Merge tag 'selinux-pr-20210629' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 extern bool itlb_multihit_kvm_mitigation;
57
58 int __read_mostly nx_huge_pages = -1;
59 #ifdef CONFIG_PREEMPT_RT
60 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
61 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
62 #else
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64 #endif
65
66 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
68
69 static const struct kernel_param_ops nx_huge_pages_ops = {
70         .set = set_nx_huge_pages,
71         .get = param_get_bool,
72 };
73
74 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75         .set = set_nx_huge_pages_recovery_ratio,
76         .get = param_get_uint,
77 };
78
79 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
80 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
82                 &nx_huge_pages_recovery_ratio, 0644);
83 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
84
85 static bool __read_mostly force_flush_and_sync_on_reuse;
86 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
87
88 /*
89  * When setting this variable to true it enables Two-Dimensional-Paging
90  * where the hardware walks 2 page tables:
91  * 1. the guest-virtual to guest-physical
92  * 2. while doing 1. it walks guest-physical to host-physical
93  * If the hardware supports that we don't need to do shadow paging.
94  */
95 bool tdp_enabled = false;
96
97 static int max_huge_page_level __read_mostly;
98 static int max_tdp_level __read_mostly;
99
100 enum {
101         AUDIT_PRE_PAGE_FAULT,
102         AUDIT_POST_PAGE_FAULT,
103         AUDIT_PRE_PTE_WRITE,
104         AUDIT_POST_PTE_WRITE,
105         AUDIT_PRE_SYNC,
106         AUDIT_POST_SYNC
107 };
108
109 #ifdef MMU_DEBUG
110 bool dbg = 0;
111 module_param(dbg, bool, 0644);
112 #endif
113
114 #define PTE_PREFETCH_NUM                8
115
116 #define PT32_LEVEL_BITS 10
117
118 #define PT32_LEVEL_SHIFT(level) \
119                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
120
121 #define PT32_LVL_OFFSET_MASK(level) \
122         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT32_LEVEL_BITS))) - 1))
124
125 #define PT32_INDEX(address, level)\
126         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127
128
129 #define PT32_BASE_ADDR_MASK PAGE_MASK
130 #define PT32_DIR_BASE_ADDR_MASK \
131         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 #define PT32_LVL_ADDR_MASK(level) \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134                                             * PT32_LEVEL_BITS))) - 1))
135
136 #include <trace/events/kvm.h>
137
138 /* make pte_list_desc fit well in cache line */
139 #define PTE_LIST_EXT 3
140
141 struct pte_list_desc {
142         u64 *sptes[PTE_LIST_EXT];
143         struct pte_list_desc *more;
144 };
145
146 struct kvm_shadow_walk_iterator {
147         u64 addr;
148         hpa_t shadow_addr;
149         u64 *sptep;
150         int level;
151         unsigned index;
152 };
153
154 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
155         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
156                                          (_root), (_addr));                \
157              shadow_walk_okay(&(_walker));                                 \
158              shadow_walk_next(&(_walker)))
159
160 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
162              shadow_walk_okay(&(_walker));                      \
163              shadow_walk_next(&(_walker)))
164
165 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
166         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
167              shadow_walk_okay(&(_walker)) &&                            \
168                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
169              __shadow_walk_next(&(_walker), spte))
170
171 static struct kmem_cache *pte_list_desc_cache;
172 struct kmem_cache *mmu_page_header_cache;
173 static struct percpu_counter kvm_total_used_mmu_pages;
174
175 static void mmu_spte_set(u64 *sptep, u64 spte);
176 static union kvm_mmu_page_role
177 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178
179 struct kvm_mmu_role_regs {
180         const unsigned long cr0;
181         const unsigned long cr4;
182         const u64 efer;
183 };
184
185 #define CREATE_TRACE_POINTS
186 #include "mmutrace.h"
187
188 /*
189  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
190  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
191  * the single source of truth for the MMU's state.
192  */
193 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
194 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
195 {                                                                       \
196         return !!(regs->reg & flag);                                    \
197 }
198 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
199 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
208
209 /*
210  * The MMU itself (with a valid role) is the single source of truth for the
211  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
212  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
213  * and the vCPU may be incorrect/irrelevant.
214  */
215 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
216 static inline bool is_##reg##_##name(struct kvm_mmu *mmu)       \
217 {                                                               \
218         return !!(mmu->mmu_role. base_or_ext . reg##_##name);   \
219 }
220 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
221 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
222 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
223 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
224 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
225 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
226 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
227 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
228 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
229
230 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
231 {
232         struct kvm_mmu_role_regs regs = {
233                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
234                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
235                 .efer = vcpu->arch.efer,
236         };
237
238         return regs;
239 }
240
241 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
242 {
243         if (!____is_cr0_pg(regs))
244                 return 0;
245         else if (____is_efer_lma(regs))
246                 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
247                                                PT64_ROOT_4LEVEL;
248         else if (____is_cr4_pae(regs))
249                 return PT32E_ROOT_LEVEL;
250         else
251                 return PT32_ROOT_LEVEL;
252 }
253
254 static inline bool kvm_available_flush_tlb_with_range(void)
255 {
256         return kvm_x86_ops.tlb_remote_flush_with_range;
257 }
258
259 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
260                 struct kvm_tlb_range *range)
261 {
262         int ret = -ENOTSUPP;
263
264         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
265                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
266
267         if (ret)
268                 kvm_flush_remote_tlbs(kvm);
269 }
270
271 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
272                 u64 start_gfn, u64 pages)
273 {
274         struct kvm_tlb_range range;
275
276         range.start_gfn = start_gfn;
277         range.pages = pages;
278
279         kvm_flush_remote_tlbs_with_range(kvm, &range);
280 }
281
282 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
283                            unsigned int access)
284 {
285         u64 spte = make_mmio_spte(vcpu, gfn, access);
286
287         trace_mark_mmio_spte(sptep, gfn, spte);
288         mmu_spte_set(sptep, spte);
289 }
290
291 static gfn_t get_mmio_spte_gfn(u64 spte)
292 {
293         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
294
295         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
296                & shadow_nonpresent_or_rsvd_mask;
297
298         return gpa >> PAGE_SHIFT;
299 }
300
301 static unsigned get_mmio_spte_access(u64 spte)
302 {
303         return spte & shadow_mmio_access_mask;
304 }
305
306 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
307 {
308         u64 kvm_gen, spte_gen, gen;
309
310         gen = kvm_vcpu_memslots(vcpu)->generation;
311         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
312                 return false;
313
314         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
315         spte_gen = get_mmio_spte_generation(spte);
316
317         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
318         return likely(kvm_gen == spte_gen);
319 }
320
321 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
322                                   struct x86_exception *exception)
323 {
324         /* Check if guest physical address doesn't exceed guest maximum */
325         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
326                 exception->error_code |= PFERR_RSVD_MASK;
327                 return UNMAPPED_GVA;
328         }
329
330         return gpa;
331 }
332
333 static int is_cpuid_PSE36(void)
334 {
335         return 1;
336 }
337
338 static gfn_t pse36_gfn_delta(u32 gpte)
339 {
340         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
341
342         return (gpte & PT32_DIR_PSE36_MASK) << shift;
343 }
344
345 #ifdef CONFIG_X86_64
346 static void __set_spte(u64 *sptep, u64 spte)
347 {
348         WRITE_ONCE(*sptep, spte);
349 }
350
351 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
352 {
353         WRITE_ONCE(*sptep, spte);
354 }
355
356 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
357 {
358         return xchg(sptep, spte);
359 }
360
361 static u64 __get_spte_lockless(u64 *sptep)
362 {
363         return READ_ONCE(*sptep);
364 }
365 #else
366 union split_spte {
367         struct {
368                 u32 spte_low;
369                 u32 spte_high;
370         };
371         u64 spte;
372 };
373
374 static void count_spte_clear(u64 *sptep, u64 spte)
375 {
376         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
377
378         if (is_shadow_present_pte(spte))
379                 return;
380
381         /* Ensure the spte is completely set before we increase the count */
382         smp_wmb();
383         sp->clear_spte_count++;
384 }
385
386 static void __set_spte(u64 *sptep, u64 spte)
387 {
388         union split_spte *ssptep, sspte;
389
390         ssptep = (union split_spte *)sptep;
391         sspte = (union split_spte)spte;
392
393         ssptep->spte_high = sspte.spte_high;
394
395         /*
396          * If we map the spte from nonpresent to present, We should store
397          * the high bits firstly, then set present bit, so cpu can not
398          * fetch this spte while we are setting the spte.
399          */
400         smp_wmb();
401
402         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
403 }
404
405 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
406 {
407         union split_spte *ssptep, sspte;
408
409         ssptep = (union split_spte *)sptep;
410         sspte = (union split_spte)spte;
411
412         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
413
414         /*
415          * If we map the spte from present to nonpresent, we should clear
416          * present bit firstly to avoid vcpu fetch the old high bits.
417          */
418         smp_wmb();
419
420         ssptep->spte_high = sspte.spte_high;
421         count_spte_clear(sptep, spte);
422 }
423
424 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
425 {
426         union split_spte *ssptep, sspte, orig;
427
428         ssptep = (union split_spte *)sptep;
429         sspte = (union split_spte)spte;
430
431         /* xchg acts as a barrier before the setting of the high bits */
432         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
433         orig.spte_high = ssptep->spte_high;
434         ssptep->spte_high = sspte.spte_high;
435         count_spte_clear(sptep, spte);
436
437         return orig.spte;
438 }
439
440 /*
441  * The idea using the light way get the spte on x86_32 guest is from
442  * gup_get_pte (mm/gup.c).
443  *
444  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
445  * coalesces them and we are running out of the MMU lock.  Therefore
446  * we need to protect against in-progress updates of the spte.
447  *
448  * Reading the spte while an update is in progress may get the old value
449  * for the high part of the spte.  The race is fine for a present->non-present
450  * change (because the high part of the spte is ignored for non-present spte),
451  * but for a present->present change we must reread the spte.
452  *
453  * All such changes are done in two steps (present->non-present and
454  * non-present->present), hence it is enough to count the number of
455  * present->non-present updates: if it changed while reading the spte,
456  * we might have hit the race.  This is done using clear_spte_count.
457  */
458 static u64 __get_spte_lockless(u64 *sptep)
459 {
460         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
461         union split_spte spte, *orig = (union split_spte *)sptep;
462         int count;
463
464 retry:
465         count = sp->clear_spte_count;
466         smp_rmb();
467
468         spte.spte_low = orig->spte_low;
469         smp_rmb();
470
471         spte.spte_high = orig->spte_high;
472         smp_rmb();
473
474         if (unlikely(spte.spte_low != orig->spte_low ||
475               count != sp->clear_spte_count))
476                 goto retry;
477
478         return spte.spte;
479 }
480 #endif
481
482 static bool spte_has_volatile_bits(u64 spte)
483 {
484         if (!is_shadow_present_pte(spte))
485                 return false;
486
487         /*
488          * Always atomically update spte if it can be updated
489          * out of mmu-lock, it can ensure dirty bit is not lost,
490          * also, it can help us to get a stable is_writable_pte()
491          * to ensure tlb flush is not missed.
492          */
493         if (spte_can_locklessly_be_made_writable(spte) ||
494             is_access_track_spte(spte))
495                 return true;
496
497         if (spte_ad_enabled(spte)) {
498                 if ((spte & shadow_accessed_mask) == 0 ||
499                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
500                         return true;
501         }
502
503         return false;
504 }
505
506 /* Rules for using mmu_spte_set:
507  * Set the sptep from nonpresent to present.
508  * Note: the sptep being assigned *must* be either not present
509  * or in a state where the hardware will not attempt to update
510  * the spte.
511  */
512 static void mmu_spte_set(u64 *sptep, u64 new_spte)
513 {
514         WARN_ON(is_shadow_present_pte(*sptep));
515         __set_spte(sptep, new_spte);
516 }
517
518 /*
519  * Update the SPTE (excluding the PFN), but do not track changes in its
520  * accessed/dirty status.
521  */
522 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
523 {
524         u64 old_spte = *sptep;
525
526         WARN_ON(!is_shadow_present_pte(new_spte));
527
528         if (!is_shadow_present_pte(old_spte)) {
529                 mmu_spte_set(sptep, new_spte);
530                 return old_spte;
531         }
532
533         if (!spte_has_volatile_bits(old_spte))
534                 __update_clear_spte_fast(sptep, new_spte);
535         else
536                 old_spte = __update_clear_spte_slow(sptep, new_spte);
537
538         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
539
540         return old_spte;
541 }
542
543 /* Rules for using mmu_spte_update:
544  * Update the state bits, it means the mapped pfn is not changed.
545  *
546  * Whenever we overwrite a writable spte with a read-only one we
547  * should flush remote TLBs. Otherwise rmap_write_protect
548  * will find a read-only spte, even though the writable spte
549  * might be cached on a CPU's TLB, the return value indicates this
550  * case.
551  *
552  * Returns true if the TLB needs to be flushed
553  */
554 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
555 {
556         bool flush = false;
557         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
558
559         if (!is_shadow_present_pte(old_spte))
560                 return false;
561
562         /*
563          * For the spte updated out of mmu-lock is safe, since
564          * we always atomically update it, see the comments in
565          * spte_has_volatile_bits().
566          */
567         if (spte_can_locklessly_be_made_writable(old_spte) &&
568               !is_writable_pte(new_spte))
569                 flush = true;
570
571         /*
572          * Flush TLB when accessed/dirty states are changed in the page tables,
573          * to guarantee consistency between TLB and page tables.
574          */
575
576         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
577                 flush = true;
578                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
579         }
580
581         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
582                 flush = true;
583                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
584         }
585
586         return flush;
587 }
588
589 /*
590  * Rules for using mmu_spte_clear_track_bits:
591  * It sets the sptep from present to nonpresent, and track the
592  * state bits, it is used to clear the last level sptep.
593  * Returns non-zero if the PTE was previously valid.
594  */
595 static int mmu_spte_clear_track_bits(u64 *sptep)
596 {
597         kvm_pfn_t pfn;
598         u64 old_spte = *sptep;
599
600         if (!spte_has_volatile_bits(old_spte))
601                 __update_clear_spte_fast(sptep, 0ull);
602         else
603                 old_spte = __update_clear_spte_slow(sptep, 0ull);
604
605         if (!is_shadow_present_pte(old_spte))
606                 return 0;
607
608         pfn = spte_to_pfn(old_spte);
609
610         /*
611          * KVM does not hold the refcount of the page used by
612          * kvm mmu, before reclaiming the page, we should
613          * unmap it from mmu first.
614          */
615         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
616
617         if (is_accessed_spte(old_spte))
618                 kvm_set_pfn_accessed(pfn);
619
620         if (is_dirty_spte(old_spte))
621                 kvm_set_pfn_dirty(pfn);
622
623         return 1;
624 }
625
626 /*
627  * Rules for using mmu_spte_clear_no_track:
628  * Directly clear spte without caring the state bits of sptep,
629  * it is used to set the upper level spte.
630  */
631 static void mmu_spte_clear_no_track(u64 *sptep)
632 {
633         __update_clear_spte_fast(sptep, 0ull);
634 }
635
636 static u64 mmu_spte_get_lockless(u64 *sptep)
637 {
638         return __get_spte_lockless(sptep);
639 }
640
641 /* Restore an acc-track PTE back to a regular PTE */
642 static u64 restore_acc_track_spte(u64 spte)
643 {
644         u64 new_spte = spte;
645         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
646                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
647
648         WARN_ON_ONCE(spte_ad_enabled(spte));
649         WARN_ON_ONCE(!is_access_track_spte(spte));
650
651         new_spte &= ~shadow_acc_track_mask;
652         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
653                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
654         new_spte |= saved_bits;
655
656         return new_spte;
657 }
658
659 /* Returns the Accessed status of the PTE and resets it at the same time. */
660 static bool mmu_spte_age(u64 *sptep)
661 {
662         u64 spte = mmu_spte_get_lockless(sptep);
663
664         if (!is_accessed_spte(spte))
665                 return false;
666
667         if (spte_ad_enabled(spte)) {
668                 clear_bit((ffs(shadow_accessed_mask) - 1),
669                           (unsigned long *)sptep);
670         } else {
671                 /*
672                  * Capture the dirty status of the page, so that it doesn't get
673                  * lost when the SPTE is marked for access tracking.
674                  */
675                 if (is_writable_pte(spte))
676                         kvm_set_pfn_dirty(spte_to_pfn(spte));
677
678                 spte = mark_spte_for_access_track(spte);
679                 mmu_spte_update_no_track(sptep, spte);
680         }
681
682         return true;
683 }
684
685 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
686 {
687         /*
688          * Prevent page table teardown by making any free-er wait during
689          * kvm_flush_remote_tlbs() IPI to all active vcpus.
690          */
691         local_irq_disable();
692
693         /*
694          * Make sure a following spte read is not reordered ahead of the write
695          * to vcpu->mode.
696          */
697         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
698 }
699
700 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
701 {
702         /*
703          * Make sure the write to vcpu->mode is not reordered in front of
704          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
705          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
706          */
707         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
708         local_irq_enable();
709 }
710
711 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
712 {
713         int r;
714
715         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
716         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
717                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
718         if (r)
719                 return r;
720         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
721                                        PT64_ROOT_MAX_LEVEL);
722         if (r)
723                 return r;
724         if (maybe_indirect) {
725                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
726                                                PT64_ROOT_MAX_LEVEL);
727                 if (r)
728                         return r;
729         }
730         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
731                                           PT64_ROOT_MAX_LEVEL);
732 }
733
734 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
735 {
736         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
737         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
738         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
739         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
740 }
741
742 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
743 {
744         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
745 }
746
747 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
748 {
749         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
750 }
751
752 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
753 {
754         if (!sp->role.direct)
755                 return sp->gfns[index];
756
757         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
758 }
759
760 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
761 {
762         if (!sp->role.direct) {
763                 sp->gfns[index] = gfn;
764                 return;
765         }
766
767         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
768                 pr_err_ratelimited("gfn mismatch under direct page %llx "
769                                    "(expected %llx, got %llx)\n",
770                                    sp->gfn,
771                                    kvm_mmu_page_get_gfn(sp, index), gfn);
772 }
773
774 /*
775  * Return the pointer to the large page information for a given gfn,
776  * handling slots that are not large page aligned.
777  */
778 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
779                 const struct kvm_memory_slot *slot, int level)
780 {
781         unsigned long idx;
782
783         idx = gfn_to_index(gfn, slot->base_gfn, level);
784         return &slot->arch.lpage_info[level - 2][idx];
785 }
786
787 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
788                                             gfn_t gfn, int count)
789 {
790         struct kvm_lpage_info *linfo;
791         int i;
792
793         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
794                 linfo = lpage_info_slot(gfn, slot, i);
795                 linfo->disallow_lpage += count;
796                 WARN_ON(linfo->disallow_lpage < 0);
797         }
798 }
799
800 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
801 {
802         update_gfn_disallow_lpage_count(slot, gfn, 1);
803 }
804
805 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
806 {
807         update_gfn_disallow_lpage_count(slot, gfn, -1);
808 }
809
810 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
811 {
812         struct kvm_memslots *slots;
813         struct kvm_memory_slot *slot;
814         gfn_t gfn;
815
816         kvm->arch.indirect_shadow_pages++;
817         gfn = sp->gfn;
818         slots = kvm_memslots_for_spte_role(kvm, sp->role);
819         slot = __gfn_to_memslot(slots, gfn);
820
821         /* the non-leaf shadow pages are keeping readonly. */
822         if (sp->role.level > PG_LEVEL_4K)
823                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
824                                                     KVM_PAGE_TRACK_WRITE);
825
826         kvm_mmu_gfn_disallow_lpage(slot, gfn);
827 }
828
829 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
830 {
831         if (sp->lpage_disallowed)
832                 return;
833
834         ++kvm->stat.nx_lpage_splits;
835         list_add_tail(&sp->lpage_disallowed_link,
836                       &kvm->arch.lpage_disallowed_mmu_pages);
837         sp->lpage_disallowed = true;
838 }
839
840 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
841 {
842         struct kvm_memslots *slots;
843         struct kvm_memory_slot *slot;
844         gfn_t gfn;
845
846         kvm->arch.indirect_shadow_pages--;
847         gfn = sp->gfn;
848         slots = kvm_memslots_for_spte_role(kvm, sp->role);
849         slot = __gfn_to_memslot(slots, gfn);
850         if (sp->role.level > PG_LEVEL_4K)
851                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
852                                                        KVM_PAGE_TRACK_WRITE);
853
854         kvm_mmu_gfn_allow_lpage(slot, gfn);
855 }
856
857 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
858 {
859         --kvm->stat.nx_lpage_splits;
860         sp->lpage_disallowed = false;
861         list_del(&sp->lpage_disallowed_link);
862 }
863
864 static struct kvm_memory_slot *
865 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
866                             bool no_dirty_log)
867 {
868         struct kvm_memory_slot *slot;
869
870         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
871         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
872                 return NULL;
873         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
874                 return NULL;
875
876         return slot;
877 }
878
879 /*
880  * About rmap_head encoding:
881  *
882  * If the bit zero of rmap_head->val is clear, then it points to the only spte
883  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
884  * pte_list_desc containing more mappings.
885  */
886
887 /*
888  * Returns the number of pointers in the rmap chain, not counting the new one.
889  */
890 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
891                         struct kvm_rmap_head *rmap_head)
892 {
893         struct pte_list_desc *desc;
894         int i, count = 0;
895
896         if (!rmap_head->val) {
897                 rmap_printk("%p %llx 0->1\n", spte, *spte);
898                 rmap_head->val = (unsigned long)spte;
899         } else if (!(rmap_head->val & 1)) {
900                 rmap_printk("%p %llx 1->many\n", spte, *spte);
901                 desc = mmu_alloc_pte_list_desc(vcpu);
902                 desc->sptes[0] = (u64 *)rmap_head->val;
903                 desc->sptes[1] = spte;
904                 rmap_head->val = (unsigned long)desc | 1;
905                 ++count;
906         } else {
907                 rmap_printk("%p %llx many->many\n", spte, *spte);
908                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
909                 while (desc->sptes[PTE_LIST_EXT-1]) {
910                         count += PTE_LIST_EXT;
911
912                         if (!desc->more) {
913                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
914                                 desc = desc->more;
915                                 break;
916                         }
917                         desc = desc->more;
918                 }
919                 for (i = 0; desc->sptes[i]; ++i)
920                         ++count;
921                 desc->sptes[i] = spte;
922         }
923         return count;
924 }
925
926 static void
927 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
928                            struct pte_list_desc *desc, int i,
929                            struct pte_list_desc *prev_desc)
930 {
931         int j;
932
933         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
934                 ;
935         desc->sptes[i] = desc->sptes[j];
936         desc->sptes[j] = NULL;
937         if (j != 0)
938                 return;
939         if (!prev_desc && !desc->more)
940                 rmap_head->val = 0;
941         else
942                 if (prev_desc)
943                         prev_desc->more = desc->more;
944                 else
945                         rmap_head->val = (unsigned long)desc->more | 1;
946         mmu_free_pte_list_desc(desc);
947 }
948
949 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
950 {
951         struct pte_list_desc *desc;
952         struct pte_list_desc *prev_desc;
953         int i;
954
955         if (!rmap_head->val) {
956                 pr_err("%s: %p 0->BUG\n", __func__, spte);
957                 BUG();
958         } else if (!(rmap_head->val & 1)) {
959                 rmap_printk("%p 1->0\n", spte);
960                 if ((u64 *)rmap_head->val != spte) {
961                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
962                         BUG();
963                 }
964                 rmap_head->val = 0;
965         } else {
966                 rmap_printk("%p many->many\n", spte);
967                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
968                 prev_desc = NULL;
969                 while (desc) {
970                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
971                                 if (desc->sptes[i] == spte) {
972                                         pte_list_desc_remove_entry(rmap_head,
973                                                         desc, i, prev_desc);
974                                         return;
975                                 }
976                         }
977                         prev_desc = desc;
978                         desc = desc->more;
979                 }
980                 pr_err("%s: %p many->many\n", __func__, spte);
981                 BUG();
982         }
983 }
984
985 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
986 {
987         mmu_spte_clear_track_bits(sptep);
988         __pte_list_remove(sptep, rmap_head);
989 }
990
991 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
992                                            struct kvm_memory_slot *slot)
993 {
994         unsigned long idx;
995
996         idx = gfn_to_index(gfn, slot->base_gfn, level);
997         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
998 }
999
1000 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1001                                          struct kvm_mmu_page *sp)
1002 {
1003         struct kvm_memslots *slots;
1004         struct kvm_memory_slot *slot;
1005
1006         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1007         slot = __gfn_to_memslot(slots, gfn);
1008         return __gfn_to_rmap(gfn, sp->role.level, slot);
1009 }
1010
1011 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1012 {
1013         struct kvm_mmu_memory_cache *mc;
1014
1015         mc = &vcpu->arch.mmu_pte_list_desc_cache;
1016         return kvm_mmu_memory_cache_nr_free_objects(mc);
1017 }
1018
1019 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1020 {
1021         struct kvm_mmu_page *sp;
1022         struct kvm_rmap_head *rmap_head;
1023
1024         sp = sptep_to_sp(spte);
1025         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1026         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1027         return pte_list_add(vcpu, spte, rmap_head);
1028 }
1029
1030 static void rmap_remove(struct kvm *kvm, u64 *spte)
1031 {
1032         struct kvm_mmu_page *sp;
1033         gfn_t gfn;
1034         struct kvm_rmap_head *rmap_head;
1035
1036         sp = sptep_to_sp(spte);
1037         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1038         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1039         __pte_list_remove(spte, rmap_head);
1040 }
1041
1042 /*
1043  * Used by the following functions to iterate through the sptes linked by a
1044  * rmap.  All fields are private and not assumed to be used outside.
1045  */
1046 struct rmap_iterator {
1047         /* private fields */
1048         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1049         int pos;                        /* index of the sptep */
1050 };
1051
1052 /*
1053  * Iteration must be started by this function.  This should also be used after
1054  * removing/dropping sptes from the rmap link because in such cases the
1055  * information in the iterator may not be valid.
1056  *
1057  * Returns sptep if found, NULL otherwise.
1058  */
1059 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1060                            struct rmap_iterator *iter)
1061 {
1062         u64 *sptep;
1063
1064         if (!rmap_head->val)
1065                 return NULL;
1066
1067         if (!(rmap_head->val & 1)) {
1068                 iter->desc = NULL;
1069                 sptep = (u64 *)rmap_head->val;
1070                 goto out;
1071         }
1072
1073         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1074         iter->pos = 0;
1075         sptep = iter->desc->sptes[iter->pos];
1076 out:
1077         BUG_ON(!is_shadow_present_pte(*sptep));
1078         return sptep;
1079 }
1080
1081 /*
1082  * Must be used with a valid iterator: e.g. after rmap_get_first().
1083  *
1084  * Returns sptep if found, NULL otherwise.
1085  */
1086 static u64 *rmap_get_next(struct rmap_iterator *iter)
1087 {
1088         u64 *sptep;
1089
1090         if (iter->desc) {
1091                 if (iter->pos < PTE_LIST_EXT - 1) {
1092                         ++iter->pos;
1093                         sptep = iter->desc->sptes[iter->pos];
1094                         if (sptep)
1095                                 goto out;
1096                 }
1097
1098                 iter->desc = iter->desc->more;
1099
1100                 if (iter->desc) {
1101                         iter->pos = 0;
1102                         /* desc->sptes[0] cannot be NULL */
1103                         sptep = iter->desc->sptes[iter->pos];
1104                         goto out;
1105                 }
1106         }
1107
1108         return NULL;
1109 out:
1110         BUG_ON(!is_shadow_present_pte(*sptep));
1111         return sptep;
1112 }
1113
1114 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1115         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1116              _spte_; _spte_ = rmap_get_next(_iter_))
1117
1118 static void drop_spte(struct kvm *kvm, u64 *sptep)
1119 {
1120         if (mmu_spte_clear_track_bits(sptep))
1121                 rmap_remove(kvm, sptep);
1122 }
1123
1124
1125 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1126 {
1127         if (is_large_pte(*sptep)) {
1128                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1129                 drop_spte(kvm, sptep);
1130                 --kvm->stat.lpages;
1131                 return true;
1132         }
1133
1134         return false;
1135 }
1136
1137 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1138 {
1139         if (__drop_large_spte(vcpu->kvm, sptep)) {
1140                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1141
1142                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1143                         KVM_PAGES_PER_HPAGE(sp->role.level));
1144         }
1145 }
1146
1147 /*
1148  * Write-protect on the specified @sptep, @pt_protect indicates whether
1149  * spte write-protection is caused by protecting shadow page table.
1150  *
1151  * Note: write protection is difference between dirty logging and spte
1152  * protection:
1153  * - for dirty logging, the spte can be set to writable at anytime if
1154  *   its dirty bitmap is properly set.
1155  * - for spte protection, the spte can be writable only after unsync-ing
1156  *   shadow page.
1157  *
1158  * Return true if tlb need be flushed.
1159  */
1160 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1161 {
1162         u64 spte = *sptep;
1163
1164         if (!is_writable_pte(spte) &&
1165               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1166                 return false;
1167
1168         rmap_printk("spte %p %llx\n", sptep, *sptep);
1169
1170         if (pt_protect)
1171                 spte &= ~shadow_mmu_writable_mask;
1172         spte = spte & ~PT_WRITABLE_MASK;
1173
1174         return mmu_spte_update(sptep, spte);
1175 }
1176
1177 static bool __rmap_write_protect(struct kvm *kvm,
1178                                  struct kvm_rmap_head *rmap_head,
1179                                  bool pt_protect)
1180 {
1181         u64 *sptep;
1182         struct rmap_iterator iter;
1183         bool flush = false;
1184
1185         for_each_rmap_spte(rmap_head, &iter, sptep)
1186                 flush |= spte_write_protect(sptep, pt_protect);
1187
1188         return flush;
1189 }
1190
1191 static bool spte_clear_dirty(u64 *sptep)
1192 {
1193         u64 spte = *sptep;
1194
1195         rmap_printk("spte %p %llx\n", sptep, *sptep);
1196
1197         MMU_WARN_ON(!spte_ad_enabled(spte));
1198         spte &= ~shadow_dirty_mask;
1199         return mmu_spte_update(sptep, spte);
1200 }
1201
1202 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1203 {
1204         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1205                                                (unsigned long *)sptep);
1206         if (was_writable && !spte_ad_enabled(*sptep))
1207                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1208
1209         return was_writable;
1210 }
1211
1212 /*
1213  * Gets the GFN ready for another round of dirty logging by clearing the
1214  *      - D bit on ad-enabled SPTEs, and
1215  *      - W bit on ad-disabled SPTEs.
1216  * Returns true iff any D or W bits were cleared.
1217  */
1218 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1219                                struct kvm_memory_slot *slot)
1220 {
1221         u64 *sptep;
1222         struct rmap_iterator iter;
1223         bool flush = false;
1224
1225         for_each_rmap_spte(rmap_head, &iter, sptep)
1226                 if (spte_ad_need_write_protect(*sptep))
1227                         flush |= spte_wrprot_for_clear_dirty(sptep);
1228                 else
1229                         flush |= spte_clear_dirty(sptep);
1230
1231         return flush;
1232 }
1233
1234 /**
1235  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1236  * @kvm: kvm instance
1237  * @slot: slot to protect
1238  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1239  * @mask: indicates which pages we should protect
1240  *
1241  * Used when we do not need to care about huge page mappings.
1242  */
1243 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1244                                      struct kvm_memory_slot *slot,
1245                                      gfn_t gfn_offset, unsigned long mask)
1246 {
1247         struct kvm_rmap_head *rmap_head;
1248
1249         if (is_tdp_mmu_enabled(kvm))
1250                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1251                                 slot->base_gfn + gfn_offset, mask, true);
1252
1253         if (!kvm_memslots_have_rmaps(kvm))
1254                 return;
1255
1256         while (mask) {
1257                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1258                                           PG_LEVEL_4K, slot);
1259                 __rmap_write_protect(kvm, rmap_head, false);
1260
1261                 /* clear the first set bit */
1262                 mask &= mask - 1;
1263         }
1264 }
1265
1266 /**
1267  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1268  * protect the page if the D-bit isn't supported.
1269  * @kvm: kvm instance
1270  * @slot: slot to clear D-bit
1271  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1272  * @mask: indicates which pages we should clear D-bit
1273  *
1274  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1275  */
1276 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1277                                          struct kvm_memory_slot *slot,
1278                                          gfn_t gfn_offset, unsigned long mask)
1279 {
1280         struct kvm_rmap_head *rmap_head;
1281
1282         if (is_tdp_mmu_enabled(kvm))
1283                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1284                                 slot->base_gfn + gfn_offset, mask, false);
1285
1286         if (!kvm_memslots_have_rmaps(kvm))
1287                 return;
1288
1289         while (mask) {
1290                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1291                                           PG_LEVEL_4K, slot);
1292                 __rmap_clear_dirty(kvm, rmap_head, slot);
1293
1294                 /* clear the first set bit */
1295                 mask &= mask - 1;
1296         }
1297 }
1298
1299 /**
1300  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1301  * PT level pages.
1302  *
1303  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1304  * enable dirty logging for them.
1305  *
1306  * We need to care about huge page mappings: e.g. during dirty logging we may
1307  * have such mappings.
1308  */
1309 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1310                                 struct kvm_memory_slot *slot,
1311                                 gfn_t gfn_offset, unsigned long mask)
1312 {
1313         /*
1314          * Huge pages are NOT write protected when we start dirty logging in
1315          * initially-all-set mode; must write protect them here so that they
1316          * are split to 4K on the first write.
1317          *
1318          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1319          * of memslot has no such restriction, so the range can cross two large
1320          * pages.
1321          */
1322         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1323                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1324                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1325
1326                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1327
1328                 /* Cross two large pages? */
1329                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1330                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1331                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1332                                                        PG_LEVEL_2M);
1333         }
1334
1335         /* Now handle 4K PTEs.  */
1336         if (kvm_x86_ops.cpu_dirty_log_size)
1337                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1338         else
1339                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1340 }
1341
1342 int kvm_cpu_dirty_log_size(void)
1343 {
1344         return kvm_x86_ops.cpu_dirty_log_size;
1345 }
1346
1347 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1348                                     struct kvm_memory_slot *slot, u64 gfn,
1349                                     int min_level)
1350 {
1351         struct kvm_rmap_head *rmap_head;
1352         int i;
1353         bool write_protected = false;
1354
1355         if (kvm_memslots_have_rmaps(kvm)) {
1356                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1357                         rmap_head = __gfn_to_rmap(gfn, i, slot);
1358                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1359                 }
1360         }
1361
1362         if (is_tdp_mmu_enabled(kvm))
1363                 write_protected |=
1364                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1365
1366         return write_protected;
1367 }
1368
1369 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1370 {
1371         struct kvm_memory_slot *slot;
1372
1373         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1374         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1375 }
1376
1377 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1378                           struct kvm_memory_slot *slot)
1379 {
1380         u64 *sptep;
1381         struct rmap_iterator iter;
1382         bool flush = false;
1383
1384         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1385                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1386
1387                 pte_list_remove(rmap_head, sptep);
1388                 flush = true;
1389         }
1390
1391         return flush;
1392 }
1393
1394 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1395                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1396                             pte_t unused)
1397 {
1398         return kvm_zap_rmapp(kvm, rmap_head, slot);
1399 }
1400
1401 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1402                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1403                               pte_t pte)
1404 {
1405         u64 *sptep;
1406         struct rmap_iterator iter;
1407         int need_flush = 0;
1408         u64 new_spte;
1409         kvm_pfn_t new_pfn;
1410
1411         WARN_ON(pte_huge(pte));
1412         new_pfn = pte_pfn(pte);
1413
1414 restart:
1415         for_each_rmap_spte(rmap_head, &iter, sptep) {
1416                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1417                             sptep, *sptep, gfn, level);
1418
1419                 need_flush = 1;
1420
1421                 if (pte_write(pte)) {
1422                         pte_list_remove(rmap_head, sptep);
1423                         goto restart;
1424                 } else {
1425                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1426                                         *sptep, new_pfn);
1427
1428                         mmu_spte_clear_track_bits(sptep);
1429                         mmu_spte_set(sptep, new_spte);
1430                 }
1431         }
1432
1433         if (need_flush && kvm_available_flush_tlb_with_range()) {
1434                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1435                 return 0;
1436         }
1437
1438         return need_flush;
1439 }
1440
1441 struct slot_rmap_walk_iterator {
1442         /* input fields. */
1443         struct kvm_memory_slot *slot;
1444         gfn_t start_gfn;
1445         gfn_t end_gfn;
1446         int start_level;
1447         int end_level;
1448
1449         /* output fields. */
1450         gfn_t gfn;
1451         struct kvm_rmap_head *rmap;
1452         int level;
1453
1454         /* private field. */
1455         struct kvm_rmap_head *end_rmap;
1456 };
1457
1458 static void
1459 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1460 {
1461         iterator->level = level;
1462         iterator->gfn = iterator->start_gfn;
1463         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1464         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1465                                            iterator->slot);
1466 }
1467
1468 static void
1469 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1470                     struct kvm_memory_slot *slot, int start_level,
1471                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1472 {
1473         iterator->slot = slot;
1474         iterator->start_level = start_level;
1475         iterator->end_level = end_level;
1476         iterator->start_gfn = start_gfn;
1477         iterator->end_gfn = end_gfn;
1478
1479         rmap_walk_init_level(iterator, iterator->start_level);
1480 }
1481
1482 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1483 {
1484         return !!iterator->rmap;
1485 }
1486
1487 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1488 {
1489         if (++iterator->rmap <= iterator->end_rmap) {
1490                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1491                 return;
1492         }
1493
1494         if (++iterator->level > iterator->end_level) {
1495                 iterator->rmap = NULL;
1496                 return;
1497         }
1498
1499         rmap_walk_init_level(iterator, iterator->level);
1500 }
1501
1502 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1503            _start_gfn, _end_gfn, _iter_)                                \
1504         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1505                                  _end_level_, _start_gfn, _end_gfn);    \
1506              slot_rmap_walk_okay(_iter_);                               \
1507              slot_rmap_walk_next(_iter_))
1508
1509 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1510                                struct kvm_memory_slot *slot, gfn_t gfn,
1511                                int level, pte_t pte);
1512
1513 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1514                                                  struct kvm_gfn_range *range,
1515                                                  rmap_handler_t handler)
1516 {
1517         struct slot_rmap_walk_iterator iterator;
1518         bool ret = false;
1519
1520         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1521                                  range->start, range->end - 1, &iterator)
1522                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1523                                iterator.level, range->pte);
1524
1525         return ret;
1526 }
1527
1528 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1529 {
1530         bool flush = false;
1531
1532         if (kvm_memslots_have_rmaps(kvm))
1533                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1534
1535         if (is_tdp_mmu_enabled(kvm))
1536                 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1537
1538         return flush;
1539 }
1540
1541 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1542 {
1543         bool flush = false;
1544
1545         if (kvm_memslots_have_rmaps(kvm))
1546                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1547
1548         if (is_tdp_mmu_enabled(kvm))
1549                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1550
1551         return flush;
1552 }
1553
1554 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1555                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1556                           pte_t unused)
1557 {
1558         u64 *sptep;
1559         struct rmap_iterator iter;
1560         int young = 0;
1561
1562         for_each_rmap_spte(rmap_head, &iter, sptep)
1563                 young |= mmu_spte_age(sptep);
1564
1565         return young;
1566 }
1567
1568 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1569                                struct kvm_memory_slot *slot, gfn_t gfn,
1570                                int level, pte_t unused)
1571 {
1572         u64 *sptep;
1573         struct rmap_iterator iter;
1574
1575         for_each_rmap_spte(rmap_head, &iter, sptep)
1576                 if (is_accessed_spte(*sptep))
1577                         return 1;
1578         return 0;
1579 }
1580
1581 #define RMAP_RECYCLE_THRESHOLD 1000
1582
1583 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1584 {
1585         struct kvm_rmap_head *rmap_head;
1586         struct kvm_mmu_page *sp;
1587
1588         sp = sptep_to_sp(spte);
1589
1590         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1591
1592         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1593         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1594                         KVM_PAGES_PER_HPAGE(sp->role.level));
1595 }
1596
1597 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1598 {
1599         bool young = false;
1600
1601         if (kvm_memslots_have_rmaps(kvm))
1602                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1603
1604         if (is_tdp_mmu_enabled(kvm))
1605                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1606
1607         return young;
1608 }
1609
1610 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1611 {
1612         bool young = false;
1613
1614         if (kvm_memslots_have_rmaps(kvm))
1615                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1616
1617         if (is_tdp_mmu_enabled(kvm))
1618                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1619
1620         return young;
1621 }
1622
1623 #ifdef MMU_DEBUG
1624 static int is_empty_shadow_page(u64 *spt)
1625 {
1626         u64 *pos;
1627         u64 *end;
1628
1629         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1630                 if (is_shadow_present_pte(*pos)) {
1631                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1632                                pos, *pos);
1633                         return 0;
1634                 }
1635         return 1;
1636 }
1637 #endif
1638
1639 /*
1640  * This value is the sum of all of the kvm instances's
1641  * kvm->arch.n_used_mmu_pages values.  We need a global,
1642  * aggregate version in order to make the slab shrinker
1643  * faster
1644  */
1645 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1646 {
1647         kvm->arch.n_used_mmu_pages += nr;
1648         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1649 }
1650
1651 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1652 {
1653         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1654         hlist_del(&sp->hash_link);
1655         list_del(&sp->link);
1656         free_page((unsigned long)sp->spt);
1657         if (!sp->role.direct)
1658                 free_page((unsigned long)sp->gfns);
1659         kmem_cache_free(mmu_page_header_cache, sp);
1660 }
1661
1662 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1663 {
1664         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1665 }
1666
1667 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1668                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1669 {
1670         if (!parent_pte)
1671                 return;
1672
1673         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1674 }
1675
1676 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1677                                        u64 *parent_pte)
1678 {
1679         __pte_list_remove(parent_pte, &sp->parent_ptes);
1680 }
1681
1682 static void drop_parent_pte(struct kvm_mmu_page *sp,
1683                             u64 *parent_pte)
1684 {
1685         mmu_page_remove_parent_pte(sp, parent_pte);
1686         mmu_spte_clear_no_track(parent_pte);
1687 }
1688
1689 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1690 {
1691         struct kvm_mmu_page *sp;
1692
1693         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1694         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1695         if (!direct)
1696                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1697         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1698
1699         /*
1700          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1701          * depends on valid pages being added to the head of the list.  See
1702          * comments in kvm_zap_obsolete_pages().
1703          */
1704         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1705         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1706         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1707         return sp;
1708 }
1709
1710 static void mark_unsync(u64 *spte);
1711 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1712 {
1713         u64 *sptep;
1714         struct rmap_iterator iter;
1715
1716         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1717                 mark_unsync(sptep);
1718         }
1719 }
1720
1721 static void mark_unsync(u64 *spte)
1722 {
1723         struct kvm_mmu_page *sp;
1724         unsigned int index;
1725
1726         sp = sptep_to_sp(spte);
1727         index = spte - sp->spt;
1728         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1729                 return;
1730         if (sp->unsync_children++)
1731                 return;
1732         kvm_mmu_mark_parents_unsync(sp);
1733 }
1734
1735 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1736                                struct kvm_mmu_page *sp)
1737 {
1738         return 0;
1739 }
1740
1741 #define KVM_PAGE_ARRAY_NR 16
1742
1743 struct kvm_mmu_pages {
1744         struct mmu_page_and_offset {
1745                 struct kvm_mmu_page *sp;
1746                 unsigned int idx;
1747         } page[KVM_PAGE_ARRAY_NR];
1748         unsigned int nr;
1749 };
1750
1751 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1752                          int idx)
1753 {
1754         int i;
1755
1756         if (sp->unsync)
1757                 for (i=0; i < pvec->nr; i++)
1758                         if (pvec->page[i].sp == sp)
1759                                 return 0;
1760
1761         pvec->page[pvec->nr].sp = sp;
1762         pvec->page[pvec->nr].idx = idx;
1763         pvec->nr++;
1764         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1765 }
1766
1767 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1768 {
1769         --sp->unsync_children;
1770         WARN_ON((int)sp->unsync_children < 0);
1771         __clear_bit(idx, sp->unsync_child_bitmap);
1772 }
1773
1774 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1775                            struct kvm_mmu_pages *pvec)
1776 {
1777         int i, ret, nr_unsync_leaf = 0;
1778
1779         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1780                 struct kvm_mmu_page *child;
1781                 u64 ent = sp->spt[i];
1782
1783                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1784                         clear_unsync_child_bit(sp, i);
1785                         continue;
1786                 }
1787
1788                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1789
1790                 if (child->unsync_children) {
1791                         if (mmu_pages_add(pvec, child, i))
1792                                 return -ENOSPC;
1793
1794                         ret = __mmu_unsync_walk(child, pvec);
1795                         if (!ret) {
1796                                 clear_unsync_child_bit(sp, i);
1797                                 continue;
1798                         } else if (ret > 0) {
1799                                 nr_unsync_leaf += ret;
1800                         } else
1801                                 return ret;
1802                 } else if (child->unsync) {
1803                         nr_unsync_leaf++;
1804                         if (mmu_pages_add(pvec, child, i))
1805                                 return -ENOSPC;
1806                 } else
1807                         clear_unsync_child_bit(sp, i);
1808         }
1809
1810         return nr_unsync_leaf;
1811 }
1812
1813 #define INVALID_INDEX (-1)
1814
1815 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1816                            struct kvm_mmu_pages *pvec)
1817 {
1818         pvec->nr = 0;
1819         if (!sp->unsync_children)
1820                 return 0;
1821
1822         mmu_pages_add(pvec, sp, INVALID_INDEX);
1823         return __mmu_unsync_walk(sp, pvec);
1824 }
1825
1826 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1827 {
1828         WARN_ON(!sp->unsync);
1829         trace_kvm_mmu_sync_page(sp);
1830         sp->unsync = 0;
1831         --kvm->stat.mmu_unsync;
1832 }
1833
1834 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1835                                      struct list_head *invalid_list);
1836 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1837                                     struct list_head *invalid_list);
1838
1839 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1840         hlist_for_each_entry(_sp, _list, hash_link)                     \
1841                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1842                 } else
1843
1844 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1845         for_each_valid_sp(_kvm, _sp,                                    \
1846           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1847                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1848
1849 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1850                          struct list_head *invalid_list)
1851 {
1852         if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1853                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1854                 return false;
1855         }
1856
1857         return true;
1858 }
1859
1860 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1861                                         struct list_head *invalid_list,
1862                                         bool remote_flush)
1863 {
1864         if (!remote_flush && list_empty(invalid_list))
1865                 return false;
1866
1867         if (!list_empty(invalid_list))
1868                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1869         else
1870                 kvm_flush_remote_tlbs(kvm);
1871         return true;
1872 }
1873
1874 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1875                                  struct list_head *invalid_list,
1876                                  bool remote_flush, bool local_flush)
1877 {
1878         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1879                 return;
1880
1881         if (local_flush)
1882                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1883 }
1884
1885 #ifdef CONFIG_KVM_MMU_AUDIT
1886 #include "mmu_audit.c"
1887 #else
1888 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1889 static void mmu_audit_disable(void) { }
1890 #endif
1891
1892 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1893 {
1894         return sp->role.invalid ||
1895                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1896 }
1897
1898 struct mmu_page_path {
1899         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1900         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1901 };
1902
1903 #define for_each_sp(pvec, sp, parents, i)                       \
1904                 for (i = mmu_pages_first(&pvec, &parents);      \
1905                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1906                         i = mmu_pages_next(&pvec, &parents, i))
1907
1908 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1909                           struct mmu_page_path *parents,
1910                           int i)
1911 {
1912         int n;
1913
1914         for (n = i+1; n < pvec->nr; n++) {
1915                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1916                 unsigned idx = pvec->page[n].idx;
1917                 int level = sp->role.level;
1918
1919                 parents->idx[level-1] = idx;
1920                 if (level == PG_LEVEL_4K)
1921                         break;
1922
1923                 parents->parent[level-2] = sp;
1924         }
1925
1926         return n;
1927 }
1928
1929 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1930                            struct mmu_page_path *parents)
1931 {
1932         struct kvm_mmu_page *sp;
1933         int level;
1934
1935         if (pvec->nr == 0)
1936                 return 0;
1937
1938         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1939
1940         sp = pvec->page[0].sp;
1941         level = sp->role.level;
1942         WARN_ON(level == PG_LEVEL_4K);
1943
1944         parents->parent[level-2] = sp;
1945
1946         /* Also set up a sentinel.  Further entries in pvec are all
1947          * children of sp, so this element is never overwritten.
1948          */
1949         parents->parent[level-1] = NULL;
1950         return mmu_pages_next(pvec, parents, 0);
1951 }
1952
1953 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1954 {
1955         struct kvm_mmu_page *sp;
1956         unsigned int level = 0;
1957
1958         do {
1959                 unsigned int idx = parents->idx[level];
1960                 sp = parents->parent[level];
1961                 if (!sp)
1962                         return;
1963
1964                 WARN_ON(idx == INVALID_INDEX);
1965                 clear_unsync_child_bit(sp, idx);
1966                 level++;
1967         } while (!sp->unsync_children);
1968 }
1969
1970 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1971                               struct kvm_mmu_page *parent)
1972 {
1973         int i;
1974         struct kvm_mmu_page *sp;
1975         struct mmu_page_path parents;
1976         struct kvm_mmu_pages pages;
1977         LIST_HEAD(invalid_list);
1978         bool flush = false;
1979
1980         while (mmu_unsync_walk(parent, &pages)) {
1981                 bool protected = false;
1982
1983                 for_each_sp(pages, sp, parents, i)
1984                         protected |= rmap_write_protect(vcpu, sp->gfn);
1985
1986                 if (protected) {
1987                         kvm_flush_remote_tlbs(vcpu->kvm);
1988                         flush = false;
1989                 }
1990
1991                 for_each_sp(pages, sp, parents, i) {
1992                         kvm_unlink_unsync_page(vcpu->kvm, sp);
1993                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1994                         mmu_pages_clear_parents(&parents);
1995                 }
1996                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1997                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1998                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1999                         flush = false;
2000                 }
2001         }
2002
2003         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2004 }
2005
2006 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2007 {
2008         atomic_set(&sp->write_flooding_count,  0);
2009 }
2010
2011 static void clear_sp_write_flooding_count(u64 *spte)
2012 {
2013         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2014 }
2015
2016 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2017                                              gfn_t gfn,
2018                                              gva_t gaddr,
2019                                              unsigned level,
2020                                              int direct,
2021                                              unsigned int access)
2022 {
2023         bool direct_mmu = vcpu->arch.mmu->direct_map;
2024         union kvm_mmu_page_role role;
2025         struct hlist_head *sp_list;
2026         unsigned quadrant;
2027         struct kvm_mmu_page *sp;
2028         int collisions = 0;
2029         LIST_HEAD(invalid_list);
2030
2031         role = vcpu->arch.mmu->mmu_role.base;
2032         role.level = level;
2033         role.direct = direct;
2034         if (role.direct)
2035                 role.gpte_is_8_bytes = true;
2036         role.access = access;
2037         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2038                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2039                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2040                 role.quadrant = quadrant;
2041         }
2042
2043         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2044         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2045                 if (sp->gfn != gfn) {
2046                         collisions++;
2047                         continue;
2048                 }
2049
2050                 if (sp->role.word != role.word) {
2051                         /*
2052                          * If the guest is creating an upper-level page, zap
2053                          * unsync pages for the same gfn.  While it's possible
2054                          * the guest is using recursive page tables, in all
2055                          * likelihood the guest has stopped using the unsync
2056                          * page and is installing a completely unrelated page.
2057                          * Unsync pages must not be left as is, because the new
2058                          * upper-level page will be write-protected.
2059                          */
2060                         if (level > PG_LEVEL_4K && sp->unsync)
2061                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2062                                                          &invalid_list);
2063                         continue;
2064                 }
2065
2066                 if (direct_mmu)
2067                         goto trace_get_page;
2068
2069                 if (sp->unsync) {
2070                         /*
2071                          * The page is good, but is stale.  kvm_sync_page does
2072                          * get the latest guest state, but (unlike mmu_unsync_children)
2073                          * it doesn't write-protect the page or mark it synchronized!
2074                          * This way the validity of the mapping is ensured, but the
2075                          * overhead of write protection is not incurred until the
2076                          * guest invalidates the TLB mapping.  This allows multiple
2077                          * SPs for a single gfn to be unsync.
2078                          *
2079                          * If the sync fails, the page is zapped.  If so, break
2080                          * in order to rebuild it.
2081                          */
2082                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2083                                 break;
2084
2085                         WARN_ON(!list_empty(&invalid_list));
2086                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2087                 }
2088
2089                 if (sp->unsync_children)
2090                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2091
2092                 __clear_sp_write_flooding_count(sp);
2093
2094 trace_get_page:
2095                 trace_kvm_mmu_get_page(sp, false);
2096                 goto out;
2097         }
2098
2099         ++vcpu->kvm->stat.mmu_cache_miss;
2100
2101         sp = kvm_mmu_alloc_page(vcpu, direct);
2102
2103         sp->gfn = gfn;
2104         sp->role = role;
2105         hlist_add_head(&sp->hash_link, sp_list);
2106         if (!direct) {
2107                 account_shadowed(vcpu->kvm, sp);
2108                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2109                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2110         }
2111         trace_kvm_mmu_get_page(sp, true);
2112 out:
2113         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2114
2115         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2116                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2117         return sp;
2118 }
2119
2120 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2121                                         struct kvm_vcpu *vcpu, hpa_t root,
2122                                         u64 addr)
2123 {
2124         iterator->addr = addr;
2125         iterator->shadow_addr = root;
2126         iterator->level = vcpu->arch.mmu->shadow_root_level;
2127
2128         if (iterator->level == PT64_ROOT_4LEVEL &&
2129             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2130             !vcpu->arch.mmu->direct_map)
2131                 --iterator->level;
2132
2133         if (iterator->level == PT32E_ROOT_LEVEL) {
2134                 /*
2135                  * prev_root is currently only used for 64-bit hosts. So only
2136                  * the active root_hpa is valid here.
2137                  */
2138                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2139
2140                 iterator->shadow_addr
2141                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2142                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2143                 --iterator->level;
2144                 if (!iterator->shadow_addr)
2145                         iterator->level = 0;
2146         }
2147 }
2148
2149 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2150                              struct kvm_vcpu *vcpu, u64 addr)
2151 {
2152         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2153                                     addr);
2154 }
2155
2156 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2157 {
2158         if (iterator->level < PG_LEVEL_4K)
2159                 return false;
2160
2161         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2162         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2163         return true;
2164 }
2165
2166 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2167                                u64 spte)
2168 {
2169         if (is_last_spte(spte, iterator->level)) {
2170                 iterator->level = 0;
2171                 return;
2172         }
2173
2174         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2175         --iterator->level;
2176 }
2177
2178 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2179 {
2180         __shadow_walk_next(iterator, *iterator->sptep);
2181 }
2182
2183 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2184                              struct kvm_mmu_page *sp)
2185 {
2186         u64 spte;
2187
2188         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2189
2190         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2191
2192         mmu_spte_set(sptep, spte);
2193
2194         mmu_page_add_parent_pte(vcpu, sp, sptep);
2195
2196         if (sp->unsync_children || sp->unsync)
2197                 mark_unsync(sptep);
2198 }
2199
2200 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2201                                    unsigned direct_access)
2202 {
2203         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2204                 struct kvm_mmu_page *child;
2205
2206                 /*
2207                  * For the direct sp, if the guest pte's dirty bit
2208                  * changed form clean to dirty, it will corrupt the
2209                  * sp's access: allow writable in the read-only sp,
2210                  * so we should update the spte at this point to get
2211                  * a new sp with the correct access.
2212                  */
2213                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2214                 if (child->role.access == direct_access)
2215                         return;
2216
2217                 drop_parent_pte(child, sptep);
2218                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2219         }
2220 }
2221
2222 /* Returns the number of zapped non-leaf child shadow pages. */
2223 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2224                             u64 *spte, struct list_head *invalid_list)
2225 {
2226         u64 pte;
2227         struct kvm_mmu_page *child;
2228
2229         pte = *spte;
2230         if (is_shadow_present_pte(pte)) {
2231                 if (is_last_spte(pte, sp->role.level)) {
2232                         drop_spte(kvm, spte);
2233                         if (is_large_pte(pte))
2234                                 --kvm->stat.lpages;
2235                 } else {
2236                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2237                         drop_parent_pte(child, spte);
2238
2239                         /*
2240                          * Recursively zap nested TDP SPs, parentless SPs are
2241                          * unlikely to be used again in the near future.  This
2242                          * avoids retaining a large number of stale nested SPs.
2243                          */
2244                         if (tdp_enabled && invalid_list &&
2245                             child->role.guest_mode && !child->parent_ptes.val)
2246                                 return kvm_mmu_prepare_zap_page(kvm, child,
2247                                                                 invalid_list);
2248                 }
2249         } else if (is_mmio_spte(pte)) {
2250                 mmu_spte_clear_no_track(spte);
2251         }
2252         return 0;
2253 }
2254
2255 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2256                                         struct kvm_mmu_page *sp,
2257                                         struct list_head *invalid_list)
2258 {
2259         int zapped = 0;
2260         unsigned i;
2261
2262         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2263                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2264
2265         return zapped;
2266 }
2267
2268 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2269 {
2270         u64 *sptep;
2271         struct rmap_iterator iter;
2272
2273         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2274                 drop_parent_pte(sp, sptep);
2275 }
2276
2277 static int mmu_zap_unsync_children(struct kvm *kvm,
2278                                    struct kvm_mmu_page *parent,
2279                                    struct list_head *invalid_list)
2280 {
2281         int i, zapped = 0;
2282         struct mmu_page_path parents;
2283         struct kvm_mmu_pages pages;
2284
2285         if (parent->role.level == PG_LEVEL_4K)
2286                 return 0;
2287
2288         while (mmu_unsync_walk(parent, &pages)) {
2289                 struct kvm_mmu_page *sp;
2290
2291                 for_each_sp(pages, sp, parents, i) {
2292                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2293                         mmu_pages_clear_parents(&parents);
2294                         zapped++;
2295                 }
2296         }
2297
2298         return zapped;
2299 }
2300
2301 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2302                                        struct kvm_mmu_page *sp,
2303                                        struct list_head *invalid_list,
2304                                        int *nr_zapped)
2305 {
2306         bool list_unstable;
2307
2308         trace_kvm_mmu_prepare_zap_page(sp);
2309         ++kvm->stat.mmu_shadow_zapped;
2310         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2311         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2312         kvm_mmu_unlink_parents(kvm, sp);
2313
2314         /* Zapping children means active_mmu_pages has become unstable. */
2315         list_unstable = *nr_zapped;
2316
2317         if (!sp->role.invalid && !sp->role.direct)
2318                 unaccount_shadowed(kvm, sp);
2319
2320         if (sp->unsync)
2321                 kvm_unlink_unsync_page(kvm, sp);
2322         if (!sp->root_count) {
2323                 /* Count self */
2324                 (*nr_zapped)++;
2325
2326                 /*
2327                  * Already invalid pages (previously active roots) are not on
2328                  * the active page list.  See list_del() in the "else" case of
2329                  * !sp->root_count.
2330                  */
2331                 if (sp->role.invalid)
2332                         list_add(&sp->link, invalid_list);
2333                 else
2334                         list_move(&sp->link, invalid_list);
2335                 kvm_mod_used_mmu_pages(kvm, -1);
2336         } else {
2337                 /*
2338                  * Remove the active root from the active page list, the root
2339                  * will be explicitly freed when the root_count hits zero.
2340                  */
2341                 list_del(&sp->link);
2342
2343                 /*
2344                  * Obsolete pages cannot be used on any vCPUs, see the comment
2345                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2346                  * treats invalid shadow pages as being obsolete.
2347                  */
2348                 if (!is_obsolete_sp(kvm, sp))
2349                         kvm_reload_remote_mmus(kvm);
2350         }
2351
2352         if (sp->lpage_disallowed)
2353                 unaccount_huge_nx_page(kvm, sp);
2354
2355         sp->role.invalid = 1;
2356         return list_unstable;
2357 }
2358
2359 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2360                                      struct list_head *invalid_list)
2361 {
2362         int nr_zapped;
2363
2364         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2365         return nr_zapped;
2366 }
2367
2368 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2369                                     struct list_head *invalid_list)
2370 {
2371         struct kvm_mmu_page *sp, *nsp;
2372
2373         if (list_empty(invalid_list))
2374                 return;
2375
2376         /*
2377          * We need to make sure everyone sees our modifications to
2378          * the page tables and see changes to vcpu->mode here. The barrier
2379          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2380          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2381          *
2382          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2383          * guest mode and/or lockless shadow page table walks.
2384          */
2385         kvm_flush_remote_tlbs(kvm);
2386
2387         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2388                 WARN_ON(!sp->role.invalid || sp->root_count);
2389                 kvm_mmu_free_page(sp);
2390         }
2391 }
2392
2393 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2394                                                   unsigned long nr_to_zap)
2395 {
2396         unsigned long total_zapped = 0;
2397         struct kvm_mmu_page *sp, *tmp;
2398         LIST_HEAD(invalid_list);
2399         bool unstable;
2400         int nr_zapped;
2401
2402         if (list_empty(&kvm->arch.active_mmu_pages))
2403                 return 0;
2404
2405 restart:
2406         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2407                 /*
2408                  * Don't zap active root pages, the page itself can't be freed
2409                  * and zapping it will just force vCPUs to realloc and reload.
2410                  */
2411                 if (sp->root_count)
2412                         continue;
2413
2414                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2415                                                       &nr_zapped);
2416                 total_zapped += nr_zapped;
2417                 if (total_zapped >= nr_to_zap)
2418                         break;
2419
2420                 if (unstable)
2421                         goto restart;
2422         }
2423
2424         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2425
2426         kvm->stat.mmu_recycled += total_zapped;
2427         return total_zapped;
2428 }
2429
2430 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2431 {
2432         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2433                 return kvm->arch.n_max_mmu_pages -
2434                         kvm->arch.n_used_mmu_pages;
2435
2436         return 0;
2437 }
2438
2439 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2440 {
2441         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2442
2443         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2444                 return 0;
2445
2446         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2447
2448         /*
2449          * Note, this check is intentionally soft, it only guarantees that one
2450          * page is available, while the caller may end up allocating as many as
2451          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2452          * exceeding the (arbitrary by default) limit will not harm the host,
2453          * being too aggressive may unnecessarily kill the guest, and getting an
2454          * exact count is far more trouble than it's worth, especially in the
2455          * page fault paths.
2456          */
2457         if (!kvm_mmu_available_pages(vcpu->kvm))
2458                 return -ENOSPC;
2459         return 0;
2460 }
2461
2462 /*
2463  * Changing the number of mmu pages allocated to the vm
2464  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2465  */
2466 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2467 {
2468         write_lock(&kvm->mmu_lock);
2469
2470         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2471                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2472                                                   goal_nr_mmu_pages);
2473
2474                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2475         }
2476
2477         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2478
2479         write_unlock(&kvm->mmu_lock);
2480 }
2481
2482 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2483 {
2484         struct kvm_mmu_page *sp;
2485         LIST_HEAD(invalid_list);
2486         int r;
2487
2488         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2489         r = 0;
2490         write_lock(&kvm->mmu_lock);
2491         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2492                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2493                          sp->role.word);
2494                 r = 1;
2495                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2496         }
2497         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2498         write_unlock(&kvm->mmu_lock);
2499
2500         return r;
2501 }
2502
2503 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2504 {
2505         gpa_t gpa;
2506         int r;
2507
2508         if (vcpu->arch.mmu->direct_map)
2509                 return 0;
2510
2511         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2512
2513         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2514
2515         return r;
2516 }
2517
2518 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2519 {
2520         trace_kvm_mmu_unsync_page(sp);
2521         ++vcpu->kvm->stat.mmu_unsync;
2522         sp->unsync = 1;
2523
2524         kvm_mmu_mark_parents_unsync(sp);
2525 }
2526
2527 /*
2528  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2529  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2530  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2531  * be write-protected.
2532  */
2533 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2534 {
2535         struct kvm_mmu_page *sp;
2536
2537         /*
2538          * Force write-protection if the page is being tracked.  Note, the page
2539          * track machinery is used to write-protect upper-level shadow pages,
2540          * i.e. this guards the role.level == 4K assertion below!
2541          */
2542         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2543                 return -EPERM;
2544
2545         /*
2546          * The page is not write-tracked, mark existing shadow pages unsync
2547          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2548          * that case, KVM must complete emulation of the guest TLB flush before
2549          * allowing shadow pages to become unsync (writable by the guest).
2550          */
2551         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2552                 if (!can_unsync)
2553                         return -EPERM;
2554
2555                 if (sp->unsync)
2556                         continue;
2557
2558                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2559                 kvm_unsync_page(vcpu, sp);
2560         }
2561
2562         /*
2563          * We need to ensure that the marking of unsync pages is visible
2564          * before the SPTE is updated to allow writes because
2565          * kvm_mmu_sync_roots() checks the unsync flags without holding
2566          * the MMU lock and so can race with this. If the SPTE was updated
2567          * before the page had been marked as unsync-ed, something like the
2568          * following could happen:
2569          *
2570          * CPU 1                    CPU 2
2571          * ---------------------------------------------------------------------
2572          * 1.2 Host updates SPTE
2573          *     to be writable
2574          *                      2.1 Guest writes a GPTE for GVA X.
2575          *                          (GPTE being in the guest page table shadowed
2576          *                           by the SP from CPU 1.)
2577          *                          This reads SPTE during the page table walk.
2578          *                          Since SPTE.W is read as 1, there is no
2579          *                          fault.
2580          *
2581          *                      2.2 Guest issues TLB flush.
2582          *                          That causes a VM Exit.
2583          *
2584          *                      2.3 Walking of unsync pages sees sp->unsync is
2585          *                          false and skips the page.
2586          *
2587          *                      2.4 Guest accesses GVA X.
2588          *                          Since the mapping in the SP was not updated,
2589          *                          so the old mapping for GVA X incorrectly
2590          *                          gets used.
2591          * 1.1 Host marks SP
2592          *     as unsync
2593          *     (sp->unsync = true)
2594          *
2595          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2596          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2597          * pairs with this write barrier.
2598          */
2599         smp_wmb();
2600
2601         return 0;
2602 }
2603
2604 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2605                     unsigned int pte_access, int level,
2606                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2607                     bool can_unsync, bool host_writable)
2608 {
2609         u64 spte;
2610         struct kvm_mmu_page *sp;
2611         int ret;
2612
2613         sp = sptep_to_sp(sptep);
2614
2615         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2616                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2617
2618         if (spte & PT_WRITABLE_MASK)
2619                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2620
2621         if (*sptep == spte)
2622                 ret |= SET_SPTE_SPURIOUS;
2623         else if (mmu_spte_update(sptep, spte))
2624                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2625         return ret;
2626 }
2627
2628 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2629                         unsigned int pte_access, bool write_fault, int level,
2630                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2631                         bool host_writable)
2632 {
2633         int was_rmapped = 0;
2634         int rmap_count;
2635         int set_spte_ret;
2636         int ret = RET_PF_FIXED;
2637         bool flush = false;
2638
2639         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2640                  *sptep, write_fault, gfn);
2641
2642         if (unlikely(is_noslot_pfn(pfn))) {
2643                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2644                 return RET_PF_EMULATE;
2645         }
2646
2647         if (is_shadow_present_pte(*sptep)) {
2648                 /*
2649                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2650                  * the parent of the now unreachable PTE.
2651                  */
2652                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2653                         struct kvm_mmu_page *child;
2654                         u64 pte = *sptep;
2655
2656                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2657                         drop_parent_pte(child, sptep);
2658                         flush = true;
2659                 } else if (pfn != spte_to_pfn(*sptep)) {
2660                         pgprintk("hfn old %llx new %llx\n",
2661                                  spte_to_pfn(*sptep), pfn);
2662                         drop_spte(vcpu->kvm, sptep);
2663                         flush = true;
2664                 } else
2665                         was_rmapped = 1;
2666         }
2667
2668         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2669                                 speculative, true, host_writable);
2670         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2671                 if (write_fault)
2672                         ret = RET_PF_EMULATE;
2673                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2674         }
2675
2676         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2677                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2678                                 KVM_PAGES_PER_HPAGE(level));
2679
2680         /*
2681          * The fault is fully spurious if and only if the new SPTE and old SPTE
2682          * are identical, and emulation is not required.
2683          */
2684         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2685                 WARN_ON_ONCE(!was_rmapped);
2686                 return RET_PF_SPURIOUS;
2687         }
2688
2689         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2690         trace_kvm_mmu_set_spte(level, gfn, sptep);
2691         if (!was_rmapped && is_large_pte(*sptep))
2692                 ++vcpu->kvm->stat.lpages;
2693
2694         if (is_shadow_present_pte(*sptep)) {
2695                 if (!was_rmapped) {
2696                         rmap_count = rmap_add(vcpu, sptep, gfn);
2697                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2698                                 rmap_recycle(vcpu, sptep, gfn);
2699                 }
2700         }
2701
2702         return ret;
2703 }
2704
2705 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2706                                      bool no_dirty_log)
2707 {
2708         struct kvm_memory_slot *slot;
2709
2710         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2711         if (!slot)
2712                 return KVM_PFN_ERR_FAULT;
2713
2714         return gfn_to_pfn_memslot_atomic(slot, gfn);
2715 }
2716
2717 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2718                                     struct kvm_mmu_page *sp,
2719                                     u64 *start, u64 *end)
2720 {
2721         struct page *pages[PTE_PREFETCH_NUM];
2722         struct kvm_memory_slot *slot;
2723         unsigned int access = sp->role.access;
2724         int i, ret;
2725         gfn_t gfn;
2726
2727         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2728         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2729         if (!slot)
2730                 return -1;
2731
2732         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2733         if (ret <= 0)
2734                 return -1;
2735
2736         for (i = 0; i < ret; i++, gfn++, start++) {
2737                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2738                              page_to_pfn(pages[i]), true, true);
2739                 put_page(pages[i]);
2740         }
2741
2742         return 0;
2743 }
2744
2745 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2746                                   struct kvm_mmu_page *sp, u64 *sptep)
2747 {
2748         u64 *spte, *start = NULL;
2749         int i;
2750
2751         WARN_ON(!sp->role.direct);
2752
2753         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2754         spte = sp->spt + i;
2755
2756         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2757                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2758                         if (!start)
2759                                 continue;
2760                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2761                                 break;
2762                         start = NULL;
2763                 } else if (!start)
2764                         start = spte;
2765         }
2766 }
2767
2768 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2769 {
2770         struct kvm_mmu_page *sp;
2771
2772         sp = sptep_to_sp(sptep);
2773
2774         /*
2775          * Without accessed bits, there's no way to distinguish between
2776          * actually accessed translations and prefetched, so disable pte
2777          * prefetch if accessed bits aren't available.
2778          */
2779         if (sp_ad_disabled(sp))
2780                 return;
2781
2782         if (sp->role.level > PG_LEVEL_4K)
2783                 return;
2784
2785         /*
2786          * If addresses are being invalidated, skip prefetching to avoid
2787          * accidentally prefetching those addresses.
2788          */
2789         if (unlikely(vcpu->kvm->mmu_notifier_count))
2790                 return;
2791
2792         __direct_pte_prefetch(vcpu, sp, sptep);
2793 }
2794
2795 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2796                                   const struct kvm_memory_slot *slot)
2797 {
2798         unsigned long hva;
2799         pte_t *pte;
2800         int level;
2801
2802         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2803                 return PG_LEVEL_4K;
2804
2805         /*
2806          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2807          * is not solely for performance, it's also necessary to avoid the
2808          * "writable" check in __gfn_to_hva_many(), which will always fail on
2809          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2810          * page fault steps have already verified the guest isn't writing a
2811          * read-only memslot.
2812          */
2813         hva = __gfn_to_hva_memslot(slot, gfn);
2814
2815         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2816         if (unlikely(!pte))
2817                 return PG_LEVEL_4K;
2818
2819         return level;
2820 }
2821
2822 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2823                               const struct kvm_memory_slot *slot, gfn_t gfn,
2824                               kvm_pfn_t pfn, int max_level)
2825 {
2826         struct kvm_lpage_info *linfo;
2827
2828         max_level = min(max_level, max_huge_page_level);
2829         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2830                 linfo = lpage_info_slot(gfn, slot, max_level);
2831                 if (!linfo->disallow_lpage)
2832                         break;
2833         }
2834
2835         if (max_level == PG_LEVEL_4K)
2836                 return PG_LEVEL_4K;
2837
2838         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2839 }
2840
2841 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2842                             int max_level, kvm_pfn_t *pfnp,
2843                             bool huge_page_disallowed, int *req_level)
2844 {
2845         struct kvm_memory_slot *slot;
2846         kvm_pfn_t pfn = *pfnp;
2847         kvm_pfn_t mask;
2848         int level;
2849
2850         *req_level = PG_LEVEL_4K;
2851
2852         if (unlikely(max_level == PG_LEVEL_4K))
2853                 return PG_LEVEL_4K;
2854
2855         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2856                 return PG_LEVEL_4K;
2857
2858         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2859         if (!slot)
2860                 return PG_LEVEL_4K;
2861
2862         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2863         if (level == PG_LEVEL_4K)
2864                 return level;
2865
2866         *req_level = level = min(level, max_level);
2867
2868         /*
2869          * Enforce the iTLB multihit workaround after capturing the requested
2870          * level, which will be used to do precise, accurate accounting.
2871          */
2872         if (huge_page_disallowed)
2873                 return PG_LEVEL_4K;
2874
2875         /*
2876          * mmu_notifier_retry() was successful and mmu_lock is held, so
2877          * the pmd can't be split from under us.
2878          */
2879         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2880         VM_BUG_ON((gfn & mask) != (pfn & mask));
2881         *pfnp = pfn & ~mask;
2882
2883         return level;
2884 }
2885
2886 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2887                                 kvm_pfn_t *pfnp, int *goal_levelp)
2888 {
2889         int level = *goal_levelp;
2890
2891         if (cur_level == level && level > PG_LEVEL_4K &&
2892             is_shadow_present_pte(spte) &&
2893             !is_large_pte(spte)) {
2894                 /*
2895                  * A small SPTE exists for this pfn, but FNAME(fetch)
2896                  * and __direct_map would like to create a large PTE
2897                  * instead: just force them to go down another level,
2898                  * patching back for them into pfn the next 9 bits of
2899                  * the address.
2900                  */
2901                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2902                                 KVM_PAGES_PER_HPAGE(level - 1);
2903                 *pfnp |= gfn & page_mask;
2904                 (*goal_levelp)--;
2905         }
2906 }
2907
2908 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2909                         int map_writable, int max_level, kvm_pfn_t pfn,
2910                         bool prefault, bool is_tdp)
2911 {
2912         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2913         bool write = error_code & PFERR_WRITE_MASK;
2914         bool exec = error_code & PFERR_FETCH_MASK;
2915         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2916         struct kvm_shadow_walk_iterator it;
2917         struct kvm_mmu_page *sp;
2918         int level, req_level, ret;
2919         gfn_t gfn = gpa >> PAGE_SHIFT;
2920         gfn_t base_gfn = gfn;
2921
2922         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2923                                         huge_page_disallowed, &req_level);
2924
2925         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2926         for_each_shadow_entry(vcpu, gpa, it) {
2927                 /*
2928                  * We cannot overwrite existing page tables with an NX
2929                  * large page, as the leaf could be executable.
2930                  */
2931                 if (nx_huge_page_workaround_enabled)
2932                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2933                                                    &pfn, &level);
2934
2935                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2936                 if (it.level == level)
2937                         break;
2938
2939                 drop_large_spte(vcpu, it.sptep);
2940                 if (!is_shadow_present_pte(*it.sptep)) {
2941                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2942                                               it.level - 1, true, ACC_ALL);
2943
2944                         link_shadow_page(vcpu, it.sptep, sp);
2945                         if (is_tdp && huge_page_disallowed &&
2946                             req_level >= it.level)
2947                                 account_huge_nx_page(vcpu->kvm, sp);
2948                 }
2949         }
2950
2951         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2952                            write, level, base_gfn, pfn, prefault,
2953                            map_writable);
2954         if (ret == RET_PF_SPURIOUS)
2955                 return ret;
2956
2957         direct_pte_prefetch(vcpu, it.sptep);
2958         ++vcpu->stat.pf_fixed;
2959         return ret;
2960 }
2961
2962 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2963 {
2964         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2965 }
2966
2967 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2968 {
2969         /*
2970          * Do not cache the mmio info caused by writing the readonly gfn
2971          * into the spte otherwise read access on readonly gfn also can
2972          * caused mmio page fault and treat it as mmio access.
2973          */
2974         if (pfn == KVM_PFN_ERR_RO_FAULT)
2975                 return RET_PF_EMULATE;
2976
2977         if (pfn == KVM_PFN_ERR_HWPOISON) {
2978                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2979                 return RET_PF_RETRY;
2980         }
2981
2982         return -EFAULT;
2983 }
2984
2985 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2986                                 kvm_pfn_t pfn, unsigned int access,
2987                                 int *ret_val)
2988 {
2989         /* The pfn is invalid, report the error! */
2990         if (unlikely(is_error_pfn(pfn))) {
2991                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2992                 return true;
2993         }
2994
2995         if (unlikely(is_noslot_pfn(pfn))) {
2996                 vcpu_cache_mmio_info(vcpu, gva, gfn,
2997                                      access & shadow_mmio_access_mask);
2998                 /*
2999                  * If MMIO caching is disabled, emulate immediately without
3000                  * touching the shadow page tables as attempting to install an
3001                  * MMIO SPTE will just be an expensive nop.
3002                  */
3003                 if (unlikely(!shadow_mmio_value)) {
3004                         *ret_val = RET_PF_EMULATE;
3005                         return true;
3006                 }
3007         }
3008
3009         return false;
3010 }
3011
3012 static bool page_fault_can_be_fast(u32 error_code)
3013 {
3014         /*
3015          * Do not fix the mmio spte with invalid generation number which
3016          * need to be updated by slow page fault path.
3017          */
3018         if (unlikely(error_code & PFERR_RSVD_MASK))
3019                 return false;
3020
3021         /* See if the page fault is due to an NX violation */
3022         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3023                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3024                 return false;
3025
3026         /*
3027          * #PF can be fast if:
3028          * 1. The shadow page table entry is not present, which could mean that
3029          *    the fault is potentially caused by access tracking (if enabled).
3030          * 2. The shadow page table entry is present and the fault
3031          *    is caused by write-protect, that means we just need change the W
3032          *    bit of the spte which can be done out of mmu-lock.
3033          *
3034          * However, if access tracking is disabled we know that a non-present
3035          * page must be a genuine page fault where we have to create a new SPTE.
3036          * So, if access tracking is disabled, we return true only for write
3037          * accesses to a present page.
3038          */
3039
3040         return shadow_acc_track_mask != 0 ||
3041                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3042                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3043 }
3044
3045 /*
3046  * Returns true if the SPTE was fixed successfully. Otherwise,
3047  * someone else modified the SPTE from its original value.
3048  */
3049 static bool
3050 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3051                         u64 *sptep, u64 old_spte, u64 new_spte)
3052 {
3053         gfn_t gfn;
3054
3055         WARN_ON(!sp->role.direct);
3056
3057         /*
3058          * Theoretically we could also set dirty bit (and flush TLB) here in
3059          * order to eliminate unnecessary PML logging. See comments in
3060          * set_spte. But fast_page_fault is very unlikely to happen with PML
3061          * enabled, so we do not do this. This might result in the same GPA
3062          * to be logged in PML buffer again when the write really happens, and
3063          * eventually to be called by mark_page_dirty twice. But it's also no
3064          * harm. This also avoids the TLB flush needed after setting dirty bit
3065          * so non-PML cases won't be impacted.
3066          *
3067          * Compare with set_spte where instead shadow_dirty_mask is set.
3068          */
3069         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3070                 return false;
3071
3072         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3073                 /*
3074                  * The gfn of direct spte is stable since it is
3075                  * calculated by sp->gfn.
3076                  */
3077                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3078                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3079         }
3080
3081         return true;
3082 }
3083
3084 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3085 {
3086         if (fault_err_code & PFERR_FETCH_MASK)
3087                 return is_executable_pte(spte);
3088
3089         if (fault_err_code & PFERR_WRITE_MASK)
3090                 return is_writable_pte(spte);
3091
3092         /* Fault was on Read access */
3093         return spte & PT_PRESENT_MASK;
3094 }
3095
3096 /*
3097  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3098  */
3099 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3100                            u32 error_code)
3101 {
3102         struct kvm_shadow_walk_iterator iterator;
3103         struct kvm_mmu_page *sp;
3104         int ret = RET_PF_INVALID;
3105         u64 spte = 0ull;
3106         uint retry_count = 0;
3107
3108         if (!page_fault_can_be_fast(error_code))
3109                 return ret;
3110
3111         walk_shadow_page_lockless_begin(vcpu);
3112
3113         do {
3114                 u64 new_spte;
3115
3116                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3117                         if (!is_shadow_present_pte(spte))
3118                                 break;
3119
3120                 if (!is_shadow_present_pte(spte))
3121                         break;
3122
3123                 sp = sptep_to_sp(iterator.sptep);
3124                 if (!is_last_spte(spte, sp->role.level))
3125                         break;
3126
3127                 /*
3128                  * Check whether the memory access that caused the fault would
3129                  * still cause it if it were to be performed right now. If not,
3130                  * then this is a spurious fault caused by TLB lazily flushed,
3131                  * or some other CPU has already fixed the PTE after the
3132                  * current CPU took the fault.
3133                  *
3134                  * Need not check the access of upper level table entries since
3135                  * they are always ACC_ALL.
3136                  */
3137                 if (is_access_allowed(error_code, spte)) {
3138                         ret = RET_PF_SPURIOUS;
3139                         break;
3140                 }
3141
3142                 new_spte = spte;
3143
3144                 if (is_access_track_spte(spte))
3145                         new_spte = restore_acc_track_spte(new_spte);
3146
3147                 /*
3148                  * Currently, to simplify the code, write-protection can
3149                  * be removed in the fast path only if the SPTE was
3150                  * write-protected for dirty-logging or access tracking.
3151                  */
3152                 if ((error_code & PFERR_WRITE_MASK) &&
3153                     spte_can_locklessly_be_made_writable(spte)) {
3154                         new_spte |= PT_WRITABLE_MASK;
3155
3156                         /*
3157                          * Do not fix write-permission on the large spte.  Since
3158                          * we only dirty the first page into the dirty-bitmap in
3159                          * fast_pf_fix_direct_spte(), other pages are missed
3160                          * if its slot has dirty logging enabled.
3161                          *
3162                          * Instead, we let the slow page fault path create a
3163                          * normal spte to fix the access.
3164                          *
3165                          * See the comments in kvm_arch_commit_memory_region().
3166                          */
3167                         if (sp->role.level > PG_LEVEL_4K)
3168                                 break;
3169                 }
3170
3171                 /* Verify that the fault can be handled in the fast path */
3172                 if (new_spte == spte ||
3173                     !is_access_allowed(error_code, new_spte))
3174                         break;
3175
3176                 /*
3177                  * Currently, fast page fault only works for direct mapping
3178                  * since the gfn is not stable for indirect shadow page. See
3179                  * Documentation/virt/kvm/locking.rst to get more detail.
3180                  */
3181                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3182                                             new_spte)) {
3183                         ret = RET_PF_FIXED;
3184                         break;
3185                 }
3186
3187                 if (++retry_count > 4) {
3188                         printk_once(KERN_WARNING
3189                                 "kvm: Fast #PF retrying more than 4 times.\n");
3190                         break;
3191                 }
3192
3193         } while (true);
3194
3195         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3196                               spte, ret);
3197         walk_shadow_page_lockless_end(vcpu);
3198
3199         return ret;
3200 }
3201
3202 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3203                                struct list_head *invalid_list)
3204 {
3205         struct kvm_mmu_page *sp;
3206
3207         if (!VALID_PAGE(*root_hpa))
3208                 return;
3209
3210         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3211
3212         if (is_tdp_mmu_page(sp))
3213                 kvm_tdp_mmu_put_root(kvm, sp, false);
3214         else if (!--sp->root_count && sp->role.invalid)
3215                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3216
3217         *root_hpa = INVALID_PAGE;
3218 }
3219
3220 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3221 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3222                         ulong roots_to_free)
3223 {
3224         struct kvm *kvm = vcpu->kvm;
3225         int i;
3226         LIST_HEAD(invalid_list);
3227         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3228
3229         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3230
3231         /* Before acquiring the MMU lock, see if we need to do any real work. */
3232         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3233                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3234                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3235                             VALID_PAGE(mmu->prev_roots[i].hpa))
3236                                 break;
3237
3238                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3239                         return;
3240         }
3241
3242         write_lock(&kvm->mmu_lock);
3243
3244         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3245                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3246                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3247                                            &invalid_list);
3248
3249         if (free_active_root) {
3250                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3251                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3252                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3253                 } else if (mmu->pae_root) {
3254                         for (i = 0; i < 4; ++i) {
3255                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3256                                         continue;
3257
3258                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3259                                                    &invalid_list);
3260                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3261                         }
3262                 }
3263                 mmu->root_hpa = INVALID_PAGE;
3264                 mmu->root_pgd = 0;
3265         }
3266
3267         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3268         write_unlock(&kvm->mmu_lock);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3271
3272 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3273 {
3274         unsigned long roots_to_free = 0;
3275         hpa_t root_hpa;
3276         int i;
3277
3278         /*
3279          * This should not be called while L2 is active, L2 can't invalidate
3280          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3281          */
3282         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3283
3284         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3285                 root_hpa = mmu->prev_roots[i].hpa;
3286                 if (!VALID_PAGE(root_hpa))
3287                         continue;
3288
3289                 if (!to_shadow_page(root_hpa) ||
3290                         to_shadow_page(root_hpa)->role.guest_mode)
3291                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3292         }
3293
3294         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3295 }
3296 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3297
3298
3299 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3300 {
3301         int ret = 0;
3302
3303         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3304                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3305                 ret = 1;
3306         }
3307
3308         return ret;
3309 }
3310
3311 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3312                             u8 level, bool direct)
3313 {
3314         struct kvm_mmu_page *sp;
3315
3316         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3317         ++sp->root_count;
3318
3319         return __pa(sp->spt);
3320 }
3321
3322 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3323 {
3324         struct kvm_mmu *mmu = vcpu->arch.mmu;
3325         u8 shadow_root_level = mmu->shadow_root_level;
3326         hpa_t root;
3327         unsigned i;
3328         int r;
3329
3330         write_lock(&vcpu->kvm->mmu_lock);
3331         r = make_mmu_pages_available(vcpu);
3332         if (r < 0)
3333                 goto out_unlock;
3334
3335         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3336                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3337                 mmu->root_hpa = root;
3338         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3339                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3340                 mmu->root_hpa = root;
3341         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3342                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3343                         r = -EIO;
3344                         goto out_unlock;
3345                 }
3346
3347                 for (i = 0; i < 4; ++i) {
3348                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3349
3350                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3351                                               i << 30, PT32_ROOT_LEVEL, true);
3352                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3353                                            shadow_me_mask;
3354                 }
3355                 mmu->root_hpa = __pa(mmu->pae_root);
3356         } else {
3357                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3358                 r = -EIO;
3359                 goto out_unlock;
3360         }
3361
3362         /* root_pgd is ignored for direct MMUs. */
3363         mmu->root_pgd = 0;
3364 out_unlock:
3365         write_unlock(&vcpu->kvm->mmu_lock);
3366         return r;
3367 }
3368
3369 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3370 {
3371         struct kvm_mmu *mmu = vcpu->arch.mmu;
3372         u64 pdptrs[4], pm_mask;
3373         gfn_t root_gfn, root_pgd;
3374         hpa_t root;
3375         unsigned i;
3376         int r;
3377
3378         root_pgd = mmu->get_guest_pgd(vcpu);
3379         root_gfn = root_pgd >> PAGE_SHIFT;
3380
3381         if (mmu_check_root(vcpu, root_gfn))
3382                 return 1;
3383
3384         /*
3385          * On SVM, reading PDPTRs might access guest memory, which might fault
3386          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3387          */
3388         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3389                 for (i = 0; i < 4; ++i) {
3390                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3391                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3392                                 continue;
3393
3394                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3395                                 return 1;
3396                 }
3397         }
3398
3399         r = alloc_all_memslots_rmaps(vcpu->kvm);
3400         if (r)
3401                 return r;
3402
3403         write_lock(&vcpu->kvm->mmu_lock);
3404         r = make_mmu_pages_available(vcpu);
3405         if (r < 0)
3406                 goto out_unlock;
3407
3408         /*
3409          * Do we shadow a long mode page table? If so we need to
3410          * write-protect the guests page table root.
3411          */
3412         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3413                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3414                                       mmu->shadow_root_level, false);
3415                 mmu->root_hpa = root;
3416                 goto set_root_pgd;
3417         }
3418
3419         if (WARN_ON_ONCE(!mmu->pae_root)) {
3420                 r = -EIO;
3421                 goto out_unlock;
3422         }
3423
3424         /*
3425          * We shadow a 32 bit page table. This may be a legacy 2-level
3426          * or a PAE 3-level page table. In either case we need to be aware that
3427          * the shadow page table may be a PAE or a long mode page table.
3428          */
3429         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3430         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3431                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3432
3433                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3434                         r = -EIO;
3435                         goto out_unlock;
3436                 }
3437
3438                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3439         }
3440
3441         for (i = 0; i < 4; ++i) {
3442                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3443
3444                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3445                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3446                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3447                                 continue;
3448                         }
3449                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3450                 }
3451
3452                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3453                                       PT32_ROOT_LEVEL, false);
3454                 mmu->pae_root[i] = root | pm_mask;
3455         }
3456
3457         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3458                 mmu->root_hpa = __pa(mmu->pml4_root);
3459         else
3460                 mmu->root_hpa = __pa(mmu->pae_root);
3461
3462 set_root_pgd:
3463         mmu->root_pgd = root_pgd;
3464 out_unlock:
3465         write_unlock(&vcpu->kvm->mmu_lock);
3466
3467         return 0;
3468 }
3469
3470 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3471 {
3472         struct kvm_mmu *mmu = vcpu->arch.mmu;
3473         u64 *pml4_root, *pae_root;
3474
3475         /*
3476          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3477          * tables are allocated and initialized at root creation as there is no
3478          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3479          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3480          */
3481         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3482             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3483                 return 0;
3484
3485         /*
3486          * This mess only works with 4-level paging and needs to be updated to
3487          * work with 5-level paging.
3488          */
3489         if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3490                 return -EIO;
3491
3492         if (mmu->pae_root && mmu->pml4_root)
3493                 return 0;
3494
3495         /*
3496          * The special roots should always be allocated in concert.  Yell and
3497          * bail if KVM ends up in a state where only one of the roots is valid.
3498          */
3499         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3500                 return -EIO;
3501
3502         /*
3503          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3504          * doesn't need to be decrypted.
3505          */
3506         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3507         if (!pae_root)
3508                 return -ENOMEM;
3509
3510         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3511         if (!pml4_root) {
3512                 free_page((unsigned long)pae_root);
3513                 return -ENOMEM;
3514         }
3515
3516         mmu->pae_root = pae_root;
3517         mmu->pml4_root = pml4_root;
3518
3519         return 0;
3520 }
3521
3522 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3523 {
3524         int i;
3525         struct kvm_mmu_page *sp;
3526
3527         if (vcpu->arch.mmu->direct_map)
3528                 return;
3529
3530         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3531                 return;
3532
3533         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3534
3535         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3536                 hpa_t root = vcpu->arch.mmu->root_hpa;
3537                 sp = to_shadow_page(root);
3538
3539                 /*
3540                  * Even if another CPU was marking the SP as unsync-ed
3541                  * simultaneously, any guest page table changes are not
3542                  * guaranteed to be visible anyway until this VCPU issues a TLB
3543                  * flush strictly after those changes are made. We only need to
3544                  * ensure that the other CPU sets these flags before any actual
3545                  * changes to the page tables are made. The comments in
3546                  * mmu_try_to_unsync_pages() describe what could go wrong if
3547                  * this requirement isn't satisfied.
3548                  */
3549                 if (!smp_load_acquire(&sp->unsync) &&
3550                     !smp_load_acquire(&sp->unsync_children))
3551                         return;
3552
3553                 write_lock(&vcpu->kvm->mmu_lock);
3554                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3555
3556                 mmu_sync_children(vcpu, sp);
3557
3558                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3559                 write_unlock(&vcpu->kvm->mmu_lock);
3560                 return;
3561         }
3562
3563         write_lock(&vcpu->kvm->mmu_lock);
3564         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3565
3566         for (i = 0; i < 4; ++i) {
3567                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3568
3569                 if (IS_VALID_PAE_ROOT(root)) {
3570                         root &= PT64_BASE_ADDR_MASK;
3571                         sp = to_shadow_page(root);
3572                         mmu_sync_children(vcpu, sp);
3573                 }
3574         }
3575
3576         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3577         write_unlock(&vcpu->kvm->mmu_lock);
3578 }
3579
3580 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3581                                   u32 access, struct x86_exception *exception)
3582 {
3583         if (exception)
3584                 exception->error_code = 0;
3585         return vaddr;
3586 }
3587
3588 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3589                                          u32 access,
3590                                          struct x86_exception *exception)
3591 {
3592         if (exception)
3593                 exception->error_code = 0;
3594         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3595 }
3596
3597 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3598 {
3599         /*
3600          * A nested guest cannot use the MMIO cache if it is using nested
3601          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3602          */
3603         if (mmu_is_nested(vcpu))
3604                 return false;
3605
3606         if (direct)
3607                 return vcpu_match_mmio_gpa(vcpu, addr);
3608
3609         return vcpu_match_mmio_gva(vcpu, addr);
3610 }
3611
3612 /*
3613  * Return the level of the lowest level SPTE added to sptes.
3614  * That SPTE may be non-present.
3615  */
3616 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3617 {
3618         struct kvm_shadow_walk_iterator iterator;
3619         int leaf = -1;
3620         u64 spte;
3621
3622         walk_shadow_page_lockless_begin(vcpu);
3623
3624         for (shadow_walk_init(&iterator, vcpu, addr),
3625              *root_level = iterator.level;
3626              shadow_walk_okay(&iterator);
3627              __shadow_walk_next(&iterator, spte)) {
3628                 leaf = iterator.level;
3629                 spte = mmu_spte_get_lockless(iterator.sptep);
3630
3631                 sptes[leaf] = spte;
3632
3633                 if (!is_shadow_present_pte(spte))
3634                         break;
3635         }
3636
3637         walk_shadow_page_lockless_end(vcpu);
3638
3639         return leaf;
3640 }
3641
3642 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3643 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3644 {
3645         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3646         struct rsvd_bits_validate *rsvd_check;
3647         int root, leaf, level;
3648         bool reserved = false;
3649
3650         if (is_tdp_mmu(vcpu->arch.mmu))
3651                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3652         else
3653                 leaf = get_walk(vcpu, addr, sptes, &root);
3654
3655         if (unlikely(leaf < 0)) {
3656                 *sptep = 0ull;
3657                 return reserved;
3658         }
3659
3660         *sptep = sptes[leaf];
3661
3662         /*
3663          * Skip reserved bits checks on the terminal leaf if it's not a valid
3664          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3665          * design, always have reserved bits set.  The purpose of the checks is
3666          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3667          */
3668         if (!is_shadow_present_pte(sptes[leaf]))
3669                 leaf++;
3670
3671         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3672
3673         for (level = root; level >= leaf; level--)
3674                 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3675
3676         if (reserved) {
3677                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3678                        __func__, addr);
3679                 for (level = root; level >= leaf; level--)
3680                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3681                                sptes[level], level,
3682                                get_rsvd_bits(rsvd_check, sptes[level], level));
3683         }
3684
3685         return reserved;
3686 }
3687
3688 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3689 {
3690         u64 spte;
3691         bool reserved;
3692
3693         if (mmio_info_in_cache(vcpu, addr, direct))
3694                 return RET_PF_EMULATE;
3695
3696         reserved = get_mmio_spte(vcpu, addr, &spte);
3697         if (WARN_ON(reserved))
3698                 return -EINVAL;
3699
3700         if (is_mmio_spte(spte)) {
3701                 gfn_t gfn = get_mmio_spte_gfn(spte);
3702                 unsigned int access = get_mmio_spte_access(spte);
3703
3704                 if (!check_mmio_spte(vcpu, spte))
3705                         return RET_PF_INVALID;
3706
3707                 if (direct)
3708                         addr = 0;
3709
3710                 trace_handle_mmio_page_fault(addr, gfn, access);
3711                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3712                 return RET_PF_EMULATE;
3713         }
3714
3715         /*
3716          * If the page table is zapped by other cpus, let CPU fault again on
3717          * the address.
3718          */
3719         return RET_PF_RETRY;
3720 }
3721
3722 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3723                                          u32 error_code, gfn_t gfn)
3724 {
3725         if (unlikely(error_code & PFERR_RSVD_MASK))
3726                 return false;
3727
3728         if (!(error_code & PFERR_PRESENT_MASK) ||
3729               !(error_code & PFERR_WRITE_MASK))
3730                 return false;
3731
3732         /*
3733          * guest is writing the page which is write tracked which can
3734          * not be fixed by page fault handler.
3735          */
3736         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3737                 return true;
3738
3739         return false;
3740 }
3741
3742 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3743 {
3744         struct kvm_shadow_walk_iterator iterator;
3745         u64 spte;
3746
3747         walk_shadow_page_lockless_begin(vcpu);
3748         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3749                 clear_sp_write_flooding_count(iterator.sptep);
3750                 if (!is_shadow_present_pte(spte))
3751                         break;
3752         }
3753         walk_shadow_page_lockless_end(vcpu);
3754 }
3755
3756 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3757                                     gfn_t gfn)
3758 {
3759         struct kvm_arch_async_pf arch;
3760
3761         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3762         arch.gfn = gfn;
3763         arch.direct_map = vcpu->arch.mmu->direct_map;
3764         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3765
3766         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3767                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3768 }
3769
3770 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3771                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3772                          bool write, bool *writable)
3773 {
3774         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3775         bool async;
3776
3777         /*
3778          * Retry the page fault if the gfn hit a memslot that is being deleted
3779          * or moved.  This ensures any existing SPTEs for the old memslot will
3780          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3781          */
3782         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3783                 return true;
3784
3785         /* Don't expose private memslots to L2. */
3786         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3787                 *pfn = KVM_PFN_NOSLOT;
3788                 *writable = false;
3789                 return false;
3790         }
3791
3792         async = false;
3793         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3794                                     write, writable, hva);
3795         if (!async)
3796                 return false; /* *pfn has correct page already */
3797
3798         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3799                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3800                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3801                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3802                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3803                         return true;
3804                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3805                         return true;
3806         }
3807
3808         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3809                                     write, writable, hva);
3810         return false;
3811 }
3812
3813 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3814                              bool prefault, int max_level, bool is_tdp)
3815 {
3816         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3817         bool write = error_code & PFERR_WRITE_MASK;
3818         bool map_writable;
3819
3820         gfn_t gfn = gpa >> PAGE_SHIFT;
3821         unsigned long mmu_seq;
3822         kvm_pfn_t pfn;
3823         hva_t hva;
3824         int r;
3825
3826         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3827                 return RET_PF_EMULATE;
3828
3829         if (!is_tdp_mmu_fault) {
3830                 r = fast_page_fault(vcpu, gpa, error_code);
3831                 if (r != RET_PF_INVALID)
3832                         return r;
3833         }
3834
3835         r = mmu_topup_memory_caches(vcpu, false);
3836         if (r)
3837                 return r;
3838
3839         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3840         smp_rmb();
3841
3842         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3843                          write, &map_writable))
3844                 return RET_PF_RETRY;
3845
3846         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3847                 return r;
3848
3849         r = RET_PF_RETRY;
3850
3851         if (is_tdp_mmu_fault)
3852                 read_lock(&vcpu->kvm->mmu_lock);
3853         else
3854                 write_lock(&vcpu->kvm->mmu_lock);
3855
3856         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3857                 goto out_unlock;
3858         r = make_mmu_pages_available(vcpu);
3859         if (r)
3860                 goto out_unlock;
3861
3862         if (is_tdp_mmu_fault)
3863                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3864                                     pfn, prefault);
3865         else
3866                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3867                                  prefault, is_tdp);
3868
3869 out_unlock:
3870         if (is_tdp_mmu_fault)
3871                 read_unlock(&vcpu->kvm->mmu_lock);
3872         else
3873                 write_unlock(&vcpu->kvm->mmu_lock);
3874         kvm_release_pfn_clean(pfn);
3875         return r;
3876 }
3877
3878 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3879                                 u32 error_code, bool prefault)
3880 {
3881         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3882
3883         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3884         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3885                                  PG_LEVEL_2M, false);
3886 }
3887
3888 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3889                                 u64 fault_address, char *insn, int insn_len)
3890 {
3891         int r = 1;
3892         u32 flags = vcpu->arch.apf.host_apf_flags;
3893
3894 #ifndef CONFIG_X86_64
3895         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3896         if (WARN_ON_ONCE(fault_address >> 32))
3897                 return -EFAULT;
3898 #endif
3899
3900         vcpu->arch.l1tf_flush_l1d = true;
3901         if (!flags) {
3902                 trace_kvm_page_fault(fault_address, error_code);
3903
3904                 if (kvm_event_needs_reinjection(vcpu))
3905                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3906                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3907                                 insn_len);
3908         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3909                 vcpu->arch.apf.host_apf_flags = 0;
3910                 local_irq_disable();
3911                 kvm_async_pf_task_wait_schedule(fault_address);
3912                 local_irq_enable();
3913         } else {
3914                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3915         }
3916
3917         return r;
3918 }
3919 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3920
3921 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3922                        bool prefault)
3923 {
3924         int max_level;
3925
3926         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3927              max_level > PG_LEVEL_4K;
3928              max_level--) {
3929                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3930                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3931
3932                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3933                         break;
3934         }
3935
3936         return direct_page_fault(vcpu, gpa, error_code, prefault,
3937                                  max_level, true);
3938 }
3939
3940 static void nonpaging_init_context(struct kvm_mmu *context)
3941 {
3942         context->page_fault = nonpaging_page_fault;
3943         context->gva_to_gpa = nonpaging_gva_to_gpa;
3944         context->sync_page = nonpaging_sync_page;
3945         context->invlpg = NULL;
3946         context->direct_map = true;
3947 }
3948
3949 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3950                                   union kvm_mmu_page_role role)
3951 {
3952         return (role.direct || pgd == root->pgd) &&
3953                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3954                role.word == to_shadow_page(root->hpa)->role.word;
3955 }
3956
3957 /*
3958  * Find out if a previously cached root matching the new pgd/role is available.
3959  * The current root is also inserted into the cache.
3960  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3961  * returned.
3962  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3963  * false is returned. This root should now be freed by the caller.
3964  */
3965 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3966                                   union kvm_mmu_page_role new_role)
3967 {
3968         uint i;
3969         struct kvm_mmu_root_info root;
3970         struct kvm_mmu *mmu = vcpu->arch.mmu;
3971
3972         root.pgd = mmu->root_pgd;
3973         root.hpa = mmu->root_hpa;
3974
3975         if (is_root_usable(&root, new_pgd, new_role))
3976                 return true;
3977
3978         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3979                 swap(root, mmu->prev_roots[i]);
3980
3981                 if (is_root_usable(&root, new_pgd, new_role))
3982                         break;
3983         }
3984
3985         mmu->root_hpa = root.hpa;
3986         mmu->root_pgd = root.pgd;
3987
3988         return i < KVM_MMU_NUM_PREV_ROOTS;
3989 }
3990
3991 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3992                             union kvm_mmu_page_role new_role)
3993 {
3994         struct kvm_mmu *mmu = vcpu->arch.mmu;
3995
3996         /*
3997          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3998          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3999          * later if necessary.
4000          */
4001         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4002             mmu->root_level >= PT64_ROOT_4LEVEL)
4003                 return cached_root_available(vcpu, new_pgd, new_role);
4004
4005         return false;
4006 }
4007
4008 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4009                               union kvm_mmu_page_role new_role)
4010 {
4011         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4012                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4013                 return;
4014         }
4015
4016         /*
4017          * It's possible that the cached previous root page is obsolete because
4018          * of a change in the MMU generation number. However, changing the
4019          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4020          * free the root set here and allocate a new one.
4021          */
4022         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4023
4024         if (force_flush_and_sync_on_reuse) {
4025                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4026                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4027         }
4028
4029         /*
4030          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4031          * switching to a new CR3, that GVA->GPA mapping may no longer be
4032          * valid. So clear any cached MMIO info even when we don't need to sync
4033          * the shadow page tables.
4034          */
4035         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4036
4037         /*
4038          * If this is a direct root page, it doesn't have a write flooding
4039          * count. Otherwise, clear the write flooding count.
4040          */
4041         if (!new_role.direct)
4042                 __clear_sp_write_flooding_count(
4043                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4044 }
4045
4046 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4047 {
4048         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4049 }
4050 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4051
4052 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4053 {
4054         return kvm_read_cr3(vcpu);
4055 }
4056
4057 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4058                            unsigned int access, int *nr_present)
4059 {
4060         if (unlikely(is_mmio_spte(*sptep))) {
4061                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4062                         mmu_spte_clear_no_track(sptep);
4063                         return true;
4064                 }
4065
4066                 (*nr_present)++;
4067                 mark_mmio_spte(vcpu, sptep, gfn, access);
4068                 return true;
4069         }
4070
4071         return false;
4072 }
4073
4074 #define PTTYPE_EPT 18 /* arbitrary */
4075 #define PTTYPE PTTYPE_EPT
4076 #include "paging_tmpl.h"
4077 #undef PTTYPE
4078
4079 #define PTTYPE 64
4080 #include "paging_tmpl.h"
4081 #undef PTTYPE
4082
4083 #define PTTYPE 32
4084 #include "paging_tmpl.h"
4085 #undef PTTYPE
4086
4087 static void
4088 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4089                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4090                         bool pse, bool amd)
4091 {
4092         u64 gbpages_bit_rsvd = 0;
4093         u64 nonleaf_bit8_rsvd = 0;
4094         u64 high_bits_rsvd;
4095
4096         rsvd_check->bad_mt_xwr = 0;
4097
4098         if (!gbpages)
4099                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4100
4101         if (level == PT32E_ROOT_LEVEL)
4102                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4103         else
4104                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4105
4106         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4107         if (!nx)
4108                 high_bits_rsvd |= rsvd_bits(63, 63);
4109
4110         /*
4111          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4112          * leaf entries) on AMD CPUs only.
4113          */
4114         if (amd)
4115                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4116
4117         switch (level) {
4118         case PT32_ROOT_LEVEL:
4119                 /* no rsvd bits for 2 level 4K page table entries */
4120                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4121                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4122                 rsvd_check->rsvd_bits_mask[1][0] =
4123                         rsvd_check->rsvd_bits_mask[0][0];
4124
4125                 if (!pse) {
4126                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4127                         break;
4128                 }
4129
4130                 if (is_cpuid_PSE36())
4131                         /* 36bits PSE 4MB page */
4132                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4133                 else
4134                         /* 32 bits PSE 4MB page */
4135                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4136                 break;
4137         case PT32E_ROOT_LEVEL:
4138                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4139                                                    high_bits_rsvd |
4140                                                    rsvd_bits(5, 8) |
4141                                                    rsvd_bits(1, 2);     /* PDPTE */
4142                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4143                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4144                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4145                                                    rsvd_bits(13, 20);   /* large page */
4146                 rsvd_check->rsvd_bits_mask[1][0] =
4147                         rsvd_check->rsvd_bits_mask[0][0];
4148                 break;
4149         case PT64_ROOT_5LEVEL:
4150                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4151                                                    nonleaf_bit8_rsvd |
4152                                                    rsvd_bits(7, 7);
4153                 rsvd_check->rsvd_bits_mask[1][4] =
4154                         rsvd_check->rsvd_bits_mask[0][4];
4155                 fallthrough;
4156         case PT64_ROOT_4LEVEL:
4157                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4158                                                    nonleaf_bit8_rsvd |
4159                                                    rsvd_bits(7, 7);
4160                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4161                                                    gbpages_bit_rsvd;
4162                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4163                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4164                 rsvd_check->rsvd_bits_mask[1][3] =
4165                         rsvd_check->rsvd_bits_mask[0][3];
4166                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4167                                                    gbpages_bit_rsvd |
4168                                                    rsvd_bits(13, 29);
4169                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4170                                                    rsvd_bits(13, 20); /* large page */
4171                 rsvd_check->rsvd_bits_mask[1][0] =
4172                         rsvd_check->rsvd_bits_mask[0][0];
4173                 break;
4174         }
4175 }
4176
4177 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4178 {
4179         /*
4180          * If TDP is enabled, let the guest use GBPAGES if they're supported in
4181          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4182          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4183          * walk for performance and complexity reasons.  Not to mention KVM
4184          * _can't_ solve the problem because GVA->GPA walks aren't visible to
4185          * KVM once a TDP translation is installed.  Mimic hardware behavior so
4186          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4187          */
4188         return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4189                              guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4190 }
4191
4192 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4193                                   struct kvm_mmu *context)
4194 {
4195         __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4196                                 vcpu->arch.reserved_gpa_bits,
4197                                 context->root_level, is_efer_nx(context),
4198                                 guest_can_use_gbpages(vcpu),
4199                                 is_cr4_pse(context),
4200                                 guest_cpuid_is_amd_or_hygon(vcpu));
4201 }
4202
4203 static void
4204 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4205                             u64 pa_bits_rsvd, bool execonly)
4206 {
4207         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4208         u64 bad_mt_xwr;
4209
4210         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4211         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4212         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4213         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4214         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4215
4216         /* large page */
4217         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4218         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4219         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4220         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4221         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4222
4223         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4224         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4225         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4226         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4227         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4228         if (!execonly) {
4229                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4230                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4231         }
4232         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4233 }
4234
4235 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4236                 struct kvm_mmu *context, bool execonly)
4237 {
4238         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4239                                     vcpu->arch.reserved_gpa_bits, execonly);
4240 }
4241
4242 static inline u64 reserved_hpa_bits(void)
4243 {
4244         return rsvd_bits(shadow_phys_bits, 63);
4245 }
4246
4247 /*
4248  * the page table on host is the shadow page table for the page
4249  * table in guest or amd nested guest, its mmu features completely
4250  * follow the features in guest.
4251  */
4252 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4253                                         struct kvm_mmu *context)
4254 {
4255         /*
4256          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4257          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4258          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4259          * The iTLB multi-hit workaround can be toggled at any time, so assume
4260          * NX can be used by any non-nested shadow MMU to avoid having to reset
4261          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4262          */
4263         bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4264
4265         /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4266         bool is_amd = true;
4267         /* KVM doesn't use 2-level page tables for the shadow MMU. */
4268         bool is_pse = false;
4269         struct rsvd_bits_validate *shadow_zero_check;
4270         int i;
4271
4272         WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4273
4274         shadow_zero_check = &context->shadow_zero_check;
4275         __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4276                                 context->shadow_root_level, uses_nx,
4277                                 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4278
4279         if (!shadow_me_mask)
4280                 return;
4281
4282         for (i = context->shadow_root_level; --i >= 0;) {
4283                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4284                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4285         }
4286
4287 }
4288
4289 static inline bool boot_cpu_is_amd(void)
4290 {
4291         WARN_ON_ONCE(!tdp_enabled);
4292         return shadow_x_mask == 0;
4293 }
4294
4295 /*
4296  * the direct page table on host, use as much mmu features as
4297  * possible, however, kvm currently does not do execution-protection.
4298  */
4299 static void
4300 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4301                                 struct kvm_mmu *context)
4302 {
4303         struct rsvd_bits_validate *shadow_zero_check;
4304         int i;
4305
4306         shadow_zero_check = &context->shadow_zero_check;
4307
4308         if (boot_cpu_is_amd())
4309                 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4310                                         context->shadow_root_level, false,
4311                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4312                                         false, true);
4313         else
4314                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4315                                             reserved_hpa_bits(), false);
4316
4317         if (!shadow_me_mask)
4318                 return;
4319
4320         for (i = context->shadow_root_level; --i >= 0;) {
4321                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4322                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4323         }
4324 }
4325
4326 /*
4327  * as the comments in reset_shadow_zero_bits_mask() except it
4328  * is the shadow page table for intel nested guest.
4329  */
4330 static void
4331 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4332                                 struct kvm_mmu *context, bool execonly)
4333 {
4334         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4335                                     reserved_hpa_bits(), execonly);
4336 }
4337
4338 #define BYTE_MASK(access) \
4339         ((1 & (access) ? 2 : 0) | \
4340          (2 & (access) ? 4 : 0) | \
4341          (3 & (access) ? 8 : 0) | \
4342          (4 & (access) ? 16 : 0) | \
4343          (5 & (access) ? 32 : 0) | \
4344          (6 & (access) ? 64 : 0) | \
4345          (7 & (access) ? 128 : 0))
4346
4347
4348 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4349 {
4350         unsigned byte;
4351
4352         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4353         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4354         const u8 u = BYTE_MASK(ACC_USER_MASK);
4355
4356         bool cr4_smep = is_cr4_smep(mmu);
4357         bool cr4_smap = is_cr4_smap(mmu);
4358         bool cr0_wp = is_cr0_wp(mmu);
4359         bool efer_nx = is_efer_nx(mmu);
4360
4361         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4362                 unsigned pfec = byte << 1;
4363
4364                 /*
4365                  * Each "*f" variable has a 1 bit for each UWX value
4366                  * that causes a fault with the given PFEC.
4367                  */
4368
4369                 /* Faults from writes to non-writable pages */
4370                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4371                 /* Faults from user mode accesses to supervisor pages */
4372                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4373                 /* Faults from fetches of non-executable pages*/
4374                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4375                 /* Faults from kernel mode fetches of user pages */
4376                 u8 smepf = 0;
4377                 /* Faults from kernel mode accesses of user pages */
4378                 u8 smapf = 0;
4379
4380                 if (!ept) {
4381                         /* Faults from kernel mode accesses to user pages */
4382                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4383
4384                         /* Not really needed: !nx will cause pte.nx to fault */
4385                         if (!efer_nx)
4386                                 ff = 0;
4387
4388                         /* Allow supervisor writes if !cr0.wp */
4389                         if (!cr0_wp)
4390                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4391
4392                         /* Disallow supervisor fetches of user code if cr4.smep */
4393                         if (cr4_smep)
4394                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4395
4396                         /*
4397                          * SMAP:kernel-mode data accesses from user-mode
4398                          * mappings should fault. A fault is considered
4399                          * as a SMAP violation if all of the following
4400                          * conditions are true:
4401                          *   - X86_CR4_SMAP is set in CR4
4402                          *   - A user page is accessed
4403                          *   - The access is not a fetch
4404                          *   - Page fault in kernel mode
4405                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4406                          *
4407                          * Here, we cover the first three conditions.
4408                          * The fourth is computed dynamically in permission_fault();
4409                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4410                          * *not* subject to SMAP restrictions.
4411                          */
4412                         if (cr4_smap)
4413                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4414                 }
4415
4416                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4417         }
4418 }
4419
4420 /*
4421 * PKU is an additional mechanism by which the paging controls access to
4422 * user-mode addresses based on the value in the PKRU register.  Protection
4423 * key violations are reported through a bit in the page fault error code.
4424 * Unlike other bits of the error code, the PK bit is not known at the
4425 * call site of e.g. gva_to_gpa; it must be computed directly in
4426 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4427 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4428 *
4429 * In particular the following conditions come from the error code, the
4430 * page tables and the machine state:
4431 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4432 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4433 * - PK is always zero if U=0 in the page tables
4434 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4435 *
4436 * The PKRU bitmask caches the result of these four conditions.  The error
4437 * code (minus the P bit) and the page table's U bit form an index into the
4438 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4439 * with the two bits of the PKRU register corresponding to the protection key.
4440 * For the first three conditions above the bits will be 00, thus masking
4441 * away both AD and WD.  For all reads or if the last condition holds, WD
4442 * only will be masked away.
4443 */
4444 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4445 {
4446         unsigned bit;
4447         bool wp;
4448
4449         if (!is_cr4_pke(mmu)) {
4450                 mmu->pkru_mask = 0;
4451                 return;
4452         }
4453
4454         wp = is_cr0_wp(mmu);
4455
4456         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4457                 unsigned pfec, pkey_bits;
4458                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4459
4460                 pfec = bit << 1;
4461                 ff = pfec & PFERR_FETCH_MASK;
4462                 uf = pfec & PFERR_USER_MASK;
4463                 wf = pfec & PFERR_WRITE_MASK;
4464
4465                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4466                 pte_user = pfec & PFERR_RSVD_MASK;
4467
4468                 /*
4469                  * Only need to check the access which is not an
4470                  * instruction fetch and is to a user page.
4471                  */
4472                 check_pkey = (!ff && pte_user);
4473                 /*
4474                  * write access is controlled by PKRU if it is a
4475                  * user access or CR0.WP = 1.
4476                  */
4477                 check_write = check_pkey && wf && (uf || wp);
4478
4479                 /* PKRU.AD stops both read and write access. */
4480                 pkey_bits = !!check_pkey;
4481                 /* PKRU.WD stops write access. */
4482                 pkey_bits |= (!!check_write) << 1;
4483
4484                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4485         }
4486 }
4487
4488 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4489                                         struct kvm_mmu *mmu)
4490 {
4491         if (!is_cr0_pg(mmu))
4492                 return;
4493
4494         reset_rsvds_bits_mask(vcpu, mmu);
4495         update_permission_bitmask(mmu, false);
4496         update_pkru_bitmask(mmu);
4497 }
4498
4499 static void paging64_init_context(struct kvm_mmu *context)
4500 {
4501         context->page_fault = paging64_page_fault;
4502         context->gva_to_gpa = paging64_gva_to_gpa;
4503         context->sync_page = paging64_sync_page;
4504         context->invlpg = paging64_invlpg;
4505         context->direct_map = false;
4506 }
4507
4508 static void paging32_init_context(struct kvm_mmu *context)
4509 {
4510         context->page_fault = paging32_page_fault;
4511         context->gva_to_gpa = paging32_gva_to_gpa;
4512         context->sync_page = paging32_sync_page;
4513         context->invlpg = paging32_invlpg;
4514         context->direct_map = false;
4515 }
4516
4517 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4518                                                          struct kvm_mmu_role_regs *regs)
4519 {
4520         union kvm_mmu_extended_role ext = {0};
4521
4522         if (____is_cr0_pg(regs)) {
4523                 ext.cr0_pg = 1;
4524                 ext.cr4_pae = ____is_cr4_pae(regs);
4525                 ext.cr4_smep = ____is_cr4_smep(regs);
4526                 ext.cr4_smap = ____is_cr4_smap(regs);
4527                 ext.cr4_pse = ____is_cr4_pse(regs);
4528
4529                 /* PKEY and LA57 are active iff long mode is active. */
4530                 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4531                 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4532         }
4533
4534         ext.valid = 1;
4535
4536         return ext;
4537 }
4538
4539 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4540                                                    struct kvm_mmu_role_regs *regs,
4541                                                    bool base_only)
4542 {
4543         union kvm_mmu_role role = {0};
4544
4545         role.base.access = ACC_ALL;
4546         if (____is_cr0_pg(regs)) {
4547                 role.base.efer_nx = ____is_efer_nx(regs);
4548                 role.base.cr0_wp = ____is_cr0_wp(regs);
4549         }
4550         role.base.smm = is_smm(vcpu);
4551         role.base.guest_mode = is_guest_mode(vcpu);
4552
4553         if (base_only)
4554                 return role;
4555
4556         role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4557
4558         return role;
4559 }
4560
4561 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4562 {
4563         /* Use 5-level TDP if and only if it's useful/necessary. */
4564         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4565                 return 4;
4566
4567         return max_tdp_level;
4568 }
4569
4570 static union kvm_mmu_role
4571 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4572                                 struct kvm_mmu_role_regs *regs, bool base_only)
4573 {
4574         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4575
4576         role.base.ad_disabled = (shadow_accessed_mask == 0);
4577         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4578         role.base.direct = true;
4579         role.base.gpte_is_8_bytes = true;
4580
4581         return role;
4582 }
4583
4584 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4585 {
4586         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4587         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4588         union kvm_mmu_role new_role =
4589                 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4590
4591         if (new_role.as_u64 == context->mmu_role.as_u64)
4592                 return;
4593
4594         context->mmu_role.as_u64 = new_role.as_u64;
4595         context->page_fault = kvm_tdp_page_fault;
4596         context->sync_page = nonpaging_sync_page;
4597         context->invlpg = NULL;
4598         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4599         context->direct_map = true;
4600         context->get_guest_pgd = get_cr3;
4601         context->get_pdptr = kvm_pdptr_read;
4602         context->inject_page_fault = kvm_inject_page_fault;
4603         context->root_level = role_regs_to_root_level(&regs);
4604
4605         if (!is_cr0_pg(context))
4606                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4607         else if (is_cr4_pae(context))
4608                 context->gva_to_gpa = paging64_gva_to_gpa;
4609         else
4610                 context->gva_to_gpa = paging32_gva_to_gpa;
4611
4612         reset_guest_paging_metadata(vcpu, context);
4613         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4614 }
4615
4616 static union kvm_mmu_role
4617 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4618                                       struct kvm_mmu_role_regs *regs, bool base_only)
4619 {
4620         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4621
4622         role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4623         role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4624         role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4625
4626         return role;
4627 }
4628
4629 static union kvm_mmu_role
4630 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4631                                    struct kvm_mmu_role_regs *regs, bool base_only)
4632 {
4633         union kvm_mmu_role role =
4634                 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4635
4636         role.base.direct = !____is_cr0_pg(regs);
4637
4638         if (!____is_efer_lma(regs))
4639                 role.base.level = PT32E_ROOT_LEVEL;
4640         else if (____is_cr4_la57(regs))
4641                 role.base.level = PT64_ROOT_5LEVEL;
4642         else
4643                 role.base.level = PT64_ROOT_4LEVEL;
4644
4645         return role;
4646 }
4647
4648 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4649                                     struct kvm_mmu_role_regs *regs,
4650                                     union kvm_mmu_role new_role)
4651 {
4652         if (new_role.as_u64 == context->mmu_role.as_u64)
4653                 return;
4654
4655         context->mmu_role.as_u64 = new_role.as_u64;
4656
4657         if (!is_cr0_pg(context))
4658                 nonpaging_init_context(context);
4659         else if (is_cr4_pae(context))
4660                 paging64_init_context(context);
4661         else
4662                 paging32_init_context(context);
4663         context->root_level = role_regs_to_root_level(regs);
4664
4665         reset_guest_paging_metadata(vcpu, context);
4666         context->shadow_root_level = new_role.base.level;
4667
4668         reset_shadow_zero_bits_mask(vcpu, context);
4669 }
4670
4671 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4672                                 struct kvm_mmu_role_regs *regs)
4673 {
4674         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4675         union kvm_mmu_role new_role =
4676                 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4677
4678         shadow_mmu_init_context(vcpu, context, regs, new_role);
4679 }
4680
4681 static union kvm_mmu_role
4682 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4683                                    struct kvm_mmu_role_regs *regs)
4684 {
4685         union kvm_mmu_role role =
4686                 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4687
4688         role.base.direct = false;
4689         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4690
4691         return role;
4692 }
4693
4694 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4695                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
4696 {
4697         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4698         struct kvm_mmu_role_regs regs = {
4699                 .cr0 = cr0,
4700                 .cr4 = cr4,
4701                 .efer = efer,
4702         };
4703         union kvm_mmu_role new_role;
4704
4705         new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4706
4707         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4708
4709         shadow_mmu_init_context(vcpu, context, &regs, new_role);
4710 }
4711 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4712
4713 static union kvm_mmu_role
4714 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4715                                    bool execonly, u8 level)
4716 {
4717         union kvm_mmu_role role = {0};
4718
4719         /* SMM flag is inherited from root_mmu */
4720         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4721
4722         role.base.level = level;
4723         role.base.gpte_is_8_bytes = true;
4724         role.base.direct = false;
4725         role.base.ad_disabled = !accessed_dirty;
4726         role.base.guest_mode = true;
4727         role.base.access = ACC_ALL;
4728
4729         /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4730         role.ext.word = 0;
4731         role.ext.execonly = execonly;
4732         role.ext.valid = 1;
4733
4734         return role;
4735 }
4736
4737 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4738                              bool accessed_dirty, gpa_t new_eptp)
4739 {
4740         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4741         u8 level = vmx_eptp_page_walk_level(new_eptp);
4742         union kvm_mmu_role new_role =
4743                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4744                                                    execonly, level);
4745
4746         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4747
4748         if (new_role.as_u64 == context->mmu_role.as_u64)
4749                 return;
4750
4751         context->mmu_role.as_u64 = new_role.as_u64;
4752
4753         context->shadow_root_level = level;
4754
4755         context->ept_ad = accessed_dirty;
4756         context->page_fault = ept_page_fault;
4757         context->gva_to_gpa = ept_gva_to_gpa;
4758         context->sync_page = ept_sync_page;
4759         context->invlpg = ept_invlpg;
4760         context->root_level = level;
4761         context->direct_map = false;
4762
4763         update_permission_bitmask(context, true);
4764         update_pkru_bitmask(context);
4765         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4766         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4767 }
4768 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4769
4770 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4771 {
4772         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4773         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4774
4775         kvm_init_shadow_mmu(vcpu, &regs);
4776
4777         context->get_guest_pgd     = get_cr3;
4778         context->get_pdptr         = kvm_pdptr_read;
4779         context->inject_page_fault = kvm_inject_page_fault;
4780 }
4781
4782 static union kvm_mmu_role
4783 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4784 {
4785         union kvm_mmu_role role;
4786
4787         role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4788
4789         /*
4790          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4791          * shadow pages of their own and so "direct" has no meaning.   Set it
4792          * to "true" to try to detect bogus usage of the nested MMU.
4793          */
4794         role.base.direct = true;
4795         role.base.level = role_regs_to_root_level(regs);
4796         return role;
4797 }
4798
4799 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4800 {
4801         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4802         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4803         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4804
4805         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4806                 return;
4807
4808         g_context->mmu_role.as_u64 = new_role.as_u64;
4809         g_context->get_guest_pgd     = get_cr3;
4810         g_context->get_pdptr         = kvm_pdptr_read;
4811         g_context->inject_page_fault = kvm_inject_page_fault;
4812         g_context->root_level        = new_role.base.level;
4813
4814         /*
4815          * L2 page tables are never shadowed, so there is no need to sync
4816          * SPTEs.
4817          */
4818         g_context->invlpg            = NULL;
4819
4820         /*
4821          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4822          * L1's nested page tables (e.g. EPT12). The nested translation
4823          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4824          * L2's page tables as the first level of translation and L1's
4825          * nested page tables as the second level of translation. Basically
4826          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4827          */
4828         if (!is_paging(vcpu))
4829                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4830         else if (is_long_mode(vcpu))
4831                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4832         else if (is_pae(vcpu))
4833                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4834         else
4835                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4836
4837         reset_guest_paging_metadata(vcpu, g_context);
4838 }
4839
4840 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4841 {
4842         if (mmu_is_nested(vcpu))
4843                 init_kvm_nested_mmu(vcpu);
4844         else if (tdp_enabled)
4845                 init_kvm_tdp_mmu(vcpu);
4846         else
4847                 init_kvm_softmmu(vcpu);
4848 }
4849 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4850
4851 static union kvm_mmu_page_role
4852 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4853 {
4854         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4855         union kvm_mmu_role role;
4856
4857         if (tdp_enabled)
4858                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4859         else
4860                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4861
4862         return role.base;
4863 }
4864
4865 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4866 {
4867         /*
4868          * Invalidate all MMU roles to force them to reinitialize as CPUID
4869          * information is factored into reserved bit calculations.
4870          */
4871         vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4872         vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4873         vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4874         kvm_mmu_reset_context(vcpu);
4875
4876         /*
4877          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4878          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4879          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
4880          * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
4881          * sweep the problem under the rug.
4882          *
4883          * KVM's horrific CPUID ABI makes the problem all but impossible to
4884          * solve, as correctly handling multiple vCPU models (with respect to
4885          * paging and physical address properties) in a single VM would require
4886          * tracking all relevant CPUID information in kvm_mmu_page_role.  That
4887          * is very undesirable as it would double the memory requirements for
4888          * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4889          * no sane VMM mucks with the core vCPU model on the fly.
4890          */
4891         if (vcpu->arch.last_vmentry_cpu != -1) {
4892                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4893                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4894         }
4895 }
4896
4897 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4898 {
4899         kvm_mmu_unload(vcpu);
4900         kvm_init_mmu(vcpu);
4901 }
4902 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4903
4904 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4905 {
4906         int r;
4907
4908         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4909         if (r)
4910                 goto out;
4911         r = mmu_alloc_special_roots(vcpu);
4912         if (r)
4913                 goto out;
4914         if (vcpu->arch.mmu->direct_map)
4915                 r = mmu_alloc_direct_roots(vcpu);
4916         else
4917                 r = mmu_alloc_shadow_roots(vcpu);
4918         if (r)
4919                 goto out;
4920
4921         kvm_mmu_sync_roots(vcpu);
4922
4923         kvm_mmu_load_pgd(vcpu);
4924         static_call(kvm_x86_tlb_flush_current)(vcpu);
4925 out:
4926         return r;
4927 }
4928
4929 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4930 {
4931         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4932         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4933         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4934         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4935 }
4936
4937 static bool need_remote_flush(u64 old, u64 new)
4938 {
4939         if (!is_shadow_present_pte(old))
4940                 return false;
4941         if (!is_shadow_present_pte(new))
4942                 return true;
4943         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4944                 return true;
4945         old ^= shadow_nx_mask;
4946         new ^= shadow_nx_mask;
4947         return (old & ~new & PT64_PERM_MASK) != 0;
4948 }
4949
4950 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4951                                     int *bytes)
4952 {
4953         u64 gentry = 0;
4954         int r;
4955
4956         /*
4957          * Assume that the pte write on a page table of the same type
4958          * as the current vcpu paging mode since we update the sptes only
4959          * when they have the same mode.
4960          */
4961         if (is_pae(vcpu) && *bytes == 4) {
4962                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4963                 *gpa &= ~(gpa_t)7;
4964                 *bytes = 8;
4965         }
4966
4967         if (*bytes == 4 || *bytes == 8) {
4968                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4969                 if (r)
4970                         gentry = 0;
4971         }
4972
4973         return gentry;
4974 }
4975
4976 /*
4977  * If we're seeing too many writes to a page, it may no longer be a page table,
4978  * or we may be forking, in which case it is better to unmap the page.
4979  */
4980 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4981 {
4982         /*
4983          * Skip write-flooding detected for the sp whose level is 1, because
4984          * it can become unsync, then the guest page is not write-protected.
4985          */
4986         if (sp->role.level == PG_LEVEL_4K)
4987                 return false;
4988
4989         atomic_inc(&sp->write_flooding_count);
4990         return atomic_read(&sp->write_flooding_count) >= 3;
4991 }
4992
4993 /*
4994  * Misaligned accesses are too much trouble to fix up; also, they usually
4995  * indicate a page is not used as a page table.
4996  */
4997 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4998                                     int bytes)
4999 {
5000         unsigned offset, pte_size, misaligned;
5001
5002         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5003                  gpa, bytes, sp->role.word);
5004
5005         offset = offset_in_page(gpa);
5006         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5007
5008         /*
5009          * Sometimes, the OS only writes the last one bytes to update status
5010          * bits, for example, in linux, andb instruction is used in clear_bit().
5011          */
5012         if (!(offset & (pte_size - 1)) && bytes == 1)
5013                 return false;
5014
5015         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5016         misaligned |= bytes < 4;
5017
5018         return misaligned;
5019 }
5020
5021 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5022 {
5023         unsigned page_offset, quadrant;
5024         u64 *spte;
5025         int level;
5026
5027         page_offset = offset_in_page(gpa);
5028         level = sp->role.level;
5029         *nspte = 1;
5030         if (!sp->role.gpte_is_8_bytes) {
5031                 page_offset <<= 1;      /* 32->64 */
5032                 /*
5033                  * A 32-bit pde maps 4MB while the shadow pdes map
5034                  * only 2MB.  So we need to double the offset again
5035                  * and zap two pdes instead of one.
5036                  */
5037                 if (level == PT32_ROOT_LEVEL) {
5038                         page_offset &= ~7; /* kill rounding error */
5039                         page_offset <<= 1;
5040                         *nspte = 2;
5041                 }
5042                 quadrant = page_offset >> PAGE_SHIFT;
5043                 page_offset &= ~PAGE_MASK;
5044                 if (quadrant != sp->role.quadrant)
5045                         return NULL;
5046         }
5047
5048         spte = &sp->spt[page_offset / sizeof(*spte)];
5049         return spte;
5050 }
5051
5052 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5053                               const u8 *new, int bytes,
5054                               struct kvm_page_track_notifier_node *node)
5055 {
5056         gfn_t gfn = gpa >> PAGE_SHIFT;
5057         struct kvm_mmu_page *sp;
5058         LIST_HEAD(invalid_list);
5059         u64 entry, gentry, *spte;
5060         int npte;
5061         bool remote_flush, local_flush;
5062
5063         /*
5064          * If we don't have indirect shadow pages, it means no page is
5065          * write-protected, so we can exit simply.
5066          */
5067         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5068                 return;
5069
5070         remote_flush = local_flush = false;
5071
5072         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5073
5074         /*
5075          * No need to care whether allocation memory is successful
5076          * or not since pte prefetch is skipped if it does not have
5077          * enough objects in the cache.
5078          */
5079         mmu_topup_memory_caches(vcpu, true);
5080
5081         write_lock(&vcpu->kvm->mmu_lock);
5082
5083         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5084
5085         ++vcpu->kvm->stat.mmu_pte_write;
5086         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5087
5088         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5089                 if (detect_write_misaligned(sp, gpa, bytes) ||
5090                       detect_write_flooding(sp)) {
5091                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5092                         ++vcpu->kvm->stat.mmu_flooded;
5093                         continue;
5094                 }
5095
5096                 spte = get_written_sptes(sp, gpa, &npte);
5097                 if (!spte)
5098                         continue;
5099
5100                 local_flush = true;
5101                 while (npte--) {
5102                         entry = *spte;
5103                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5104                         if (gentry && sp->role.level != PG_LEVEL_4K)
5105                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5106                         if (need_remote_flush(entry, *spte))
5107                                 remote_flush = true;
5108                         ++spte;
5109                 }
5110         }
5111         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5112         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5113         write_unlock(&vcpu->kvm->mmu_lock);
5114 }
5115
5116 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5117                        void *insn, int insn_len)
5118 {
5119         int r, emulation_type = EMULTYPE_PF;
5120         bool direct = vcpu->arch.mmu->direct_map;
5121
5122         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5123                 return RET_PF_RETRY;
5124
5125         r = RET_PF_INVALID;
5126         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5127                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5128                 if (r == RET_PF_EMULATE)
5129                         goto emulate;
5130         }
5131
5132         if (r == RET_PF_INVALID) {
5133                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5134                                           lower_32_bits(error_code), false);
5135                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5136                         return -EIO;
5137         }
5138
5139         if (r < 0)
5140                 return r;
5141         if (r != RET_PF_EMULATE)
5142                 return 1;
5143
5144         /*
5145          * Before emulating the instruction, check if the error code
5146          * was due to a RO violation while translating the guest page.
5147          * This can occur when using nested virtualization with nested
5148          * paging in both guests. If true, we simply unprotect the page
5149          * and resume the guest.
5150          */
5151         if (vcpu->arch.mmu->direct_map &&
5152             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5153                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5154                 return 1;
5155         }
5156
5157         /*
5158          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5159          * optimistically try to just unprotect the page and let the processor
5160          * re-execute the instruction that caused the page fault.  Do not allow
5161          * retrying MMIO emulation, as it's not only pointless but could also
5162          * cause us to enter an infinite loop because the processor will keep
5163          * faulting on the non-existent MMIO address.  Retrying an instruction
5164          * from a nested guest is also pointless and dangerous as we are only
5165          * explicitly shadowing L1's page tables, i.e. unprotecting something
5166          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5167          */
5168         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5169                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5170 emulate:
5171         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5172                                        insn_len);
5173 }
5174 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5175
5176 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5177                             gva_t gva, hpa_t root_hpa)
5178 {
5179         int i;
5180
5181         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5182         if (mmu != &vcpu->arch.guest_mmu) {
5183                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5184                 if (is_noncanonical_address(gva, vcpu))
5185                         return;
5186
5187                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5188         }
5189
5190         if (!mmu->invlpg)
5191                 return;
5192
5193         if (root_hpa == INVALID_PAGE) {
5194                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5195
5196                 /*
5197                  * INVLPG is required to invalidate any global mappings for the VA,
5198                  * irrespective of PCID. Since it would take us roughly similar amount
5199                  * of work to determine whether any of the prev_root mappings of the VA
5200                  * is marked global, or to just sync it blindly, so we might as well
5201                  * just always sync it.
5202                  *
5203                  * Mappings not reachable via the current cr3 or the prev_roots will be
5204                  * synced when switching to that cr3, so nothing needs to be done here
5205                  * for them.
5206                  */
5207                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5208                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5209                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5210         } else {
5211                 mmu->invlpg(vcpu, gva, root_hpa);
5212         }
5213 }
5214
5215 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5216 {
5217         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5218         ++vcpu->stat.invlpg;
5219 }
5220 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5221
5222
5223 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5224 {
5225         struct kvm_mmu *mmu = vcpu->arch.mmu;
5226         bool tlb_flush = false;
5227         uint i;
5228
5229         if (pcid == kvm_get_active_pcid(vcpu)) {
5230                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5231                 tlb_flush = true;
5232         }
5233
5234         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5235                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5236                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5237                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5238                         tlb_flush = true;
5239                 }
5240         }
5241
5242         if (tlb_flush)
5243                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5244
5245         ++vcpu->stat.invlpg;
5246
5247         /*
5248          * Mappings not reachable via the current cr3 or the prev_roots will be
5249          * synced when switching to that cr3, so nothing needs to be done here
5250          * for them.
5251          */
5252 }
5253
5254 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5255                        int tdp_huge_page_level)
5256 {
5257         tdp_enabled = enable_tdp;
5258         max_tdp_level = tdp_max_root_level;
5259
5260         /*
5261          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5262          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5263          * the kernel is not.  But, KVM never creates a page size greater than
5264          * what is used by the kernel for any given HVA, i.e. the kernel's
5265          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5266          */
5267         if (tdp_enabled)
5268                 max_huge_page_level = tdp_huge_page_level;
5269         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5270                 max_huge_page_level = PG_LEVEL_1G;
5271         else
5272                 max_huge_page_level = PG_LEVEL_2M;
5273 }
5274 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5275
5276 /* The return value indicates if tlb flush on all vcpus is needed. */
5277 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5278                                     struct kvm_memory_slot *slot);
5279
5280 /* The caller should hold mmu-lock before calling this function. */
5281 static __always_inline bool
5282 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5283                         slot_level_handler fn, int start_level, int end_level,
5284                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5285                         bool flush)
5286 {
5287         struct slot_rmap_walk_iterator iterator;
5288
5289         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5290                         end_gfn, &iterator) {
5291                 if (iterator.rmap)
5292                         flush |= fn(kvm, iterator.rmap, memslot);
5293
5294                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5295                         if (flush && flush_on_yield) {
5296                                 kvm_flush_remote_tlbs_with_address(kvm,
5297                                                 start_gfn,
5298                                                 iterator.gfn - start_gfn + 1);
5299                                 flush = false;
5300                         }
5301                         cond_resched_rwlock_write(&kvm->mmu_lock);
5302                 }
5303         }
5304
5305         return flush;
5306 }
5307
5308 static __always_inline bool
5309 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5310                   slot_level_handler fn, int start_level, int end_level,
5311                   bool flush_on_yield)
5312 {
5313         return slot_handle_level_range(kvm, memslot, fn, start_level,
5314                         end_level, memslot->base_gfn,
5315                         memslot->base_gfn + memslot->npages - 1,
5316                         flush_on_yield, false);
5317 }
5318
5319 static __always_inline bool
5320 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5321                  slot_level_handler fn, bool flush_on_yield)
5322 {
5323         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5324                                  PG_LEVEL_4K, flush_on_yield);
5325 }
5326
5327 static void free_mmu_pages(struct kvm_mmu *mmu)
5328 {
5329         if (!tdp_enabled && mmu->pae_root)
5330                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5331         free_page((unsigned long)mmu->pae_root);
5332         free_page((unsigned long)mmu->pml4_root);
5333 }
5334
5335 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5336 {
5337         struct page *page;
5338         int i;
5339
5340         mmu->root_hpa = INVALID_PAGE;
5341         mmu->root_pgd = 0;
5342         mmu->translate_gpa = translate_gpa;
5343         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5344                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5345
5346         /*
5347          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5348          * while the PDP table is a per-vCPU construct that's allocated at MMU
5349          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5350          * x86_64.  Therefore we need to allocate the PDP table in the first
5351          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5352          * generally doesn't use PAE paging and can skip allocating the PDP
5353          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5354          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5355          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5356          */
5357         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5358                 return 0;
5359
5360         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5361         if (!page)
5362                 return -ENOMEM;
5363
5364         mmu->pae_root = page_address(page);
5365
5366         /*
5367          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5368          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5369          * that KVM's writes and the CPU's reads get along.  Note, this is
5370          * only necessary when using shadow paging, as 64-bit NPT can get at
5371          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5372          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5373          */
5374         if (!tdp_enabled)
5375                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5376         else
5377                 WARN_ON_ONCE(shadow_me_mask);
5378
5379         for (i = 0; i < 4; ++i)
5380                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5381
5382         return 0;
5383 }
5384
5385 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5386 {
5387         int ret;
5388
5389         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5390         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5391
5392         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5393         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5394
5395         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5396
5397         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5398         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5399
5400         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5401
5402         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5403         if (ret)
5404                 return ret;
5405
5406         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5407         if (ret)
5408                 goto fail_allocate_root;
5409
5410         return ret;
5411  fail_allocate_root:
5412         free_mmu_pages(&vcpu->arch.guest_mmu);
5413         return ret;
5414 }
5415
5416 #define BATCH_ZAP_PAGES 10
5417 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5418 {
5419         struct kvm_mmu_page *sp, *node;
5420         int nr_zapped, batch = 0;
5421
5422 restart:
5423         list_for_each_entry_safe_reverse(sp, node,
5424               &kvm->arch.active_mmu_pages, link) {
5425                 /*
5426                  * No obsolete valid page exists before a newly created page
5427                  * since active_mmu_pages is a FIFO list.
5428                  */
5429                 if (!is_obsolete_sp(kvm, sp))
5430                         break;
5431
5432                 /*
5433                  * Invalid pages should never land back on the list of active
5434                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5435                  * infinite loop if the page gets put back on the list (again).
5436                  */
5437                 if (WARN_ON(sp->role.invalid))
5438                         continue;
5439
5440                 /*
5441                  * No need to flush the TLB since we're only zapping shadow
5442                  * pages with an obsolete generation number and all vCPUS have
5443                  * loaded a new root, i.e. the shadow pages being zapped cannot
5444                  * be in active use by the guest.
5445                  */
5446                 if (batch >= BATCH_ZAP_PAGES &&
5447                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5448                         batch = 0;
5449                         goto restart;
5450                 }
5451
5452                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5453                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5454                         batch += nr_zapped;
5455                         goto restart;
5456                 }
5457         }
5458
5459         /*
5460          * Trigger a remote TLB flush before freeing the page tables to ensure
5461          * KVM is not in the middle of a lockless shadow page table walk, which
5462          * may reference the pages.
5463          */
5464         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5465 }
5466
5467 /*
5468  * Fast invalidate all shadow pages and use lock-break technique
5469  * to zap obsolete pages.
5470  *
5471  * It's required when memslot is being deleted or VM is being
5472  * destroyed, in these cases, we should ensure that KVM MMU does
5473  * not use any resource of the being-deleted slot or all slots
5474  * after calling the function.
5475  */
5476 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5477 {
5478         lockdep_assert_held(&kvm->slots_lock);
5479
5480         write_lock(&kvm->mmu_lock);
5481         trace_kvm_mmu_zap_all_fast(kvm);
5482
5483         /*
5484          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5485          * held for the entire duration of zapping obsolete pages, it's
5486          * impossible for there to be multiple invalid generations associated
5487          * with *valid* shadow pages at any given time, i.e. there is exactly
5488          * one valid generation and (at most) one invalid generation.
5489          */
5490         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5491
5492         /* In order to ensure all threads see this change when
5493          * handling the MMU reload signal, this must happen in the
5494          * same critical section as kvm_reload_remote_mmus, and
5495          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5496          * could drop the MMU lock and yield.
5497          */
5498         if (is_tdp_mmu_enabled(kvm))
5499                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5500
5501         /*
5502          * Notify all vcpus to reload its shadow page table and flush TLB.
5503          * Then all vcpus will switch to new shadow page table with the new
5504          * mmu_valid_gen.
5505          *
5506          * Note: we need to do this under the protection of mmu_lock,
5507          * otherwise, vcpu would purge shadow page but miss tlb flush.
5508          */
5509         kvm_reload_remote_mmus(kvm);
5510
5511         kvm_zap_obsolete_pages(kvm);
5512
5513         write_unlock(&kvm->mmu_lock);
5514
5515         if (is_tdp_mmu_enabled(kvm)) {
5516                 read_lock(&kvm->mmu_lock);
5517                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5518                 read_unlock(&kvm->mmu_lock);
5519         }
5520 }
5521
5522 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5523 {
5524         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5525 }
5526
5527 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5528                         struct kvm_memory_slot *slot,
5529                         struct kvm_page_track_notifier_node *node)
5530 {
5531         kvm_mmu_zap_all_fast(kvm);
5532 }
5533
5534 void kvm_mmu_init_vm(struct kvm *kvm)
5535 {
5536         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5537
5538         if (!kvm_mmu_init_tdp_mmu(kvm))
5539                 /*
5540                  * No smp_load/store wrappers needed here as we are in
5541                  * VM init and there cannot be any memslots / other threads
5542                  * accessing this struct kvm yet.
5543                  */
5544                 kvm->arch.memslots_have_rmaps = true;
5545
5546         node->track_write = kvm_mmu_pte_write;
5547         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5548         kvm_page_track_register_notifier(kvm, node);
5549 }
5550
5551 void kvm_mmu_uninit_vm(struct kvm *kvm)
5552 {
5553         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5554
5555         kvm_page_track_unregister_notifier(kvm, node);
5556
5557         kvm_mmu_uninit_tdp_mmu(kvm);
5558 }
5559
5560 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5561 {
5562         struct kvm_memslots *slots;
5563         struct kvm_memory_slot *memslot;
5564         int i;
5565         bool flush = false;
5566
5567         if (kvm_memslots_have_rmaps(kvm)) {
5568                 write_lock(&kvm->mmu_lock);
5569                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5570                         slots = __kvm_memslots(kvm, i);
5571                         kvm_for_each_memslot(memslot, slots) {
5572                                 gfn_t start, end;
5573
5574                                 start = max(gfn_start, memslot->base_gfn);
5575                                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5576                                 if (start >= end)
5577                                         continue;
5578
5579                                 flush = slot_handle_level_range(kvm, memslot,
5580                                                 kvm_zap_rmapp, PG_LEVEL_4K,
5581                                                 KVM_MAX_HUGEPAGE_LEVEL, start,
5582                                                 end - 1, true, flush);
5583                         }
5584                 }
5585                 if (flush)
5586                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5587                 write_unlock(&kvm->mmu_lock);
5588         }
5589
5590         if (is_tdp_mmu_enabled(kvm)) {
5591                 flush = false;
5592
5593                 read_lock(&kvm->mmu_lock);
5594                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5595                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5596                                                           gfn_end, flush, true);
5597                 if (flush)
5598                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5599                                                            gfn_end);
5600
5601                 read_unlock(&kvm->mmu_lock);
5602         }
5603 }
5604
5605 static bool slot_rmap_write_protect(struct kvm *kvm,
5606                                     struct kvm_rmap_head *rmap_head,
5607                                     struct kvm_memory_slot *slot)
5608 {
5609         return __rmap_write_protect(kvm, rmap_head, false);
5610 }
5611
5612 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5613                                       struct kvm_memory_slot *memslot,
5614                                       int start_level)
5615 {
5616         bool flush = false;
5617
5618         if (kvm_memslots_have_rmaps(kvm)) {
5619                 write_lock(&kvm->mmu_lock);
5620                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5621                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5622                                           false);
5623                 write_unlock(&kvm->mmu_lock);
5624         }
5625
5626         if (is_tdp_mmu_enabled(kvm)) {
5627                 read_lock(&kvm->mmu_lock);
5628                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5629                 read_unlock(&kvm->mmu_lock);
5630         }
5631
5632         /*
5633          * We can flush all the TLBs out of the mmu lock without TLB
5634          * corruption since we just change the spte from writable to
5635          * readonly so that we only need to care the case of changing
5636          * spte from present to present (changing the spte from present
5637          * to nonpresent will flush all the TLBs immediately), in other
5638          * words, the only case we care is mmu_spte_update() where we
5639          * have checked Host-writable | MMU-writable instead of
5640          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5641          * anymore.
5642          */
5643         if (flush)
5644                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5645 }
5646
5647 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5648                                          struct kvm_rmap_head *rmap_head,
5649                                          struct kvm_memory_slot *slot)
5650 {
5651         u64 *sptep;
5652         struct rmap_iterator iter;
5653         int need_tlb_flush = 0;
5654         kvm_pfn_t pfn;
5655         struct kvm_mmu_page *sp;
5656
5657 restart:
5658         for_each_rmap_spte(rmap_head, &iter, sptep) {
5659                 sp = sptep_to_sp(sptep);
5660                 pfn = spte_to_pfn(*sptep);
5661
5662                 /*
5663                  * We cannot do huge page mapping for indirect shadow pages,
5664                  * which are found on the last rmap (level = 1) when not using
5665                  * tdp; such shadow pages are synced with the page table in
5666                  * the guest, and the guest page table is using 4K page size
5667                  * mapping if the indirect sp has level = 1.
5668                  */
5669                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5670                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5671                                                                pfn, PG_LEVEL_NUM)) {
5672                         pte_list_remove(rmap_head, sptep);
5673
5674                         if (kvm_available_flush_tlb_with_range())
5675                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5676                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5677                         else
5678                                 need_tlb_flush = 1;
5679
5680                         goto restart;
5681                 }
5682         }
5683
5684         return need_tlb_flush;
5685 }
5686
5687 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5688                                    const struct kvm_memory_slot *memslot)
5689 {
5690         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5691         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5692         bool flush = false;
5693
5694         if (kvm_memslots_have_rmaps(kvm)) {
5695                 write_lock(&kvm->mmu_lock);
5696                 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5697                 if (flush)
5698                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5699                 write_unlock(&kvm->mmu_lock);
5700         }
5701
5702         if (is_tdp_mmu_enabled(kvm)) {
5703                 read_lock(&kvm->mmu_lock);
5704                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5705                 if (flush)
5706                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5707                 read_unlock(&kvm->mmu_lock);
5708         }
5709 }
5710
5711 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5712                                         const struct kvm_memory_slot *memslot)
5713 {
5714         /*
5715          * All current use cases for flushing the TLBs for a specific memslot
5716          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5717          * The interaction between the various operations on memslot must be
5718          * serialized by slots_locks to ensure the TLB flush from one operation
5719          * is observed by any other operation on the same memslot.
5720          */
5721         lockdep_assert_held(&kvm->slots_lock);
5722         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5723                                            memslot->npages);
5724 }
5725
5726 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5727                                    struct kvm_memory_slot *memslot)
5728 {
5729         bool flush = false;
5730
5731         if (kvm_memslots_have_rmaps(kvm)) {
5732                 write_lock(&kvm->mmu_lock);
5733                 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5734                                          false);
5735                 write_unlock(&kvm->mmu_lock);
5736         }
5737
5738         if (is_tdp_mmu_enabled(kvm)) {
5739                 read_lock(&kvm->mmu_lock);
5740                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5741                 read_unlock(&kvm->mmu_lock);
5742         }
5743
5744         /*
5745          * It's also safe to flush TLBs out of mmu lock here as currently this
5746          * function is only used for dirty logging, in which case flushing TLB
5747          * out of mmu lock also guarantees no dirty pages will be lost in
5748          * dirty_bitmap.
5749          */
5750         if (flush)
5751                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5752 }
5753
5754 void kvm_mmu_zap_all(struct kvm *kvm)
5755 {
5756         struct kvm_mmu_page *sp, *node;
5757         LIST_HEAD(invalid_list);
5758         int ign;
5759
5760         write_lock(&kvm->mmu_lock);
5761 restart:
5762         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5763                 if (WARN_ON(sp->role.invalid))
5764                         continue;
5765                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5766                         goto restart;
5767                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5768                         goto restart;
5769         }
5770
5771         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5772
5773         if (is_tdp_mmu_enabled(kvm))
5774                 kvm_tdp_mmu_zap_all(kvm);
5775
5776         write_unlock(&kvm->mmu_lock);
5777 }
5778
5779 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5780 {
5781         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5782
5783         gen &= MMIO_SPTE_GEN_MASK;
5784
5785         /*
5786          * Generation numbers are incremented in multiples of the number of
5787          * address spaces in order to provide unique generations across all
5788          * address spaces.  Strip what is effectively the address space
5789          * modifier prior to checking for a wrap of the MMIO generation so
5790          * that a wrap in any address space is detected.
5791          */
5792         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5793
5794         /*
5795          * The very rare case: if the MMIO generation number has wrapped,
5796          * zap all shadow pages.
5797          */
5798         if (unlikely(gen == 0)) {
5799                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5800                 kvm_mmu_zap_all_fast(kvm);
5801         }
5802 }
5803
5804 static unsigned long
5805 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5806 {
5807         struct kvm *kvm;
5808         int nr_to_scan = sc->nr_to_scan;
5809         unsigned long freed = 0;
5810
5811         mutex_lock(&kvm_lock);
5812
5813         list_for_each_entry(kvm, &vm_list, vm_list) {
5814                 int idx;
5815                 LIST_HEAD(invalid_list);
5816
5817                 /*
5818                  * Never scan more than sc->nr_to_scan VM instances.
5819                  * Will not hit this condition practically since we do not try
5820                  * to shrink more than one VM and it is very unlikely to see
5821                  * !n_used_mmu_pages so many times.
5822                  */
5823                 if (!nr_to_scan--)
5824                         break;
5825                 /*
5826                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5827                  * here. We may skip a VM instance errorneosly, but we do not
5828                  * want to shrink a VM that only started to populate its MMU
5829                  * anyway.
5830                  */
5831                 if (!kvm->arch.n_used_mmu_pages &&
5832                     !kvm_has_zapped_obsolete_pages(kvm))
5833                         continue;
5834
5835                 idx = srcu_read_lock(&kvm->srcu);
5836                 write_lock(&kvm->mmu_lock);
5837
5838                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5839                         kvm_mmu_commit_zap_page(kvm,
5840                               &kvm->arch.zapped_obsolete_pages);
5841                         goto unlock;
5842                 }
5843
5844                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5845
5846 unlock:
5847                 write_unlock(&kvm->mmu_lock);
5848                 srcu_read_unlock(&kvm->srcu, idx);
5849
5850                 /*
5851                  * unfair on small ones
5852                  * per-vm shrinkers cry out
5853                  * sadness comes quickly
5854                  */
5855                 list_move_tail(&kvm->vm_list, &vm_list);
5856                 break;
5857         }
5858
5859         mutex_unlock(&kvm_lock);
5860         return freed;
5861 }
5862
5863 static unsigned long
5864 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5865 {
5866         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5867 }
5868
5869 static struct shrinker mmu_shrinker = {
5870         .count_objects = mmu_shrink_count,
5871         .scan_objects = mmu_shrink_scan,
5872         .seeks = DEFAULT_SEEKS * 10,
5873 };
5874
5875 static void mmu_destroy_caches(void)
5876 {
5877         kmem_cache_destroy(pte_list_desc_cache);
5878         kmem_cache_destroy(mmu_page_header_cache);
5879 }
5880
5881 static bool get_nx_auto_mode(void)
5882 {
5883         /* Return true when CPU has the bug, and mitigations are ON */
5884         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5885 }
5886
5887 static void __set_nx_huge_pages(bool val)
5888 {
5889         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5890 }
5891
5892 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5893 {
5894         bool old_val = nx_huge_pages;
5895         bool new_val;
5896
5897         /* In "auto" mode deploy workaround only if CPU has the bug. */
5898         if (sysfs_streq(val, "off"))
5899                 new_val = 0;
5900         else if (sysfs_streq(val, "force"))
5901                 new_val = 1;
5902         else if (sysfs_streq(val, "auto"))
5903                 new_val = get_nx_auto_mode();
5904         else if (strtobool(val, &new_val) < 0)
5905                 return -EINVAL;
5906
5907         __set_nx_huge_pages(new_val);
5908
5909         if (new_val != old_val) {
5910                 struct kvm *kvm;
5911
5912                 mutex_lock(&kvm_lock);
5913
5914                 list_for_each_entry(kvm, &vm_list, vm_list) {
5915                         mutex_lock(&kvm->slots_lock);
5916                         kvm_mmu_zap_all_fast(kvm);
5917                         mutex_unlock(&kvm->slots_lock);
5918
5919                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5920                 }
5921                 mutex_unlock(&kvm_lock);
5922         }
5923
5924         return 0;
5925 }
5926
5927 int kvm_mmu_module_init(void)
5928 {
5929         int ret = -ENOMEM;
5930
5931         if (nx_huge_pages == -1)
5932                 __set_nx_huge_pages(get_nx_auto_mode());
5933
5934         /*
5935          * MMU roles use union aliasing which is, generally speaking, an
5936          * undefined behavior. However, we supposedly know how compilers behave
5937          * and the current status quo is unlikely to change. Guardians below are
5938          * supposed to let us know if the assumption becomes false.
5939          */
5940         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5941         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5942         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5943
5944         kvm_mmu_reset_all_pte_masks();
5945
5946         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5947                                             sizeof(struct pte_list_desc),
5948                                             0, SLAB_ACCOUNT, NULL);
5949         if (!pte_list_desc_cache)
5950                 goto out;
5951
5952         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5953                                                   sizeof(struct kvm_mmu_page),
5954                                                   0, SLAB_ACCOUNT, NULL);
5955         if (!mmu_page_header_cache)
5956                 goto out;
5957
5958         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5959                 goto out;
5960
5961         ret = register_shrinker(&mmu_shrinker);
5962         if (ret)
5963                 goto out;
5964
5965         return 0;
5966
5967 out:
5968         mmu_destroy_caches();
5969         return ret;
5970 }
5971
5972 /*
5973  * Calculate mmu pages needed for kvm.
5974  */
5975 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5976 {
5977         unsigned long nr_mmu_pages;
5978         unsigned long nr_pages = 0;
5979         struct kvm_memslots *slots;
5980         struct kvm_memory_slot *memslot;
5981         int i;
5982
5983         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5984                 slots = __kvm_memslots(kvm, i);
5985
5986                 kvm_for_each_memslot(memslot, slots)
5987                         nr_pages += memslot->npages;
5988         }
5989
5990         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5991         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5992
5993         return nr_mmu_pages;
5994 }
5995
5996 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5997 {
5998         kvm_mmu_unload(vcpu);
5999         free_mmu_pages(&vcpu->arch.root_mmu);
6000         free_mmu_pages(&vcpu->arch.guest_mmu);
6001         mmu_free_memory_caches(vcpu);
6002 }
6003
6004 void kvm_mmu_module_exit(void)
6005 {
6006         mmu_destroy_caches();
6007         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6008         unregister_shrinker(&mmu_shrinker);
6009         mmu_audit_disable();
6010 }
6011
6012 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6013 {
6014         unsigned int old_val;
6015         int err;
6016
6017         old_val = nx_huge_pages_recovery_ratio;
6018         err = param_set_uint(val, kp);
6019         if (err)
6020                 return err;
6021
6022         if (READ_ONCE(nx_huge_pages) &&
6023             !old_val && nx_huge_pages_recovery_ratio) {
6024                 struct kvm *kvm;
6025
6026                 mutex_lock(&kvm_lock);
6027
6028                 list_for_each_entry(kvm, &vm_list, vm_list)
6029                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6030
6031                 mutex_unlock(&kvm_lock);
6032         }
6033
6034         return err;
6035 }
6036
6037 static void kvm_recover_nx_lpages(struct kvm *kvm)
6038 {
6039         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6040         int rcu_idx;
6041         struct kvm_mmu_page *sp;
6042         unsigned int ratio;
6043         LIST_HEAD(invalid_list);
6044         bool flush = false;
6045         ulong to_zap;
6046
6047         rcu_idx = srcu_read_lock(&kvm->srcu);
6048         write_lock(&kvm->mmu_lock);
6049
6050         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6051         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6052         for ( ; to_zap; --to_zap) {
6053                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6054                         break;
6055
6056                 /*
6057                  * We use a separate list instead of just using active_mmu_pages
6058                  * because the number of lpage_disallowed pages is expected to
6059                  * be relatively small compared to the total.
6060                  */
6061                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6062                                       struct kvm_mmu_page,
6063                                       lpage_disallowed_link);
6064                 WARN_ON_ONCE(!sp->lpage_disallowed);
6065                 if (is_tdp_mmu_page(sp)) {
6066                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6067                 } else {
6068                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6069                         WARN_ON_ONCE(sp->lpage_disallowed);
6070                 }
6071
6072                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6073                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6074                         cond_resched_rwlock_write(&kvm->mmu_lock);
6075                         flush = false;
6076                 }
6077         }
6078         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6079
6080         write_unlock(&kvm->mmu_lock);
6081         srcu_read_unlock(&kvm->srcu, rcu_idx);
6082 }
6083
6084 static long get_nx_lpage_recovery_timeout(u64 start_time)
6085 {
6086         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6087                 ? start_time + 60 * HZ - get_jiffies_64()
6088                 : MAX_SCHEDULE_TIMEOUT;
6089 }
6090
6091 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6092 {
6093         u64 start_time;
6094         long remaining_time;
6095
6096         while (true) {
6097                 start_time = get_jiffies_64();
6098                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6099
6100                 set_current_state(TASK_INTERRUPTIBLE);
6101                 while (!kthread_should_stop() && remaining_time > 0) {
6102                         schedule_timeout(remaining_time);
6103                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6104                         set_current_state(TASK_INTERRUPTIBLE);
6105                 }
6106
6107                 set_current_state(TASK_RUNNING);
6108
6109                 if (kthread_should_stop())
6110                         return 0;
6111
6112                 kvm_recover_nx_lpages(kvm);
6113         }
6114 }
6115
6116 int kvm_mmu_post_init_vm(struct kvm *kvm)
6117 {
6118         int err;
6119
6120         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6121                                           "kvm-nx-lpage-recovery",
6122                                           &kvm->arch.nx_lpage_recovery_thread);
6123         if (!err)
6124                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6125
6126         return err;
6127 }
6128
6129 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6130 {
6131         if (kvm->arch.nx_lpage_recovery_thread)
6132                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6133 }