Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/sgx.h>
22 #include <asm/cpuid.h>
23 #include "cpuid.h"
24 #include "lapic.h"
25 #include "mmu.h"
26 #include "trace.h"
27 #include "pmu.h"
28
29 /*
30  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
31  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
32  */
33 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
34 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
35
36 u32 xstate_required_size(u64 xstate_bv, bool compacted)
37 {
38         int feature_bit = 0;
39         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
40
41         xstate_bv &= XFEATURE_MASK_EXTEND;
42         while (xstate_bv) {
43                 if (xstate_bv & 0x1) {
44                         u32 eax, ebx, ecx, edx, offset;
45                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
46                         /* ECX[1]: 64B alignment in compacted form */
47                         if (compacted)
48                                 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
49                         else
50                                 offset = ebx;
51                         ret = max(ret, offset + eax);
52                 }
53
54                 xstate_bv >>= 1;
55                 feature_bit++;
56         }
57
58         return ret;
59 }
60
61 /*
62  * This one is tied to SSB in the user API, and not
63  * visible in /proc/cpuinfo.
64  */
65 #define KVM_X86_FEATURE_AMD_PSFD        (13*32+28) /* Predictive Store Forwarding Disable */
66
67 #define F feature_bit
68
69 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
70 #define SF(name)                                                \
71 ({                                                              \
72         BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);   \
73         (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);       \
74 })
75
76 /*
77  * Magic value used by KVM when querying userspace-provided CPUID entries and
78  * doesn't care about the CPIUD index because the index of the function in
79  * question is not significant.  Note, this magic value must have at least one
80  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
81  * to avoid false positives when processing guest CPUID input.
82  */
83 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
84
85 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
86         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
87 {
88         struct kvm_cpuid_entry2 *e;
89         int i;
90
91         for (i = 0; i < nent; i++) {
92                 e = &entries[i];
93
94                 if (e->function != function)
95                         continue;
96
97                 /*
98                  * If the index isn't significant, use the first entry with a
99                  * matching function.  It's userspace's responsibilty to not
100                  * provide "duplicate" entries in all cases.
101                  */
102                 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
103                         return e;
104
105
106                 /*
107                  * Similarly, use the first matching entry if KVM is doing a
108                  * lookup (as opposed to emulating CPUID) for a function that's
109                  * architecturally defined as not having a significant index.
110                  */
111                 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
112                         /*
113                          * Direct lookups from KVM should not diverge from what
114                          * KVM defines internally (the architectural behavior).
115                          */
116                         WARN_ON_ONCE(cpuid_function_is_indexed(function));
117                         return e;
118                 }
119         }
120
121         return NULL;
122 }
123
124 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
125                            struct kvm_cpuid_entry2 *entries,
126                            int nent)
127 {
128         struct kvm_cpuid_entry2 *best;
129         u64 xfeatures;
130
131         /*
132          * The existing code assumes virtual address is 48-bit or 57-bit in the
133          * canonical address checks; exit if it is ever changed.
134          */
135         best = cpuid_entry2_find(entries, nent, 0x80000008,
136                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
137         if (best) {
138                 int vaddr_bits = (best->eax & 0xff00) >> 8;
139
140                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
141                         return -EINVAL;
142         }
143
144         /*
145          * Exposing dynamic xfeatures to the guest requires additional
146          * enabling in the FPU, e.g. to expand the guest XSAVE state size.
147          */
148         best = cpuid_entry2_find(entries, nent, 0xd, 0);
149         if (!best)
150                 return 0;
151
152         xfeatures = best->eax | ((u64)best->edx << 32);
153         xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
154         if (!xfeatures)
155                 return 0;
156
157         return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
158 }
159
160 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
161 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
162                                  int nent)
163 {
164         struct kvm_cpuid_entry2 *orig;
165         int i;
166
167         if (nent != vcpu->arch.cpuid_nent)
168                 return -EINVAL;
169
170         for (i = 0; i < nent; i++) {
171                 orig = &vcpu->arch.cpuid_entries[i];
172                 if (e2[i].function != orig->function ||
173                     e2[i].index != orig->index ||
174                     e2[i].flags != orig->flags ||
175                     e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
176                     e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
177                         return -EINVAL;
178         }
179
180         return 0;
181 }
182
183 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
184 {
185         u32 function;
186         struct kvm_cpuid_entry2 *entry;
187
188         vcpu->arch.kvm_cpuid_base = 0;
189
190         for_each_possible_hypervisor_cpuid_base(function) {
191                 entry = kvm_find_cpuid_entry(vcpu, function);
192
193                 if (entry) {
194                         u32 signature[3];
195
196                         signature[0] = entry->ebx;
197                         signature[1] = entry->ecx;
198                         signature[2] = entry->edx;
199
200                         BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
201                         if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
202                                 vcpu->arch.kvm_cpuid_base = function;
203                                 break;
204                         }
205                 }
206         }
207 }
208
209 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
210                                               struct kvm_cpuid_entry2 *entries, int nent)
211 {
212         u32 base = vcpu->arch.kvm_cpuid_base;
213
214         if (!base)
215                 return NULL;
216
217         return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
218                                  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
219 }
220
221 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
222 {
223         return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
224                                              vcpu->arch.cpuid_nent);
225 }
226
227 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
228 {
229         struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
230
231         /*
232          * save the feature bitmap to avoid cpuid lookup for every PV
233          * operation
234          */
235         if (best)
236                 vcpu->arch.pv_cpuid.features = best->eax;
237 }
238
239 /*
240  * Calculate guest's supported XCR0 taking into account guest CPUID data and
241  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
242  */
243 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
244 {
245         struct kvm_cpuid_entry2 *best;
246
247         best = cpuid_entry2_find(entries, nent, 0xd, 0);
248         if (!best)
249                 return 0;
250
251         return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
252 }
253
254 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
255                                        int nent)
256 {
257         struct kvm_cpuid_entry2 *best;
258         u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
259
260         best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
261         if (best) {
262                 /* Update OSXSAVE bit */
263                 if (boot_cpu_has(X86_FEATURE_XSAVE))
264                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
265                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
266
267                 cpuid_entry_change(best, X86_FEATURE_APIC,
268                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
269         }
270
271         best = cpuid_entry2_find(entries, nent, 7, 0);
272         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
273                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
274                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
275
276         best = cpuid_entry2_find(entries, nent, 0xD, 0);
277         if (best)
278                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
279
280         best = cpuid_entry2_find(entries, nent, 0xD, 1);
281         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
282                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
283                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
284
285         best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
286         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
287                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
288                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
289
290         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
291                 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
292                 if (best)
293                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
294                                            vcpu->arch.ia32_misc_enable_msr &
295                                            MSR_IA32_MISC_ENABLE_MWAIT);
296         }
297
298         /*
299          * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
300          * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
301          * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
302          * at the time of EENTER, thus adjust the allowed XFRM by the guest's
303          * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
304          * '1' even on CPUs that don't support XSAVE.
305          */
306         best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
307         if (best) {
308                 best->ecx &= guest_supported_xcr0 & 0xffffffff;
309                 best->edx &= guest_supported_xcr0 >> 32;
310                 best->ecx |= XFEATURE_MASK_FPSSE;
311         }
312 }
313
314 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
315 {
316         __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
317 }
318 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
319
320 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
321 {
322         struct kvm_cpuid_entry2 *entry;
323
324         entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
325                                   KVM_CPUID_INDEX_NOT_SIGNIFICANT);
326         return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
327 }
328
329 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
330 {
331         struct kvm_lapic *apic = vcpu->arch.apic;
332         struct kvm_cpuid_entry2 *best;
333
334         best = kvm_find_cpuid_entry(vcpu, 1);
335         if (best && apic) {
336                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
337                         apic->lapic_timer.timer_mode_mask = 3 << 17;
338                 else
339                         apic->lapic_timer.timer_mode_mask = 1 << 17;
340
341                 kvm_apic_set_version(vcpu);
342         }
343
344         vcpu->arch.guest_supported_xcr0 =
345                 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
346
347         /*
348          * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
349          * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
350          * supported by the host.
351          */
352         vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 |
353                                                        XFEATURE_MASK_FPSSE;
354
355         kvm_update_pv_runtime(vcpu);
356
357         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
358         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
359
360         kvm_pmu_refresh(vcpu);
361         vcpu->arch.cr4_guest_rsvd_bits =
362             __cr4_reserved_bits(guest_cpuid_has, vcpu);
363
364         kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
365                                                     vcpu->arch.cpuid_nent));
366
367         /* Invoke the vendor callback only after the above state is updated. */
368         static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
369
370         /*
371          * Except for the MMU, which needs to do its thing any vendor specific
372          * adjustments to the reserved GPA bits.
373          */
374         kvm_mmu_after_set_cpuid(vcpu);
375 }
376
377 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
378 {
379         struct kvm_cpuid_entry2 *best;
380
381         best = kvm_find_cpuid_entry(vcpu, 0x80000000);
382         if (!best || best->eax < 0x80000008)
383                 goto not_found;
384         best = kvm_find_cpuid_entry(vcpu, 0x80000008);
385         if (best)
386                 return best->eax & 0xff;
387 not_found:
388         return 36;
389 }
390
391 /*
392  * This "raw" version returns the reserved GPA bits without any adjustments for
393  * encryption technologies that usurp bits.  The raw mask should be used if and
394  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
395  */
396 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
397 {
398         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
399 }
400
401 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
402                         int nent)
403 {
404         int r;
405
406         __kvm_update_cpuid_runtime(vcpu, e2, nent);
407
408         /*
409          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
410          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
411          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
412          * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
413          * the core vCPU model on the fly. It would've been better to forbid any
414          * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
415          * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
416          * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
417          * whether the supplied CPUID data is equal to what's already set.
418          */
419         if (vcpu->arch.last_vmentry_cpu != -1) {
420                 r = kvm_cpuid_check_equal(vcpu, e2, nent);
421                 if (r)
422                         return r;
423
424                 kvfree(e2);
425                 return 0;
426         }
427
428         if (kvm_cpuid_has_hyperv(e2, nent)) {
429                 r = kvm_hv_vcpu_init(vcpu);
430                 if (r)
431                         return r;
432         }
433
434         r = kvm_check_cpuid(vcpu, e2, nent);
435         if (r)
436                 return r;
437
438         kvfree(vcpu->arch.cpuid_entries);
439         vcpu->arch.cpuid_entries = e2;
440         vcpu->arch.cpuid_nent = nent;
441
442         kvm_update_kvm_cpuid_base(vcpu);
443         kvm_vcpu_after_set_cpuid(vcpu);
444
445         return 0;
446 }
447
448 /* when an old userspace process fills a new kernel module */
449 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
450                              struct kvm_cpuid *cpuid,
451                              struct kvm_cpuid_entry __user *entries)
452 {
453         int r, i;
454         struct kvm_cpuid_entry *e = NULL;
455         struct kvm_cpuid_entry2 *e2 = NULL;
456
457         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
458                 return -E2BIG;
459
460         if (cpuid->nent) {
461                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
462                 if (IS_ERR(e))
463                         return PTR_ERR(e);
464
465                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
466                 if (!e2) {
467                         r = -ENOMEM;
468                         goto out_free_cpuid;
469                 }
470         }
471         for (i = 0; i < cpuid->nent; i++) {
472                 e2[i].function = e[i].function;
473                 e2[i].eax = e[i].eax;
474                 e2[i].ebx = e[i].ebx;
475                 e2[i].ecx = e[i].ecx;
476                 e2[i].edx = e[i].edx;
477                 e2[i].index = 0;
478                 e2[i].flags = 0;
479                 e2[i].padding[0] = 0;
480                 e2[i].padding[1] = 0;
481                 e2[i].padding[2] = 0;
482         }
483
484         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
485         if (r)
486                 kvfree(e2);
487
488 out_free_cpuid:
489         kvfree(e);
490
491         return r;
492 }
493
494 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
495                               struct kvm_cpuid2 *cpuid,
496                               struct kvm_cpuid_entry2 __user *entries)
497 {
498         struct kvm_cpuid_entry2 *e2 = NULL;
499         int r;
500
501         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
502                 return -E2BIG;
503
504         if (cpuid->nent) {
505                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
506                 if (IS_ERR(e2))
507                         return PTR_ERR(e2);
508         }
509
510         r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
511         if (r)
512                 kvfree(e2);
513
514         return r;
515 }
516
517 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
518                               struct kvm_cpuid2 *cpuid,
519                               struct kvm_cpuid_entry2 __user *entries)
520 {
521         int r;
522
523         r = -E2BIG;
524         if (cpuid->nent < vcpu->arch.cpuid_nent)
525                 goto out;
526         r = -EFAULT;
527         if (copy_to_user(entries, vcpu->arch.cpuid_entries,
528                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
529                 goto out;
530         return 0;
531
532 out:
533         cpuid->nent = vcpu->arch.cpuid_nent;
534         return r;
535 }
536
537 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
538 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
539 {
540         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
541         struct kvm_cpuid_entry2 entry;
542
543         reverse_cpuid_check(leaf);
544
545         cpuid_count(cpuid.function, cpuid.index,
546                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
547
548         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
549 }
550
551 static __always_inline
552 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
553 {
554         /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
555         BUILD_BUG_ON(leaf < NCAPINTS);
556
557         kvm_cpu_caps[leaf] = mask;
558
559         __kvm_cpu_cap_mask(leaf);
560 }
561
562 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
563 {
564         /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
565         BUILD_BUG_ON(leaf >= NCAPINTS);
566
567         kvm_cpu_caps[leaf] &= mask;
568
569         __kvm_cpu_cap_mask(leaf);
570 }
571
572 void kvm_set_cpu_caps(void)
573 {
574 #ifdef CONFIG_X86_64
575         unsigned int f_gbpages = F(GBPAGES);
576         unsigned int f_lm = F(LM);
577         unsigned int f_xfd = F(XFD);
578 #else
579         unsigned int f_gbpages = 0;
580         unsigned int f_lm = 0;
581         unsigned int f_xfd = 0;
582 #endif
583         memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
584
585         BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
586                      sizeof(boot_cpu_data.x86_capability));
587
588         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
589                sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
590
591         kvm_cpu_cap_mask(CPUID_1_ECX,
592                 /*
593                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
594                  * advertised to guests via CPUID!
595                  */
596                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
597                 0 /* DS-CPL, VMX, SMX, EST */ |
598                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
599                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
600                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
601                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
602                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
603                 F(F16C) | F(RDRAND)
604         );
605         /* KVM emulates x2apic in software irrespective of host support. */
606         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
607
608         kvm_cpu_cap_mask(CPUID_1_EDX,
609                 F(FPU) | F(VME) | F(DE) | F(PSE) |
610                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
611                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
612                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
613                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
614                 0 /* Reserved, DS, ACPI */ | F(MMX) |
615                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
616                 0 /* HTT, TM, Reserved, PBE */
617         );
618
619         kvm_cpu_cap_mask(CPUID_7_0_EBX,
620                 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
621                 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
622                 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
623                 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
624                 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
625                 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
626                 F(AVX512VL));
627
628         kvm_cpu_cap_mask(CPUID_7_ECX,
629                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
630                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
631                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
632                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
633                 F(SGX_LC) | F(BUS_LOCK_DETECT)
634         );
635         /* Set LA57 based on hardware capability. */
636         if (cpuid_ecx(7) & F(LA57))
637                 kvm_cpu_cap_set(X86_FEATURE_LA57);
638
639         /*
640          * PKU not yet implemented for shadow paging and requires OSPKE
641          * to be set on the host. Clear it if that is not the case
642          */
643         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
644                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
645
646         kvm_cpu_cap_mask(CPUID_7_EDX,
647                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
648                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
649                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
650                 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
651                 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16)
652         );
653
654         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
655         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
656         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
657
658         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
659                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
660         if (boot_cpu_has(X86_FEATURE_STIBP))
661                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
662         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
663                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
664
665         kvm_cpu_cap_mask(CPUID_7_1_EAX,
666                 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) | F(AMX_FP16) |
667                 F(AVX_IFMA)
668         );
669
670         kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
671                 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI)
672         );
673
674         kvm_cpu_cap_mask(CPUID_D_1_EAX,
675                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
676         );
677
678         kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
679                 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
680         );
681
682         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
683                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
684                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
685                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
686                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
687                 F(TOPOEXT) | 0 /* PERFCTR_CORE */
688         );
689
690         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
691                 F(FPU) | F(VME) | F(DE) | F(PSE) |
692                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
693                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
694                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
695                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
696                 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
697                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
698                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
699         );
700
701         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
702                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
703
704         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
705                 F(CLZERO) | F(XSAVEERPTR) |
706                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
707                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
708                 __feature_bit(KVM_X86_FEATURE_AMD_PSFD)
709         );
710
711         /*
712          * AMD has separate bits for each SPEC_CTRL bit.
713          * arch/x86/kernel/cpu/bugs.c is kind enough to
714          * record that in cpufeatures so use them.
715          */
716         if (boot_cpu_has(X86_FEATURE_IBPB))
717                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
718         if (boot_cpu_has(X86_FEATURE_IBRS))
719                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
720         if (boot_cpu_has(X86_FEATURE_STIBP))
721                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
722         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
723                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
724         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
725                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
726         /*
727          * The preference is to use SPEC CTRL MSR instead of the
728          * VIRT_SPEC MSR.
729          */
730         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
731             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
732                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
733
734         /*
735          * Hide all SVM features by default, SVM will set the cap bits for
736          * features it emulates and/or exposes for L1.
737          */
738         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
739
740         kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
741                 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
742                 F(SME_COHERENT));
743
744         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
745                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
746                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
747                 F(PMM) | F(PMM_EN)
748         );
749
750         /*
751          * Hide RDTSCP and RDPID if either feature is reported as supported but
752          * probing MSR_TSC_AUX failed.  This is purely a sanity check and
753          * should never happen, but the guest will likely crash if RDTSCP or
754          * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
755          * the past.  For example, the sanity check may fire if this instance of
756          * KVM is running as L1 on top of an older, broken KVM.
757          */
758         if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
759                      kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
760                      !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
761                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
762                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
763         }
764 }
765 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
766
767 struct kvm_cpuid_array {
768         struct kvm_cpuid_entry2 *entries;
769         int maxnent;
770         int nent;
771 };
772
773 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
774                                               u32 function, u32 index)
775 {
776         struct kvm_cpuid_entry2 *entry;
777
778         if (array->nent >= array->maxnent)
779                 return NULL;
780
781         entry = &array->entries[array->nent++];
782
783         memset(entry, 0, sizeof(*entry));
784         entry->function = function;
785         entry->index = index;
786         switch (function & 0xC0000000) {
787         case 0x40000000:
788                 /* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
789                 return entry;
790
791         case 0x80000000:
792                 /*
793                  * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
794                  * would result in out-of-bounds calls to do_host_cpuid.
795                  */
796                 {
797                         static int max_cpuid_80000000;
798                         if (!READ_ONCE(max_cpuid_80000000))
799                                 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
800                         if (function > READ_ONCE(max_cpuid_80000000))
801                                 return entry;
802                 }
803                 break;
804
805         default:
806                 break;
807         }
808
809         cpuid_count(entry->function, entry->index,
810                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
811
812         if (cpuid_function_is_indexed(function))
813                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
814
815         return entry;
816 }
817
818 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
819 {
820         struct kvm_cpuid_entry2 *entry;
821
822         if (array->nent >= array->maxnent)
823                 return -E2BIG;
824
825         entry = &array->entries[array->nent];
826         entry->function = func;
827         entry->index = 0;
828         entry->flags = 0;
829
830         switch (func) {
831         case 0:
832                 entry->eax = 7;
833                 ++array->nent;
834                 break;
835         case 1:
836                 entry->ecx = F(MOVBE);
837                 ++array->nent;
838                 break;
839         case 7:
840                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
841                 entry->eax = 0;
842                 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
843                         entry->ecx = F(RDPID);
844                 ++array->nent;
845                 break;
846         default:
847                 break;
848         }
849
850         return 0;
851 }
852
853 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
854 {
855         struct kvm_cpuid_entry2 *entry;
856         int r, i, max_idx;
857
858         /* all calls to cpuid_count() should be made on the same cpu */
859         get_cpu();
860
861         r = -E2BIG;
862
863         entry = do_host_cpuid(array, function, 0);
864         if (!entry)
865                 goto out;
866
867         switch (function) {
868         case 0:
869                 /* Limited to the highest leaf implemented in KVM. */
870                 entry->eax = min(entry->eax, 0x1fU);
871                 break;
872         case 1:
873                 cpuid_entry_override(entry, CPUID_1_EDX);
874                 cpuid_entry_override(entry, CPUID_1_ECX);
875                 break;
876         case 2:
877                 /*
878                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
879                  * CPUID(function=2, index=0) may return different results each
880                  * time, with the least-significant byte in EAX enumerating the
881                  * number of times software should do CPUID(2, 0).
882                  *
883                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
884                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
885                  * return 01H. Software should ignore this value and not
886                  * interpret it as an informational descriptor", while AMD's
887                  * APM states that CPUID(2) is reserved.
888                  *
889                  * WARN if a frankenstein CPU that supports virtualization and
890                  * a stateful CPUID.0x2 is encountered.
891                  */
892                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
893                 break;
894         /* functions 4 and 0x8000001d have additional index. */
895         case 4:
896         case 0x8000001d:
897                 /*
898                  * Read entries until the cache type in the previous entry is
899                  * zero, i.e. indicates an invalid entry.
900                  */
901                 for (i = 1; entry->eax & 0x1f; ++i) {
902                         entry = do_host_cpuid(array, function, i);
903                         if (!entry)
904                                 goto out;
905                 }
906                 break;
907         case 6: /* Thermal management */
908                 entry->eax = 0x4; /* allow ARAT */
909                 entry->ebx = 0;
910                 entry->ecx = 0;
911                 entry->edx = 0;
912                 break;
913         /* function 7 has additional index. */
914         case 7:
915                 entry->eax = min(entry->eax, 1u);
916                 cpuid_entry_override(entry, CPUID_7_0_EBX);
917                 cpuid_entry_override(entry, CPUID_7_ECX);
918                 cpuid_entry_override(entry, CPUID_7_EDX);
919
920                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
921                 if (entry->eax == 1) {
922                         entry = do_host_cpuid(array, function, 1);
923                         if (!entry)
924                                 goto out;
925
926                         cpuid_entry_override(entry, CPUID_7_1_EAX);
927                         cpuid_entry_override(entry, CPUID_7_1_EDX);
928                         entry->ebx = 0;
929                         entry->ecx = 0;
930                 }
931                 break;
932         case 0xa: { /* Architectural Performance Monitoring */
933                 union cpuid10_eax eax;
934                 union cpuid10_edx edx;
935
936                 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
937                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
938                         break;
939                 }
940
941                 eax.split.version_id = kvm_pmu_cap.version;
942                 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
943                 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
944                 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
945                 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
946                 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
947
948                 if (kvm_pmu_cap.version)
949                         edx.split.anythread_deprecated = 1;
950                 edx.split.reserved1 = 0;
951                 edx.split.reserved2 = 0;
952
953                 entry->eax = eax.full;
954                 entry->ebx = kvm_pmu_cap.events_mask;
955                 entry->ecx = 0;
956                 entry->edx = edx.full;
957                 break;
958         }
959         /*
960          * Per Intel's SDM, the 0x1f is a superset of 0xb,
961          * thus they can be handled by common code.
962          */
963         case 0x1f:
964         case 0xb:
965                 /*
966                  * Populate entries until the level type (ECX[15:8]) of the
967                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
968                  * the starting entry, filled by the primary do_host_cpuid().
969                  */
970                 for (i = 1; entry->ecx & 0xff00; ++i) {
971                         entry = do_host_cpuid(array, function, i);
972                         if (!entry)
973                                 goto out;
974                 }
975                 break;
976         case 0xd: {
977                 u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm();
978                 u64 permitted_xss = kvm_caps.supported_xss;
979
980                 entry->eax &= permitted_xcr0;
981                 entry->ebx = xstate_required_size(permitted_xcr0, false);
982                 entry->ecx = entry->ebx;
983                 entry->edx &= permitted_xcr0 >> 32;
984                 if (!permitted_xcr0)
985                         break;
986
987                 entry = do_host_cpuid(array, function, 1);
988                 if (!entry)
989                         goto out;
990
991                 cpuid_entry_override(entry, CPUID_D_1_EAX);
992                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
993                         entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
994                                                           true);
995                 else {
996                         WARN_ON_ONCE(permitted_xss != 0);
997                         entry->ebx = 0;
998                 }
999                 entry->ecx &= permitted_xss;
1000                 entry->edx &= permitted_xss >> 32;
1001
1002                 for (i = 2; i < 64; ++i) {
1003                         bool s_state;
1004                         if (permitted_xcr0 & BIT_ULL(i))
1005                                 s_state = false;
1006                         else if (permitted_xss & BIT_ULL(i))
1007                                 s_state = true;
1008                         else
1009                                 continue;
1010
1011                         entry = do_host_cpuid(array, function, i);
1012                         if (!entry)
1013                                 goto out;
1014
1015                         /*
1016                          * The supported check above should have filtered out
1017                          * invalid sub-leafs.  Only valid sub-leafs should
1018                          * reach this point, and they should have a non-zero
1019                          * save state size.  Furthermore, check whether the
1020                          * processor agrees with permitted_xcr0/permitted_xss
1021                          * on whether this is an XCR0- or IA32_XSS-managed area.
1022                          */
1023                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1024                                 --array->nent;
1025                                 continue;
1026                         }
1027
1028                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1029                                 entry->ecx &= ~BIT_ULL(2);
1030                         entry->edx = 0;
1031                 }
1032                 break;
1033         }
1034         case 0x12:
1035                 /* Intel SGX */
1036                 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1037                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1038                         break;
1039                 }
1040
1041                 /*
1042                  * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1043                  * and max enclave sizes.   The SGX sub-features and MISCSELECT
1044                  * are restricted by kernel and KVM capabilities (like most
1045                  * feature flags), while enclave size is unrestricted.
1046                  */
1047                 cpuid_entry_override(entry, CPUID_12_EAX);
1048                 entry->ebx &= SGX_MISC_EXINFO;
1049
1050                 entry = do_host_cpuid(array, function, 1);
1051                 if (!entry)
1052                         goto out;
1053
1054                 /*
1055                  * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1056                  * feature flags.  Advertise all supported flags, including
1057                  * privileged attributes that require explicit opt-in from
1058                  * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1059                  * expected to derive it from supported XCR0.
1060                  */
1061                 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1062                 entry->ebx &= 0;
1063                 break;
1064         /* Intel PT */
1065         case 0x14:
1066                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1067                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1068                         break;
1069                 }
1070
1071                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1072                         if (!do_host_cpuid(array, function, i))
1073                                 goto out;
1074                 }
1075                 break;
1076         /* Intel AMX TILE */
1077         case 0x1d:
1078                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1079                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1080                         break;
1081                 }
1082
1083                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1084                         if (!do_host_cpuid(array, function, i))
1085                                 goto out;
1086                 }
1087                 break;
1088         case 0x1e: /* TMUL information */
1089                 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1090                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1091                         break;
1092                 }
1093                 break;
1094         case KVM_CPUID_SIGNATURE: {
1095                 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1096                 entry->eax = KVM_CPUID_FEATURES;
1097                 entry->ebx = sigptr[0];
1098                 entry->ecx = sigptr[1];
1099                 entry->edx = sigptr[2];
1100                 break;
1101         }
1102         case KVM_CPUID_FEATURES:
1103                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1104                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1105                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1106                              (1 << KVM_FEATURE_ASYNC_PF) |
1107                              (1 << KVM_FEATURE_PV_EOI) |
1108                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1109                              (1 << KVM_FEATURE_PV_UNHALT) |
1110                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1111                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1112                              (1 << KVM_FEATURE_PV_SEND_IPI) |
1113                              (1 << KVM_FEATURE_POLL_CONTROL) |
1114                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1115                              (1 << KVM_FEATURE_ASYNC_PF_INT);
1116
1117                 if (sched_info_on())
1118                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1119
1120                 entry->ebx = 0;
1121                 entry->ecx = 0;
1122                 entry->edx = 0;
1123                 break;
1124         case 0x80000000:
1125                 entry->eax = min(entry->eax, 0x80000021);
1126                 /*
1127                  * Serializing LFENCE is reported in a multitude of ways, and
1128                  * NullSegClearsBase is not reported in CPUID on Zen2; help
1129                  * userspace by providing the CPUID leaf ourselves.
1130                  *
1131                  * However, only do it if the host has CPUID leaf 0x8000001d.
1132                  * QEMU thinks that it can query the host blindly for that
1133                  * CPUID leaf if KVM reports that it supports 0x8000001d or
1134                  * above.  The processor merrily returns values from the
1135                  * highest Intel leaf which QEMU tries to use as the guest's
1136                  * 0x8000001d.  Even worse, this can result in an infinite
1137                  * loop if said highest leaf has no subleaves indexed by ECX.
1138                  */
1139                 if (entry->eax >= 0x8000001d &&
1140                     (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1141                      || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1142                         entry->eax = max(entry->eax, 0x80000021);
1143                 break;
1144         case 0x80000001:
1145                 entry->ebx &= ~GENMASK(27, 16);
1146                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1147                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1148                 break;
1149         case 0x80000006:
1150                 /* Drop reserved bits, pass host L2 cache and TLB info. */
1151                 entry->edx &= ~GENMASK(17, 16);
1152                 break;
1153         case 0x80000007: /* Advanced power management */
1154                 /* invariant TSC is CPUID.80000007H:EDX[8] */
1155                 entry->edx &= (1 << 8);
1156                 /* mask against host */
1157                 entry->edx &= boot_cpu_data.x86_power;
1158                 entry->eax = entry->ebx = entry->ecx = 0;
1159                 break;
1160         case 0x80000008: {
1161                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1162                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1163                 unsigned phys_as = entry->eax & 0xff;
1164
1165                 /*
1166                  * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1167                  * the guest operates in the same PA space as the host, i.e.
1168                  * reductions in MAXPHYADDR for memory encryption affect shadow
1169                  * paging, too.
1170                  *
1171                  * If TDP is enabled but an explicit guest MAXPHYADDR is not
1172                  * provided, use the raw bare metal MAXPHYADDR as reductions to
1173                  * the HPAs do not affect GPAs.
1174                  */
1175                 if (!tdp_enabled)
1176                         g_phys_as = boot_cpu_data.x86_phys_bits;
1177                 else if (!g_phys_as)
1178                         g_phys_as = phys_as;
1179
1180                 entry->eax = g_phys_as | (virt_as << 8);
1181                 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1182                 entry->edx = 0;
1183                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1184                 break;
1185         }
1186         case 0x8000000A:
1187                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1188                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1189                         break;
1190                 }
1191                 entry->eax = 1; /* SVM revision 1 */
1192                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1193                                    ASID emulation to nested SVM */
1194                 entry->ecx = 0; /* Reserved */
1195                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1196                 break;
1197         case 0x80000019:
1198                 entry->ecx = entry->edx = 0;
1199                 break;
1200         case 0x8000001a:
1201                 entry->eax &= GENMASK(2, 0);
1202                 entry->ebx = entry->ecx = entry->edx = 0;
1203                 break;
1204         case 0x8000001e:
1205                 break;
1206         case 0x8000001F:
1207                 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1208                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1209                 } else {
1210                         cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1211                         /* Clear NumVMPL since KVM does not support VMPL.  */
1212                         entry->ebx &= ~GENMASK(31, 12);
1213                         /*
1214                          * Enumerate '0' for "PA bits reduction", the adjusted
1215                          * MAXPHYADDR is enumerated directly (see 0x80000008).
1216                          */
1217                         entry->ebx &= ~GENMASK(11, 6);
1218                 }
1219                 break;
1220         case 0x80000020:
1221                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1222                 break;
1223         case 0x80000021:
1224                 entry->ebx = entry->ecx = entry->edx = 0;
1225                 /*
1226                  * Pass down these bits:
1227                  *    EAX      0      NNDBP, Processor ignores nested data breakpoints
1228                  *    EAX      2      LAS, LFENCE always serializing
1229                  *    EAX      6      NSCB, Null selector clear base
1230                  *
1231                  * Other defined bits are for MSRs that KVM does not expose:
1232                  *   EAX      3      SPCL, SMM page configuration lock
1233                  *   EAX      13     PCMSR, Prefetch control MSR
1234                  *
1235                  * KVM doesn't support SMM_CTL.
1236                  *   EAX       9     SMM_CTL MSR is not supported
1237                  */
1238                 entry->eax &= BIT(0) | BIT(2) | BIT(6);
1239                 entry->eax |= BIT(9);
1240                 if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC))
1241                         entry->eax |= BIT(2);
1242                 if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1243                         entry->eax |= BIT(6);
1244                 break;
1245         /*Add support for Centaur's CPUID instruction*/
1246         case 0xC0000000:
1247                 /*Just support up to 0xC0000004 now*/
1248                 entry->eax = min(entry->eax, 0xC0000004);
1249                 break;
1250         case 0xC0000001:
1251                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1252                 break;
1253         case 3: /* Processor serial number */
1254         case 5: /* MONITOR/MWAIT */
1255         case 0xC0000002:
1256         case 0xC0000003:
1257         case 0xC0000004:
1258         default:
1259                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1260                 break;
1261         }
1262
1263         r = 0;
1264
1265 out:
1266         put_cpu();
1267
1268         return r;
1269 }
1270
1271 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1272                          unsigned int type)
1273 {
1274         if (type == KVM_GET_EMULATED_CPUID)
1275                 return __do_cpuid_func_emulated(array, func);
1276
1277         return __do_cpuid_func(array, func);
1278 }
1279
1280 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1281
1282 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1283                           unsigned int type)
1284 {
1285         u32 limit;
1286         int r;
1287
1288         if (func == CENTAUR_CPUID_SIGNATURE &&
1289             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1290                 return 0;
1291
1292         r = do_cpuid_func(array, func, type);
1293         if (r)
1294                 return r;
1295
1296         limit = array->entries[array->nent - 1].eax;
1297         for (func = func + 1; func <= limit; ++func) {
1298                 r = do_cpuid_func(array, func, type);
1299                 if (r)
1300                         break;
1301         }
1302
1303         return r;
1304 }
1305
1306 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1307                                  __u32 num_entries, unsigned int ioctl_type)
1308 {
1309         int i;
1310         __u32 pad[3];
1311
1312         if (ioctl_type != KVM_GET_EMULATED_CPUID)
1313                 return false;
1314
1315         /*
1316          * We want to make sure that ->padding is being passed clean from
1317          * userspace in case we want to use it for something in the future.
1318          *
1319          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1320          * have to give ourselves satisfied only with the emulated side. /me
1321          * sheds a tear.
1322          */
1323         for (i = 0; i < num_entries; i++) {
1324                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1325                         return true;
1326
1327                 if (pad[0] || pad[1] || pad[2])
1328                         return true;
1329         }
1330         return false;
1331 }
1332
1333 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1334                             struct kvm_cpuid_entry2 __user *entries,
1335                             unsigned int type)
1336 {
1337         static const u32 funcs[] = {
1338                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1339         };
1340
1341         struct kvm_cpuid_array array = {
1342                 .nent = 0,
1343         };
1344         int r, i;
1345
1346         if (cpuid->nent < 1)
1347                 return -E2BIG;
1348         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1349                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1350
1351         if (sanity_check_entries(entries, cpuid->nent, type))
1352                 return -EINVAL;
1353
1354         array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1355         if (!array.entries)
1356                 return -ENOMEM;
1357
1358         array.maxnent = cpuid->nent;
1359
1360         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1361                 r = get_cpuid_func(&array, funcs[i], type);
1362                 if (r)
1363                         goto out_free;
1364         }
1365         cpuid->nent = array.nent;
1366
1367         if (copy_to_user(entries, array.entries,
1368                          array.nent * sizeof(struct kvm_cpuid_entry2)))
1369                 r = -EFAULT;
1370
1371 out_free:
1372         kvfree(array.entries);
1373         return r;
1374 }
1375
1376 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1377                                                     u32 function, u32 index)
1378 {
1379         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1380                                  function, index);
1381 }
1382 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1383
1384 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1385                                               u32 function)
1386 {
1387         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1388                                  function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1391
1392 /*
1393  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1394  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1395  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1396  * range.  Centaur/VIA follows Intel semantics.
1397  *
1398  * A leaf is considered out-of-range if its function is higher than the maximum
1399  * supported leaf of its associated class or if its associated class does not
1400  * exist.
1401  *
1402  * There are three primary classes to be considered, with their respective
1403  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1404  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1405  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1406  *
1407  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1408  *  - Hypervisor: 0x40000000 - 0x4fffffff
1409  *  - Extended:   0x80000000 - 0xbfffffff
1410  *  - Centaur:    0xc0000000 - 0xcfffffff
1411  *
1412  * The Hypervisor class is further subdivided into sub-classes that each act as
1413  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1414  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1415  * CPUID sub-classes are:
1416  *
1417  *  - HyperV:     0x40000000 - 0x400000ff
1418  *  - KVM:        0x40000100 - 0x400001ff
1419  */
1420 static struct kvm_cpuid_entry2 *
1421 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1422 {
1423         struct kvm_cpuid_entry2 *basic, *class;
1424         u32 function = *fn_ptr;
1425
1426         basic = kvm_find_cpuid_entry(vcpu, 0);
1427         if (!basic)
1428                 return NULL;
1429
1430         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1431             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1432                 return NULL;
1433
1434         if (function >= 0x40000000 && function <= 0x4fffffff)
1435                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1436         else if (function >= 0xc0000000)
1437                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1438         else
1439                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1440
1441         if (class && function <= class->eax)
1442                 return NULL;
1443
1444         /*
1445          * Leaf specific adjustments are also applied when redirecting to the
1446          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1447          * entry for CPUID.0xb.index (see below), then the output value for EDX
1448          * needs to be pulled from CPUID.0xb.1.
1449          */
1450         *fn_ptr = basic->eax;
1451
1452         /*
1453          * The class does not exist or the requested function is out of range;
1454          * the effective CPUID entry is the max basic leaf.  Note, the index of
1455          * the original requested leaf is observed!
1456          */
1457         return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1458 }
1459
1460 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1461                u32 *ecx, u32 *edx, bool exact_only)
1462 {
1463         u32 orig_function = *eax, function = *eax, index = *ecx;
1464         struct kvm_cpuid_entry2 *entry;
1465         bool exact, used_max_basic = false;
1466
1467         entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1468         exact = !!entry;
1469
1470         if (!entry && !exact_only) {
1471                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1472                 used_max_basic = !!entry;
1473         }
1474
1475         if (entry) {
1476                 *eax = entry->eax;
1477                 *ebx = entry->ebx;
1478                 *ecx = entry->ecx;
1479                 *edx = entry->edx;
1480                 if (function == 7 && index == 0) {
1481                         u64 data;
1482                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1483                             (data & TSX_CTRL_CPUID_CLEAR))
1484                                 *ebx &= ~(F(RTM) | F(HLE));
1485                 }
1486         } else {
1487                 *eax = *ebx = *ecx = *edx = 0;
1488                 /*
1489                  * When leaf 0BH or 1FH is defined, CL is pass-through
1490                  * and EDX is always the x2APIC ID, even for undefined
1491                  * subleaves. Index 1 will exist iff the leaf is
1492                  * implemented, so we pass through CL iff leaf 1
1493                  * exists. EDX can be copied from any existing index.
1494                  */
1495                 if (function == 0xb || function == 0x1f) {
1496                         entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1497                         if (entry) {
1498                                 *ecx = index & 0xff;
1499                                 *edx = entry->edx;
1500                         }
1501                 }
1502         }
1503         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1504                         used_max_basic);
1505         return exact;
1506 }
1507 EXPORT_SYMBOL_GPL(kvm_cpuid);
1508
1509 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1510 {
1511         u32 eax, ebx, ecx, edx;
1512
1513         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1514                 return 1;
1515
1516         eax = kvm_rax_read(vcpu);
1517         ecx = kvm_rcx_read(vcpu);
1518         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1519         kvm_rax_write(vcpu, eax);
1520         kvm_rbx_write(vcpu, ebx);
1521         kvm_rcx_write(vcpu, ecx);
1522         kvm_rdx_write(vcpu, edx);
1523         return kvm_skip_emulated_instruction(vcpu);
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);