         int i;
1011
1012         if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
1013                 return;
1014
1015         if (!(rmap_head->val & 1)) {
1016                 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
1017                         return;
1018
1019                 rmap_head->val = 0;
1020         } else {
1021                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1022                 while (desc) {
1023                         for (i = 0; i < desc->spte_count; ++i) {
1024                                 if (desc->sptes[i] == spte) {
1025                                         pte_list_desc_remove_entry(kvm, rmap_head,
1026                                                                    desc, i);
1027                                         return;
1028                                 }
1029                         }
1030                         desc = desc->more;
1031                 }
1032
1033                 KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1034         }
1035 }
1036
1037 static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1038                                   struct kvm_rmap_head *rmap_head, u64 *sptep)
1039 {
1040         mmu_spte_clear_track_bits(kvm, sptep);
1041         pte_list_remove(kvm, sptep, rmap_head);
1042 }
1043
1044 /* Return true if at least one SPTE was zapped, false otherwise */
1045 static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1046                                    struct kvm_rmap_head *rmap_head)
1047 {
1048         struct pte_list_desc *desc, *next;
1049         int i;
1050
1051         if (!rmap_head->val)
1052                 return false;
1053
1054         if (!(rmap_head->val & 1)) {
1055                 mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
1056                 goto out;
1057         }
1058
1059         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1060
1061         for (; desc; desc = next) {
1062                 for (i = 0; i < desc->spte_count; i++)
1063                         mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
1064                 next = desc->more;
1065                 mmu_free_pte_list_desc(desc);
1066         }
1067 out:
1068         /* rmap_head is meaningless now, remember to reset it */
1069         rmap_head->val = 0;
1070         return true;
1071 }
1072
1073 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1074 {
1075         struct pte_list_desc *desc;
1076
1077         if (!rmap_head->val)
1078                 return 0;
1079         else if (!(rmap_head->val & 1))
1080                 return 1;
1081
1082         desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1083         return desc->tail_count + desc->spte_count;
1084 }
1085
1086 static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1087                                          const struct kvm_memory_slot *slot)
1088 {
1089         unsigned long idx;
1090
1091         idx = gfn_to_index(gfn, slot->base_gfn, level);
1092         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1093 }
1094
1095 static void rmap_remove(struct kvm *kvm, u64 *spte)
1096 {
1097         struct kvm_memslots *slots;
1098         struct kvm_memory_slot *slot;
1099         struct kvm_mmu_page *sp;
1100         gfn_t gfn;
1101         struct kvm_rmap_head *rmap_head;
1102
1103         sp = sptep_to_sp(spte);
1104         gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
1105
1106         /*
1107          * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1108          * so we have to determine which memslots to use based on context
1109          * information in sp->role.
1110          */
1111         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1112
1113         slot = __gfn_to_memslot(slots, gfn);
1114         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1115
1116         pte_list_remove(kvm, spte, rmap_head);
1117 }
1118
1119 /*
1120  * Used by the following functions to iterate through the sptes linked by a
1121  * rmap.  All fields are private and not assumed to be used outside.
1122  */
1123 struct rmap_iterator {
1124         /* private fields */
1125         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1126         int pos;                        /* index of the sptep */
1127 };
1128
1129 /*
1130  * Iteration must be started by this function.  This should also be used after
1131  * removing/dropping sptes from the rmap link because in such cases the
1132  * information in the iterator may not be valid.
1133  *
1134  * Returns sptep if found, NULL otherwise.
1135  */
1136 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1137                            struct rmap_iterator *iter)
1138 {
1139         u64 *sptep;
1140
1141         if (!rmap_head->val)
1142                 return NULL;
1143
1144         if (!(rmap_head->val & 1)) {
1145                 iter->desc = NULL;
1146                 sptep = (u64 *)rmap_head->val;
1147                 goto out;
1148         }
1149
1150         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1151         iter->pos = 0;
1152         sptep = iter->desc->sptes[iter->pos];
1153 out:
1154         BUG_ON(!is_shadow_present_pte(*sptep));
1155         return sptep;
1156 }
1157
1158 /*
1159  * Must be used with a valid iterator: e.g. after rmap_get_first().
1160  *
1161  * Returns sptep if found, NULL otherwise.
1162  */
1163 static u64 *rmap_get_next(struct rmap_iterator *iter)
1164 {
1165         u64 *sptep;
1166
1167         if (iter->desc) {
1168                 if (iter->pos < PTE_LIST_EXT - 1) {
1169                         ++iter->pos;
1170                         sptep = iter->desc->sptes[iter->pos];
1171                         if (sptep)
1172                                 goto out;
1173                 }
1174
1175                 iter->desc = iter->desc->more;
1176
1177                 if (iter->desc) {
1178                         iter->pos = 0;
1179                         /* desc->sptes[0] cannot be NULL */
1180                         sptep = iter->desc->sptes[iter->pos];
1181                         goto out;
1182                 }
1183         }
1184
1185         return NULL;
1186 out:
1187         BUG_ON(!is_shadow_present_pte(*sptep));
1188         return sptep;
1189 }
1190
1191 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1192         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1193              _spte_; _spte_ = rmap_get_next(_iter_))
1194
1195 static void drop_spte(struct kvm *kvm, u64 *sptep)
1196 {
1197         u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1198
1199         if (is_shadow_present_pte(old_spte))
1200                 rmap_remove(kvm, sptep);
1201 }
1202
1203 static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1204 {
1205         struct kvm_mmu_page *sp;
1206
1207         sp = sptep_to_sp(sptep);
1208         WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1209
1210         drop_spte(kvm, sptep);
1211
1212         if (flush)
1213                 kvm_flush_remote_tlbs_sptep(kvm, sptep);
1214 }
1215
1216 /*
1217  * Write-protect on the specified @sptep, @pt_protect indicates whether
1218  * spte write-protection is caused by protecting shadow page table.
1219  *
1220  * Note: write protection is difference between dirty logging and spte
1221  * protection:
1222  * - for dirty logging, the spte can be set to writable at anytime if
1223  *   its dirty bitmap is properly set.
1224  * - for spte protection, the spte can be writable only after unsync-ing
1225  *   shadow page.
1226  *
1227  * Return true if tlb need be flushed.
1228  */
1229 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1230 {
1231         u64 spte = *sptep;
1232
1233         if (!is_writable_pte(spte) &&
1234             !(pt_protect && is_mmu_writable_spte(spte)))
1235                 return false;
1236
1237         if (pt_protect)
1238                 spte &= ~shadow_mmu_writable_mask;
1239         spte = spte & ~PT_WRITABLE_MASK;
1240
1241         return mmu_spte_update(sptep, spte);
1242 }
1243
1244 static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1245                                bool pt_protect)
1246 {
1247         u64 *sptep;
1248         struct rmap_iterator iter;
1249         bool flush = false;
1250
1251         for_each_rmap_spte(rmap_head, &iter, sptep)
1252                 flush |= spte_write_protect(sptep, pt_protect);
1253
1254         return flush;
1255 }
1256
1257 static bool spte_clear_dirty(u64 *sptep)
1258 {
1259         u64 spte = *sptep;
1260
1261         KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1262         spte &= ~shadow_dirty_mask;
1263         return mmu_spte_update(sptep, spte);
1264 }
1265
1266 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1267 {
1268         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1269                                                (unsigned long *)sptep);
1270         if (was_writable && !spte_ad_enabled(*sptep))
1271                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1272
1273         return was_writable;
1274 }
1275
1276 /*
1277  * Gets the GFN ready for another round of dirty logging by clearing the
1278  *      - D bit on ad-enabled SPTEs, and
1279  *      - W bit on ad-disabled SPTEs.
1280  * Returns true iff any D or W bits were cleared.
1281  */
1282 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1283                                const struct kvm_memory_slot *slot)
1284 {
1285         u64 *sptep;
1286         struct rmap_iterator iter;
1287         bool flush = false;
1288
1289         for_each_rmap_spte(rmap_head, &iter, sptep)
1290                 if (spte_ad_need_write_protect(*sptep))
1291                         flush |= spte_wrprot_for_clear_dirty(sptep);
1292                 else
1293                         flush |= spte_clear_dirty(sptep);
1294
1295         return flush;
1296 }
1297
1298 /**
1299  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1300  * @kvm: kvm instance
1301  * @slot: slot to protect
1302  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1303  * @mask: indicates which pages we should protect
1304  *
1305  * Used when we do not need to care about huge page mappings.
1306  */
1307 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1308                                      struct kvm_memory_slot *slot,
1309                                      gfn_t gfn_offset, unsigned long mask)
1310 {
1311         struct kvm_rmap_head *rmap_head;
1312
1313         if (tdp_mmu_enabled)
1314                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1315                                 slot->base_gfn + gfn_offset, mask, true);
1316
1317         if (!kvm_memslots_have_rmaps(kvm))
1318                 return;
1319
1320         while (mask) {
1321                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1322                                         PG_LEVEL_4K, slot);
1323                 rmap_write_protect(rmap_head, false);
1324
1325                 /* clear the first set bit */
1326                 mask &= mask - 1;
1327         }
1328 }
1329
1330 /**
1331  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1332  * protect the page if the D-bit isn't supported.
1333  * @kvm: kvm instance
1334  * @slot: slot to clear D-bit
1335  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1336  * @mask: indicates which pages we should clear D-bit
1337  *
1338  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1339  */
1340 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1341                                          struct kvm_memory_slot *slot,
1342                                          gfn_t gfn_offset, unsigned long mask)
1343 {
1344         struct kvm_rmap_head *rmap_head;
1345
1346         if (tdp_mmu_enabled)
1347                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1348                                 slot->base_gfn + gfn_offset, mask, false);
1349
1350         if (!kvm_memslots_have_rmaps(kvm))
1351                 return;
1352
1353         while (mask) {
1354                 rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1355                                         PG_LEVEL_4K, slot);
1356                 __rmap_clear_dirty(kvm, rmap_head, slot);
1357
1358                 /* clear the first set bit */
1359                 mask &= mask - 1;
1360         }
1361 }
1362
1363 /**
1364  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1365  * PT level pages.
1366  *
1367  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1368  * enable dirty logging for them.
1369  *
1370  * We need to care about huge page mappings: e.g. during dirty logging we may
1371  * have such mappings.
1372  */
1373 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1374                                 struct kvm_memory_slot *slot,
1375                                 gfn_t gfn_offset, unsigned long mask)
1376 {
1377         /*
1378          * Huge pages are NOT write protected when we start dirty logging in
1379          * initially-all-set mode; must write protect them here so that they
1380          * are split to 4K on the first write.
1381          *
1382          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1383          * of memslot has no such restriction, so the range can cross two large
1384          * pages.
1385          */
1386         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1387                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1388                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1389
1390                 if (READ_ONCE(eager_page_split))
1391                         kvm_mmu_try_split_huge_pages(kvm, slot, start, end + 1, PG_LEVEL_4K);
1392
1393                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1394
1395                 /* Cross two large pages? */
1396                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1397                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1398                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1399                                                        PG_LEVEL_2M);
1400         }
1401
1402         /* Now handle 4K PTEs.  */
1403         if (kvm_x86_ops.cpu_dirty_log_size)
1404                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1405         else
1406                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1407 }
1408
1409 int kvm_cpu_dirty_log_size(void)
1410 {
1411         return kvm_x86_ops.cpu_dirty_log_size;
1412 }
1413
1414 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1415                                     struct kvm_memory_slot *slot, u64 gfn,
1416                                     int min_level)
1417 {
1418         struct kvm_rmap_head *rmap_head;
1419         int i;
1420         bool write_protected = false;
1421
1422         if (kvm_memslots_have_rmaps(kvm)) {
1423                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1424                         rmap_head = gfn_to_rmap(gfn, i, slot);
1425                         write_protected |= rmap_write_protect(rmap_head, true);
1426                 }
1427         }
1428
1429         if (tdp_mmu_enabled)
1430                 write_protected |=
1431                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1432
1433         return write_protected;
1434 }
1435
1436 static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1437 {
1438         struct kvm_memory_slot *slot;
1439
1440         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1441         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1442 }
1443
1444 static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1445                            const struct kvm_memory_slot *slot)
1446 {
1447         return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1448 }
1449
1450 static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1451                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1452                          pte_t unused)
1453 {
1454         return __kvm_zap_rmap(kvm, rmap_head, slot);
1455 }
1456
1457 static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1458                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1459                              pte_t pte)
1460 {
1461         u64 *sptep;
1462         struct rmap_iterator iter;
1463         bool need_flush = false;
1464         u64 new_spte;
1465         kvm_pfn_t new_pfn;
1466
1467         WARN_ON_ONCE(pte_huge(pte));
1468         new_pfn = pte_pfn(pte);
1469
1470 restart:
1471         for_each_rmap_spte(rmap_head, &iter, sptep) {
1472                 need_flush = true;
1473
1474                 if (pte_write(pte)) {
1475                         kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
1476                         goto restart;
1477                 } else {
1478                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1479                                         *sptep, new_pfn);
1480
1481                         mmu_spte_clear_track_bits(kvm, sptep);
1482                         mmu_spte_set(sptep, new_spte);
1483                 }
1484         }
1485
1486         if (need_flush && kvm_available_flush_remote_tlbs_range()) {
1487                 kvm_flush_remote_tlbs_gfn(kvm, gfn, level);
1488                 return false;
1489         }
1490
1491         return need_flush;
1492 }
1493
1494 struct slot_rmap_walk_iterator {
1495         /* input fields. */
1496         const struct kvm_memory_slot *slot;
1497         gfn_t start_gfn;
1498         gfn_t end_gfn;
1499         int start_level;
1500         int end_level;
1501
1502         /* output fields. */
1503         gfn_t gfn;
1504         struct kvm_rmap_head *rmap;
1505         int level;
1506
1507         /* private field. */
1508         struct kvm_rmap_head *end_rmap;
1509 };
1510
1511 static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1512                                  int level)
1513 {
1514         iterator->level = level;
1515         iterator->gfn = iterator->start_gfn;
1516         iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
1517         iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1518 }
1519
1520 static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1521                                 const struct kvm_memory_slot *slot,
1522                                 int start_level, int end_level,
1523                                 gfn_t start_gfn, gfn_t end_gfn)
1524 {
1525         iterator->slot = slot;
1526         iterator->start_level = start_level;
1527         iterator->end_level = end_level;
1528         iterator->start_gfn = start_gfn;
1529         iterator->end_gfn = end_gfn;
1530
1531         rmap_walk_init_level(iterator, iterator->start_level);
1532 }
1533
1534 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1535 {
1536         return !!iterator->rmap;
1537 }
1538
1539 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1540 {
1541         while (++iterator->rmap <= iterator->end_rmap) {
1542                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1543
1544                 if (iterator->rmap->val)
1545                         return;
1546         }
1547
1548         if (++iterator->level > iterator->end_level) {
1549                 iterator->rmap = NULL;
1550                 return;
1551         }
1552
1553         rmap_walk_init_level(iterator, iterator->level);
1554 }
1555
1556 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1557            _start_gfn, _end_gfn, _iter_)                                \
1558         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1559                                  _end_level_, _start_gfn, _end_gfn);    \
1560              slot_rmap_walk_okay(_iter_);                               \
1561              slot_rmap_walk_next(_iter_))
1562
1563 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1564                                struct kvm_memory_slot *slot, gfn_t gfn,
1565                                int level, pte_t pte);
1566
1567 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1568                                                  struct kvm_gfn_range *range,
1569                                                  rmap_handler_t handler)
1570 {
1571         struct slot_rmap_walk_iterator iterator;
1572         bool ret = false;
1573
1574         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1575                                  range->start, range->end - 1, &iterator)
1576                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1577                                iterator.level, range->arg.pte);
1578
1579         return ret;
1580 }
1581
1582 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1583 {
1584         bool flush = false;
1585
1586         if (kvm_memslots_have_rmaps(kvm))
1587                 flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
1588
1589         if (tdp_mmu_enabled)
1590                 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1591
1592         if (kvm_x86_ops.set_apic_access_page_addr &&
1593             range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1594                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1595
1596         return flush;
1597 }
1598
1599 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1600 {
1601         bool flush = false;
1602
1603         if (kvm_memslots_have_rmaps(kvm))
1604                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
1605
1606         if (tdp_mmu_enabled)
1607                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1608
1609         return flush;
1610 }
1611
1612 static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1613                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1614                          pte_t unused)
1615 {
1616         u64 *sptep;
1617         struct rmap_iterator iter;
1618         int young = 0;
1619
1620         for_each_rmap_spte(rmap_head, &iter, sptep)
1621                 young |= mmu_spte_age(sptep);
1622
1623         return young;
1624 }
1625
1626 static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1627                               struct kvm_memory_slot *slot, gfn_t gfn,
1628                               int level, pte_t unused)
1629 {
1630         u64 *sptep;
1631         struct rmap_iterator iter;
1632
1633         for_each_rmap_spte(rmap_head, &iter, sptep)
1634                 if (is_accessed_spte(*sptep))
1635                         return true;
1636         return false;
1637 }
1638
1639 #define RMAP_RECYCLE_THRESHOLD 1000
1640
1641 static void __rmap_add(struct kvm *kvm,
1642                        struct kvm_mmu_memory_cache *cache,
1643                        const struct kvm_memory_slot *slot,
1644                        u64 *spte, gfn_t gfn, unsigned int access)
1645 {
1646         struct kvm_mmu_page *sp;
1647         struct kvm_rmap_head *rmap_head;
1648         int rmap_count;
1649
1650         sp = sptep_to_sp(spte);
1651         kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
1652         kvm_update_page_stats(kvm, sp->role.level, 1);
1653
1654         rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1655         rmap_count = pte_list_add(cache, spte, rmap_head);
1656
1657         if (rmap_count > kvm->stat.max_mmu_rmap_size)
1658                 kvm->stat.max_mmu_rmap_size = rmap_count;
1659         if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1660                 kvm_zap_all_rmap_sptes(kvm, rmap_head);
1661                 kvm_flush_remote_tlbs_gfn(kvm, gfn, sp->role.level);
1662         }
1663 }
1664
1665 static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1666                      u64 *spte, gfn_t gfn, unsigned int access)
1667 {
1668         struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1669
1670         __rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
1671 }
1672
1673 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1674 {
1675         bool young = false;
1676
1677         if (kvm_memslots_have_rmaps(kvm))
1678                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
1679
1680         if (tdp_mmu_enabled)
1681                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1682
1683         return young;
1684 }
1685
1686 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1687 {
1688         bool young = false;
1689
1690         if (kvm_memslots_have_rmaps(kvm))
1691                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
1692
1693         if (tdp_mmu_enabled)
1694                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1695
1696         return young;
1697 }
1698
1699 static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1700 {
1701 #ifdef CONFIG_KVM_PROVE_MMU
1702         int i;
1703
1704         for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1705                 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1706                         pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1707                                            sp->spt[i], &sp->spt[i],
1708                                            kvm_mmu_page_get_gfn(sp, i));
1709         }
1710 #endif
1711 }
1712
1713 /*
1714  * This value is the sum of all of the kvm instances's
1715  * kvm->arch.n_used_mmu_pages values.  We need a global,
1716  * aggregate version in order to make the slab shrinker
1717  * faster
1718  */
1719 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1720 {
1721         kvm->arch.n_used_mmu_pages += nr;
1722         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1723 }
1724
1725 static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1726 {
1727         kvm_mod_used_mmu_pages(kvm, +1);
1728         kvm_account_pgtable_pages((void *)sp->spt, +1);
1729 }
1730
1731 static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1732 {
1733         kvm_mod_used_mmu_pages(kvm, -1);
1734         kvm_account_pgtable_pages((void *)sp->spt, -1);
1735 }
1736
1737 static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1738 {
1739         kvm_mmu_check_sptes_at_free(sp);
1740
1741         hlist_del(&sp->hash_link);
1742         list_del(&sp->link);
1743         free_page((unsigned long)sp->spt);
1744         if (!sp->role.direct)
1745                 free_page((unsigned long)sp->shadowed_translation);
1746         kmem_cache_free(mmu_page_header_cache, sp);
1747 }
1748
1749 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1750 {
1751         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1752 }
1753
1754 static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1755                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1756 {
1757         if (!parent_pte)
1758                 return;
1759
1760         pte_list_add(cache, parent_pte, &sp->parent_ptes);
1761 }
1762
1763 static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1764                                        u64 *parent_pte)
1765 {
1766         pte_list_remove(kvm, parent_pte, &sp->parent_ptes);
1767 }
1768
1769 static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1770                             u64 *parent_pte)
1771 {
1772         mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1773         mmu_spte_clear_no_track(parent_pte);
1774 }
1775
1776 static void mark_unsync(u64 *spte);
1777 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1778 {
1779         u64 *sptep;
1780         struct rmap_iterator iter;
1781
1782         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1783                 mark_unsync(sptep);
1784         }
1785 }
1786
1787 static void mark_unsync(u64 *spte)
1788 {
1789         struct kvm_mmu_page *sp;
1790
1791         sp = sptep_to_sp(spte);
1792         if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1793                 return;
1794         if (sp->unsync_children++)
1795                 return;
1796         kvm_mmu_mark_parents_unsync(sp);
1797 }
1798
1799 #define KVM_PAGE_ARRAY_NR 16
1800
1801 struct kvm_mmu_pages {
1802         struct mmu_page_and_offset {
1803                 struct kvm_mmu_page *sp;
1804                 unsigned int idx;
1805         } page[KVM_PAGE_ARRAY_NR];
1806         unsigned int nr;
1807 };
1808
1809 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1810                          int idx)
1811 {
1812         int i;
1813
1814         if (sp->unsync)
1815                 for (i=0; i < pvec->nr; i++)
1816                         if (pvec->page[i].sp == sp)
1817                                 return 0;
1818
1819         pvec->page[pvec->nr].sp = sp;
1820         pvec->page[pvec->nr].idx = idx;
1821         pvec->nr++;
1822         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1823 }
1824
1825 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1826 {
1827         --sp->unsync_children;
1828         WARN_ON_ONCE((int)sp->unsync_children < 0);
1829         __clear_bit(idx, sp->unsync_child_bitmap);
1830 }
1831
1832 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1833                            struct kvm_mmu_pages *pvec)
1834 {
1835         int i, ret, nr_unsync_leaf = 0;
1836
1837         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1838                 struct kvm_mmu_page *child;
1839                 u64 ent = sp->spt[i];
1840
1841                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1842                         clear_unsync_child_bit(sp, i);
1843                         continue;
1844                 }
1845
1846                 child = spte_to_child_sp(ent);
1847
1848                 if (child->unsync_children) {
1849                         if (mmu_pages_add(pvec, child, i))
1850                                 return -ENOSPC;
1851
1852                         ret = __mmu_unsync_walk(child, pvec);
1853                         if (!ret) {
1854                                 clear_unsync_child_bit(sp, i);
1855                                 continue;
1856                         } else if (ret > 0) {
1857                                 nr_unsync_leaf += ret;
1858                         } else
1859                                 return ret;
1860                 } else if (child->unsync) {
1861                         nr_unsync_leaf++;
1862                         if (mmu_pages_add(pvec, child, i))
1863                                 return -ENOSPC;
1864                 } else
1865                         clear_unsync_child_bit(sp, i);
1866         }
1867
1868         return nr_unsync_leaf;
1869 }
1870
1871 #define INVALID_INDEX (-1)
1872
1873 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1874                            struct kvm_mmu_pages *pvec)
1875 {
1876         pvec->nr = 0;
1877         if (!sp->unsync_children)
1878                 return 0;
1879
1880         mmu_pages_add(pvec, sp, INVALID_INDEX);
1881         return __mmu_unsync_walk(sp, pvec);
1882 }
1883
1884 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1885 {
1886         WARN_ON_ONCE(!sp->unsync);
1887         trace_kvm_mmu_sync_page(sp);
1888         sp->unsync = 0;
1889         --kvm->stat.mmu_unsync;
1890 }
1891
1892 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1893                                      struct list_head *invalid_list);
1894 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1895                                     struct list_head *invalid_list);
1896
1897 static bool sp_has_gptes(struct kvm_mmu_page *sp)
1898 {
1899         if (sp->role.direct)
1900                 return false;
1901
1902         if (sp->role.passthrough)
1903                 return false;
1904
1905         return true;
1906 }
1907
1908 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1909         hlist_for_each_entry(_sp, _list, hash_link)                     \
1910                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1911                 } else
1912
1913 #define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn)               \
1914         for_each_valid_sp(_kvm, _sp,                                    \
1915           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1916                 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1917
1918 static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1919 {
1920         union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1921
1922         /*
1923          * Ignore various flags when verifying that it's safe to sync a shadow
1924          * page using the current MMU context.
1925          *
1926          *  - level: not part of the overall MMU role and will never match as the MMU's
1927          *           level tracks the root level
1928          *  - access: updated based on the new guest PTE
1929          *  - quadrant: not part of the overall MMU role (similar to level)
1930          */
1931         const union kvm_mmu_page_role sync_role_ign = {
1932                 .level = 0xf,
1933                 .access = 0x7,
1934                 .quadrant = 0x3,
1935                 .passthrough = 0x1,
1936         };
1937
1938         /*
1939          * Direct pages can never be unsync, and KVM should never attempt to
1940          * sync a shadow page for a different MMU context, e.g. if the role
1941          * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1942          * reserved bits checks will be wrong, etc...
1943          */
1944         if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1945                          (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1946                 return false;
1947
1948         return true;
1949 }
1950
1951 static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1952 {
1953         if (!sp->spt[i])
1954                 return 0;
1955
1956         return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1957 }
1958
1959 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1960 {
1961         int flush = 0;
1962         int i;
1963
1964         if (!kvm_sync_page_check(vcpu, sp))
1965                 return -1;
1966
1967         for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1968                 int ret = kvm_sync_spte(vcpu, sp, i);
1969
1970                 if (ret < -1)
1971                         return -1;
1972                 flush |= ret;
1973         }
1974
1975         /*
1976          * Note, any flush is purely for KVM's correctness, e.g. when dropping
1977          * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1978          * unmap or dirty logging event doesn't fail to flush.  The guest is
1979          * responsible for flushing the TLB to ensure any changes in protection
1980          * bits are recognized, i.e. until the guest flushes or page faults on
1981          * a relevant address, KVM is architecturally allowed to let vCPUs use
1982          * cached translations with the old protection bits.
1983          */
1984         return flush;
1985 }
1986
1987 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1988                          struct list_head *invalid_list)
1989 {
1990         int ret = __kvm_sync_page(vcpu, sp);
1991
1992         if (ret < 0)
1993                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1994         return ret;
1995 }
1996
1997 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1998                                         struct list_head *invalid_list,
1999                                         bool remote_flush)
2000 {
2001         if (!remote_flush && list_empty(invalid_list))
2002                 return false;
2003
2004         if (!list_empty(invalid_list))
2005                 kvm_mmu_commit_zap_page(kvm, invalid_list);
2006         else
2007                 kvm_flush_remote_tlbs(kvm);
2008         return true;
2009 }
2010
2011 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2012 {
2013         if (sp->role.invalid)
2014                 return true;
2015
2016         /* TDP MMU pages do not use the MMU generation. */
2017         return !is_tdp_mmu_page(sp) &&
2018                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2019 }
2020
2021 struct mmu_page_path {
2022         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2023         unsigned int idx[PT64_ROOT_MAX_LEVEL];
2024 };
2025
2026 #define for_each_sp(pvec, sp, parents, i)                       \
2027                 for (i = mmu_pages_first(&pvec, &parents);      \
2028                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2029                         i = mmu_pages_next(&pvec, &parents, i))
2030
2031 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2032                           struct mmu_page_path *parents,
2033                           int i)
2034 {
2035         int n;
2036
2037         for (n = i+1; n < pvec->nr; n++) {
2038                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2039                 unsigned idx = pvec->page[n].idx;
2040                 int level = sp->role.level;
2041
2042                 parents->idx[level-1] = idx;
2043                 if (level == PG_LEVEL_4K)
2044                         break;
2045
2046                 parents->parent[level-2] = sp;
2047         }
2048
2049         return n;
2050 }
2051
2052 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2053                            struct mmu_page_path *parents)
2054 {
2055         struct kvm_mmu_page *sp;
2056         int level;
2057
2058         if (pvec->nr == 0)
2059                 return 0;
2060
2061         WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2062
2063         sp = pvec->page[0].sp;
2064         level = sp->role.level;
2065         WARN_ON_ONCE(level == PG_LEVEL_4K);
2066
2067         parents->parent[level-2] = sp;
2068
2069         /* Also set up a sentinel.  Further entries in pvec are all
2070          * children of sp, so this element is never overwritten.
2071          */
2072         parents->parent[level-1] = NULL;
2073         return mmu_pages_next(pvec, parents, 0);
2074 }
2075
2076 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2077 {
2078         struct kvm_mmu_page *sp;
2079         unsigned int level = 0;
2080
2081         do {
2082                 unsigned int idx = parents->idx[level];
2083                 sp = parents->parent[level];
2084                 if (!sp)
2085                         return;
2086
2087                 WARN_ON_ONCE(idx == INVALID_INDEX);
2088                 clear_unsync_child_bit(sp, idx);
2089                 level++;
2090         } while (!sp->unsync_children);
2091 }
2092
2093 static int mmu_sync_children(struct kvm_vcpu *vcpu,
2094                              struct kvm_mmu_page *parent, bool can_yield)
2095 {
2096         int i;
2097         struct kvm_mmu_page *sp;
2098         struct mmu_page_path parents;
2099         struct kvm_mmu_pages pages;
2100         LIST_HEAD(invalid_list);
2101         bool flush = false;
2102
2103         while (mmu_unsync_walk(parent, &pages)) {
2104                 bool protected = false;
2105
2106                 for_each_sp(pages, sp, parents, i)
2107                         protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
2108
2109                 if (protected) {
2110                         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2111                         flush = false;
2112                 }
2113
2114                 for_each_sp(pages, sp, parents, i) {
2115                         kvm_unlink_unsync_page(vcpu->kvm, sp);
2116                         flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
2117                         mmu_pages_clear_parents(&parents);
2118                 }
2119                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2120                         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2121                         if (!can_yield) {
2122                                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2123                                 return -EINTR;
2124                         }
2125
2126                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2127                         flush = false;
2128                 }
2129         }
2130
2131         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2132         return 0;
2133 }
2134
2135 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2136 {
2137         atomic_set(&sp->write_flooding_count,  0);
2138 }
2139
2140 static void clear_sp_write_flooding_count(u64 *spte)
2141 {
2142         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2143 }
2144
2145 /*
2146  * The vCPU is required when finding indirect shadow pages; the shadow
2147  * page may already exist and syncing it needs the vCPU pointer in
2148  * order to read guest page tables.  Direct shadow pages are never
2149  * unsync, thus @vcpu can be NULL if @role.direct is true.
2150  */
2151 static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2152                                                      struct kvm_vcpu *vcpu,
2153                                                      gfn_t gfn,
2154                                                      struct hlist_head *sp_list,
2155                                                      union kvm_mmu_page_role role)
2156 {
2157         struct kvm_mmu_page *sp;
2158         int ret;
2159         int collisions = 0;
2160         LIST_HEAD(invalid_list);
2161
2162         for_each_valid_sp(kvm, sp, sp_list) {
2163                 if (sp->gfn != gfn) {
2164                         collisions++;
2165                         continue;
2166                 }
2167
2168                 if (sp->role.word != role.word) {
2169                         /*
2170                          * If the guest is creating an upper-level page, zap
2171                          * unsync pages for the same gfn.  While it's possible
2172                          * the guest is using recursive page tables, in all
2173                          * likelihood the guest has stopped using the unsync
2174                          * page and is installing a completely unrelated page.
2175                          * Unsync pages must not be left as is, because the new
2176                          * upper-level page will be write-protected.
2177                          */
2178                         if (role.level > PG_LEVEL_4K && sp->unsync)
2179                                 kvm_mmu_prepare_zap_page(kvm, sp,
2180                                                          &invalid_list);
2181                         continue;
2182                 }
2183
2184                 /* unsync and write-flooding only apply to indirect SPs. */
2185                 if (sp->role.direct)
2186                         goto out;
2187
2188                 if (sp->unsync) {
2189                         if (KVM_BUG_ON(!vcpu, kvm))
2190                                 break;
2191
2192                         /*
2193                          * The page is good, but is stale.  kvm_sync_page does
2194                          * get the latest guest state, but (unlike mmu_unsync_children)
2195                          * it doesn't write-protect the page or mark it synchronized!
2196                          * This way the validity of the mapping is ensured, but the
2197                          * overhead of write protection is not incurred until the
2198                          * guest invalidates the TLB mapping.  This allows multiple
2199                          * SPs for a single gfn to be unsync.
2200                          *
2201                          * If the sync fails, the page is zapped.  If so, break
2202                          * in order to rebuild it.
2203                          */
2204                         ret = kvm_sync_page(vcpu, sp, &invalid_list);
2205                         if (ret < 0)
2206                                 break;
2207
2208                         WARN_ON_ONCE(!list_empty(&invalid_list));
2209                         if (ret > 0)
2210                                 kvm_flush_remote_tlbs(kvm);
2211                 }
2212
2213                 __clear_sp_write_flooding_count(sp);
2214
2215                 goto out;
2216         }
2217
2218         sp = NULL;
2219         ++kvm->stat.mmu_cache_miss;
2220
2221 out:
2222         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2223
2224         if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2225                 kvm->stat.max_mmu_page_hash_collisions = collisions;
2226         return sp;
2227 }
2228
2229 /* Caches used when allocating a new shadow page. */
2230 struct shadow_page_caches {
2231         struct kvm_mmu_memory_cache *page_header_cache;
2232         struct kvm_mmu_memory_cache *shadow_page_cache;
2233         struct kvm_mmu_memory_cache *shadowed_info_cache;
2234 };
2235
2236 static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2237                                                       struct shadow_page_caches *caches,
2238                                                       gfn_t gfn,
2239                                                       struct hlist_head *sp_list,
2240                                                       union kvm_mmu_page_role role)
2241 {
2242         struct kvm_mmu_page *sp;
2243
2244         sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
2245         sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
2246         if (!role.direct)
2247                 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
2248
2249         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2250
2251         INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
2252
2253         /*
2254          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2255          * depends on valid pages being added to the head of the list.  See
2256          * comments in kvm_zap_obsolete_pages().
2257          */
2258         sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2259         list_add(&sp->link, &kvm->arch.active_mmu_pages);
2260         kvm_account_mmu_page(kvm, sp);
2261
2262         sp->gfn = gfn;
2263         sp->role = role;
2264         hlist_add_head(&sp->hash_link, sp_list);
2265         if (sp_has_gptes(sp))
2266                 account_shadowed(kvm, sp);
2267
2268         return sp;
2269 }
2270
2271 /* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2272 static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2273                                                       struct kvm_vcpu *vcpu,
2274                                                       struct shadow_page_caches *caches,
2275                                                       gfn_t gfn,
2276                                                       union kvm_mmu_page_role role)
2277 {
2278         struct hlist_head *sp_list;
2279         struct kvm_mmu_page *sp;
2280         bool created = false;
2281
2282         sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2283
2284         sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2285         if (!sp) {
2286                 created = true;
2287                 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2288         }
2289
2290         trace_kvm_mmu_get_page(sp, created);
2291         return sp;
2292 }
2293
2294 static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2295                                                     gfn_t gfn,
2296                                                     union kvm_mmu_page_role role)
2297 {
2298         struct shadow_page_caches caches = {
2299                 .page_header_cache = &vcpu->arch.mmu_page_header_cache,
2300                 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2301                 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2302         };
2303
2304         return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
2305 }
2306
2307 static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2308                                                   unsigned int access)
2309 {
2310         struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2311         union kvm_mmu_page_role role;
2312
2313         role = parent_sp->role;
2314         role.level--;
2315         role.access = access;
2316         role.direct = direct;
2317         role.passthrough = 0;
2318
2319         /*
2320          * If the guest has 4-byte PTEs then that means it's using 32-bit,
2321          * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2322          * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2323          * shadow each guest page table with multiple shadow page tables, which
2324          * requires extra bookkeeping in the role.
2325          *
2326          * Specifically, to shadow the guest's page directory (which covers a
2327          * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2328          * 1GiB of the address space. @role.quadrant encodes which quarter of
2329          * the address space each maps.
2330          *
2331          * To shadow the guest's page tables (which each map a 4MiB region), KVM
2332          * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2333          * @role.quadrant encodes which half of the region they map.
2334          *
2335          * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2336          * consumes bits 29:21.  To consume bits 31:30, KVM's uses 4 shadow
2337          * PDPTEs; those 4 PAE page directories are pre-allocated and their
2338          * quadrant is assigned in mmu_alloc_root().   A 4-byte PTE consumes
2339          * bits 21:12, while an 8-byte PTE consumes bits 20:12.  To consume
2340          * bit 21 in the PTE (the child here), KVM propagates that bit to the
2341          * quadrant, i.e. sets quadrant to '0' or '1'.  The parent 8-byte PDE
2342          * covers bit 21 (see above), thus the quadrant is calculated from the
2343          * _least_ significant bit of the PDE index.
2344          */
2345         if (role.has_4_byte_gpte) {
2346                 WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2347                 role.quadrant = spte_index(sptep) & 1;
2348         }
2349
2350         return role;
2351 }
2352
2353 static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2354                                                  u64 *sptep, gfn_t gfn,
2355                                                  bool direct, unsigned int access)
2356 {
2357         union kvm_mmu_page_role role;
2358
2359         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
2360                 return ERR_PTR(-EEXIST);
2361
2362         role = kvm_mmu_child_role(sptep, direct, access);
2363         return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2364 }
2365
2366 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2367                                         struct kvm_vcpu *vcpu, hpa_t root,
2368                                         u64 addr)
2369 {
2370         iterator->addr = addr;
2371         iterator->shadow_addr = root;
2372         iterator->level = vcpu->arch.mmu->root_role.level;
2373
2374         if (iterator->level >= PT64_ROOT_4LEVEL &&
2375             vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2376             !vcpu->arch.mmu->root_role.direct)
2377                 iterator->level = PT32E_ROOT_LEVEL;
2378
2379         if (iterator->level == PT32E_ROOT_LEVEL) {
2380                 /*
2381                  * prev_root is currently only used for 64-bit hosts. So only
2382                  * the active root_hpa is valid here.
2383                  */
2384                 BUG_ON(root != vcpu->arch.mmu->root.hpa);
2385
2386                 iterator->shadow_addr
2387                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2388                 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2389                 --iterator->level;
2390                 if (!iterator->shadow_addr)
2391                         iterator->level = 0;
2392         }
2393 }
2394
2395 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396                              struct kvm_vcpu *vcpu, u64 addr)
2397 {
2398         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
2399                                     addr);
2400 }
2401
2402 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2403 {
2404         if (iterator->level < PG_LEVEL_4K)
2405                 return false;
2406
2407         iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2408         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2409         return true;
2410 }
2411
2412 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2413                                u64 spte)
2414 {
2415         if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2416                 iterator->level = 0;
2417                 return;
2418         }
2419
2420         iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2421         --iterator->level;
2422 }
2423
2424 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2425 {
2426         __shadow_walk_next(iterator, *iterator->sptep);
2427 }
2428
2429 static void __link_shadow_page(struct kvm *kvm,
2430                                struct kvm_mmu_memory_cache *cache, u64 *sptep,
2431                                struct kvm_mmu_page *sp, bool flush)
2432 {
2433         u64 spte;
2434
2435         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2436
2437         /*
2438          * If an SPTE is present already, it must be a leaf and therefore
2439          * a large one.  Drop it, and flush the TLB if needed, before
2440          * installing sp.
2441          */
2442         if (is_shadow_present_pte(*sptep))
2443                 drop_large_spte(kvm, sptep, flush);
2444
2445         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2446
2447         mmu_spte_set(sptep, spte);
2448
2449         mmu_page_add_parent_pte(cache, sp, sptep);
2450
2451         /*
2452          * The non-direct sub-pagetable must be updated before linking.  For
2453          * L1 sp, the pagetable is updated via kvm_sync_page() in
2454          * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2455          * so sp->unsync can be true or false.  For higher level non-direct
2456          * sp, the pagetable is updated/synced via mmu_sync_children() in
2457          * FNAME(fetch)(), so sp->unsync_children can only be false.
2458          * WARN_ON_ONCE() if anything happens unexpectedly.
2459          */
2460         if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2461                 mark_unsync(sptep);
2462 }
2463
2464 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2465                              struct kvm_mmu_page *sp)
2466 {
2467         __link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
2468 }
2469
2470 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2471                                    unsigned direct_access)
2472 {
2473         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2474                 struct kvm_mmu_page *child;
2475
2476                 /*
2477                  * For the direct sp, if the guest pte's dirty bit
2478                  * changed form clean to dirty, it will corrupt the
2479                  * sp's access: allow writable in the read-only sp,
2480                  * so we should update the spte at this point to get
2481                  * a new sp with the correct access.
2482                  */
2483                 child = spte_to_child_sp(*sptep);
2484                 if (child->role.access == direct_access)
2485                         return;
2486
2487                 drop_parent_pte(vcpu->kvm, child, sptep);
2488                 kvm_flush_remote_tlbs_sptep(vcpu->kvm, sptep);
2489         }
2490 }
2491
2492 /* Returns the number of zapped non-leaf child shadow pages. */
2493 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2494                             u64 *spte, struct list_head *invalid_list)
2495 {
2496         u64 pte;
2497         struct kvm_mmu_page *child;
2498
2499         pte = *spte;
2500         if (is_shadow_present_pte(pte)) {
2501                 if (is_last_spte(pte, sp->role.level)) {
2502                         drop_spte(kvm, spte);
2503                 } else {
2504                         child = spte_to_child_sp(pte);
2505                         drop_parent_pte(kvm, child, spte);
2506
2507                         /*
2508                          * Recursively zap nested TDP SPs, parentless SPs are
2509                          * unlikely to be used again in the near future.  This
2510                          * avoids retaining a large number of stale nested SPs.
2511                          */
2512                         if (tdp_enabled && invalid_list &&
2513                             child->role.guest_mode && !child->parent_ptes.val)
2514                                 return kvm_mmu_prepare_zap_page(kvm, child,
2515                                                                 invalid_list);
2516                 }
2517         } else if (is_mmio_spte(pte)) {
2518                 mmu_spte_clear_no_track(spte);
2519         }
2520         return 0;
2521 }
2522
2523 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2524                                         struct kvm_mmu_page *sp,
2525                                         struct list_head *invalid_list)
2526 {
2527         int zapped = 0;
2528         unsigned i;
2529
2530         for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2531                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2532
2533         return zapped;
2534 }
2535
2536 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2537 {
2538         u64 *sptep;
2539         struct rmap_iterator iter;
2540
2541         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2542                 drop_parent_pte(kvm, sp, sptep);
2543 }
2544
2545 static int mmu_zap_unsync_children(struct kvm *kvm,
2546                                    struct kvm_mmu_page *parent,
2547                                    struct list_head *invalid_list)
2548 {
2549         int i, zapped = 0;
2550         struct mmu_page_path parents;
2551         struct kvm_mmu_pages pages;
2552
2553         if (parent->role.level == PG_LEVEL_4K)
2554                 return 0;
2555
2556         while (mmu_unsync_walk(parent, &pages)) {
2557                 struct kvm_mmu_page *sp;
2558
2559                 for_each_sp(pages, sp, parents, i) {
2560                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2561                         mmu_pages_clear_parents(&parents);
2562                         zapped++;
2563                 }
2564         }
2565
2566         return zapped;
2567 }
2568
2569 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2570                                        struct kvm_mmu_page *sp,
2571                                        struct list_head *invalid_list,
2572                                        int *nr_zapped)
2573 {
2574         bool list_unstable, zapped_root = false;
2575
2576         lockdep_assert_held_write(&kvm->mmu_lock);
2577         trace_kvm_mmu_prepare_zap_page(sp);
2578         ++kvm->stat.mmu_shadow_zapped;
2579         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2580         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2581         kvm_mmu_unlink_parents(kvm, sp);
2582
2583         /* Zapping children means active_mmu_pages has become unstable. */
2584         list_unstable = *nr_zapped;
2585
2586         if (!sp->role.invalid && sp_has_gptes(sp))
2587                 unaccount_shadowed(kvm, sp);
2588
2589         if (sp->unsync)
2590                 kvm_unlink_unsync_page(kvm, sp);
2591         if (!sp->root_count) {
2592                 /* Count self */
2593                 (*nr_zapped)++;
2594
2595                 /*
2596                  * Already invalid pages (previously active roots) are not on
2597                  * the active page list.  See list_del() in the "else" case of
2598                  * !sp->root_count.
2599                  */
2600                 if (sp->role.invalid)
2601                         list_add(&sp->link, invalid_list);
2602                 else
2603                         list_move(&sp->link, invalid_list);
2604                 kvm_unaccount_mmu_page(kvm, sp);
2605         } else {
2606                 /*
2607                  * Remove the active root from the active page list, the root
2608                  * will be explicitly freed when the root_count hits zero.
2609                  */
2610                 list_del(&sp->link);
2611
2612                 /*
2613                  * Obsolete pages cannot be used on any vCPUs, see the comment
2614                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2615                  * treats invalid shadow pages as being obsolete.
2616                  */
2617                 zapped_root = !is_obsolete_sp(kvm, sp);
2618         }
2619
2620         if (sp->nx_huge_page_disallowed)
2621                 unaccount_nx_huge_page(kvm, sp);
2622
2623         sp->role.invalid = 1;
2624
2625         /*
2626          * Make the request to free obsolete roots after marking the root
2627          * invalid, otherwise other vCPUs may not see it as invalid.
2628          */
2629         if (zapped_root)
2630                 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2631         return list_unstable;
2632 }
2633
2634 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2635                                      struct list_head *invalid_list)
2636 {
2637         int nr_zapped;
2638
2639         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2640         return nr_zapped;
2641 }
2642
2643 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2644                                     struct list_head *invalid_list)
2645 {
2646         struct kvm_mmu_page *sp, *nsp;
2647
2648         if (list_empty(invalid_list))
2649                 return;
2650
2651         /*
2652          * We need to make sure everyone sees our modifications to
2653          * the page tables and see changes to vcpu->mode here. The barrier
2654          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2655          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2656          *
2657          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2658          * guest mode and/or lockless shadow page table walks.
2659          */
2660         kvm_flush_remote_tlbs(kvm);
2661
2662         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2663                 WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2664                 kvm_mmu_free_shadow_page(sp);
2665         }
2666 }
2667
2668 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2669                                                   unsigned long nr_to_zap)
2670 {
2671         unsigned long total_zapped = 0;
2672         struct kvm_mmu_page *sp, *tmp;
2673         LIST_HEAD(invalid_list);
2674         bool unstable;
2675         int nr_zapped;
2676
2677         if (list_empty(&kvm->arch.active_mmu_pages))
2678                 return 0;
2679
2680 restart:
2681         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2682                 /*
2683                  * Don't zap active root pages, the page itself can't be freed
2684                  * and zapping it will just force vCPUs to realloc and reload.
2685                  */
2686                 if (sp->root_count)
2687                         continue;
2688
2689                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2690                                                       &nr_zapped);
2691                 total_zapped += nr_zapped;
2692                 if (total_zapped >= nr_to_zap)
2693                         break;
2694
2695                 if (unstable)
2696                         goto restart;
2697         }
2698
2699         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2700
2701         kvm->stat.mmu_recycled += total_zapped;
2702         return total_zapped;
2703 }
2704
2705 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2706 {
2707         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2708                 return kvm->arch.n_max_mmu_pages -
2709                         kvm->arch.n_used_mmu_pages;
2710
2711         return 0;
2712 }
2713
2714 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2715 {
2716         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2717
2718         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2719                 return 0;
2720
2721         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2722
2723         /*
2724          * Note, this check is intentionally soft, it only guarantees that one
2725          * page is available, while the caller may end up allocating as many as
2726          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2727          * exceeding the (arbitrary by default) limit will not harm the host,
2728          * being too aggressive may unnecessarily kill the guest, and getting an
2729          * exact count is far more trouble than it's worth, especially in the
2730          * page fault paths.
2731          */
2732         if (!kvm_mmu_available_pages(vcpu->kvm))
2733                 return -ENOSPC;
2734         return 0;
2735 }
2736
2737 /*
2738  * Changing the number of mmu pages allocated to the vm
2739  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2740  */
2741 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2742 {
2743         write_lock(&kvm->mmu_lock);
2744
2745         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2746                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2747                                                   goal_nr_mmu_pages);
2748
2749                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2750         }
2751
2752         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2753
2754         write_unlock(&kvm->mmu_lock);
2755 }
2756
2757 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2758 {
2759         struct kvm_mmu_page *sp;
2760         LIST_HEAD(invalid_list);
2761         int r;
2762
2763         r = 0;
2764         write_lock(&kvm->mmu_lock);
2765         for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2766                 r = 1;
2767                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2768         }
2769         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2770         write_unlock(&kvm->mmu_lock);
2771
2772         return r;
2773 }
2774
2775 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2776 {
2777         gpa_t gpa;
2778         int r;
2779
2780         if (vcpu->arch.mmu->root_role.direct)
2781                 return 0;
2782
2783         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2784
2785         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2786
2787         return r;
2788 }
2789
2790 static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2791 {
2792         trace_kvm_mmu_unsync_page(sp);
2793         ++kvm->stat.mmu_unsync;
2794         sp->unsync = 1;
2795
2796         kvm_mmu_mark_parents_unsync(sp);
2797 }
2798
2799 /*
2800  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2801  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2802  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2803  * be write-protected.
2804  */
2805 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2806                             gfn_t gfn, bool can_unsync, bool prefetch)
2807 {
2808         struct kvm_mmu_page *sp;
2809         bool locked = false;
2810
2811         /*
2812          * Force write-protection if the page is being tracked.  Note, the page
2813          * track machinery is used to write-protect upper-level shadow pages,
2814          * i.e. this guards the role.level == 4K assertion below!
2815          */
2816         if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2817                 return -EPERM;
2818
2819         /*
2820          * The page is not write-tracked, mark existing shadow pages unsync
2821          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2822          * that case, KVM must complete emulation of the guest TLB flush before
2823          * allowing shadow pages to become unsync (writable by the guest).
2824          */
2825         for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2826                 if (!can_unsync)
2827                         return -EPERM;
2828
2829                 if (sp->unsync)
2830                         continue;
2831
2832                 if (prefetch)
2833                         return -EEXIST;
2834
2835                 /*
2836                  * TDP MMU page faults require an additional spinlock as they
2837                  * run with mmu_lock held for read, not write, and the unsync
2838                  * logic is not thread safe.  Take the spinklock regardless of
2839                  * the MMU type to avoid extra conditionals/parameters, there's
2840                  * no meaningful penalty if mmu_lock is held for write.
2841                  */
2842                 if (!locked) {
2843                         locked = true;
2844                         spin_lock(&kvm->arch.mmu_unsync_pages_lock);
2845
2846                         /*
2847                          * Recheck after taking the spinlock, a different vCPU
2848                          * may have since marked the page unsync.  A false
2849                          * negative on the unprotected check above is not
2850                          * possible as clearing sp->unsync _must_ hold mmu_lock
2851                          * for write, i.e. unsync cannot transition from 1->0
2852                          * while this CPU holds mmu_lock for read (or write).
2853                          */
2854                         if (READ_ONCE(sp->unsync))
2855                                 continue;
2856                 }
2857
2858                 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2859                 kvm_unsync_page(kvm, sp);
2860         }
2861         if (locked)
2862                 spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
2863
2864         /*
2865          * We need to ensure that the marking of unsync pages is visible
2866          * before the SPTE is updated to allow writes because
2867          * kvm_mmu_sync_roots() checks the unsync flags without holding
2868          * the MMU lock and so can race with this. If the SPTE was updated
2869          * before the page had been marked as unsync-ed, something like the
2870          * following could happen:
2871          *
2872          * CPU 1                    CPU 2
2873          * ---------------------------------------------------------------------
2874          * 1.2 Host updates SPTE
2875          *     to be writable
2876          *                      2.1 Guest writes a GPTE for GVA X.
2877          *                          (GPTE being in the guest page table shadowed
2878          *                           by the SP from CPU 1.)
2879          *                          This reads SPTE during the page table walk.
2880          *                          Since SPTE.W is read as 1, there is no
2881          *                          fault.
2882          *
2883          *                      2.2 Guest issues TLB flush.
2884          *                          That causes a VM Exit.
2885          *
2886          *                      2.3 Walking of unsync pages sees sp->unsync is
2887          *                          false and skips the page.
2888          *
2889          *                      2.4 Guest accesses GVA X.
2890          *                          Since the mapping in the SP was not updated,
2891          *                          so the old mapping for GVA X incorrectly
2892          *                          gets used.
2893          * 1.1 Host marks SP
2894          *     as unsync
2895          *     (sp->unsync = true)
2896          *
2897          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2898          * the situation in 2.4 does not arise.  It pairs with the read barrier
2899          * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2900          */
2901         smp_wmb();
2902
2903         return 0;
2904 }
2905
2906 static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2907                         u64 *sptep, unsigned int pte_access, gfn_t gfn,
2908                         kvm_pfn_t pfn, struct kvm_page_fault *fault)
2909 {
2910         struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2911         int level = sp->role.level;
2912         int was_rmapped = 0;
2913         int ret = RET_PF_FIXED;
2914         bool flush = false;
2915         bool wrprot;
2916         u64 spte;
2917
2918         /* Prefetching always gets a writable pfn.  */
2919         bool host_writable = !fault || fault->map_writable;
2920         bool prefetch = !fault || fault->prefetch;
2921         bool write_fault = fault && fault->write;
2922
2923         if (unlikely(is_noslot_pfn(pfn))) {
2924                 vcpu->stat.pf_mmio_spte_created++;
2925                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2926                 return RET_PF_EMULATE;
2927         }
2928
2929         if (is_shadow_present_pte(*sptep)) {
2930                 /*
2931                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2932                  * the parent of the now unreachable PTE.
2933                  */
2934                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2935                         struct kvm_mmu_page *child;
2936                         u64 pte = *sptep;
2937
2938                         child = spte_to_child_sp(pte);
2939                         drop_parent_pte(vcpu->kvm, child, sptep);
2940                         flush = true;
2941                 } else if (pfn != spte_to_pfn(*sptep)) {
2942                         drop_spte(vcpu->kvm, sptep);
2943                         flush = true;
2944                 } else
2945                         was_rmapped = 1;
2946         }
2947
2948         wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
2949                            true, host_writable, &spte);
2950
2951         if (*sptep == spte) {
2952                 ret = RET_PF_SPURIOUS;
2953         } else {
2954                 flush |= mmu_spte_update(sptep, spte);
2955                 trace_kvm_mmu_set_spte(level, gfn, sptep);
2956         }
2957
2958         if (wrprot) {
2959                 if (write_fault)
2960                         ret = RET_PF_EMULATE;
2961         }
2962
2963         if (flush)
2964                 kvm_flush_remote_tlbs_gfn(vcpu->kvm, gfn, level);
2965
2966         if (!was_rmapped) {
2967                 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2968                 rmap_add(vcpu, slot, sptep, gfn, pte_access);
2969         } else {
2970                 /* Already rmapped but the pte_access bits may have changed. */
2971                 kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
2972         }
2973
2974         return ret;
2975 }
2976
2977 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2978                                     struct kvm_mmu_page *sp,
2979                                     u64 *start, u64 *end)
2980 {
2981         struct page *pages[PTE_PREFETCH_NUM];
2982         struct kvm_memory_slot *slot;
2983         unsigned int access = sp->role.access;
2984         int i, ret;
2985         gfn_t gfn;
2986
2987         gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
2988         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2989         if (!slot)
2990                 return -1;
2991
2992         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2993         if (ret <= 0)
2994                 return -1;
2995
2996         for (i = 0; i < ret; i++, gfn++, start++) {
2997                 mmu_set_spte(vcpu, slot, start, access, gfn,
2998                              page_to_pfn(pages[i]), NULL);
2999                 put_page(pages[i]);
3000         }
3001
3002         return 0;
3003 }
3004
3005 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3006                                   struct kvm_mmu_page *sp, u64 *sptep)
3007 {
3008         u64 *spte, *start = NULL;
3009         int i;
3010
3011         WARN_ON_ONCE(!sp->role.direct);
3012
3013         i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3014         spte = sp->spt + i;
3015
3016         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3017                 if (is_shadow_present_pte(*spte) || spte == sptep) {
3018                         if (!start)
3019                                 continue;
3020                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3021                                 return;
3022                         start = NULL;
3023                 } else if (!start)
3024                         start = spte;
3025         }
3026         if (start)
3027                 direct_pte_prefetch_many(vcpu, sp, start, spte);
3028 }
3029
3030 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3031 {
3032         struct kvm_mmu_page *sp;
3033
3034         sp = sptep_to_sp(sptep);
3035
3036         /*
3037          * Without accessed bits, there's no way to distinguish between
3038          * actually accessed translations and prefetched, so disable pte
3039          * prefetch if accessed bits aren't available.
3040          */
3041         if (sp_ad_disabled(sp))
3042                 return;
3043
3044         if (sp->role.level > PG_LEVEL_4K)
3045                 return;
3046
3047         /*
3048          * If addresses are being invalidated, skip prefetching to avoid
3049          * accidentally prefetching those addresses.
3050          */
3051         if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3052                 return;
3053
3054         __direct_pte_prefetch(vcpu, sp, sptep);
3055 }
3056
3057 /*
3058  * Lookup the mapping level for @gfn in the current mm.
3059  *
3060  * WARNING!  Use of host_pfn_mapping_level() requires the caller and the end
3061  * consumer to be tied into KVM's handlers for MMU notifier events!
3062  *
3063  * There are several ways to safely use this helper:
3064  *
3065  * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3066  *   consuming it.  In this case, mmu_lock doesn't need to be held during the
3067  *   lookup, but it does need to be held while checking the MMU notifier.
3068  *
3069  * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3070  *   event for the hva.  This can be done by explicit checking the MMU notifier
3071  *   or by ensuring that KVM already has a valid mapping that covers the hva.
3072  *
3073  * - Do not use the result to install new mappings, e.g. use the host mapping
3074  *   level only to decide whether or not to zap an entry.  In this case, it's
3075  *   not required to hold mmu_lock (though it's highly likely the caller will
3076  *   want to hold mmu_lock anyways, e.g. to modify SPTEs).
3077  *
3078  * Note!  The lookup can still race with modifications to host page tables, but
3079  * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3080  * race with the primary MMU occurs.
3081  */
3082 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3083                                   const struct kvm_memory_slot *slot)
3084 {
3085         int level = PG_LEVEL_4K;
3086         unsigned long hva;
3087         unsigned long flags;
3088         pgd_t pgd;
3089         p4d_t p4d;
3090         pud_t pud;
3091         pmd_t pmd;
3092
3093         /*
3094          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3095          * is not solely for performance, it's also necessary to avoid the
3096          * "writable" check in __gfn_to_hva_many(), which will always fail on
3097          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
3098          * page fault steps have already verified the guest isn't writing a
3099          * read-only memslot.
3100          */
3101         hva = __gfn_to_hva_memslot(slot, gfn);
3102
3103         /*
3104          * Disable IRQs to prevent concurrent tear down of host page tables,
3105          * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3106          * the original page table.
3107          */
3108         local_irq_save(flags);
3109
3110         /*
3111          * Read each entry once.  As above, a non-leaf entry can be promoted to
3112          * a huge page _during_ this walk.  Re-reading the entry could send the
3113          * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3114          * value) and then p*d_offset() walks into the target huge page instead
3115          * of the old page table (sees the new value).
3116          */
3117         pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3118         if (pgd_none(pgd))
3119                 goto out;
3120
3121         p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3122         if (p4d_none(p4d) || !p4d_present(p4d))
3123                 goto out;
3124
3125         pud = READ_ONCE(*pud_offset(&p4d, hva));
3126         if (pud_none(pud) || !pud_present(pud))
3127                 goto out;
3128
3129         if (pud_leaf(pud)) {
3130                 level = PG_LEVEL_1G;
3131                 goto out;
3132         }
3133
3134         pmd = READ_ONCE(*pmd_offset(&pud, hva));
3135         if (pmd_none(pmd) || !pmd_present(pmd))
3136                 goto out;
3137
3138         if (pmd_leaf(pmd))
3139                 level = PG_LEVEL_2M;
3140
3141 out:
3142         local_irq_restore(flags);
3143         return level;
3144 }
3145
3146 static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
3147                                        const struct kvm_memory_slot *slot,
3148                                        gfn_t gfn, int max_level, bool is_private)
3149 {
3150         struct kvm_lpage_info *linfo;
3151         int host_level;
3152
3153         max_level = min(max_level, max_huge_page_level);
3154         for ( ; max_level > PG_LEVEL_4K; max_level--) {
3155                 linfo = lpage_info_slot(gfn, slot, max_level);
3156                 if (!linfo->disallow_lpage)
3157                         break;
3158         }
3159
3160         if (is_private)
3161                 return max_level;
3162
3163         if (max_level == PG_LEVEL_4K)
3164                 return PG_LEVEL_4K;
3165
3166         host_level = host_pfn_mapping_level(kvm, gfn, slot);
3167         return min(host_level, max_level);
3168 }
3169
3170 int kvm_mmu_max_mapping_level(struct kvm *kvm,
3171                               const struct kvm_memory_slot *slot, gfn_t gfn,
3172                               int max_level)
3173 {
3174         bool is_private = kvm_slot_can_be_private(slot) &&
3175                           kvm_mem_is_private(kvm, gfn);
3176
3177         return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private);
3178 }
3179
3180 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3181 {
3182         struct kvm_memory_slot *slot = fault->slot;
3183         kvm_pfn_t mask;
3184
3185         fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3186
3187         if (unlikely(fault->max_level == PG_LEVEL_4K))
3188                 return;
3189
3190         if (is_error_noslot_pfn(fault->pfn))
3191                 return;
3192
3193         if (kvm_slot_dirty_track_enabled(slot))
3194                 return;
3195
3196         /*
3197          * Enforce the iTLB multihit workaround after capturing the requested
3198          * level, which will be used to do precise, accurate accounting.
3199          */
3200         fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot,
3201                                                        fault->gfn, fault->max_level,
3202                                                        fault->is_private);
3203         if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3204                 return;
3205
3206         /*
3207          * mmu_invalidate_retry() was successful and mmu_lock is held, so
3208          * the pmd can't be split from under us.
3209          */
3210         fault->goal_level = fault->req_level;
3211         mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3212         VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3213         fault->pfn &= ~mask;
3214 }
3215
3216 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3217 {
3218         if (cur_level > PG_LEVEL_4K &&
3219             cur_level == fault->goal_level &&
3220             is_shadow_present_pte(spte) &&
3221             !is_large_pte(spte) &&
3222             spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3223                 /*
3224                  * A small SPTE exists for this pfn, but FNAME(fetch),
3225                  * direct_map(), or kvm_tdp_mmu_map() would like to create a
3226                  * large PTE instead: just force them to go down another level,
3227                  * patching back for them into pfn the next 9 bits of the
3228                  * address.
3229                  */
3230                 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3231                                 KVM_PAGES_PER_HPAGE(cur_level - 1);
3232                 fault->pfn |= fault->gfn & page_mask;
3233                 fault->goal_level--;
3234         }
3235 }
3236
3237 static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3238 {
3239         struct kvm_shadow_walk_iterator it;
3240         struct kvm_mmu_page *sp;
3241         int ret;
3242         gfn_t base_gfn = fault->gfn;
3243
3244         kvm_mmu_hugepage_adjust(vcpu, fault);
3245
3246         trace_kvm_mmu_spte_requested(fault);
3247         for_each_shadow_entry(vcpu, fault->addr, it) {
3248                 /*
3249                  * We cannot overwrite existing page tables with an NX
3250                  * large page, as the leaf could be executable.
3251                  */
3252                 if (fault->nx_huge_page_workaround_enabled)
3253                         disallowed_hugepage_adjust(fault, *it.sptep, it.level);
3254
3255                 base_gfn = gfn_round_for_level(fault->gfn, it.level);
3256                 if (it.level == fault->goal_level)
3257                         break;
3258
3259                 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3260                 if (sp == ERR_PTR(-EEXIST))
3261                         continue;
3262
3263                 link_shadow_page(vcpu, it.sptep, sp);
3264                 if (fault->huge_page_disallowed)
3265                         account_nx_huge_page(vcpu->kvm, sp,
3266                                              fault->req_level >= it.level);
3267         }
3268
3269         if (WARN_ON_ONCE(it.level != fault->goal_level))
3270                 return -EFAULT;
3271
3272         ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3273                            base_gfn, fault->pfn, fault);
3274         if (ret == RET_PF_SPURIOUS)
3275                 return ret;
3276
3277         direct_pte_prefetch(vcpu, it.sptep);
3278         return ret;
3279 }
3280
3281 static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3282 {
3283         unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3284
3285         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3286 }
3287
3288 static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3289 {
3290         if (is_sigpending_pfn(fault->pfn)) {
3291                 kvm_handle_signal_exit(vcpu);
3292                 return -EINTR;
3293         }
3294
3295         /*
3296          * Do not cache the mmio info caused by writing the readonly gfn
3297          * into the spte otherwise read access on readonly gfn also can
3298          * caused mmio page fault and treat it as mmio access.
3299          */
3300         if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3301                 return RET_PF_EMULATE;
3302
3303         if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3304                 kvm_send_hwpoison_signal(fault->slot, fault->gfn);
3305                 return RET_PF_RETRY;
3306         }
3307
3308         return -EFAULT;
3309 }
3310
3311 static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3312                                    struct kvm_page_fault *fault,
3313                                    unsigned int access)
3314 {
3315         gva_t gva = fault->is_tdp ? 0 : fault->addr;
3316
3317         vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3318                              access & shadow_mmio_access_mask);
3319
3320         /*
3321          * If MMIO caching is disabled, emulate immediately without
3322          * touching the shadow page tables as attempting to install an
3323          * MMIO SPTE will just be an expensive nop.
3324          */
3325         if (unlikely(!enable_mmio_caching))
3326                 return RET_PF_EMULATE;
3327
3328         /*
3329          * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3330          * any guest that generates such gfns is running nested and is being
3331          * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3332          * only if L1's MAXPHYADDR is inaccurate with respect to the
3333          * hardware's).
3334          */
3335         if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3336                 return RET_PF_EMULATE;
3337
3338         return RET_PF_CONTINUE;
3339 }
3340
3341 static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3342 {
3343         /*
3344          * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3345          * reach the common page fault handler if the SPTE has an invalid MMIO
3346          * generation number.  Refreshing the MMIO generation needs to go down
3347          * the slow path.  Note, EPT Misconfigs do NOT set the PRESENT flag!
3348          */
3349         if (fault->rsvd)
3350                 return false;
3351
3352         /*
3353          * #PF can be fast if:
3354          *
3355          * 1. The shadow page table entry is not present and A/D bits are
3356          *    disabled _by KVM_, which could mean that the fault is potentially
3357          *    caused by access tracking (if enabled).  If A/D bits are enabled
3358          *    by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3359          *    bits for L2 and employ access tracking, but the fast page fault
3360          *    mechanism only supports direct MMUs.
3361          * 2. The shadow page table entry is present, the access is a write,
3362          *    and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3363          *    the fault was caused by a write-protection violation.  If the
3364          *    SPTE is MMU-writable (determined later), the fault can be fixed
3365          *    by setting the Writable bit, which can be done out of mmu_lock.
3366          */
3367         if (!fault->present)
3368                 return !kvm_ad_enabled();
3369
3370         /*
3371          * Note, instruction fetches and writes are mutually exclusive, ignore
3372          * the "exec" flag.
3373          */
3374         return fault->write;
3375 }
3376
3377 /*
3378  * Returns true if the SPTE was fixed successfully. Otherwise,
3379  * someone else modified the SPTE from its original value.
3380  */
3381 static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3382                                     struct kvm_page_fault *fault,
3383                                     u64 *sptep, u64 old_spte, u64 new_spte)
3384 {
3385         /*
3386          * Theoretically we could also set dirty bit (and flush TLB) here in
3387          * order to eliminate unnecessary PML logging. See comments in
3388          * set_spte. But fast_page_fault is very unlikely to happen with PML
3389          * enabled, so we do not do this. This might result in the same GPA
3390          * to be logged in PML buffer again when the write really happens, and
3391          * eventually to be called by mark_page_dirty twice. But it's also no
3392          * harm. This also avoids the TLB flush needed after setting dirty bit
3393          * so non-PML cases won't be impacted.
3394          *
3395          * Compare with set_spte where instead shadow_dirty_mask is set.
3396          */
3397         if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3398                 return false;
3399
3400         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
3401                 mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
3402
3403         return true;
3404 }
3405
3406 static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3407 {
3408         if (fault->exec)
3409                 return is_executable_pte(spte);
3410
3411         if (fault->write)
3412                 return is_writable_pte(spte);
3413
3414         /* Fault was on Read access */
3415         return spte & PT_PRESENT_MASK;
3416 }
3417
3418 /*
3419  * Returns the last level spte pointer of the shadow page walk for the given
3420  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3421  * walk could be performed, returns NULL and *spte does not contain valid data.
3422  *
3423  * Contract:
3424  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
3425  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
3426  */
3427 static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3428 {
3429         struct kvm_shadow_walk_iterator iterator;
3430         u64 old_spte;
3431         u64 *sptep = NULL;
3432
3433         for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3434                 sptep = iterator.sptep;
3435                 *spte = old_spte;
3436         }
3437
3438         return sptep;
3439 }
3440
3441 /*
3442  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3443  */
3444 static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3445 {
3446         struct kvm_mmu_page *sp;
3447         int ret = RET_PF_INVALID;
3448         u64 spte;
3449         u64 *sptep;
3450         uint retry_count = 0;
3451
3452         if (!page_fault_can_be_fast(fault))
3453                 return ret;
3454
3455         walk_shadow_page_lockless_begin(vcpu);
3456
3457         do {
3458                 u64 new_spte;
3459
3460                 if (tdp_mmu_enabled)
3461                         sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3462                 else
3463                         sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3464
3465                 /*
3466                  * It's entirely possible for the mapping to have been zapped
3467                  * by a different task, but the root page should always be
3468                  * available as the vCPU holds a reference to its root(s).
3469                  */
3470                 if (WARN_ON_ONCE(!sptep))
3471                         spte = REMOVED_SPTE;
3472
3473                 if (!is_shadow_present_pte(spte))
3474                         break;
3475
3476                 sp = sptep_to_sp(sptep);
3477                 if (!is_last_spte(spte, sp->role.level))
3478                         break;
3479
3480                 /*
3481                  * Check whether the memory access that caused the fault would
3482                  * still cause it if it were to be performed right now. If not,
3483                  * then this is a spurious fault caused by TLB lazily flushed,
3484                  * or some other CPU has already fixed the PTE after the
3485                  * current CPU took the fault.
3486                  *
3487                  * Need not check the access of upper level table entries since
3488                  * they are always ACC_ALL.
3489                  */
3490                 if (is_access_allowed(fault, spte)) {
3491                         ret = RET_PF_SPURIOUS;
3492                         break;
3493                 }
3494
3495                 new_spte = spte;
3496
3497                 /*
3498                  * KVM only supports fixing page faults outside of MMU lock for
3499                  * direct MMUs, nested MMUs are always indirect, and KVM always
3500                  * uses A/D bits for non-nested MMUs.  Thus, if A/D bits are
3501                  * enabled, the SPTE can't be an access-tracked SPTE.
3502                  */
3503                 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3504                         new_spte = restore_acc_track_spte(new_spte);
3505
3506                 /*
3507                  * To keep things simple, only SPTEs that are MMU-writable can
3508                  * be made fully writable outside of mmu_lock, e.g. only SPTEs
3509                  * that were write-protected for dirty-logging or access
3510                  * tracking are handled here.  Don't bother checking if the
3511                  * SPTE is writable to prioritize running with A/D bits enabled.
3512                  * The is_access_allowed() check above handles the common case
3513                  * of the fault being spurious, and the SPTE is known to be
3514                  * shadow-present, i.e. except for access tracking restoration
3515                  * making the new SPTE writable, the check is wasteful.
3516                  */
3517                 if (fault->write && is_mmu_writable_spte(spte)) {
3518                         new_spte |= PT_WRITABLE_MASK;
3519
3520                         /*
3521                          * Do not fix write-permission on the large spte when
3522                          * dirty logging is enabled. Since we only dirty the
3523                          * first page into the dirty-bitmap in
3524                          * fast_pf_fix_direct_spte(), other pages are missed
3525                          * if its slot has dirty logging enabled.
3526                          *
3527                          * Instead, we let the slow page fault path create a
3528                          * normal spte to fix the access.
3529                          */
3530                         if (sp->role.level > PG_LEVEL_4K &&
3531                             kvm_slot_dirty_track_enabled(fault->slot))
3532                                 break;
3533                 }
3534
3535                 /* Verify that the fault can be handled in the fast path */
3536                 if (new_spte == spte ||
3537                     !is_access_allowed(fault, new_spte))
3538                         break;
3539
3540                 /*
3541                  * Currently, fast page fault only works for direct mapping
3542                  * since the gfn is not stable for indirect shadow page. See
3543                  * Documentation/virt/kvm/locking.rst to get more detail.
3544                  */
3545                 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
3546                         ret = RET_PF_FIXED;
3547                         break;
3548                 }
3549
3550                 if (++retry_count > 4) {
3551                         pr_warn_once("Fast #PF retrying more than 4 times.\n");
3552                         break;
3553                 }
3554
3555         } while (true);
3556
3557         trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
3558         walk_shadow_page_lockless_end(vcpu);
3559
3560         if (ret != RET_PF_INVALID)
3561                 vcpu->stat.pf_fast++;
3562
3563         return ret;
3564 }
3565
3566 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3567                                struct list_head *invalid_list)
3568 {
3569         struct kvm_mmu_page *sp;
3570
3571         if (!VALID_PAGE(*root_hpa))
3572                 return;
3573
3574         sp = root_to_sp(*root_hpa);
3575         if (WARN_ON_ONCE(!sp))
3576                 return;
3577
3578         if (is_tdp_mmu_page(sp)) {
3579                 lockdep_assert_held_read(&kvm->mmu_lock);
3580                 kvm_tdp_mmu_put_root(kvm, sp);
3581         } else {
3582                 lockdep_assert_held_write(&kvm->mmu_lock);
3583                 if (!--sp->root_count && sp->role.invalid)
3584                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3585         }
3586
3587         *root_hpa = INVALID_PAGE;
3588 }
3589
3590 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3591 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3592                         ulong roots_to_free)
3593 {
3594         bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3595         int i;
3596         LIST_HEAD(invalid_list);
3597         bool free_active_root;
3598
3599         WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3600
3601         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3602
3603         /* Before acquiring the MMU lock, see if we need to do any real work. */
3604         free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3605                 && VALID_PAGE(mmu->root.hpa);
3606
3607         if (!free_active_root) {
3608                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3609                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3610                             VALID_PAGE(mmu->prev_roots[i].hpa))
3611                                 break;
3612
3613                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3614                         return;
3615         }
3616
3617         if (is_tdp_mmu)
3618                 read_lock(&kvm->mmu_lock);
3619         else
3620                 write_lock(&kvm->mmu_lock);
3621
3622         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3623                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3624                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3625                                            &invalid_list);
3626
3627         if (free_active_root) {
3628                 if (kvm_mmu_is_dummy_root(mmu->root.hpa)) {
3629                         /* Nothing to cleanup for dummy roots. */
3630                 } else if (root_to_sp(mmu->root.hpa)) {
3631                         mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
3632                 } else if (mmu->pae_root) {
3633                         for (i = 0; i < 4; ++i) {
3634                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3635                                         continue;
3636
3637                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3638                                                    &invalid_list);
3639                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3640                         }
3641                 }
3642                 mmu->root.hpa = INVALID_PAGE;
3643                 mmu->root.pgd = 0;
3644         }
3645
3646         if (is_tdp_mmu) {
3647                 read_unlock(&kvm->mmu_lock);
3648                 WARN_ON_ONCE(!list_empty(&invalid_list));
3649         } else {
3650                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3651                 write_unlock(&kvm->mmu_lock);
3652         }
3653 }
3654 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3655
3656 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3657 {
3658         unsigned long roots_to_free = 0;
3659         struct kvm_mmu_page *sp;
3660         hpa_t root_hpa;
3661         int i;
3662
3663         /*
3664          * This should not be called while L2 is active, L2 can't invalidate
3665          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3666          */
3667         WARN_ON_ONCE(mmu->root_role.guest_mode);
3668
3669         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3670                 root_hpa = mmu->prev_roots[i].hpa;
3671                 if (!VALID_PAGE(root_hpa))
3672                         continue;
3673
3674                 sp = root_to_sp(root_hpa);
3675                 if (!sp || sp->role.guest_mode)
3676                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3677         }
3678
3679         kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3680 }
3681 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3682
3683 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3684                             u8 level)
3685 {
3686         union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3687         struct kvm_mmu_page *sp;
3688
3689         role.level = level;
3690         role.quadrant = quadrant;
3691
3692         WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3693         WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3694
3695         sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3696         ++sp->root_count;
3697
3698         return __pa(sp->spt);
3699 }
3700
3701 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3702 {
3703         struct kvm_mmu *mmu = vcpu->arch.mmu;
3704         u8 shadow_root_level = mmu->root_role.level;
3705         hpa_t root;
3706         unsigned i;
3707         int r;
3708
3709         if (tdp_mmu_enabled)
3710                 return kvm_tdp_mmu_alloc_root(vcpu);
3711
3712         write_lock(&vcpu->kvm->mmu_lock);
3713         r = make_mmu_pages_available(vcpu);
3714         if (r < 0)
3715                 goto out_unlock;
3716
3717         if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3718                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
3719                 mmu->root.hpa = root;
3720         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3721                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3722                         r = -EIO;
3723                         goto out_unlock;
3724                 }
3725
3726                 for (i = 0; i < 4; ++i) {
3727                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3728
3729                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
3730                                               PT32_ROOT_LEVEL);
3731                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3732                                            shadow_me_value;
3733                 }
3734                 mmu->root.hpa = __pa(mmu->pae_root);
3735         } else {
3736                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3737                 r = -EIO;
3738                 goto out_unlock;
3739         }
3740
3741         /* root.pgd is ignored for direct MMUs. */
3742         mmu->root.pgd = 0;
3743 out_unlock:
3744         write_unlock(&vcpu->kvm->mmu_lock);
3745         return r;
3746 }
3747
3748 static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3749 {
3750         struct kvm_memslots *slots;
3751         struct kvm_memory_slot *slot;
3752         int r = 0, i, bkt;
3753
3754         /*
3755          * Check if this is the first shadow root being allocated before
3756          * taking the lock.
3757          */
3758         if (kvm_shadow_root_allocated(kvm))
3759                 return 0;
3760
3761         mutex_lock(&kvm->slots_arch_lock);
3762
3763         /* Recheck, under the lock, whether this is the first shadow root. */
3764         if (kvm_shadow_root_allocated(kvm))
3765                 goto out_unlock;
3766
3767         /*
3768          * Check if anything actually needs to be allocated, e.g. all metadata
3769          * will be allocated upfront if TDP is disabled.
3770          */
3771         if (kvm_memslots_have_rmaps(kvm) &&
3772             kvm_page_track_write_tracking_enabled(kvm))
3773                 goto out_success;
3774
3775         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
3776                 slots = __kvm_memslots(kvm, i);
3777                 kvm_for_each_memslot(slot, bkt, slots) {
3778                         /*
3779                          * Both of these functions are no-ops if the target is
3780                          * already allocated, so unconditionally calling both
3781                          * is safe.  Intentionally do NOT free allocations on
3782                          * failure to avoid having to track which allocations
3783                          * were made now versus when the memslot was created.
3784                          * The metadata is guaranteed to be freed when the slot
3785                          * is freed, and will be kept/used if userspace retries
3786                          * KVM_RUN instead of killing the VM.
3787                          */
3788                         r = memslot_rmap_alloc(slot, slot->npages);
3789                         if (r)
3790                                 goto out_unlock;
3791                         r = kvm_page_track_write_tracking_alloc(slot);
3792                         if (r)
3793                                 goto out_unlock;
3794                 }
3795         }
3796
3797         /*
3798          * Ensure that shadow_root_allocated becomes true strictly after
3799          * all the related pointers are set.
3800          */
3801 out_success:
3802         smp_store_release(&kvm->arch.shadow_root_allocated, true);
3803
3804 out_unlock:
3805         mutex_unlock(&kvm->slots_arch_lock);
3806         return r;
3807 }
3808
3809 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3810 {
3811         struct kvm_mmu *mmu = vcpu->arch.mmu;
3812         u64 pdptrs[4], pm_mask;
3813         gfn_t root_gfn, root_pgd;
3814         int quadrant, i, r;
3815         hpa_t root;
3816
3817         root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3818         root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
3819
3820         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3821                 mmu->root.hpa = kvm_mmu_get_dummy_root();
3822                 return 0;
3823         }
3824
3825         /*
3826          * On SVM, reading PDPTRs might access guest memory, which might fault
3827          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3828          */
3829         if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3830                 for (i = 0; i < 4; ++i) {
3831                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3832                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3833                                 continue;
3834
3835                         if (!kvm_vcpu_is_visible_gfn(vcpu, pdptrs[i] >> PAGE_SHIFT))
3836                                 pdptrs[i] = 0;
3837                 }
3838         }
3839
3840         r = mmu_first_shadow_root_alloc(vcpu->kvm);
3841         if (r)
3842                 return r;
3843
3844         write_lock(&vcpu->kvm->mmu_lock);
3845         r = make_mmu_pages_available(vcpu);
3846         if (r < 0)
3847                 goto out_unlock;
3848
3849         /*
3850          * Do we shadow a long mode page table? If so we need to
3851          * write-protect the guests page table root.
3852          */
3853         if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3854                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3855                                       mmu->root_role.level);
3856                 mmu->root.hpa = root;
3857                 goto set_root_pgd;
3858         }
3859
3860         if (WARN_ON_ONCE(!mmu->pae_root)) {
3861                 r = -EIO;
3862                 goto out_unlock;
3863         }
3864
3865         /*
3866          * We shadow a 32 bit page table. This may be a legacy 2-level
3867          * or a PAE 3-level page table. In either case we need to be aware that
3868          * the shadow page table may be a PAE or a long mode page table.
3869          */
3870         pm_mask = PT_PRESENT_MASK | shadow_me_value;
3871         if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3872                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3873
3874                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3875                         r = -EIO;
3876                         goto out_unlock;
3877                 }
3878                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3879
3880                 if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3881                         if (WARN_ON_ONCE(!mmu->pml5_root)) {
3882                                 r = -EIO;
3883                                 goto out_unlock;
3884                         }
3885                         mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3886                 }
3887         }
3888
3889         for (i = 0; i < 4; ++i) {
3890                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3891
3892                 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3893                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3894                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3895                                 continue;
3896                         }
3897                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3898                 }
3899
3900                 /*
3901                  * If shadowing 32-bit non-PAE page tables, each PAE page
3902                  * directory maps one quarter of the guest's non-PAE page
3903                  * directory. Othwerise each PAE page direct shadows one guest
3904                  * PAE page directory so that quadrant should be 0.
3905                  */
3906                 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3907
3908                 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3909                 mmu->pae_root[i] = root | pm_mask;
3910         }
3911
3912         if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3913                 mmu->root.hpa = __pa(mmu->pml5_root);
3914         else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3915                 mmu->root.hpa = __pa(mmu->pml4_root);
3916         else
3917                 mmu->root.hpa = __pa(mmu->pae_root);
3918
3919 set_root_pgd:
3920         mmu->root.pgd = root_pgd;
3921 out_unlock:
3922         write_unlock(&vcpu->kvm->mmu_lock);
3923
3924         return r;
3925 }
3926
3927 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3928 {
3929         struct kvm_mmu *mmu = vcpu->arch.mmu;
3930         bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3931         u64 *pml5_root = NULL;
3932         u64 *pml4_root = NULL;
3933         u64 *pae_root;
3934
3935         /*
3936          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3937          * tables are allocated and initialized at root creation as there is no
3938          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3939          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3940          */
3941         if (mmu->root_role.direct ||
3942             mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3943             mmu->root_role.level < PT64_ROOT_4LEVEL)
3944                 return 0;
3945
3946         /*
3947          * NPT, the only paging mode that uses this horror, uses a fixed number
3948          * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3949          * all MMus are 5-level.  Thus, this can safely require that pml5_root
3950          * is allocated if the other roots are valid and pml5 is needed, as any
3951          * prior MMU would also have required pml5.
3952          */
3953         if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3954                 return 0;
3955
3956         /*
3957          * The special roots should always be allocated in concert.  Yell and
3958          * bail if KVM ends up in a state where only one of the roots is valid.
3959          */
3960         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3961                          (need_pml5 && mmu->pml5_root)))
3962                 return -EIO;
3963
3964         /*
3965          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3966          * doesn't need to be decrypted.
3967          */
3968         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3969         if (!pae_root)
3970                 return -ENOMEM;
3971
3972 #ifdef CONFIG_X86_64
3973         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3974         if (!pml4_root)
3975                 goto err_pml4;
3976
3977         if (need_pml5) {
3978                 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3979                 if (!pml5_root)
3980                         goto err_pml5;
3981         }
3982 #endif
3983
3984         mmu->pae_root = pae_root;
3985         mmu->pml4_root = pml4_root;
3986         mmu->pml5_root = pml5_root;
3987
3988         return 0;
3989
3990 #ifdef CONFIG_X86_64
3991 err_pml5:
3992         free_page((unsigned long)pml4_root);
3993 err_pml4:
3994         free_page((unsigned long)pae_root);
3995         return -ENOMEM;
3996 #endif
3997 }
3998
3999 static bool is_unsync_root(hpa_t root)
4000 {
4001         struct kvm_mmu_page *sp;
4002
4003         if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(root))
4004                 return false;
4005
4006         /*
4007          * The read barrier orders the CPU's read of SPTE.W during the page table
4008          * walk before the reads of sp->unsync/sp->unsync_children here.
4009          *
4010          * Even if another CPU was marking the SP as unsync-ed simultaneously,
4011          * any guest page table changes are not guaranteed to be visible anyway
4012          * until this VCPU issues a TLB flush strictly after those changes are
4013          * made.  We only need to ensure that the other CPU sets these flags
4014          * before any actual changes to the page tables are made.  The comments
4015          * in mmu_try_to_unsync_pages() describe what could go wrong if this
4016          * requirement isn't satisfied.
4017          */
4018         smp_rmb();
4019         sp = root_to_sp(root);
4020
4021         /*
4022          * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
4023          * PDPTEs for a given PAE root need to be synchronized individually.
4024          */
4025         if (WARN_ON_ONCE(!sp))
4026                 return false;
4027
4028         if (sp->unsync || sp->unsync_children)
4029                 return true;
4030
4031         return false;
4032 }
4033
4034 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4035 {
4036         int i;
4037         struct kvm_mmu_page *sp;
4038
4039         if (vcpu->arch.mmu->root_role.direct)
4040                 return;
4041
4042         if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4043                 return;
4044
4045         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4046
4047         if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4048                 hpa_t root = vcpu->arch.mmu->root.hpa;
4049
4050                 if (!is_unsync_root(root))
4051                         return;
4052
4053                 sp = root_to_sp(root);
4054
4055                 write_lock(&vcpu->kvm->mmu_lock);
4056                 mmu_sync_children(vcpu, sp, true);
4057                 write_unlock(&vcpu->kvm->mmu_lock);
4058                 return;
4059         }
4060
4061         write_lock(&vcpu->kvm->mmu_lock);
4062
4063         for (i = 0; i < 4; ++i) {
4064                 hpa_t root = vcpu->arch.mmu->pae_root[i];
4065
4066                 if (IS_VALID_PAE_ROOT(root)) {
4067                         sp = spte_to_child_sp(root);
4068                         mmu_sync_children(vcpu, sp, true);
4069                 }
4070         }
4071
4072         write_unlock(&vcpu->kvm->mmu_lock);
4073 }
4074
4075 void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4076 {
4077         unsigned long roots_to_free = 0;
4078         int i;
4079
4080         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4081                 if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
4082                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4083
4084         /* sync prev_roots by simply freeing them */
4085         kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4086 }
4087
4088 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4089                                   gpa_t vaddr, u64 access,
4090                                   struct x86_exception *exception)
4091 {
4092         if (exception)
4093                 exception->error_code = 0;
4094         return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4095 }
4096
4097 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4098 {
4099         /*
4100          * A nested guest cannot use the MMIO cache if it is using nested
4101          * page tables, because cr2 is a nGPA while the cache stores GPAs.
4102          */
4103         if (mmu_is_nested(vcpu))
4104                 return false;
4105
4106         if (direct)
4107                 return vcpu_match_mmio_gpa(vcpu, addr);
4108
4109         return vcpu_match_mmio_gva(vcpu, addr);
4110 }
4111
4112 /*
4113  * Return the level of the lowest level SPTE added to sptes.
4114  * That SPTE may be non-present.
4115  *
4116  * Must be called between walk_shadow_page_lockless_{begin,end}.
4117  */
4118 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4119 {
4120         struct kvm_shadow_walk_iterator iterator;
4121         int leaf = -1;
4122         u64 spte;
4123
4124         for (shadow_walk_init(&iterator, vcpu, addr),
4125              *root_level = iterator.level;
4126              shadow_walk_okay(&iterator);
4127              __shadow_walk_next(&iterator, spte)) {
4128                 leaf = iterator.level;
4129                 spte = mmu_spte_get_lockless(iterator.sptep);
4130
4131                 sptes[leaf] = spte;
4132         }
4133
4134         return leaf;
4135 }
4136
4137 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4138 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4139 {
4140         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4141         struct rsvd_bits_validate *rsvd_check;
4142         int root, leaf, level;
4143         bool reserved = false;
4144
4145         walk_shadow_page_lockless_begin(vcpu);
4146
4147         if (is_tdp_mmu_active(vcpu))
4148                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
4149         else
4150                 leaf = get_walk(vcpu, addr, sptes, &root);
4151
4152         walk_shadow_page_lockless_end(vcpu);
4153
4154         if (unlikely(leaf < 0)) {
4155                 *sptep = 0ull;
4156                 return reserved;
4157         }
4158
4159         *sptep = sptes[leaf];
4160
4161         /*
4162          * Skip reserved bits checks on the terminal leaf if it's not a valid
4163          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
4164          * design, always have reserved bits set.  The purpose of the checks is
4165          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4166          */
4167         if (!is_shadow_present_pte(sptes[leaf]))
4168                 leaf++;
4169
4170         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4171
4172         for (level = root; level >= leaf; level--)
4173                 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
4174
4175         if (reserved) {
4176                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4177                        __func__, addr);
4178                 for (level = root; level >= leaf; level--)
4179                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4180                                sptes[level], level,
4181                                get_rsvd_bits(rsvd_check, sptes[level], level));
4182         }
4183
4184         return reserved;
4185 }
4186
4187 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4188 {
4189         u64 spte;
4190         bool reserved;
4191
4192         if (mmio_info_in_cache(vcpu, addr, direct))
4193                 return RET_PF_EMULATE;
4194
4195         reserved = get_mmio_spte(vcpu, addr, &spte);
4196         if (WARN_ON_ONCE(reserved))
4197                 return -EINVAL;
4198
4199         if (is_mmio_spte(spte)) {
4200                 gfn_t gfn = get_mmio_spte_gfn(spte);
4201                 unsigned int access = get_mmio_spte_access(spte);
4202
4203                 if (!check_mmio_spte(vcpu, spte))
4204                         return RET_PF_INVALID;
4205
4206                 if (direct)
4207                         addr = 0;
4208
4209                 trace_handle_mmio_page_fault(addr, gfn, access);
4210                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4211                 return RET_PF_EMULATE;
4212         }
4213
4214         /*
4215          * If the page table is zapped by other cpus, let CPU fault again on
4216          * the address.
4217          */
4218         return RET_PF_RETRY;
4219 }
4220
4221 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4222                                          struct kvm_page_fault *fault)
4223 {
4224         if (unlikely(fault->rsvd))
4225                 return false;
4226
4227         if (!fault->present || !fault->write)
4228                 return false;
4229
4230         /*
4231          * guest is writing the page which is write tracked which can
4232          * not be fixed by page fault handler.
4233          */
4234         if (kvm_gfn_is_write_tracked(vcpu->kvm, fault->slot, fault->gfn))
4235                 return true;
4236
4237         return false;
4238 }
4239
4240 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4241 {
4242         struct kvm_shadow_walk_iterator iterator;
4243         u64 spte;
4244
4245         walk_shadow_page_lockless_begin(vcpu);
4246         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4247                 clear_sp_write_flooding_count(iterator.sptep);
4248         walk_shadow_page_lockless_end(vcpu);
4249 }
4250
4251 static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4252 {
4253         /* make sure the token value is not 0 */
4254         u32 id = vcpu->arch.apf.id;
4255
4256         if (id << 12 == 0)
4257                 vcpu->arch.apf.id = 1;
4258
4259         return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4260 }
4261
4262 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4263                                     gfn_t gfn)
4264 {
4265         struct kvm_arch_async_pf arch;
4266
4267         arch.token = alloc_apf_token(vcpu);
4268         arch.gfn = gfn;
4269         arch.direct_map = vcpu->arch.mmu->root_role.direct;
4270         arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu);
4271
4272         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4273                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4274 }
4275
4276 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4277 {
4278         int r;
4279
4280         if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4281               work->wakeup_all)
4282                 return;
4283
4284         r = kvm_mmu_reload(vcpu);
4285         if (unlikely(r))
4286                 return;
4287
4288         if (!vcpu->arch.mmu->root_role.direct &&
4289               work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu))
4290                 return;
4291
4292         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL);
4293 }
4294
4295 static inline u8 kvm_max_level_for_order(int order)
4296 {
4297         BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
4298
4299         KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
4300                         order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
4301                         order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
4302
4303         if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
4304                 return PG_LEVEL_1G;
4305
4306         if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4307                 return PG_LEVEL_2M;
4308
4309         return PG_LEVEL_4K;
4310 }
4311
4312 static void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
4313                                               struct kvm_page_fault *fault)
4314 {
4315         kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
4316                                       PAGE_SIZE, fault->write, fault->exec,
4317                                       fault->is_private);
4318 }
4319
4320 static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
4321                                    struct kvm_page_fault *fault)
4322 {
4323         int max_order, r;
4324
4325         if (!kvm_slot_can_be_private(fault->slot)) {
4326                 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4327                 return -EFAULT;
4328         }
4329
4330         r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
4331                              &max_order);
4332         if (r) {
4333                 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4334                 return r;
4335         }
4336
4337         fault->max_level = min(kvm_max_level_for_order(max_order),
4338                                fault->max_level);
4339         fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4340
4341         return RET_PF_CONTINUE;
4342 }
4343
4344 static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4345 {
4346         struct kvm_memory_slot *slot = fault->slot;
4347         bool async;
4348
4349         /*
4350          * Retry the page fault if the gfn hit a memslot that is being deleted
4351          * or moved.  This ensures any existing SPTEs for the old memslot will
4352          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4353          */
4354         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4355                 return RET_PF_RETRY;
4356
4357         if (!kvm_is_visible_memslot(slot)) {
4358                 /* Don't expose private memslots to L2. */
4359                 if (is_guest_mode(vcpu)) {
4360                         fault->slot = NULL;
4361                         fault->pfn = KVM_PFN_NOSLOT;
4362                         fault->map_writable = false;
4363                         return RET_PF_CONTINUE;
4364                 }
4365                 /*
4366                  * If the APIC access page exists but is disabled, go directly
4367                  * to emulation without caching the MMIO access or creating a
4368                  * MMIO SPTE.  That way the cache doesn't need to be purged
4369                  * when the AVIC is re-enabled.
4370                  */
4371                 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4372                     !kvm_apicv_activated(vcpu->kvm))
4373                         return RET_PF_EMULATE;
4374         }
4375
4376         if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) {
4377                 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4378                 return -EFAULT;
4379         }
4380
4381         if (fault->is_private)
4382                 return kvm_faultin_pfn_private(vcpu, fault);
4383
4384         async = false;
4385         fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async,
4386                                           fault->write, &fault->map_writable,
4387                                           &fault->hva);
4388         if (!async)
4389                 return RET_PF_CONTINUE; /* *pfn has correct page already */
4390
4391         if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4392                 trace_kvm_try_async_get_page(fault->addr, fault->gfn);
4393                 if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
4394                         trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
4395                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4396                         return RET_PF_RETRY;
4397                 } else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
4398                         return RET_PF_RETRY;
4399                 }
4400         }
4401
4402         /*
4403          * Allow gup to bail on pending non-fatal signals when it's also allowed
4404          * to wait for IO.  Note, gup always bails if it is unable to quickly
4405          * get a page and a fatal signal, i.e. SIGKILL, is pending.
4406          */
4407         fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL,
4408                                           fault->write, &fault->map_writable,
4409                                           &fault->hva);
4410         return RET_PF_CONTINUE;
4411 }
4412
4413 static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
4414                            unsigned int access)
4415 {
4416         int ret;
4417
4418         fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4419         smp_rmb();
4420
4421         /*
4422          * Check for a relevant mmu_notifier invalidation event before getting
4423          * the pfn from the primary MMU, and before acquiring mmu_lock.
4424          *
4425          * For mmu_lock, if there is an in-progress invalidation and the kernel
4426          * allows preemption, the invalidation task may drop mmu_lock and yield
4427          * in response to mmu_lock being contended, which is *very* counter-
4428          * productive as this vCPU can't actually make forward progress until
4429          * the invalidation completes.
4430          *
4431          * Retrying now can also avoid unnessary lock contention in the primary
4432          * MMU, as the primary MMU doesn't necessarily hold a single lock for
4433          * the duration of the invalidation, i.e. faulting in a conflicting pfn
4434          * can cause the invalidation to take longer by holding locks that are
4435          * needed to complete the invalidation.
4436          *
4437          * Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4438          * will never yield mmu_lock in response to contention, as this vCPU is
4439          * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4440          * to detect retry guarantees the worst case latency for the vCPU.
4441          */
4442         if (fault->slot &&
4443             mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn))
4444                 return RET_PF_RETRY;
4445
4446         ret = __kvm_faultin_pfn(vcpu, fault);
4447         if (ret != RET_PF_CONTINUE)
4448                 return ret;
4449
4450         if (unlikely(is_error_pfn(fault->pfn)))
4451                 return kvm_handle_error_pfn(vcpu, fault);
4452
4453         if (unlikely(!fault->slot))
4454                 return kvm_handle_noslot_fault(vcpu, fault, access);
4455
4456         /*
4457          * Check again for a relevant mmu_notifier invalidation event purely to
4458          * avoid contending mmu_lock.  Most invalidations will be detected by
4459          * the previous check, but checking is extremely cheap relative to the
4460          * overall cost of failing to detect the invalidation until after
4461          * mmu_lock is acquired.
4462          */
4463         if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) {
4464                 kvm_release_pfn_clean(fault->pfn);
4465                 return RET_PF_RETRY;
4466         }
4467
4468         return RET_PF_CONTINUE;
4469 }
4470
4471 /*
4472  * Returns true if the page fault is stale and needs to be retried, i.e. if the
4473  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4474  */
4475 static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4476                                 struct kvm_page_fault *fault)
4477 {
4478         struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4479
4480         /* Special roots, e.g. pae_root, are not backed by shadow pages. */
4481         if (sp && is_obsolete_sp(vcpu->kvm, sp))
4482                 return true;
4483
4484         /*
4485          * Roots without an associated shadow page are considered invalid if
4486          * there is a pending request to free obsolete roots.  The request is
4487          * only a hint that the current root _may_ be obsolete and needs to be
4488          * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4489          * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4490          * to reload even if no vCPU is actively using the root.
4491          */
4492         if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4493                 return true;
4494
4495         /*
4496          * Check for a relevant mmu_notifier invalidation event one last time
4497          * now that mmu_lock is held, as the "unsafe" checks performed without
4498          * holding mmu_lock can get false negatives.
4499          */
4500         return fault->slot &&
4501                mmu_invalidate_retry_gfn(vcpu->kvm, fault->mmu_seq, fault->gfn);
4502 }
4503
4504 static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4505 {
4506         int r;
4507
4508         /* Dummy roots are used only for shadowing bad guest roots. */
4509         if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4510                 return RET_PF_RETRY;
4511
4512         if (page_fault_handle_page_track(vcpu, fault))
4513                 return RET_PF_EMULATE;
4514
4515         r = fast_page_fault(vcpu, fault);
4516         if (r != RET_PF_INVALID)
4517                 return r;
4518
4519         r = mmu_topup_memory_caches(vcpu, false);
4520         if (r)
4521                 return r;
4522
4523         r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4524         if (r != RET_PF_CONTINUE)
4525                 return r;
4526
4527         r = RET_PF_RETRY;
4528         write_lock(&vcpu->kvm->mmu_lock);
4529
4530         if (is_page_fault_stale(vcpu, fault))
4531                 goto out_unlock;
4532
4533         r = make_mmu_pages_available(vcpu);
4534         if (r)
4535                 goto out_unlock;
4536
4537         r = direct_map(vcpu, fault);
4538
4539 out_unlock:
4540         write_unlock(&vcpu->kvm->mmu_lock);
4541         kvm_release_pfn_clean(fault->pfn);
4542         return r;
4543 }
4544
4545 static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4546                                 struct kvm_page_fault *fault)
4547 {
4548         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4549         fault->max_level = PG_LEVEL_2M;
4550         return direct_page_fault(vcpu, fault);
4551 }
4552
4553 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4554                                 u64 fault_address, char *insn, int insn_len)
4555 {
4556         int r = 1;
4557         u32 flags = vcpu->arch.apf.host_apf_flags;
4558
4559 #ifndef CONFIG_X86_64
4560         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4561         if (WARN_ON_ONCE(fault_address >> 32))
4562                 return -EFAULT;
4563 #endif
4564
4565         vcpu->arch.l1tf_flush_l1d = true;
4566         if (!flags) {
4567                 trace_kvm_page_fault(vcpu, fault_address, error_code);
4568
4569                 if (kvm_event_needs_reinjection(vcpu))
4570                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4571                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4572                                 insn_len);
4573         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4574                 vcpu->arch.apf.host_apf_flags = 0;
4575                 local_irq_disable();
4576                 kvm_async_pf_task_wait_schedule(fault_address);
4577                 local_irq_enable();
4578         } else {
4579                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4580         }
4581
4582         return r;
4583 }
4584 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4585
4586 #ifdef CONFIG_X86_64
4587 static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4588                                   struct kvm_page_fault *fault)
4589 {
4590         int r;
4591
4592         if (page_fault_handle_page_track(vcpu, fault))
4593                 return RET_PF_EMULATE;
4594
4595         r = fast_page_fault(vcpu, fault);
4596         if (r != RET_PF_INVALID)
4597                 return r;
4598
4599         r = mmu_topup_memory_caches(vcpu, false);
4600         if (r)
4601                 return r;
4602
4603         r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4604         if (r != RET_PF_CONTINUE)
4605                 return r;
4606
4607         r = RET_PF_RETRY;
4608         read_lock(&vcpu->kvm->mmu_lock);
4609
4610         if (is_page_fault_stale(vcpu, fault))
4611                 goto out_unlock;
4612
4613         r = kvm_tdp_mmu_map(vcpu, fault);
4614
4615 out_unlock:
4616         read_unlock(&vcpu->kvm->mmu_lock);
4617         kvm_release_pfn_clean(fault->pfn);
4618         return r;
4619 }
4620 #endif
4621
4622 bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma)
4623 {
4624         /*
4625          * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the
4626          * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is
4627          * to honor the memtype from the guest's MTRRs so that guest accesses
4628          * to memory that is DMA'd aren't cached against the guest's wishes.
4629          *
4630          * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
4631          * e.g. KVM will force UC memtype for host MMIO.
4632          */
4633         return vm_has_noncoherent_dma && shadow_memtype_mask;
4634 }
4635
4636 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4637 {
4638         /*
4639          * If the guest's MTRRs may be used to compute the "real" memtype,
4640          * restrict the mapping level to ensure KVM uses a consistent memtype
4641          * across the entire mapping.
4642          */
4643         if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) {
4644                 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
4645                         int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4646                         gfn_t base = gfn_round_for_level(fault->gfn,
4647                                                          fault->max_level);
4648
4649                         if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4650                                 break;
4651                 }
4652         }
4653
4654 #ifdef CONFIG_X86_64
4655         if (tdp_mmu_enabled)
4656                 return kvm_tdp_mmu_page_fault(vcpu, fault);
4657 #endif
4658
4659         return direct_page_fault(vcpu, fault);
4660 }
4661
4662 static void nonpaging_init_context(struct kvm_mmu *context)
4663 {
4664         context->page_fault = nonpaging_page_fault;
4665         context->gva_to_gpa = nonpaging_gva_to_gpa;
4666         context->sync_spte = NULL;
4667 }
4668
4669 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4670                                   union kvm_mmu_page_role role)
4671 {
4672         struct kvm_mmu_page *sp;
4673
4674         if (!VALID_PAGE(root->hpa))
4675                 return false;
4676
4677         if (!role.direct && pgd != root->pgd)
4678                 return false;
4679
4680         sp = root_to_sp(root->hpa);
4681         if (WARN_ON_ONCE(!sp))
4682                 return false;
4683
4684         return role.word == sp->role.word;
4685 }
4686
4687 /*
4688  * Find out if a previously cached root matching the new pgd/role is available,
4689  * and insert the current root as the MRU in the cache.
4690  * If a matching root is found, it is assigned to kvm_mmu->root and
4691  * true is returned.
4692  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4693  * evicted to make room for the current root, and false is returned.
4694  */
4695 static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4696                                               gpa_t new_pgd,
4697                                               union kvm_mmu_page_role new_role)
4698 {
4699         uint i;
4700
4701         if (is_root_usable(&mmu->root, new_pgd, new_role))
4702                 return true;
4703
4704         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4705                 /*
4706                  * The swaps end up rotating the cache like this:
4707                  *   C   0 1 2 3   (on entry to the function)
4708                  *   0   C 1 2 3
4709                  *   1   C 0 2 3
4710                  *   2   C 0 1 3
4711                  *   3   C 0 1 2   (on exit from the loop)
4712                  */
4713                 swap(mmu->root, mmu->prev_roots[i]);
4714                 if (is_root_usable(&mmu->root, new_pgd, new_role))
4715                         return true;
4716         }
4717
4718         kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4719         return false;
4720 }
4721
4722 /*
4723  * Find out if a previously cached root matching the new pgd/role is available.
4724  * On entry, mmu->root is invalid.
4725  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4726  * of the cache becomes invalid, and true is returned.
4727  * If no match is found, kvm_mmu->root is left invalid and false is returned.
4728  */
4729 static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4730                                              gpa_t new_pgd,
4731                                              union kvm_mmu_page_role new_role)
4732 {
4733         uint i;
4734
4735         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4736                 if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
4737                         goto hit;
4738
4739         return false;
4740
4741 hit:
4742         swap(mmu->root, mmu->prev_roots[i]);
4743         /* Bubble up the remaining roots.  */
4744         for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4745                 mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4746         mmu->prev_roots[i].hpa = INVALID_PAGE;
4747         return true;
4748 }
4749
4750 static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4751                             gpa_t new_pgd, union kvm_mmu_page_role new_role)
4752 {
4753         /*
4754          * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
4755          * avoid having to deal with PDPTEs and other complexities.
4756          */
4757         if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(mmu->root.hpa))
4758                 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4759
4760         if (VALID_PAGE(mmu->root.hpa))
4761                 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4762         else
4763                 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4764 }
4765
4766 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4767 {
4768         struct kvm_mmu *mmu = vcpu->arch.mmu;
4769         union kvm_mmu_page_role new_role = mmu->root_role;
4770
4771         /*
4772          * Return immediately if no usable root was found, kvm_mmu_reload()
4773          * will establish a valid root prior to the next VM-Enter.
4774          */
4775         if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role))
4776                 return;
4777
4778         /*
4779          * It's possible that the cached previous root page is obsolete because
4780          * of a change in the MMU generation number. However, changing the
4781          * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4782          * which will free the root set here and allocate a new one.
4783          */
4784         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4785
4786         if (force_flush_and_sync_on_reuse) {
4787                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4788                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4789         }
4790
4791         /*
4792          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4793          * switching to a new CR3, that GVA->GPA mapping may no longer be
4794          * valid. So clear any cached MMIO info even when we don't need to sync
4795          * the shadow page tables.
4796          */
4797         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4798
4799         /*
4800          * If this is a direct root page, it doesn't have a write flooding
4801          * count. Otherwise, clear the write flooding count.
4802          */
4803         if (!new_role.direct) {
4804                 struct kvm_mmu_page *sp = root_to_sp(vcpu->arch.mmu->root.hpa);
4805
4806                 if (!WARN_ON_ONCE(!sp))
4807                         __clear_sp_write_flooding_count(sp);
4808         }
4809 }
4810 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4811
4812 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4813                            unsigned int access)
4814 {
4815         if (unlikely(is_mmio_spte(*sptep))) {
4816                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4817                         mmu_spte_clear_no_track(sptep);
4818                         return true;
4819                 }
4820
4821                 mark_mmio_spte(vcpu, sptep, gfn, access);
4822                 return true;
4823         }
4824
4825         return false;
4826 }
4827
4828 #define PTTYPE_EPT 18 /* arbitrary */
4829 #define PTTYPE PTTYPE_EPT
4830 #include "paging_tmpl.h"
4831 #undef PTTYPE
4832
4833 #define PTTYPE 64
4834 #include "paging_tmpl.h"
4835 #undef PTTYPE
4836
4837 #define PTTYPE 32
4838 #include "paging_tmpl.h"
4839 #undef PTTYPE
4840
4841 static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4842                                     u64 pa_bits_rsvd, int level, bool nx,
4843                                     bool gbpages, bool pse, bool amd)
4844 {
4845         u64 gbpages_bit_rsvd = 0;
4846         u64 nonleaf_bit8_rsvd = 0;
4847         u64 high_bits_rsvd;
4848
4849         rsvd_check->bad_mt_xwr = 0;
4850
4851         if (!gbpages)
4852                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4853
4854         if (level == PT32E_ROOT_LEVEL)
4855                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4856         else
4857                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4858
4859         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4860         if (!nx)
4861                 high_bits_rsvd |= rsvd_bits(63, 63);
4862
4863         /*
4864          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4865          * leaf entries) on AMD CPUs only.
4866          */
4867         if (amd)
4868                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4869
4870         switch (level) {
4871         case PT32_ROOT_LEVEL:
4872                 /* no rsvd bits for 2 level 4K page table entries */
4873                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4874                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4875                 rsvd_check->rsvd_bits_mask[1][0] =
4876                         rsvd_check->rsvd_bits_mask[0][0];
4877
4878                 if (!pse) {
4879                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4880                         break;
4881                 }
4882
4883                 if (is_cpuid_PSE36())
4884                         /* 36bits PSE 4MB page */
4885                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4886                 else
4887                         /* 32 bits PSE 4MB page */
4888                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4889                 break;
4890         case PT32E_ROOT_LEVEL:
4891                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4892                                                    high_bits_rsvd |
4893                                                    rsvd_bits(5, 8) |
4894                                                    rsvd_bits(1, 2);     /* PDPTE */
4895                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4896                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4897                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4898                                                    rsvd_bits(13, 20);   /* large page */
4899                 rsvd_check->rsvd_bits_mask[1][0] =
4900                         rsvd_check->rsvd_bits_mask[0][0];
4901                 break;
4902         case PT64_ROOT_5LEVEL:
4903                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4904                                                    nonleaf_bit8_rsvd |
4905                                                    rsvd_bits(7, 7);
4906                 rsvd_check->rsvd_bits_mask[1][4] =
4907                         rsvd_check->rsvd_bits_mask[0][4];
4908                 fallthrough;
4909         case PT64_ROOT_4LEVEL:
4910                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4911                                                    nonleaf_bit8_rsvd |
4912                                                    rsvd_bits(7, 7);
4913                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4914                                                    gbpages_bit_rsvd;
4915                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4916                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4917                 rsvd_check->rsvd_bits_mask[1][3] =
4918                         rsvd_check->rsvd_bits_mask[0][3];
4919                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4920                                                    gbpages_bit_rsvd |
4921                                                    rsvd_bits(13, 29);
4922                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4923                                                    rsvd_bits(13, 20); /* large page */
4924                 rsvd_check->rsvd_bits_mask[1][0] =
4925                         rsvd_check->rsvd_bits_mask[0][0];
4926                 break;
4927         }
4928 }
4929
4930 static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4931                                         struct kvm_mmu *context)
4932 {
4933         __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4934                                 vcpu->arch.reserved_gpa_bits,
4935                                 context->cpu_role.base.level, is_efer_nx(context),
4936                                 guest_can_use(vcpu, X86_FEATURE_GBPAGES),
4937                                 is_cr4_pse(context),
4938                                 guest_cpuid_is_amd_or_hygon(vcpu));
4939 }
4940
4941 static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4942                                         u64 pa_bits_rsvd, bool execonly,
4943                                         int huge_page_level)
4944 {
4945         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4946         u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4947         u64 bad_mt_xwr;
4948
4949         if (huge_page_level < PG_LEVEL_1G)
4950                 large_1g_rsvd = rsvd_bits(7, 7);
4951         if (huge_page_level < PG_LEVEL_2M)
4952                 large_2m_rsvd = rsvd_bits(7, 7);
4953
4954         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4955         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4956         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4957         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4958         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4959
4960         /* large page */
4961         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4962         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4963         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4964         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4965         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4966
4967         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4968         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4969         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4970         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4971         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4972         if (!execonly) {
4973                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4974                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4975         }
4976         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4977 }
4978
4979 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4980                 struct kvm_mmu *context, bool execonly, int huge_page_level)
4981 {
4982         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4983                                     vcpu->arch.reserved_gpa_bits, execonly,
4984                                     huge_page_level);
4985 }
4986
4987 static inline u64 reserved_hpa_bits(void)
4988 {
4989         return rsvd_bits(shadow_phys_bits, 63);
4990 }
4991
4992 /*
4993  * the page table on host is the shadow page table for the page
4994  * table in guest or amd nested guest, its mmu features completely
4995  * follow the features in guest.
4996  */
4997 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4998                                         struct kvm_mmu *context)
4999 {
5000         /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5001         bool is_amd = true;
5002         /* KVM doesn't use 2-level page tables for the shadow MMU. */
5003         bool is_pse = false;
5004         struct rsvd_bits_validate *shadow_zero_check;
5005         int i;
5006
5007         WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5008
5009         shadow_zero_check = &context->shadow_zero_check;
5010         __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5011                                 context->root_role.level,
5012                                 context->root_role.efer_nx,
5013                                 guest_can_use(vcpu, X86_FEATURE_GBPAGES),
5014                                 is_pse, is_amd);
5015
5016         if (!shadow_me_mask)
5017                 return;
5018
5019         for (i = context->root_role.level; --i >= 0;) {
5020                 /*
5021                  * So far shadow_me_value is a constant during KVM's life
5022                  * time.  Bits in shadow_me_value are allowed to be set.
5023                  * Bits in shadow_me_mask but not in shadow_me_value are
5024                  * not allowed to be set.
5025                  */
5026                 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5027                 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5028                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5029                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5030         }
5031
5032 }
5033
5034 static inline bool boot_cpu_is_amd(void)
5035 {
5036         WARN_ON_ONCE(!tdp_enabled);
5037         return shadow_x_mask == 0;
5038 }
5039
5040 /*
5041  * the direct page table on host, use as much mmu features as
5042  * possible, however, kvm currently does not do execution-protection.
5043  */
5044 static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5045 {
5046         struct rsvd_bits_validate *shadow_zero_check;
5047         int i;
5048
5049         shadow_zero_check = &context->shadow_zero_check;
5050
5051         if (boot_cpu_is_amd())
5052                 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
5053                                         context->root_role.level, true,
5054                                         boot_cpu_has(X86_FEATURE_GBPAGES),
5055                                         false, true);
5056         else
5057                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
5058                                             reserved_hpa_bits(), false,
5059                                             max_huge_page_level);
5060
5061         if (!shadow_me_mask)
5062                 return;
5063
5064         for (i = context->root_role.level; --i >= 0;) {
5065                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5066                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5067         }
5068 }
5069
5070 /*
5071  * as the comments in reset_shadow_zero_bits_mask() except it
5072  * is the shadow page table for intel nested guest.
5073  */
5074 static void
5075 reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5076 {
5077         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
5078                                     reserved_hpa_bits(), execonly,
5079                                     max_huge_page_level);
5080 }
5081
5082 #define BYTE_MASK(access) \
5083         ((1 & (access) ? 2 : 0) | \
5084          (2 & (access) ? 4 : 0) | \
5085          (3 & (access) ? 8 : 0) | \
5086          (4 & (access) ? 16 : 0) | \
5087          (5 & (access) ? 32 : 0) | \
5088          (6 & (access) ? 64 : 0) | \
5089          (7 & (access) ? 128 : 0))
5090
5091
5092 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5093 {
5094         unsigned byte;
5095
5096         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5097         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5098         const u8 u = BYTE_MASK(ACC_USER_MASK);
5099
5100         bool cr4_smep = is_cr4_smep(mmu);
5101         bool cr4_smap = is_cr4_smap(mmu);
5102         bool cr0_wp = is_cr0_wp(mmu);
5103         bool efer_nx = is_efer_nx(mmu);
5104
5105         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5106                 unsigned pfec = byte << 1;
5107
5108                 /*
5109                  * Each "*f" variable has a 1 bit for each UWX value
5110                  * that causes a fault with the given PFEC.
5111                  */
5112
5113                 /* Faults from writes to non-writable pages */
5114                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5115                 /* Faults from user mode accesses to supervisor pages */
5116                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5117                 /* Faults from fetches of non-executable pages*/
5118                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5119                 /* Faults from kernel mode fetches of user pages */
5120                 u8 smepf = 0;
5121                 /* Faults from kernel mode accesses of user pages */
5122                 u8 smapf = 0;
5123
5124                 if (!ept) {
5125                         /* Faults from kernel mode accesses to user pages */
5126                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5127
5128                         /* Not really needed: !nx will cause pte.nx to fault */
5129                         if (!efer_nx)
5130                                 ff = 0;
5131
5132                         /* Allow supervisor writes if !cr0.wp */
5133                         if (!cr0_wp)
5134                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5135
5136                         /* Disallow supervisor fetches of user code if cr4.smep */
5137                         if (cr4_smep)
5138                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5139
5140                         /*
5141                          * SMAP:kernel-mode data accesses from user-mode
5142                          * mappings should fault. A fault is considered
5143                          * as a SMAP violation if all of the following
5144                          * conditions are true:
5145                          *   - X86_CR4_SMAP is set in CR4
5146                          *   - A user page is accessed
5147                          *   - The access is not a fetch
5148                          *   - The access is supervisor mode
5149                          *   - If implicit supervisor access or X86_EFLAGS_AC is clear
5150                          *
5151                          * Here, we cover the first four conditions.
5152                          * The fifth is computed dynamically in permission_fault();
5153                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5154                          * *not* subject to SMAP restrictions.
5155                          */
5156                         if (cr4_smap)
5157                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5158                 }
5159
5160                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5161         }
5162 }
5163
5164 /*
5165 * PKU is an additional mechanism by which the paging controls access to
5166 * user-mode addresses based on the value in the PKRU register.  Protection
5167 * key violations are reported through a bit in the page fault error code.
5168 * Unlike other bits of the error code, the PK bit is not known at the
5169 * call site of e.g. gva_to_gpa; it must be computed directly in
5170 * permission_fault based on two bits of PKRU, on some machine state (CR4,
5171 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
5172 *
5173 * In particular the following conditions come from the error code, the
5174 * page tables and the machine state:
5175 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5176 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5177 * - PK is always zero if U=0 in the page tables
5178 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5179 *
5180 * The PKRU bitmask caches the result of these four conditions.  The error
5181 * code (minus the P bit) and the page table's U bit form an index into the
5182 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
5183 * with the two bits of the PKRU register corresponding to the protection key.
5184 * For the first three conditions above the bits will be 00, thus masking
5185 * away both AD and WD.  For all reads or if the last condition holds, WD
5186 * only will be masked away.
5187 */
5188 static void update_pkru_bitmask(struct kvm_mmu *mmu)
5189 {
5190         unsigned bit;
5191         bool wp;
5192
5193         mmu->pkru_mask = 0;
5194
5195         if (!is_cr4_pke(mmu))
5196                 return;
5197
5198         wp = is_cr0_wp(mmu);
5199
5200         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5201                 unsigned pfec, pkey_bits;
5202                 bool check_pkey, check_write, ff, uf, wf, pte_user;
5203
5204                 pfec = bit << 1;
5205                 ff = pfec & PFERR_FETCH_MASK;
5206                 uf = pfec & PFERR_USER_MASK;
5207                 wf = pfec & PFERR_WRITE_MASK;
5208
5209                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
5210                 pte_user = pfec & PFERR_RSVD_MASK;
5211
5212                 /*
5213                  * Only need to check the access which is not an
5214                  * instruction fetch and is to a user page.
5215                  */
5216                 check_pkey = (!ff && pte_user);
5217                 /*
5218                  * write access is controlled by PKRU if it is a
5219                  * user access or CR0.WP = 1.
5220                  */
5221                 check_write = check_pkey && wf && (uf || wp);
5222
5223                 /* PKRU.AD stops both read and write access. */
5224                 pkey_bits = !!check_pkey;
5225                 /* PKRU.WD stops write access. */
5226                 pkey_bits |= (!!check_write) << 1;
5227
5228                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5229         }
5230 }
5231
5232 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5233                                         struct kvm_mmu *mmu)
5234 {
5235         if (!is_cr0_pg(mmu))
5236                 return;
5237
5238         reset_guest_rsvds_bits_mask(vcpu, mmu);
5239         update_permission_bitmask(mmu, false);
5240         update_pkru_bitmask(mmu);
5241 }
5242
5243 static void paging64_init_context(struct kvm_mmu *context)
5244 {
5245         context->page_fault = paging64_page_fault;
5246         context->gva_to_gpa = paging64_gva_to_gpa;
5247         context->sync_spte = paging64_sync_spte;
5248 }
5249
5250 static void paging32_init_context(struct kvm_mmu *context)
5251 {
5252         context->page_fault = paging32_page_fault;
5253         context->gva_to_gpa = paging32_gva_to_gpa;
5254         context->sync_spte = paging32_sync_spte;
5255 }
5256
5257 static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5258                                             const struct kvm_mmu_role_regs *regs)
5259 {
5260         union kvm_cpu_role role = {0};
5261
5262         role.base.access = ACC_ALL;
5263         role.base.smm = is_smm(vcpu);
5264         role.base.guest_mode = is_guest_mode(vcpu);
5265         role.ext.valid = 1;
5266
5267         if (!____is_cr0_pg(regs)) {
5268                 role.base.direct = 1;
5269                 return role;
5270         }
5271
5272         role.base.efer_nx = ____is_efer_nx(regs);
5273         role.base.cr0_wp = ____is_cr0_wp(regs);
5274         role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5275         role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5276         role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5277
5278         if (____is_efer_lma(regs))
5279                 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5280                                                         : PT64_ROOT_4LEVEL;
5281         else if (____is_cr4_pae(regs))
5282                 role.base.level = PT32E_ROOT_LEVEL;
5283         else
5284                 role.base.level = PT32_ROOT_LEVEL;
5285
5286         role.ext.cr4_smep = ____is_cr4_smep(regs);
5287         role.ext.cr4_smap = ____is_cr4_smap(regs);
5288         role.ext.cr4_pse = ____is_cr4_pse(regs);
5289
5290         /* PKEY and LA57 are active iff long mode is active. */
5291         role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5292         role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5293         role.ext.efer_lma = ____is_efer_lma(regs);
5294         return role;
5295 }
5296
5297 void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5298                                         struct kvm_mmu *mmu)
5299 {
5300         const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5301
5302         BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5303         BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5304
5305         if (is_cr0_wp(mmu) == cr0_wp)
5306                 return;
5307
5308         mmu->cpu_role.base.cr0_wp = cr0_wp;
5309         reset_guest_paging_metadata(vcpu, mmu);
5310 }
5311
5312 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5313 {
5314         /* tdp_root_level is architecture forced level, use it if nonzero */
5315         if (tdp_root_level)
5316                 return tdp_root_level;
5317
5318         /* Use 5-level TDP if and only if it's useful/necessary. */
5319         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5320                 return 4;
5321
5322         return max_tdp_level;
5323 }
5324
5325 static union kvm_mmu_page_role
5326 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5327                                 union kvm_cpu_role cpu_role)
5328 {
5329         union kvm_mmu_page_role role = {0};
5330
5331         role.access = ACC_ALL;
5332         role.cr0_wp = true;
5333         role.efer_nx = true;
5334         role.smm = cpu_role.base.smm;
5335         role.guest_mode = cpu_role.base.guest_mode;
5336         role.ad_disabled = !kvm_ad_enabled();
5337         role.level = kvm_mmu_get_tdp_level(vcpu);
5338         role.direct = true;
5339         role.has_4_byte_gpte = false;
5340
5341         return role;
5342 }
5343
5344 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5345                              union kvm_cpu_role cpu_role)
5346 {
5347         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5348         union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5349
5350         if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5351             root_role.word == context->root_role.word)
5352                 return;
5353
5354         context->cpu_role.as_u64 = cpu_role.as_u64;
5355         context->root_role.word = root_role.word;
5356         context->page_fault = kvm_tdp_page_fault;
5357         context->sync_spte = NULL;
5358         context->get_guest_pgd = get_guest_cr3;
5359         context->get_pdptr = kvm_pdptr_read;
5360         context->inject_page_fault = kvm_inject_page_fault;
5361
5362         if (!is_cr0_pg(context))
5363                 context->gva_to_gpa = nonpaging_gva_to_gpa;
5364         else if (is_cr4_pae(context))
5365                 context->gva_to_gpa = paging64_gva_to_gpa;
5366         else
5367                 context->gva_to_gpa = paging32_gva_to_gpa;
5368
5369         reset_guest_paging_metadata(vcpu, context);
5370         reset_tdp_shadow_zero_bits_mask(context);
5371 }
5372
5373 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5374                                     union kvm_cpu_role cpu_role,
5375                                     union kvm_mmu_page_role root_role)
5376 {
5377         if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5378             root_role.word == context->root_role.word)
5379                 return;
5380
5381         context->cpu_role.as_u64 = cpu_role.as_u64;
5382         context->root_role.word = root_role.word;
5383
5384         if (!is_cr0_pg(context))
5385                 nonpaging_init_context(context);
5386         else if (is_cr4_pae(context))
5387                 paging64_init_context(context);
5388         else
5389                 paging32_init_context(context);
5390
5391         reset_guest_paging_metadata(vcpu, context);
5392         reset_shadow_zero_bits_mask(vcpu, context);
5393 }
5394
5395 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5396                                 union kvm_cpu_role cpu_role)
5397 {
5398         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5399         union kvm_mmu_page_role root_role;
5400
5401         root_role = cpu_role.base;
5402
5403         /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5404         root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5405
5406         /*
5407          * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5408          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5409          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5410          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5411          * The iTLB multi-hit workaround can be toggled at any time, so assume
5412          * NX can be used by any non-nested shadow MMU to avoid having to reset
5413          * MMU contexts.
5414          */
5415         root_role.efer_nx = true;
5416
5417         shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5418 }
5419
5420 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5421                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
5422 {
5423         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5424         struct kvm_mmu_role_regs regs = {
5425                 .cr0 = cr0,
5426                 .cr4 = cr4 & ~X86_CR4_PKE,
5427                 .efer = efer,
5428         };
5429         union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5430         union kvm_mmu_page_role root_role;
5431
5432         /* NPT requires CR0.PG=1. */
5433         WARN_ON_ONCE(cpu_role.base.direct);
5434
5435         root_role = cpu_role.base;
5436         root_role.level = kvm_mmu_get_tdp_level(vcpu);
5437         if (root_role.level == PT64_ROOT_5LEVEL &&
5438             cpu_role.base.level == PT64_ROOT_4LEVEL)
5439                 root_role.passthrough = 1;
5440
5441         shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5442         kvm_mmu_new_pgd(vcpu, nested_cr3);
5443 }
5444 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5445
5446 static union kvm_cpu_role
5447 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5448                                    bool execonly, u8 level)
5449 {
5450         union kvm_cpu_role role = {0};
5451
5452         /*
5453          * KVM does not support SMM transfer monitors, and consequently does not
5454          * support the "entry to SMM" control either.  role.base.smm is always 0.
5455          */
5456         WARN_ON_ONCE(is_smm(vcpu));
5457         role.base.level = level;
5458         role.base.has_4_byte_gpte = false;
5459         role.base.direct = false;
5460         role.base.ad_disabled = !accessed_dirty;
5461         role.base.guest_mode = true;
5462         role.base.access = ACC_ALL;
5463
5464         role.ext.word = 0;
5465         role.ext.execonly = execonly;
5466         role.ext.valid = 1;
5467
5468         return role;
5469 }
5470
5471 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5472                              int huge_page_level, bool accessed_dirty,
5473                              gpa_t new_eptp)
5474 {
5475         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5476         u8 level = vmx_eptp_page_walk_level(new_eptp);
5477         union kvm_cpu_role new_mode =
5478                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5479                                                    execonly, level);
5480
5481         if (new_mode.as_u64 != context->cpu_role.as_u64) {
5482                 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5483                 context->cpu_role.as_u64 = new_mode.as_u64;
5484                 context->root_role.word = new_mode.base.word;
5485
5486                 context->page_fault = ept_page_fault;
5487                 context->gva_to_gpa = ept_gva_to_gpa;
5488                 context->sync_spte = ept_sync_spte;
5489
5490                 update_permission_bitmask(context, true);
5491                 context->pkru_mask = 0;
5492                 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5493                 reset_ept_shadow_zero_bits_mask(context, execonly);
5494         }
5495
5496         kvm_mmu_new_pgd(vcpu, new_eptp);
5497 }
5498 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5499
5500 static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5501                              union kvm_cpu_role cpu_role)
5502 {
5503         struct kvm_mmu *context = &vcpu->arch.root_mmu;
5504
5505         kvm_init_shadow_mmu(vcpu, cpu_role);
5506
5507         context->get_guest_pgd     = get_guest_cr3;
5508         context->get_pdptr         = kvm_pdptr_read;
5509         context->inject_page_fault = kvm_inject_page_fault;
5510 }
5511
5512 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5513                                 union kvm_cpu_role new_mode)
5514 {
5515         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5516
5517         if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5518                 return;
5519
5520         g_context->cpu_role.as_u64   = new_mode.as_u64;
5521         g_context->get_guest_pgd     = get_guest_cr3;
5522         g_context->get_pdptr         = kvm_pdptr_read;
5523         g_context->inject_page_fault = kvm_inject_page_fault;
5524
5525         /*
5526          * L2 page tables are never shadowed, so there is no need to sync
5527          * SPTEs.
5528          */
5529         g_context->sync_spte         = NULL;
5530
5531         /*
5532          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5533          * L1's nested page tables (e.g. EPT12). The nested translation
5534          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5535          * L2's page tables as the first level of translation and L1's
5536          * nested page tables as the second level of translation. Basically
5537          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5538          */
5539         if (!is_paging(vcpu))
5540                 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5541         else if (is_long_mode(vcpu))
5542                 g_context->gva_to_gpa = paging64_gva_to_gpa;
5543         else if (is_pae(vcpu))
5544                 g_context->gva_to_gpa = paging64_gva_to_gpa;
5545         else
5546                 g_context->gva_to_gpa = paging32_gva_to_gpa;
5547
5548         reset_guest_paging_metadata(vcpu, g_context);
5549 }
5550
5551 void kvm_init_mmu(struct kvm_vcpu *vcpu)
5552 {
5553         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5554         union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
5555
5556         if (mmu_is_nested(vcpu))
5557                 init_kvm_nested_mmu(vcpu, cpu_role);
5558         else if (tdp_enabled)
5559                 init_kvm_tdp_mmu(vcpu, cpu_role);
5560         else
5561                 init_kvm_softmmu(vcpu, cpu_role);
5562 }
5563 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5564
5565 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5566 {
5567         /*
5568          * Invalidate all MMU roles to force them to reinitialize as CPUID
5569          * information is factored into reserved bit calculations.
5570          *
5571          * Correctly handling multiple vCPU models with respect to paging and
5572          * physical address properties) in a single VM would require tracking
5573          * all relevant CPUID information in kvm_mmu_page_role. That is very
5574          * undesirable as it would increase the memory requirements for
5575          * gfn_write_track (see struct kvm_mmu_page_role comments).  For now
5576          * that problem is swept under the rug; KVM's CPUID API is horrific and
5577          * it's all but impossible to solve it without introducing a new API.
5578          */
5579         vcpu->arch.root_mmu.root_role.word = 0;
5580         vcpu->arch.guest_mmu.root_role.word = 0;
5581         vcpu->arch.nested_mmu.root_role.word = 0;
5582         vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5583         vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5584         vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5585         kvm_mmu_reset_context(vcpu);
5586
5587         /*
5588          * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5589          * kvm_arch_vcpu_ioctl().
5590          */
5591         KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5592 }
5593
5594 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5595 {
5596         kvm_mmu_unload(vcpu);
5597         kvm_init_mmu(vcpu);
5598 }
5599 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5600
5601 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5602 {
5603         int r;
5604
5605         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
5606         if (r)
5607                 goto out;
5608         r = mmu_alloc_special_roots(vcpu);
5609         if (r)
5610                 goto out;
5611         if (vcpu->arch.mmu->root_role.direct)
5612                 r = mmu_alloc_direct_roots(vcpu);
5613         else
5614                 r = mmu_alloc_shadow_roots(vcpu);
5615         if (r)
5616                 goto out;
5617
5618         kvm_mmu_sync_roots(vcpu);
5619
5620         kvm_mmu_load_pgd(vcpu);
5621
5622         /*
5623          * Flush any TLB entries for the new root, the provenance of the root
5624          * is unknown.  Even if KVM ensures there are no stale TLB entries
5625          * for a freed root, in theory another hypervisor could have left
5626          * stale entries.  Flushing on alloc also allows KVM to skip the TLB
5627          * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5628          */
5629         static_call(kvm_x86_flush_tlb_current)(vcpu);
5630 out:
5631         return r;
5632 }
5633
5634 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5635 {
5636         struct kvm *kvm = vcpu->kvm;
5637
5638         kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5639         WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5640         kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5641         WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5642         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5643 }
5644
5645 static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5646 {
5647         struct kvm_mmu_page *sp;
5648
5649         if (!VALID_PAGE(root_hpa))
5650                 return false;
5651
5652         /*
5653          * When freeing obsolete roots, treat roots as obsolete if they don't
5654          * have an associated shadow page, as it's impossible to determine if
5655          * such roots are fresh or stale.  This does mean KVM will get false
5656          * positives and free roots that don't strictly need to be freed, but
5657          * such false positives are relatively rare:
5658          *
5659          *  (a) only PAE paging and nested NPT have roots without shadow pages
5660          *      (or any shadow paging flavor with a dummy root, see note below)
5661          *  (b) remote reloads due to a memslot update obsoletes _all_ roots
5662          *  (c) KVM doesn't track previous roots for PAE paging, and the guest
5663          *      is unlikely to zap an in-use PGD.
5664          *
5665          * Note!  Dummy roots are unique in that they are obsoleted by memslot
5666          * _creation_!  See also FNAME(fetch).
5667          */
5668         sp = root_to_sp(root_hpa);
5669         return !sp || is_obsolete_sp(kvm, sp);
5670 }
5671
5672 static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5673 {
5674         unsigned long roots_to_free = 0;
5675         int i;
5676
5677         if (is_obsolete_root(kvm, mmu->root.hpa))
5678                 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5679
5680         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5681                 if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
5682                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5683         }
5684
5685         if (roots_to_free)
5686                 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5687 }
5688
5689 void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5690 {
5691         __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5692         __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
5693 }
5694
5695 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5696                                     int *bytes)
5697 {
5698         u64 gentry = 0;
5699         int r;
5700
5701         /*
5702          * Assume that the pte write on a page table of the same type
5703          * as the current vcpu paging mode since we update the sptes only
5704          * when they have the same mode.
5705          */
5706         if (is_pae(vcpu) && *bytes == 4) {
5707                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5708                 *gpa &= ~(gpa_t)7;
5709                 *bytes = 8;
5710         }
5711
5712         if (*bytes == 4 || *bytes == 8) {
5713                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5714                 if (r)
5715                         gentry = 0;
5716         }
5717
5718         return gentry;
5719 }
5720
5721 /*
5722  * If we're seeing too many writes to a page, it may no longer be a page table,
5723  * or we may be forking, in which case it is better to unmap the page.
5724  */
5725 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5726 {
5727         /*
5728          * Skip write-flooding detected for the sp whose level is 1, because
5729          * it can become unsync, then the guest page is not write-protected.
5730          */
5731         if (sp->role.level == PG_LEVEL_4K)
5732                 return false;
5733
5734         atomic_inc(&sp->write_flooding_count);
5735         return atomic_read(&sp->write_flooding_count) >= 3;
5736 }
5737
5738 /*
5739  * Misaligned accesses are too much trouble to fix up; also, they usually
5740  * indicate a page is not used as a page table.
5741  */
5742 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5743                                     int bytes)
5744 {
5745         unsigned offset, pte_size, misaligned;
5746
5747         offset = offset_in_page(gpa);
5748         pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5749
5750         /*
5751          * Sometimes, the OS only writes the last one bytes to update status
5752          * bits, for example, in linux, andb instruction is used in clear_bit().
5753          */
5754         if (!(offset & (pte_size - 1)) && bytes == 1)
5755                 return false;
5756
5757         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5758         misaligned |= bytes < 4;
5759
5760         return misaligned;
5761 }
5762
5763 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5764 {
5765         unsigned page_offset, quadrant;
5766         u64 *spte;
5767         int level;
5768
5769         page_offset = offset_in_page(gpa);
5770         level = sp->role.level;
5771         *nspte = 1;
5772         if (sp->role.has_4_byte_gpte) {
5773                 page_offset <<= 1;      /* 32->64 */
5774                 /*
5775                  * A 32-bit pde maps 4MB while the shadow pdes map
5776                  * only 2MB.  So we need to double the offset again
5777                  * and zap two pdes instead of one.
5778                  */
5779                 if (level == PT32_ROOT_LEVEL) {
5780                         page_offset &= ~7; /* kill rounding error */
5781                         page_offset <<= 1;
5782                         *nspte = 2;
5783                 }
5784                 quadrant = page_offset >> PAGE_SHIFT;
5785                 page_offset &= ~PAGE_MASK;
5786                 if (quadrant != sp->role.quadrant)
5787                         return NULL;
5788         }
5789
5790         spte = &sp->spt[page_offset / sizeof(*spte)];
5791         return spte;
5792 }
5793
5794 void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
5795                          int bytes)
5796 {
5797         gfn_t gfn = gpa >> PAGE_SHIFT;
5798         struct kvm_mmu_page *sp;
5799         LIST_HEAD(invalid_list);
5800         u64 entry, gentry, *spte;
5801         int npte;
5802         bool flush = false;
5803
5804         /*
5805          * If we don't have indirect shadow pages, it means no page is
5806          * write-protected, so we can exit simply.
5807          */
5808         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5809                 return;
5810
5811         write_lock(&vcpu->kvm->mmu_lock);
5812
5813         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5814
5815         ++vcpu->kvm->stat.mmu_pte_write;
5816
5817         for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5818                 if (detect_write_misaligned(sp, gpa, bytes) ||
5819                       detect_write_flooding(sp)) {
5820                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5821                         ++vcpu->kvm->stat.mmu_flooded;
5822                         continue;
5823                 }
5824
5825                 spte = get_written_sptes(sp, gpa, &npte);
5826                 if (!spte)
5827                         continue;
5828
5829                 while (npte--) {
5830                         entry = *spte;
5831                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5832                         if (gentry && sp->role.level != PG_LEVEL_4K)
5833                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5834                         if (is_shadow_present_pte(entry))
5835                                 flush = true;
5836                         ++spte;
5837                 }
5838         }
5839         kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5840         write_unlock(&vcpu->kvm->mmu_lock);
5841 }
5842
5843 int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5844                        void *insn, int insn_len)
5845 {
5846         int r, emulation_type = EMULTYPE_PF;
5847         bool direct = vcpu->arch.mmu->root_role.direct;
5848
5849         /*
5850          * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP
5851          * checks when emulating instructions that triggers implicit access.
5852          * WARN if hardware generates a fault with an error code that collides
5853          * with the KVM-defined value.  Clear the flag and continue on, i.e.
5854          * don't terminate the VM, as KVM can't possibly be relying on a flag
5855          * that KVM doesn't know about.
5856          */
5857         if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS))
5858                 error_code &= ~PFERR_IMPLICIT_ACCESS;
5859
5860         if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5861                 return RET_PF_RETRY;
5862
5863         r = RET_PF_INVALID;
5864         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5865                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5866                 if (r == RET_PF_EMULATE)
5867                         goto emulate;
5868         }
5869
5870         if (r == RET_PF_INVALID) {
5871                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5872                                           lower_32_bits(error_code), false,
5873                                           &emulation_type);
5874                 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5875                         return -EIO;
5876         }
5877
5878         if (r < 0)
5879                 return r;
5880         if (r != RET_PF_EMULATE)
5881                 return 1;
5882
5883         /*
5884          * Before emulating the instruction, check if the error code
5885          * was due to a RO violation while translating the guest page.
5886          * This can occur when using nested virtualization with nested
5887          * paging in both guests. If true, we simply unprotect the page
5888          * and resume the guest.
5889          */
5890         if (vcpu->arch.mmu->root_role.direct &&
5891             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5892                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5893                 return 1;
5894         }
5895
5896         /*
5897          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5898          * optimistically try to just unprotect the page and let the processor
5899          * re-execute the instruction that caused the page fault.  Do not allow
5900          * retrying MMIO emulation, as it's not only pointless but could also
5901          * cause us to enter an infinite loop because the processor will keep
5902          * faulting on the non-existent MMIO address.  Retrying an instruction
5903          * from a nested guest is also pointless and dangerous as we are only
5904          * explicitly shadowing L1's page tables, i.e. unprotecting something
5905          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5906          */
5907         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5908                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5909 emulate:
5910         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5911                                        insn_len);
5912 }
5913 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5914
5915 static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5916                                       u64 addr, hpa_t root_hpa)
5917 {
5918         struct kvm_shadow_walk_iterator iterator;
5919
5920         vcpu_clear_mmio_info(vcpu, addr);
5921
5922         /*
5923          * Walking and synchronizing SPTEs both assume they are operating in
5924          * the context of the current MMU, and would need to be reworked if
5925          * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
5926          */
5927         if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
5928                 return;
5929
5930         if (!VALID_PAGE(root_hpa))
5931                 return;
5932
5933         write_lock(&vcpu->kvm->mmu_lock);
5934         for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
5935                 struct kvm_mmu_page *sp = sptep_to_sp(iterator.sptep);
5936
5937                 if (sp->unsync) {
5938                         int ret = kvm_sync_spte(vcpu, sp, iterator.index);
5939
5940                         if (ret < 0)
5941                                 mmu_page_zap_pte(vcpu->kvm, sp, iterator.sptep, NULL);
5942                         if (ret)
5943                                 kvm_flush_remote_tlbs_sptep(vcpu->kvm, iterator.sptep);
5944                 }
5945
5946                 if (!sp->unsync_children)
5947                         break;
5948         }
5949         write_unlock(&vcpu->kvm->mmu_lock);
5950 }
5951
5952 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5953                              u64 addr, unsigned long roots)
5954 {
5955         int i;
5956
5957         WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
5958
5959         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5960         if (mmu != &vcpu->arch.guest_mmu) {
5961                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5962                 if (is_noncanonical_address(addr, vcpu))
5963                         return;
5964
5965                 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr);
5966         }
5967
5968         if (!mmu->sync_spte)
5969                 return;
5970
5971         if (roots & KVM_MMU_ROOT_CURRENT)
5972                 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->root.hpa);
5973
5974         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5975                 if (roots & KVM_MMU_ROOT_PREVIOUS(i))
5976                         __kvm_mmu_invalidate_addr(vcpu, mmu, addr, mmu->prev_roots[i].hpa);
5977         }
5978 }
5979 EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
5980
5981 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5982 {
5983         /*
5984          * INVLPG is required to invalidate any global mappings for the VA,
5985          * irrespective of PCID.  Blindly sync all roots as it would take
5986          * roughly the same amount of work/time to determine whether any of the
5987          * previous roots have a global mapping.
5988          *
5989          * Mappings not reachable via the current or previous cached roots will
5990          * be synced when switching to that new cr3, so nothing needs to be
5991          * done here for them.
5992          */
5993         kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
5994         ++vcpu->stat.invlpg;
5995 }
5996 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5997
5998
5999 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6000 {
6001         struct kvm_mmu *mmu = vcpu->arch.mmu;
6002         unsigned long roots = 0;
6003         uint i;
6004
6005         if (pcid == kvm_get_active_pcid(vcpu))
6006                 roots |= KVM_MMU_ROOT_CURRENT;
6007
6008         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6009                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6010                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6011                         roots |= KVM_MMU_ROOT_PREVIOUS(i);
6012         }
6013
6014         if (roots)
6015                 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6016         ++vcpu->stat.invlpg;
6017
6018         /*
6019          * Mappings not reachable via the current cr3 or the prev_roots will be
6020          * synced when switching to that cr3, so nothing needs to be done here
6021          * for them.
6022          */
6023 }
6024
6025 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6026                        int tdp_max_root_level, int tdp_huge_page_level)
6027 {
6028         tdp_enabled = enable_tdp;
6029         tdp_root_level = tdp_forced_root_level;
6030         max_tdp_level = tdp_max_root_level;
6031
6032 #ifdef CONFIG_X86_64
6033         tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6034 #endif
6035         /*
6036          * max_huge_page_level reflects KVM's MMU capabilities irrespective
6037          * of kernel support, e.g. KVM may be capable of using 1GB pages when
6038          * the kernel is not.  But, KVM never creates a page size greater than
6039          * what is used by the kernel for any given HVA, i.e. the kernel's
6040          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6041          */
6042         if (tdp_enabled)
6043                 max_huge_page_level = tdp_huge_page_level;
6044         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6045                 max_huge_page_level = PG_LEVEL_1G;
6046         else
6047                 max_huge_page_level = PG_LEVEL_2M;
6048 }
6049 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
6050
6051 /* The return value indicates if tlb flush on all vcpus is needed. */
6052 typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
6053                                     struct kvm_rmap_head *rmap_head,
6054                                     const struct kvm_memory_slot *slot);
6055
6056 static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
6057                                               const struct kvm_memory_slot *slot,
6058                                               slot_rmaps_handler fn,
6059                                               int start_level, int end_level,
6060                                               gfn_t start_gfn, gfn_t end_gfn,
6061                                               bool flush_on_yield, bool flush)
6062 {
6063         struct slot_rmap_walk_iterator iterator;
6064
6065         lockdep_assert_held_write(&kvm->mmu_lock);
6066
6067         for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
6068                         end_gfn, &iterator) {
6069                 if (iterator.rmap)
6070                         flush |= fn(kvm, iterator.rmap, slot);
6071
6072                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6073                         if (flush && flush_on_yield) {
6074                                 kvm_flush_remote_tlbs_range(kvm, start_gfn,
6075                                                             iterator.gfn - start_gfn + 1);
6076                                 flush = false;
6077                         }
6078                         cond_resched_rwlock_write(&kvm->mmu_lock);
6079                 }
6080         }
6081
6082         return flush;
6083 }
6084
6085 static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
6086                                             const struct kvm_memory_slot *slot,
6087                                             slot_rmaps_handler fn,
6088                                             int start_level, int end_level,
6089                                             bool flush_on_yield)
6090 {
6091         return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
6092                                  slot->base_gfn, slot->base_gfn + slot->npages - 1,
6093                                  flush_on_yield, false);
6094 }
6095
6096 static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
6097                                                const struct kvm_memory_slot *slot,
6098                                                slot_rmaps_handler fn,
6099                                                bool flush_on_yield)
6100 {
6101         return walk_slot_rmaps(kvm, slot, fn, PG_LEVEL_4K, PG_LEVEL_4K, flush_on_yield);
6102 }
6103
6104 static void free_mmu_pages(struct kvm_mmu *mmu)
6105 {
6106         if (!tdp_enabled && mmu->pae_root)
6107                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
6108         free_page((unsigned long)mmu->pae_root);
6109         free_page((unsigned long)mmu->pml4_root);
6110         free_page((unsigned long)mmu->pml5_root);
6111 }
6112
6113 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6114 {
6115         struct page *page;
6116         int i;
6117
6118         mmu->root.hpa = INVALID_PAGE;
6119         mmu->root.pgd = 0;
6120         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6121                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6122
6123         /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6124         if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6125                 return 0;
6126
6127         /*
6128          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
6129          * while the PDP table is a per-vCPU construct that's allocated at MMU
6130          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
6131          * x86_64.  Therefore we need to allocate the PDP table in the first
6132          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
6133          * generally doesn't use PAE paging and can skip allocating the PDP
6134          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
6135          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6136          * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6137          */
6138         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6139                 return 0;
6140
6141         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6142         if (!page)
6143                 return -ENOMEM;
6144
6145         mmu->pae_root = page_address(page);
6146
6147         /*
6148          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6149          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
6150          * that KVM's writes and the CPU's reads get along.  Note, this is
6151          * only necessary when using shadow paging, as 64-bit NPT can get at
6152          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6153          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6154          */
6155         if (!tdp_enabled)
6156                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
6157         else
6158                 WARN_ON_ONCE(shadow_me_value);
6159
6160         for (i = 0; i < 4; ++i)
6161                 mmu->pae_root[i] = INVALID_PAE_ROOT;
6162
6163         return 0;
6164 }
6165
6166 int kvm_mmu_create(struct kvm_vcpu *vcpu)
6167 {
6168         int ret;
6169
6170         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6171         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6172
6173         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6174         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6175
6176         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6177
6178         vcpu->arch.mmu = &vcpu->arch.root_mmu;
6179         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6180
6181         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
6182         if (ret)
6183                 return ret;
6184
6185         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
6186         if (ret)
6187                 goto fail_allocate_root;
6188
6189         return ret;
6190  fail_allocate_root:
6191         free_mmu_pages(&vcpu->arch.guest_mmu);
6192         return ret;
6193 }
6194
6195 #define BATCH_ZAP_PAGES 10
6196 static void kvm_zap_obsolete_pages(struct kvm *kvm)
6197 {
6198         struct kvm_mmu_page *sp, *node;
6199         int nr_zapped, batch = 0;
6200         bool unstable;
6201
6202 restart:
6203         list_for_each_entry_safe_reverse(sp, node,
6204               &kvm->arch.active_mmu_pages, link) {
6205                 /*
6206                  * No obsolete valid page exists before a newly created page
6207                  * since active_mmu_pages is a FIFO list.
6208                  */
6209                 if (!is_obsolete_sp(kvm, sp))
6210                         break;
6211
6212                 /*
6213                  * Invalid pages should never land back on the list of active
6214                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
6215                  * infinite loop if the page gets put back on the list (again).
6216                  */
6217                 if (WARN_ON_ONCE(sp->role.invalid))
6218                         continue;
6219
6220                 /*
6221                  * No need to flush the TLB since we're only zapping shadow
6222                  * pages with an obsolete generation number and all vCPUS have
6223                  * loaded a new root, i.e. the shadow pages being zapped cannot
6224                  * be in active use by the guest.
6225                  */
6226                 if (batch >= BATCH_ZAP_PAGES &&
6227                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
6228                         batch = 0;
6229                         goto restart;
6230                 }
6231
6232                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6233                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped);
6234                 batch += nr_zapped;
6235
6236                 if (unstable)
6237                         goto restart;
6238         }
6239
6240         /*
6241          * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6242          * to ensure KVM is not in the middle of a lockless shadow page table
6243          * walk, which may reference the pages.  The remote TLB flush itself is
6244          * not required and is simply a convenient way to kick vCPUs as needed.
6245          * KVM performs a local TLB flush when allocating a new root (see
6246          * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6247          * running with an obsolete MMU.
6248          */
6249         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
6250 }
6251
6252 /*
6253  * Fast invalidate all shadow pages and use lock-break technique
6254  * to zap obsolete pages.
6255  *
6256  * It's required when memslot is being deleted or VM is being
6257  * destroyed, in these cases, we should ensure that KVM MMU does
6258  * not use any resource of the being-deleted slot or all slots
6259  * after calling the function.
6260  */
6261 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6262 {
6263         lockdep_assert_held(&kvm->slots_lock);
6264
6265         write_lock(&kvm->mmu_lock);
6266         trace_kvm_mmu_zap_all_fast(kvm);
6267
6268         /*
6269          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
6270          * held for the entire duration of zapping obsolete pages, it's
6271          * impossible for there to be multiple invalid generations associated
6272          * with *valid* shadow pages at any given time, i.e. there is exactly
6273          * one valid generation and (at most) one invalid generation.
6274          */
6275         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6276
6277         /*
6278          * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6279          * invalidating TDP MMU roots must be done while holding mmu_lock for
6280          * write and in the same critical section as making the reload request,
6281          * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6282          */
6283         if (tdp_mmu_enabled)
6284                 kvm_tdp_mmu_invalidate_all_roots(kvm);
6285
6286         /*
6287          * Notify all vcpus to reload its shadow page table and flush TLB.
6288          * Then all vcpus will switch to new shadow page table with the new
6289          * mmu_valid_gen.
6290          *
6291          * Note: we need to do this under the protection of mmu_lock,
6292          * otherwise, vcpu would purge shadow page but miss tlb flush.
6293          */
6294         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6295
6296         kvm_zap_obsolete_pages(kvm);
6297
6298         write_unlock(&kvm->mmu_lock);
6299
6300         /*
6301          * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6302          * returning to the caller, e.g. if the zap is in response to a memslot
6303          * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6304          * associated with the deleted memslot once the update completes, and
6305          * Deferring the zap until the final reference to the root is put would
6306          * lead to use-after-free.
6307          */
6308         if (tdp_mmu_enabled)
6309                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
6310 }
6311
6312 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
6313 {
6314         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
6315 }
6316
6317 void kvm_mmu_init_vm(struct kvm *kvm)
6318 {
6319         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6320         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6321         INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
6322         spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6323
6324         if (tdp_mmu_enabled)
6325                 kvm_mmu_init_tdp_mmu(kvm);
6326
6327         kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6328         kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6329
6330         kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6331
6332         kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6333         kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6334 }
6335
6336 static void mmu_free_vm_memory_caches(struct kvm *kvm)
6337 {
6338         kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
6339         kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
6340         kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
6341 }
6342
6343 void kvm_mmu_uninit_vm(struct kvm *kvm)
6344 {
6345         if (tdp_mmu_enabled)
6346                 kvm_mmu_uninit_tdp_mmu(kvm);
6347
6348         mmu_free_vm_memory_caches(kvm);
6349 }
6350
6351 static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6352 {
6353         const struct kvm_memory_slot *memslot;
6354         struct kvm_memslots *slots;
6355         struct kvm_memslot_iter iter;
6356         bool flush = false;
6357         gfn_t start, end;
6358         int i;
6359
6360         if (!kvm_memslots_have_rmaps(kvm))
6361                 return flush;
6362
6363         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6364                 slots = __kvm_memslots(kvm, i);
6365
6366                 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6367                         memslot = iter.slot;
6368                         start = max(gfn_start, memslot->base_gfn);
6369                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
6370                         if (WARN_ON_ONCE(start >= end))
6371                                 continue;
6372
6373                         flush = __walk_slot_rmaps(kvm, memslot, __kvm_zap_rmap,
6374                                                   PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
6375                                                   start, end - 1, true, flush);
6376                 }
6377         }
6378
6379         return flush;
6380 }
6381
6382 /*
6383  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6384  * (not including it)
6385  */
6386 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6387 {
6388         bool flush;
6389
6390         if (WARN_ON_ONCE(gfn_end <= gfn_start))
6391                 return;
6392
6393         write_lock(&kvm->mmu_lock);
6394
6395         kvm_mmu_invalidate_begin(kvm);
6396
6397         kvm_mmu_invalidate_range_add(kvm, gfn_start, gfn_end);
6398
6399         flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6400
6401         if (tdp_mmu_enabled)
6402                 flush = kvm_tdp_mmu_zap_leafs(kvm, gfn_start, gfn_end, flush);
6403
6404         if (flush)
6405                 kvm_flush_remote_tlbs_range(kvm, gfn_start, gfn_end - gfn_start);
6406
6407         kvm_mmu_invalidate_end(kvm);
6408
6409         write_unlock(&kvm->mmu_lock);
6410 }
6411
6412 static bool slot_rmap_write_protect(struct kvm *kvm,
6413                                     struct kvm_rmap_head *rmap_head,
6414                                     const struct kvm_memory_slot *slot)
6415 {
6416         return rmap_write_protect(rmap_head, false);
6417 }
6418
6419 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6420                                       const struct kvm_memory_slot *memslot,
6421                                       int start_level)
6422 {
6423         if (kvm_memslots_have_rmaps(kvm)) {
6424                 write_lock(&kvm->mmu_lock);
6425                 walk_slot_rmaps(kvm, memslot, slot_rmap_write_protect,
6426                                 start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
6427                 write_unlock(&kvm->mmu_lock);
6428         }
6429
6430         if (tdp_mmu_enabled) {
6431                 read_lock(&kvm->mmu_lock);
6432                 kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
6433                 read_unlock(&kvm->mmu_lock);
6434         }
6435 }
6436
6437 static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6438 {
6439         return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
6440 }
6441
6442 static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6443 {
6444         if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
6445                 return true;
6446
6447         /*
6448          * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6449          * to split a single huge page. Calculating how many are actually needed
6450          * is possible but not worth the complexity.
6451          */
6452         return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6453                need_topup(&kvm->arch.split_page_header_cache, 1) ||
6454                need_topup(&kvm->arch.split_shadow_page_cache, 1);
6455 }
6456
6457 static int topup_split_caches(struct kvm *kvm)
6458 {
6459         /*
6460          * Allocating rmap list entries when splitting huge pages for nested
6461          * MMUs is uncommon as KVM needs to use a list if and only if there is
6462          * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6463          * aliased by multiple L2 gfns and/or from multiple nested roots with
6464          * different roles.  Aliasing gfns when using TDP is atypical for VMMs;
6465          * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6466          * but aliasing rarely occurs post-boot or for many gfns.  If there is
6467          * only one rmap entry, rmap->val points directly at that one entry and
6468          * doesn't need to allocate a list.  Buffer the cache by the default
6469          * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6470          * encounters an aliased gfn or two.
6471          */
6472         const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6473                              KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6474         int r;
6475
6476         lockdep_assert_held(&kvm->slots_lock);
6477
6478         r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
6479                                          SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6480         if (r)
6481                 return r;
6482
6483         r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
6484         if (r)
6485                 return r;
6486
6487         return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
6488 }
6489
6490 static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6491 {
6492         struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6493         struct shadow_page_caches caches = {};
6494         union kvm_mmu_page_role role;
6495         unsigned int access;
6496         gfn_t gfn;
6497
6498         gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6499         access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
6500
6501         /*
6502          * Note, huge page splitting always uses direct shadow pages, regardless
6503          * of whether the huge page itself is mapped by a direct or indirect
6504          * shadow page, since the huge page region itself is being directly
6505          * mapped with smaller pages.
6506          */
6507         role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
6508
6509         /* Direct SPs do not require a shadowed_info_cache. */
6510         caches.page_header_cache = &kvm->arch.split_page_header_cache;
6511         caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6512
6513         /* Safe to pass NULL for vCPU since requesting a direct SP. */
6514         return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
6515 }
6516
6517 static void shadow_mmu_split_huge_page(struct kvm *kvm,
6518                                        const struct kvm_memory_slot *slot,
6519                                        u64 *huge_sptep)
6520
6521 {
6522         struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6523         u64 huge_spte = READ_ONCE(*huge_sptep);
6524         struct kvm_mmu_page *sp;
6525         bool flush = false;
6526         u64 *sptep, spte;
6527         gfn_t gfn;
6528         int index;
6529
6530         sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6531
6532         for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6533                 sptep = &sp->spt[index];
6534                 gfn = kvm_mmu_page_get_gfn(sp, index);
6535
6536                 /*
6537                  * The SP may already have populated SPTEs, e.g. if this huge
6538                  * page is aliased by multiple sptes with the same access
6539                  * permissions. These entries are guaranteed to map the same
6540                  * gfn-to-pfn translation since the SP is direct, so no need to
6541                  * modify them.
6542                  *
6543                  * However, if a given SPTE points to a lower level page table,
6544                  * that lower level page table may only be partially populated.
6545                  * Installing such SPTEs would effectively unmap a potion of the
6546                  * huge page. Unmapping guest memory always requires a TLB flush
6547                  * since a subsequent operation on the unmapped regions would
6548                  * fail to detect the need to flush.
6549                  */
6550                 if (is_shadow_present_pte(*sptep)) {
6551                         flush |= !is_last_spte(*sptep, sp->role.level);
6552                         continue;
6553                 }
6554
6555                 spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
6556                 mmu_spte_set(sptep, spte);
6557                 __rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
6558         }
6559
6560         __link_shadow_page(kvm, cache, huge_sptep, sp, flush);
6561 }
6562
6563 static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6564                                           const struct kvm_memory_slot *slot,
6565                                           u64 *huge_sptep)
6566 {
6567         struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
6568         int level, r = 0;
6569         gfn_t gfn;
6570         u64 spte;
6571
6572         /* Grab information for the tracepoint before dropping the MMU lock. */
6573         gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
6574         level = huge_sp->role.level;
6575         spte = *huge_sptep;
6576
6577         if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6578                 r = -ENOSPC;
6579                 goto out;
6580         }
6581
6582         if (need_topup_split_caches_or_resched(kvm)) {
6583                 write_unlock(&kvm->mmu_lock);
6584                 cond_resched();
6585                 /*
6586                  * If the topup succeeds, return -EAGAIN to indicate that the
6587                  * rmap iterator should be restarted because the MMU lock was
6588                  * dropped.
6589                  */
6590                 r = topup_split_caches(kvm) ?: -EAGAIN;
6591                 write_lock(&kvm->mmu_lock);
6592                 goto out;
6593         }
6594
6595         shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6596
6597 out:
6598         trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
6599         return r;
6600 }
6601
6602 static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6603                                             struct kvm_rmap_head *rmap_head,
6604                                             const struct kvm_memory_slot *slot)
6605 {
6606         struct rmap_iterator iter;
6607         struct kvm_mmu_page *sp;
6608         u64 *huge_sptep;
6609         int r;
6610
6611 restart:
6612         for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6613                 sp = sptep_to_sp(huge_sptep);
6614
6615                 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6616                 if (WARN_ON_ONCE(!sp->role.guest_mode))
6617                         continue;
6618
6619                 /* The rmaps should never contain non-leaf SPTEs. */
6620                 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6621                         continue;
6622
6623                 /* SPs with level >PG_LEVEL_4K should never by unsync. */
6624                 if (WARN_ON_ONCE(sp->unsync))
6625                         continue;
6626
6627                 /* Don't bother splitting huge pages on invalid SPs. */
6628                 if (sp->role.invalid)
6629                         continue;
6630
6631                 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6632
6633                 /*
6634                  * The split succeeded or needs to be retried because the MMU
6635                  * lock was dropped. Either way, restart the iterator to get it
6636                  * back into a consistent state.
6637                  */
6638                 if (!r || r == -EAGAIN)
6639                         goto restart;
6640
6641                 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6642                 break;
6643         }
6644
6645         return false;
6646 }
6647
6648 static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6649                                                 const struct kvm_memory_slot *slot,
6650                                                 gfn_t start, gfn_t end,
6651                                                 int target_level)
6652 {
6653         int level;
6654
6655         /*
6656          * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6657          * down to the target level. This ensures pages are recursively split
6658          * all the way to the target level. There's no need to split pages
6659          * already at the target level.
6660          */
6661         for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6662                 __walk_slot_rmaps(kvm, slot, shadow_mmu_try_split_huge_pages,
6663                                   level, level, start, end - 1, true, false);
6664 }
6665
6666 /* Must be called with the mmu_lock held in write-mode. */
6667 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6668                                    const struct kvm_memory_slot *memslot,
6669                                    u64 start, u64 end,
6670                                    int target_level)
6671 {
6672         if (!tdp_mmu_enabled)
6673                 return;
6674
6675         if (kvm_memslots_have_rmaps(kvm))
6676                 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6677
6678         kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
6679
6680         /*
6681          * A TLB flush is unnecessary at this point for the same reasons as in
6682          * kvm_mmu_slot_try_split_huge_pages().
6683          */
6684 }
6685
6686 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6687                                         const struct kvm_memory_slot *memslot,
6688                                         int target_level)
6689 {
6690         u64 start = memslot->base_gfn;
6691         u64 end = start + memslot->npages;
6692
6693         if (!tdp_mmu_enabled)
6694                 return;
6695
6696         if (kvm_memslots_have_rmaps(kvm)) {
6697                 write_lock(&kvm->mmu_lock);
6698                 kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
6699                 write_unlock(&kvm->mmu_lock);
6700         }
6701
6702         read_lock(&kvm->mmu_lock);
6703         kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
6704         read_unlock(&kvm->mmu_lock);
6705
6706         /*
6707          * No TLB flush is necessary here. KVM will flush TLBs after
6708          * write-protecting and/or clearing dirty on the newly split SPTEs to
6709          * ensure that guest writes are reflected in the dirty log before the
6710          * ioctl to enable dirty logging on this memslot completes. Since the
6711          * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6712          * safe for KVM to decide if a TLB flush is necessary based on the split
6713          * SPTEs.
6714          */
6715 }
6716
6717 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6718                                          struct kvm_rmap_head *rmap_head,
6719                                          const struct kvm_memory_slot *slot)
6720 {
6721         u64 *sptep;
6722         struct rmap_iterator iter;
6723         int need_tlb_flush = 0;
6724         struct kvm_mmu_page *sp;
6725
6726 restart:
6727         for_each_rmap_spte(rmap_head, &iter, sptep) {
6728                 sp = sptep_to_sp(sptep);
6729
6730                 /*
6731                  * We cannot do huge page mapping for indirect shadow pages,
6732                  * which are found on the last rmap (level = 1) when not using
6733                  * tdp; such shadow pages are synced with the page table in
6734                  * the guest, and the guest page table is using 4K page size
6735                  * mapping if the indirect sp has level = 1.
6736                  */
6737                 if (sp->role.direct &&
6738                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
6739                                                                PG_LEVEL_NUM)) {
6740                         kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6741
6742                         if (kvm_available_flush_remote_tlbs_range())
6743                                 kvm_flush_remote_tlbs_sptep(kvm, sptep);
6744                         else
6745                                 need_tlb_flush = 1;
6746
6747                         goto restart;
6748                 }
6749         }
6750
6751         return need_tlb_flush;
6752 }
6753
6754 static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6755                                            const struct kvm_memory_slot *slot)
6756 {
6757         /*
6758          * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6759          * pages that are already mapped at the maximum hugepage level.
6760          */
6761         if (walk_slot_rmaps(kvm, slot, kvm_mmu_zap_collapsible_spte,
6762                             PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
6763                 kvm_flush_remote_tlbs_memslot(kvm, slot);
6764 }
6765
6766 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6767                                    const struct kvm_memory_slot *slot)
6768 {
6769         if (kvm_memslots_have_rmaps(kvm)) {
6770                 write_lock(&kvm->mmu_lock);
6771                 kvm_rmap_zap_collapsible_sptes(kvm, slot);
6772                 write_unlock(&kvm->mmu_lock);
6773         }
6774
6775         if (tdp_mmu_enabled) {
6776                 read_lock(&kvm->mmu_lock);
6777                 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6778                 read_unlock(&kvm->mmu_lock);
6779         }
6780 }
6781
6782 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6783                                    const struct kvm_memory_slot *memslot)
6784 {
6785         if (kvm_memslots_have_rmaps(kvm)) {
6786                 write_lock(&kvm->mmu_lock);
6787                 /*
6788                  * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6789                  * support dirty logging at a 4k granularity.
6790                  */
6791                 walk_slot_rmaps_4k(kvm, memslot, __rmap_clear_dirty, false);
6792                 write_unlock(&kvm->mmu_lock);
6793         }
6794
6795         if (tdp_mmu_enabled) {
6796                 read_lock(&kvm->mmu_lock);
6797                 kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
6798                 read_unlock(&kvm->mmu_lock);
6799         }
6800
6801         /*
6802          * The caller will flush the TLBs after this function returns.
6803          *
6804          * It's also safe to flush TLBs out of mmu lock here as currently this
6805          * function is only used for dirty logging, in which case flushing TLB
6806          * out of mmu lock also guarantees no dirty pages will be lost in
6807          * dirty_bitmap.
6808          */
6809 }
6810
6811 static void kvm_mmu_zap_all(struct kvm *kvm)
6812 {
6813         struct kvm_mmu_page *sp, *node;
6814         LIST_HEAD(invalid_list);
6815         int ign;
6816
6817         write_lock(&kvm->mmu_lock);
6818 restart:
6819         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6820                 if (WARN_ON_ONCE(sp->role.invalid))
6821                         continue;
6822                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6823                         goto restart;
6824                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
6825                         goto restart;
6826         }
6827
6828         kvm_mmu_commit_zap_page(kvm, &invalid_list);
6829
6830         if (tdp_mmu_enabled)
6831                 kvm_tdp_mmu_zap_all(kvm);
6832
6833         write_unlock(&kvm->mmu_lock);
6834 }
6835
6836 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6837 {
6838         kvm_mmu_zap_all(kvm);
6839 }
6840
6841 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6842                                    struct kvm_memory_slot *slot)
6843 {
6844         kvm_mmu_zap_all_fast(kvm);
6845 }
6846
6847 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6848 {
6849         WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6850
6851         gen &= MMIO_SPTE_GEN_MASK;
6852
6853         /*
6854          * Generation numbers are incremented in multiples of the number of
6855          * address spaces in order to provide unique generations across all
6856          * address spaces.  Strip what is effectively the address space
6857          * modifier prior to checking for a wrap of the MMIO generation so
6858          * that a wrap in any address space is detected.
6859          */
6860         gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
6861
6862         /*
6863          * The very rare case: if the MMIO generation number has wrapped,
6864          * zap all shadow pages.
6865          */
6866         if (unlikely(gen == 0)) {
6867                 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
6868                 kvm_mmu_zap_all_fast(kvm);
6869         }
6870 }
6871
6872 static unsigned long mmu_shrink_scan(struct shrinker *shrink,
6873                                      struct shrink_control *sc)
6874 {
6875         struct kvm *kvm;
6876         int nr_to_scan = sc->nr_to_scan;
6877         unsigned long freed = 0;
6878
6879         mutex_lock(&kvm_lock);
6880
6881         list_for_each_entry(kvm, &vm_list, vm_list) {
6882                 int idx;
6883                 LIST_HEAD(invalid_list);
6884
6885                 /*
6886                  * Never scan more than sc->nr_to_scan VM instances.
6887                  * Will not hit this condition practically since we do not try
6888                  * to shrink more than one VM and it is very unlikely to see
6889                  * !n_used_mmu_pages so many times.
6890                  */
6891                 if (!nr_to_scan--)
6892                         break;
6893                 /*
6894                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6895                  * here. We may skip a VM instance errorneosly, but we do not
6896                  * want to shrink a VM that only started to populate its MMU
6897                  * anyway.
6898                  */
6899                 if (!kvm->arch.n_used_mmu_pages &&
6900                     !kvm_has_zapped_obsolete_pages(kvm))
6901                         continue;
6902
6903                 idx = srcu_read_lock(&kvm->srcu);
6904                 write_lock(&kvm->mmu_lock);
6905
6906                 if (kvm_has_zapped_obsolete_pages(kvm)) {
6907                         kvm_mmu_commit_zap_page(kvm,
6908                               &kvm->arch.zapped_obsolete_pages);
6909                         goto unlock;
6910                 }
6911
6912                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6913
6914 unlock:
6915                 write_unlock(&kvm->mmu_lock);
6916                 srcu_read_unlock(&kvm->srcu, idx);
6917
6918                 /*
6919                  * unfair on small ones
6920                  * per-vm shrinkers cry out
6921                  * sadness comes quickly
6922                  */
6923                 list_move_tail(&kvm->vm_list, &vm_list);
6924                 break;
6925         }
6926
6927         mutex_unlock(&kvm_lock);
6928         return freed;
6929 }
6930
6931 static unsigned long mmu_shrink_count(struct shrinker *shrink,
6932                                       struct shrink_control *sc)
6933 {
6934         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6935 }
6936
6937 static struct shrinker *mmu_shrinker;
6938
6939 static void mmu_destroy_caches(void)
6940 {
6941         kmem_cache_destroy(pte_list_desc_cache);
6942         kmem_cache_destroy(mmu_page_header_cache);
6943 }
6944
6945 static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
6946 {
6947         if (nx_hugepage_mitigation_hard_disabled)
6948                 return sysfs_emit(buffer, "never\n");
6949
6950         return param_get_bool(buffer, kp);
6951 }
6952
6953 static bool get_nx_auto_mode(void)
6954 {
6955         /* Return true when CPU has the bug, and mitigations are ON */
6956         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6957 }
6958
6959 static void __set_nx_huge_pages(bool val)
6960 {
6961         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6962 }
6963
6964 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6965 {
6966         bool old_val = nx_huge_pages;
6967         bool new_val;
6968
6969         if (nx_hugepage_mitigation_hard_disabled)
6970                 return -EPERM;
6971
6972         /* In "auto" mode deploy workaround only if CPU has the bug. */
6973         if (sysfs_streq(val, "off")) {
6974                 new_val = 0;
6975         } else if (sysfs_streq(val, "force")) {
6976                 new_val = 1;
6977         } else if (sysfs_streq(val, "auto")) {
6978                 new_val = get_nx_auto_mode();
6979         } else if (sysfs_streq(val, "never")) {
6980                 new_val = 0;
6981
6982                 mutex_lock(&kvm_lock);
6983                 if (!list_empty(&vm_list)) {
6984                         mutex_unlock(&kvm_lock);
6985                         return -EBUSY;
6986                 }
6987                 nx_hugepage_mitigation_hard_disabled = true;
6988                 mutex_unlock(&kvm_lock);
6989         } else if (kstrtobool(val, &new_val) < 0) {
6990                 return -EINVAL;
6991         }
6992
6993         __set_nx_huge_pages(new_val);
6994
6995         if (new_val != old_val) {
6996                 struct kvm *kvm;
6997
6998                 mutex_lock(&kvm_lock);
6999
7000                 list_for_each_entry(kvm, &vm_list, vm_list) {
7001                         mutex_lock(&kvm->slots_lock);
7002                         kvm_mmu_zap_all_fast(kvm);
7003                         mutex_unlock(&kvm->slots_lock);
7004
7005                         wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7006                 }
7007                 mutex_unlock(&kvm_lock);
7008         }
7009
7010         return 0;
7011 }
7012
7013 /*
7014  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7015  * its default value of -1 is technically undefined behavior for a boolean.
7016  * Forward the module init call to SPTE code so that it too can handle module
7017  * params that need to be resolved/snapshot.
7018  */
7019 void __init kvm_mmu_x86_module_init(void)
7020 {
7021         if (nx_huge_pages == -1)
7022                 __set_nx_huge_pages(get_nx_auto_mode());
7023
7024         /*
7025          * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7026          * TDP MMU is actually enabled is determined in kvm_configure_mmu()
7027          * when the vendor module is loaded.
7028          */
7029         tdp_mmu_allowed = tdp_mmu_enabled;
7030
7031         kvm_mmu_spte_module_init();
7032 }
7033
7034 /*
7035  * The bulk of the MMU initialization is deferred until the vendor module is
7036  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7037  * to be reset when a potentially different vendor module is loaded.
7038  */
7039 int kvm_mmu_vendor_module_init(void)
7040 {
7041         int ret = -ENOMEM;
7042
7043         /*
7044          * MMU roles use union aliasing which is, generally speaking, an
7045          * undefined behavior. However, we supposedly know how compilers behave
7046          * and the current status quo is unlikely to change. Guardians below are
7047          * supposed to let us know if the assumption becomes false.
7048          */
7049         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7050         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7051         BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7052
7053         kvm_mmu_reset_all_pte_masks();
7054
7055         pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7056         if (!pte_list_desc_cache)
7057                 goto out;
7058
7059         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
7060                                                   sizeof(struct kvm_mmu_page),
7061                                                   0, SLAB_ACCOUNT, NULL);
7062         if (!mmu_page_header_cache)
7063                 goto out;
7064
7065         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
7066                 goto out;
7067
7068         mmu_shrinker = shrinker_alloc(0, "x86-mmu");
7069         if (!mmu_shrinker)
7070                 goto out_shrinker;
7071
7072         mmu_shrinker->count_objects = mmu_shrink_count;
7073         mmu_shrinker->scan_objects = mmu_shrink_scan;
7074         mmu_shrinker->seeks = DEFAULT_SEEKS * 10;
7075
7076         shrinker_register(mmu_shrinker);
7077
7078         return 0;
7079
7080 out_shrinker:
7081         percpu_counter_destroy(&kvm_total_used_mmu_pages);
7082 out:
7083         mmu_destroy_caches();
7084         return ret;
7085 }
7086
7087 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7088 {
7089         kvm_mmu_unload(vcpu);
7090         free_mmu_pages(&vcpu->arch.root_mmu);
7091         free_mmu_pages(&vcpu->arch.guest_mmu);
7092         mmu_free_memory_caches(vcpu);
7093 }
7094
7095 void kvm_mmu_vendor_module_exit(void)
7096 {
7097         mmu_destroy_caches();
7098         percpu_counter_destroy(&kvm_total_used_mmu_pages);
7099         shrinker_free(mmu_shrinker);
7100 }
7101
7102 /*
7103  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
7104  * select a halving time of 1 hour".  Returns true if recovery is enabled.
7105  */
7106 static bool calc_nx_huge_pages_recovery_period(uint *period)
7107 {
7108         /*
7109          * Use READ_ONCE to get the params, this may be called outside of the
7110          * param setters, e.g. by the kthread to compute its next timeout.
7111          */
7112         bool enabled = READ_ONCE(nx_huge_pages);
7113         uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7114
7115         if (!enabled || !ratio)
7116                 return false;
7117
7118         *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7119         if (!*period) {
7120                 /* Make sure the period is not less than one second.  */
7121                 ratio = min(ratio, 3600u);
7122                 *period = 60 * 60 * 1000 / ratio;
7123         }
7124         return true;
7125 }
7126
7127 static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7128 {
7129         bool was_recovery_enabled, is_recovery_enabled;
7130         uint old_period, new_period;
7131         int err;
7132
7133         if (nx_hugepage_mitigation_hard_disabled)
7134                 return -EPERM;
7135
7136         was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
7137
7138         err = param_set_uint(val, kp);
7139         if (err)
7140                 return err;
7141
7142         is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
7143
7144         if (is_recovery_enabled &&
7145             (!was_recovery_enabled || old_period > new_period)) {
7146                 struct kvm *kvm;
7147
7148                 mutex_lock(&kvm_lock);
7149
7150                 list_for_each_entry(kvm, &vm_list, vm_list)
7151                         wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
7152
7153                 mutex_unlock(&kvm_lock);
7154         }
7155
7156         return err;
7157 }
7158
7159 static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7160 {
7161         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7162         struct kvm_memory_slot *slot;
7163         int rcu_idx;
7164         struct kvm_mmu_page *sp;
7165         unsigned int ratio;
7166         LIST_HEAD(invalid_list);
7167         bool flush = false;
7168         ulong to_zap;
7169
7170         rcu_idx = srcu_read_lock(&kvm->srcu);
7171         write_lock(&kvm->mmu_lock);
7172
7173         /*
7174          * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7175          * be done under RCU protection, because the pages are freed via RCU
7176          * callback.
7177          */
7178         rcu_read_lock();
7179
7180         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7181         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7182         for ( ; to_zap; --to_zap) {
7183                 if (list_empty(&kvm->arch.possible_nx_huge_pages))
7184                         break;
7185
7186                 /*
7187                  * We use a separate list instead of just using active_mmu_pages
7188                  * because the number of shadow pages that be replaced with an
7189                  * NX huge page is expected to be relatively small compared to
7190                  * the total number of shadow pages.  And because the TDP MMU
7191                  * doesn't use active_mmu_pages.
7192                  */
7193                 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7194                                       struct kvm_mmu_page,
7195                                       possible_nx_huge_page_link);
7196                 WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7197                 WARN_ON_ONCE(!sp->role.direct);
7198
7199                 /*
7200                  * Unaccount and do not attempt to recover any NX Huge Pages
7201                  * that are being dirty tracked, as they would just be faulted
7202                  * back in as 4KiB pages. The NX Huge Pages in this slot will be
7203                  * recovered, along with all the other huge pages in the slot,
7204                  * when dirty logging is disabled.
7205                  *
7206                  * Since gfn_to_memslot() is relatively expensive, it helps to
7207                  * skip it if it the test cannot possibly return true.  On the
7208                  * other hand, if any memslot has logging enabled, chances are
7209                  * good that all of them do, in which case unaccount_nx_huge_page()
7210                  * is much cheaper than zapping the page.
7211                  *
7212                  * If a memslot update is in progress, reading an incorrect value
7213                  * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7214                  * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7215                  * it is becoming nonzero, the page will be zapped unnecessarily.
7216                  * Either way, this only affects efficiency in racy situations,
7217                  * and not correctness.
7218                  */
7219                 slot = NULL;
7220                 if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
7221                         struct kvm_memslots *slots;
7222
7223                         slots = kvm_memslots_for_spte_role(kvm, sp->role);
7224                         slot = __gfn_to_memslot(slots, sp->gfn);
7225                         WARN_ON_ONCE(!slot);
7226                 }
7227
7228                 if (slot && kvm_slot_dirty_track_enabled(slot))
7229                         unaccount_nx_huge_page(kvm, sp);
7230                 else if (is_tdp_mmu_page(sp))
7231                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7232                 else
7233                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7234                 WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7235
7236                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
7237                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7238                         rcu_read_unlock();
7239
7240                         cond_resched_rwlock_write(&kvm->mmu_lock);
7241                         flush = false;
7242
7243                         rcu_read_lock();
7244                 }
7245         }
7246         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
7247
7248         rcu_read_unlock();
7249
7250         write_unlock(&kvm->mmu_lock);
7251         srcu_read_unlock(&kvm->srcu, rcu_idx);
7252 }
7253
7254 static long get_nx_huge_page_recovery_timeout(u64 start_time)
7255 {
7256         bool enabled;
7257         uint period;
7258
7259         enabled = calc_nx_huge_pages_recovery_period(&period);
7260
7261         return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
7262                        : MAX_SCHEDULE_TIMEOUT;
7263 }
7264
7265 static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
7266 {
7267         u64 start_time;
7268         long remaining_time;
7269
7270         while (true) {
7271                 start_time = get_jiffies_64();
7272                 remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7273
7274                 set_current_state(TASK_INTERRUPTIBLE);
7275                 while (!kthread_should_stop() && remaining_time > 0) {
7276                         schedule_timeout(remaining_time);
7277                         remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7278                         set_current_state(TASK_INTERRUPTIBLE);
7279                 }
7280
7281                 set_current_state(TASK_RUNNING);
7282
7283                 if (kthread_should_stop())
7284                         return 0;
7285
7286                 kvm_recover_nx_huge_pages(kvm);
7287         }
7288 }
7289
7290 int kvm_mmu_post_init_vm(struct kvm *kvm)
7291 {
7292         int err;
7293
7294         if (nx_hugepage_mitigation_hard_disabled)
7295                 return 0;
7296
7297         err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0,
7298                                           "kvm-nx-lpage-recovery",
7299                                           &kvm->arch.nx_huge_page_recovery_thread);
7300         if (!err)
7301                 kthread_unpark(kvm->arch.nx_huge_page_recovery_thread);
7302
7303         return err;
7304 }
7305
7306 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7307 {
7308         if (kvm->arch.nx_huge_page_recovery_thread)
7309                 kthread_stop(kvm->arch.nx_huge_page_recovery_thread);
7310 }
7311
7312 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
7313 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7314                                         struct kvm_gfn_range *range)
7315 {
7316         /*
7317          * Zap SPTEs even if the slot can't be mapped PRIVATE.  KVM x86 only
7318          * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7319          * can simply ignore such slots.  But if userspace is making memory
7320          * PRIVATE, then KVM must prevent the guest from accessing the memory
7321          * as shared.  And if userspace is making memory SHARED and this point
7322          * is reached, then at least one page within the range was previously
7323          * PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7324          * Zapping SPTEs in this case ensures KVM will reassess whether or not
7325          * a hugepage can be used for affected ranges.
7326          */
7327         if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7328                 return false;
7329
7330         return kvm_unmap_gfn_range(kvm, range);
7331 }
7332
7333 static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7334                                 int level)
7335 {
7336         return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7337 }
7338
7339 static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7340                                  int level)
7341 {
7342         lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7343 }
7344
7345 static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7346                                int level)
7347 {
7348         lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7349 }
7350
7351 static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7352                                gfn_t gfn, int level, unsigned long attrs)
7353 {
7354         const unsigned long start = gfn;
7355         const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7356
7357         if (level == PG_LEVEL_2M)
7358                 return kvm_range_has_memory_attributes(kvm, start, end, attrs);
7359
7360         for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7361                 if (hugepage_test_mixed(slot, gfn, level - 1) ||
7362                     attrs != kvm_get_memory_attributes(kvm, gfn))
7363                         return false;
7364         }
7365         return true;
7366 }
7367
7368 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7369                                          struct kvm_gfn_range *range)
7370 {
7371         unsigned long attrs = range->arg.attributes;
7372         struct kvm_memory_slot *slot = range->slot;
7373         int level;
7374
7375         lockdep_assert_held_write(&kvm->mmu_lock);
7376         lockdep_assert_held(&kvm->slots_lock);
7377
7378         /*
7379          * Calculate which ranges can be mapped with hugepages even if the slot
7380          * can't map memory PRIVATE.  KVM mustn't create a SHARED hugepage over
7381          * a range that has PRIVATE GFNs, and conversely converting a range to
7382          * SHARED may now allow hugepages.
7383          */
7384         if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7385                 return false;
7386
7387         /*
7388          * The sequence matters here: upper levels consume the result of lower
7389          * level's scanning.
7390          */
7391         for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7392                 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7393                 gfn_t gfn = gfn_round_for_level(range->start, level);
7394
7395                 /* Process the head page if it straddles the range. */
7396                 if (gfn != range->start || gfn + nr_pages > range->end) {
7397                         /*
7398                          * Skip mixed tracking if the aligned gfn isn't covered
7399                          * by the memslot, KVM can't use a hugepage due to the
7400                          * misaligned address regardless of memory attributes.
7401                          */
7402                         if (gfn >= slot->base_gfn) {
7403                                 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7404                                         hugepage_clear_mixed(slot, gfn, level);
7405                                 else
7406                                         hugepage_set_mixed(slot, gfn, level);
7407                         }
7408                         gfn += nr_pages;
7409                 }
7410
7411                 /*
7412                  * Pages entirely covered by the range are guaranteed to have
7413                  * only the attributes which were just set.
7414                  */
7415                 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
7416                         hugepage_clear_mixed(slot, gfn, level);
7417
7418                 /*
7419                  * Process the last tail page if it straddles the range and is
7420                  * contained by the memslot.  Like the head page, KVM can't
7421                  * create a hugepage if the slot size is misaligned.
7422                  */
7423                 if (gfn < range->end &&
7424                     (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
7425                         if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7426                                 hugepage_clear_mixed(slot, gfn, level);
7427                         else
7428                                 hugepage_set_mixed(slot, gfn, level);
7429                 }
7430         }
7431         return false;
7432 }
7433
7434 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
7435                                             struct kvm_memory_slot *slot)
7436 {
7437         int level;
7438
7439         if (!kvm_arch_has_private_mem(kvm))
7440                 return;
7441
7442         for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7443                 /*
7444                  * Don't bother tracking mixed attributes for pages that can't
7445                  * be huge due to alignment, i.e. process only pages that are
7446                  * entirely contained by the memslot.
7447                  */
7448                 gfn_t end = gfn_round_for_level(slot->base_gfn + slot->npages, level);
7449                 gfn_t start = gfn_round_for_level(slot->base_gfn, level);
7450                 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7451                 gfn_t gfn;
7452
7453                 if (start < slot->base_gfn)
7454                         start += nr_pages;
7455
7456                 /*
7457                  * Unlike setting attributes, every potential hugepage needs to
7458                  * be manually checked as the attributes may already be mixed.
7459                  */
7460                 for (gfn = start; gfn < end; gfn += nr_pages) {
7461                         unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
7462
7463                         if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7464                                 hugepage_clear_mixed(slot, gfn, level);
7465                         else
7466                                 hugepage_set_mixed(slot, gfn, level);
7467                 }
7468         }
7469 }
7470 #endif