EDAC/igen6: ecclog_llist can be static
[sfrench/cifs-2.6.git] / arch / x86 / kvm / cpuid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26
27 /*
28  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30  */
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35 {
36         int feature_bit = 0;
37         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38
39         xstate_bv &= XFEATURE_MASK_EXTEND;
40         while (xstate_bv) {
41                 if (xstate_bv & 0x1) {
42                         u32 eax, ebx, ecx, edx, offset;
43                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44                         offset = compacted ? ret : ebx;
45                         ret = max(ret, offset + eax);
46                 }
47
48                 xstate_bv >>= 1;
49                 feature_bit++;
50         }
51
52         return ret;
53 }
54
55 #define F feature_bit
56
57 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
58         struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
59 {
60         struct kvm_cpuid_entry2 *e;
61         int i;
62
63         for (i = 0; i < nent; i++) {
64                 e = &entries[i];
65
66                 if (e->function == function && (e->index == index ||
67                     !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
68                         return e;
69         }
70
71         return NULL;
72 }
73
74 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
75 {
76         struct kvm_cpuid_entry2 *best;
77
78         /*
79          * The existing code assumes virtual address is 48-bit or 57-bit in the
80          * canonical address checks; exit if it is ever changed.
81          */
82         best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
83         if (best) {
84                 int vaddr_bits = (best->eax & 0xff00) >> 8;
85
86                 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
87                         return -EINVAL;
88         }
89
90         return 0;
91 }
92
93 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
94 {
95         struct kvm_cpuid_entry2 *best;
96
97         best = kvm_find_cpuid_entry(vcpu, 1, 0);
98         if (best) {
99                 /* Update OSXSAVE bit */
100                 if (boot_cpu_has(X86_FEATURE_XSAVE))
101                         cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
102                                    kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
103
104                 cpuid_entry_change(best, X86_FEATURE_APIC,
105                            vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
106         }
107
108         best = kvm_find_cpuid_entry(vcpu, 7, 0);
109         if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
110                 cpuid_entry_change(best, X86_FEATURE_OSPKE,
111                                    kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
112
113         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
114         if (best)
115                 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
116
117         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
118         if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
119                      cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
120                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
121
122         best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
123         if (kvm_hlt_in_guest(vcpu->kvm) && best &&
124                 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
125                 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
126
127         /*
128          * save the feature bitmap to avoid cpuid lookup for every PV
129          * operation
130          */
131         if (best)
132                 vcpu->arch.pv_cpuid.features = best->eax;
133
134         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
135                 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
136                 if (best)
137                         cpuid_entry_change(best, X86_FEATURE_MWAIT,
138                                            vcpu->arch.ia32_misc_enable_msr &
139                                            MSR_IA32_MISC_ENABLE_MWAIT);
140         }
141 }
142
143 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
144 {
145         struct kvm_lapic *apic = vcpu->arch.apic;
146         struct kvm_cpuid_entry2 *best;
147
148         best = kvm_find_cpuid_entry(vcpu, 1, 0);
149         if (best && apic) {
150                 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
151                         apic->lapic_timer.timer_mode_mask = 3 << 17;
152                 else
153                         apic->lapic_timer.timer_mode_mask = 1 << 17;
154
155                 kvm_apic_set_version(vcpu);
156         }
157
158         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
159         if (!best)
160                 vcpu->arch.guest_supported_xcr0 = 0;
161         else
162                 vcpu->arch.guest_supported_xcr0 =
163                         (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
164
165         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
166         kvm_mmu_reset_context(vcpu);
167
168         kvm_pmu_refresh(vcpu);
169         vcpu->arch.cr4_guest_rsvd_bits =
170             __cr4_reserved_bits(guest_cpuid_has, vcpu);
171
172         /* Invoke the vendor callback only after the above state is updated. */
173         kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
174 }
175
176 static int is_efer_nx(void)
177 {
178         return host_efer & EFER_NX;
179 }
180
181 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
182 {
183         int i;
184         struct kvm_cpuid_entry2 *e, *entry;
185
186         entry = NULL;
187         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
188                 e = &vcpu->arch.cpuid_entries[i];
189                 if (e->function == 0x80000001) {
190                         entry = e;
191                         break;
192                 }
193         }
194         if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
195                 cpuid_entry_clear(entry, X86_FEATURE_NX);
196                 printk(KERN_INFO "kvm: guest NX capability removed\n");
197         }
198 }
199
200 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
201 {
202         struct kvm_cpuid_entry2 *best;
203
204         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
205         if (!best || best->eax < 0x80000008)
206                 goto not_found;
207         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
208         if (best)
209                 return best->eax & 0xff;
210 not_found:
211         return 36;
212 }
213
214 /* when an old userspace process fills a new kernel module */
215 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
216                              struct kvm_cpuid *cpuid,
217                              struct kvm_cpuid_entry __user *entries)
218 {
219         int r, i;
220         struct kvm_cpuid_entry *e = NULL;
221         struct kvm_cpuid_entry2 *e2 = NULL;
222
223         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
224                 return -E2BIG;
225
226         if (cpuid->nent) {
227                 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
228                 if (IS_ERR(e))
229                         return PTR_ERR(e);
230
231                 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
232                 if (!e2) {
233                         r = -ENOMEM;
234                         goto out_free_cpuid;
235                 }
236         }
237         for (i = 0; i < cpuid->nent; i++) {
238                 e2[i].function = e[i].function;
239                 e2[i].eax = e[i].eax;
240                 e2[i].ebx = e[i].ebx;
241                 e2[i].ecx = e[i].ecx;
242                 e2[i].edx = e[i].edx;
243                 e2[i].index = 0;
244                 e2[i].flags = 0;
245                 e2[i].padding[0] = 0;
246                 e2[i].padding[1] = 0;
247                 e2[i].padding[2] = 0;
248         }
249
250         r = kvm_check_cpuid(e2, cpuid->nent);
251         if (r) {
252                 kvfree(e2);
253                 goto out_free_cpuid;
254         }
255
256         kvfree(vcpu->arch.cpuid_entries);
257         vcpu->arch.cpuid_entries = e2;
258         vcpu->arch.cpuid_nent = cpuid->nent;
259
260         cpuid_fix_nx_cap(vcpu);
261         kvm_update_cpuid_runtime(vcpu);
262         kvm_vcpu_after_set_cpuid(vcpu);
263
264 out_free_cpuid:
265         kvfree(e);
266
267         return r;
268 }
269
270 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
271                               struct kvm_cpuid2 *cpuid,
272                               struct kvm_cpuid_entry2 __user *entries)
273 {
274         struct kvm_cpuid_entry2 *e2 = NULL;
275         int r;
276
277         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
278                 return -E2BIG;
279
280         if (cpuid->nent) {
281                 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
282                 if (IS_ERR(e2))
283                         return PTR_ERR(e2);
284         }
285
286         r = kvm_check_cpuid(e2, cpuid->nent);
287         if (r) {
288                 kvfree(e2);
289                 return r;
290         }
291
292         kvfree(vcpu->arch.cpuid_entries);
293         vcpu->arch.cpuid_entries = e2;
294         vcpu->arch.cpuid_nent = cpuid->nent;
295
296         kvm_update_cpuid_runtime(vcpu);
297         kvm_vcpu_after_set_cpuid(vcpu);
298
299         return 0;
300 }
301
302 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
303                               struct kvm_cpuid2 *cpuid,
304                               struct kvm_cpuid_entry2 __user *entries)
305 {
306         int r;
307
308         r = -E2BIG;
309         if (cpuid->nent < vcpu->arch.cpuid_nent)
310                 goto out;
311         r = -EFAULT;
312         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
313                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
314                 goto out;
315         return 0;
316
317 out:
318         cpuid->nent = vcpu->arch.cpuid_nent;
319         return r;
320 }
321
322 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
323 {
324         const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
325         struct kvm_cpuid_entry2 entry;
326
327         reverse_cpuid_check(leaf);
328         kvm_cpu_caps[leaf] &= mask;
329
330         cpuid_count(cpuid.function, cpuid.index,
331                     &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
332
333         kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
334 }
335
336 void kvm_set_cpu_caps(void)
337 {
338         unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
339 #ifdef CONFIG_X86_64
340         unsigned int f_gbpages = F(GBPAGES);
341         unsigned int f_lm = F(LM);
342 #else
343         unsigned int f_gbpages = 0;
344         unsigned int f_lm = 0;
345 #endif
346
347         BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
348                      sizeof(boot_cpu_data.x86_capability));
349
350         memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
351                sizeof(kvm_cpu_caps));
352
353         kvm_cpu_cap_mask(CPUID_1_ECX,
354                 /*
355                  * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
356                  * advertised to guests via CPUID!
357                  */
358                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
359                 0 /* DS-CPL, VMX, SMX, EST */ |
360                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
361                 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
362                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
363                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
364                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
365                 F(F16C) | F(RDRAND)
366         );
367         /* KVM emulates x2apic in software irrespective of host support. */
368         kvm_cpu_cap_set(X86_FEATURE_X2APIC);
369
370         kvm_cpu_cap_mask(CPUID_1_EDX,
371                 F(FPU) | F(VME) | F(DE) | F(PSE) |
372                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
373                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
374                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
375                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
376                 0 /* Reserved, DS, ACPI */ | F(MMX) |
377                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
378                 0 /* HTT, TM, Reserved, PBE */
379         );
380
381         kvm_cpu_cap_mask(CPUID_7_0_EBX,
382                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
383                 F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
384                 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
385                 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
386                 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
387         );
388
389         kvm_cpu_cap_mask(CPUID_7_ECX,
390                 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
391                 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
392                 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
393                 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
394         );
395         /* Set LA57 based on hardware capability. */
396         if (cpuid_ecx(7) & F(LA57))
397                 kvm_cpu_cap_set(X86_FEATURE_LA57);
398
399         /*
400          * PKU not yet implemented for shadow paging and requires OSPKE
401          * to be set on the host. Clear it if that is not the case
402          */
403         if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
404                 kvm_cpu_cap_clear(X86_FEATURE_PKU);
405
406         kvm_cpu_cap_mask(CPUID_7_EDX,
407                 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
408                 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
409                 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
410                 F(SERIALIZE) | F(TSXLDTRK)
411         );
412
413         /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
414         kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
415         kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
416
417         if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
418                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
419         if (boot_cpu_has(X86_FEATURE_STIBP))
420                 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
421         if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
422                 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
423
424         kvm_cpu_cap_mask(CPUID_7_1_EAX,
425                 F(AVX512_BF16)
426         );
427
428         kvm_cpu_cap_mask(CPUID_D_1_EAX,
429                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
430         );
431
432         kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
433                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
434                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
435                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
436                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
437                 F(TOPOEXT) | F(PERFCTR_CORE)
438         );
439
440         kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
441                 F(FPU) | F(VME) | F(DE) | F(PSE) |
442                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
443                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
444                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
445                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
446                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
447                 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
448                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
449         );
450
451         if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
452                 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
453
454         kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
455                 F(CLZERO) | F(XSAVEERPTR) |
456                 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
457                 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
458         );
459
460         /*
461          * AMD has separate bits for each SPEC_CTRL bit.
462          * arch/x86/kernel/cpu/bugs.c is kind enough to
463          * record that in cpufeatures so use them.
464          */
465         if (boot_cpu_has(X86_FEATURE_IBPB))
466                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
467         if (boot_cpu_has(X86_FEATURE_IBRS))
468                 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
469         if (boot_cpu_has(X86_FEATURE_STIBP))
470                 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
471         if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
472                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
473         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
474                 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
475         /*
476          * The preference is to use SPEC CTRL MSR instead of the
477          * VIRT_SPEC MSR.
478          */
479         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
480             !boot_cpu_has(X86_FEATURE_AMD_SSBD))
481                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
482
483         /*
484          * Hide all SVM features by default, SVM will set the cap bits for
485          * features it emulates and/or exposes for L1.
486          */
487         kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
488
489         kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
490                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
491                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
492                 F(PMM) | F(PMM_EN)
493         );
494 }
495 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
496
497 struct kvm_cpuid_array {
498         struct kvm_cpuid_entry2 *entries;
499         int maxnent;
500         int nent;
501 };
502
503 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
504                                               u32 function, u32 index)
505 {
506         struct kvm_cpuid_entry2 *entry;
507
508         if (array->nent >= array->maxnent)
509                 return NULL;
510
511         entry = &array->entries[array->nent++];
512
513         entry->function = function;
514         entry->index = index;
515         entry->flags = 0;
516
517         cpuid_count(entry->function, entry->index,
518                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
519
520         switch (function) {
521         case 4:
522         case 7:
523         case 0xb:
524         case 0xd:
525         case 0xf:
526         case 0x10:
527         case 0x12:
528         case 0x14:
529         case 0x17:
530         case 0x18:
531         case 0x1f:
532         case 0x8000001d:
533                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
534                 break;
535         }
536
537         return entry;
538 }
539
540 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
541 {
542         struct kvm_cpuid_entry2 *entry;
543
544         if (array->nent >= array->maxnent)
545                 return -E2BIG;
546
547         entry = &array->entries[array->nent];
548         entry->function = func;
549         entry->index = 0;
550         entry->flags = 0;
551
552         switch (func) {
553         case 0:
554                 entry->eax = 7;
555                 ++array->nent;
556                 break;
557         case 1:
558                 entry->ecx = F(MOVBE);
559                 ++array->nent;
560                 break;
561         case 7:
562                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
563                 entry->eax = 0;
564                 entry->ecx = F(RDPID);
565                 ++array->nent;
566         default:
567                 break;
568         }
569
570         return 0;
571 }
572
573 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
574 {
575         struct kvm_cpuid_entry2 *entry;
576         int r, i, max_idx;
577
578         /* all calls to cpuid_count() should be made on the same cpu */
579         get_cpu();
580
581         r = -E2BIG;
582
583         entry = do_host_cpuid(array, function, 0);
584         if (!entry)
585                 goto out;
586
587         switch (function) {
588         case 0:
589                 /* Limited to the highest leaf implemented in KVM. */
590                 entry->eax = min(entry->eax, 0x1fU);
591                 break;
592         case 1:
593                 cpuid_entry_override(entry, CPUID_1_EDX);
594                 cpuid_entry_override(entry, CPUID_1_ECX);
595                 break;
596         case 2:
597                 /*
598                  * On ancient CPUs, function 2 entries are STATEFUL.  That is,
599                  * CPUID(function=2, index=0) may return different results each
600                  * time, with the least-significant byte in EAX enumerating the
601                  * number of times software should do CPUID(2, 0).
602                  *
603                  * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
604                  * idiotic.  Intel's SDM states that EAX & 0xff "will always
605                  * return 01H. Software should ignore this value and not
606                  * interpret it as an informational descriptor", while AMD's
607                  * APM states that CPUID(2) is reserved.
608                  *
609                  * WARN if a frankenstein CPU that supports virtualization and
610                  * a stateful CPUID.0x2 is encountered.
611                  */
612                 WARN_ON_ONCE((entry->eax & 0xff) > 1);
613                 break;
614         /* functions 4 and 0x8000001d have additional index. */
615         case 4:
616         case 0x8000001d:
617                 /*
618                  * Read entries until the cache type in the previous entry is
619                  * zero, i.e. indicates an invalid entry.
620                  */
621                 for (i = 1; entry->eax & 0x1f; ++i) {
622                         entry = do_host_cpuid(array, function, i);
623                         if (!entry)
624                                 goto out;
625                 }
626                 break;
627         case 6: /* Thermal management */
628                 entry->eax = 0x4; /* allow ARAT */
629                 entry->ebx = 0;
630                 entry->ecx = 0;
631                 entry->edx = 0;
632                 break;
633         /* function 7 has additional index. */
634         case 7:
635                 entry->eax = min(entry->eax, 1u);
636                 cpuid_entry_override(entry, CPUID_7_0_EBX);
637                 cpuid_entry_override(entry, CPUID_7_ECX);
638                 cpuid_entry_override(entry, CPUID_7_EDX);
639
640                 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
641                 if (entry->eax == 1) {
642                         entry = do_host_cpuid(array, function, 1);
643                         if (!entry)
644                                 goto out;
645
646                         cpuid_entry_override(entry, CPUID_7_1_EAX);
647                         entry->ebx = 0;
648                         entry->ecx = 0;
649                         entry->edx = 0;
650                 }
651                 break;
652         case 9:
653                 break;
654         case 0xa: { /* Architectural Performance Monitoring */
655                 struct x86_pmu_capability cap;
656                 union cpuid10_eax eax;
657                 union cpuid10_edx edx;
658
659                 perf_get_x86_pmu_capability(&cap);
660
661                 /*
662                  * Only support guest architectural pmu on a host
663                  * with architectural pmu.
664                  */
665                 if (!cap.version)
666                         memset(&cap, 0, sizeof(cap));
667
668                 eax.split.version_id = min(cap.version, 2);
669                 eax.split.num_counters = cap.num_counters_gp;
670                 eax.split.bit_width = cap.bit_width_gp;
671                 eax.split.mask_length = cap.events_mask_len;
672
673                 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
674                 edx.split.bit_width_fixed = cap.bit_width_fixed;
675                 edx.split.reserved = 0;
676
677                 entry->eax = eax.full;
678                 entry->ebx = cap.events_mask;
679                 entry->ecx = 0;
680                 entry->edx = edx.full;
681                 break;
682         }
683         /*
684          * Per Intel's SDM, the 0x1f is a superset of 0xb,
685          * thus they can be handled by common code.
686          */
687         case 0x1f:
688         case 0xb:
689                 /*
690                  * Populate entries until the level type (ECX[15:8]) of the
691                  * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
692                  * the starting entry, filled by the primary do_host_cpuid().
693                  */
694                 for (i = 1; entry->ecx & 0xff00; ++i) {
695                         entry = do_host_cpuid(array, function, i);
696                         if (!entry)
697                                 goto out;
698                 }
699                 break;
700         case 0xd:
701                 entry->eax &= supported_xcr0;
702                 entry->ebx = xstate_required_size(supported_xcr0, false);
703                 entry->ecx = entry->ebx;
704                 entry->edx &= supported_xcr0 >> 32;
705                 if (!supported_xcr0)
706                         break;
707
708                 entry = do_host_cpuid(array, function, 1);
709                 if (!entry)
710                         goto out;
711
712                 cpuid_entry_override(entry, CPUID_D_1_EAX);
713                 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
714                         entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
715                                                           true);
716                 else {
717                         WARN_ON_ONCE(supported_xss != 0);
718                         entry->ebx = 0;
719                 }
720                 entry->ecx &= supported_xss;
721                 entry->edx &= supported_xss >> 32;
722
723                 for (i = 2; i < 64; ++i) {
724                         bool s_state;
725                         if (supported_xcr0 & BIT_ULL(i))
726                                 s_state = false;
727                         else if (supported_xss & BIT_ULL(i))
728                                 s_state = true;
729                         else
730                                 continue;
731
732                         entry = do_host_cpuid(array, function, i);
733                         if (!entry)
734                                 goto out;
735
736                         /*
737                          * The supported check above should have filtered out
738                          * invalid sub-leafs.  Only valid sub-leafs should
739                          * reach this point, and they should have a non-zero
740                          * save state size.  Furthermore, check whether the
741                          * processor agrees with supported_xcr0/supported_xss
742                          * on whether this is an XCR0- or IA32_XSS-managed area.
743                          */
744                         if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
745                                 --array->nent;
746                                 continue;
747                         }
748                         entry->edx = 0;
749                 }
750                 break;
751         /* Intel PT */
752         case 0x14:
753                 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
754                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
755                         break;
756                 }
757
758                 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
759                         if (!do_host_cpuid(array, function, i))
760                                 goto out;
761                 }
762                 break;
763         case KVM_CPUID_SIGNATURE: {
764                 static const char signature[12] = "KVMKVMKVM\0\0";
765                 const u32 *sigptr = (const u32 *)signature;
766                 entry->eax = KVM_CPUID_FEATURES;
767                 entry->ebx = sigptr[0];
768                 entry->ecx = sigptr[1];
769                 entry->edx = sigptr[2];
770                 break;
771         }
772         case KVM_CPUID_FEATURES:
773                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
774                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
775                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
776                              (1 << KVM_FEATURE_ASYNC_PF) |
777                              (1 << KVM_FEATURE_PV_EOI) |
778                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
779                              (1 << KVM_FEATURE_PV_UNHALT) |
780                              (1 << KVM_FEATURE_PV_TLB_FLUSH) |
781                              (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
782                              (1 << KVM_FEATURE_PV_SEND_IPI) |
783                              (1 << KVM_FEATURE_POLL_CONTROL) |
784                              (1 << KVM_FEATURE_PV_SCHED_YIELD) |
785                              (1 << KVM_FEATURE_ASYNC_PF_INT);
786
787                 if (sched_info_on())
788                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
789
790                 entry->ebx = 0;
791                 entry->ecx = 0;
792                 entry->edx = 0;
793                 break;
794         case 0x80000000:
795                 entry->eax = min(entry->eax, 0x8000001f);
796                 break;
797         case 0x80000001:
798                 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
799                 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
800                 break;
801         case 0x80000006:
802                 /* L2 cache and TLB: pass through host info. */
803                 break;
804         case 0x80000007: /* Advanced power management */
805                 /* invariant TSC is CPUID.80000007H:EDX[8] */
806                 entry->edx &= (1 << 8);
807                 /* mask against host */
808                 entry->edx &= boot_cpu_data.x86_power;
809                 entry->eax = entry->ebx = entry->ecx = 0;
810                 break;
811         case 0x80000008: {
812                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
813                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
814                 unsigned phys_as = entry->eax & 0xff;
815
816                 if (!g_phys_as)
817                         g_phys_as = phys_as;
818                 entry->eax = g_phys_as | (virt_as << 8);
819                 entry->edx = 0;
820                 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
821                 break;
822         }
823         case 0x8000000A:
824                 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
825                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
826                         break;
827                 }
828                 entry->eax = 1; /* SVM revision 1 */
829                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
830                                    ASID emulation to nested SVM */
831                 entry->ecx = 0; /* Reserved */
832                 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
833                 break;
834         case 0x80000019:
835                 entry->ecx = entry->edx = 0;
836                 break;
837         case 0x8000001a:
838         case 0x8000001e:
839                 break;
840         /* Support memory encryption cpuid if host supports it */
841         case 0x8000001F:
842                 if (!boot_cpu_has(X86_FEATURE_SEV))
843                         entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
844                 break;
845         /*Add support for Centaur's CPUID instruction*/
846         case 0xC0000000:
847                 /*Just support up to 0xC0000004 now*/
848                 entry->eax = min(entry->eax, 0xC0000004);
849                 break;
850         case 0xC0000001:
851                 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
852                 break;
853         case 3: /* Processor serial number */
854         case 5: /* MONITOR/MWAIT */
855         case 0xC0000002:
856         case 0xC0000003:
857         case 0xC0000004:
858         default:
859                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
860                 break;
861         }
862
863         r = 0;
864
865 out:
866         put_cpu();
867
868         return r;
869 }
870
871 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
872                          unsigned int type)
873 {
874         if (type == KVM_GET_EMULATED_CPUID)
875                 return __do_cpuid_func_emulated(array, func);
876
877         return __do_cpuid_func(array, func);
878 }
879
880 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
881
882 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
883                           unsigned int type)
884 {
885         u32 limit;
886         int r;
887
888         if (func == CENTAUR_CPUID_SIGNATURE &&
889             boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
890                 return 0;
891
892         r = do_cpuid_func(array, func, type);
893         if (r)
894                 return r;
895
896         limit = array->entries[array->nent - 1].eax;
897         for (func = func + 1; func <= limit; ++func) {
898                 r = do_cpuid_func(array, func, type);
899                 if (r)
900                         break;
901         }
902
903         return r;
904 }
905
906 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
907                                  __u32 num_entries, unsigned int ioctl_type)
908 {
909         int i;
910         __u32 pad[3];
911
912         if (ioctl_type != KVM_GET_EMULATED_CPUID)
913                 return false;
914
915         /*
916          * We want to make sure that ->padding is being passed clean from
917          * userspace in case we want to use it for something in the future.
918          *
919          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
920          * have to give ourselves satisfied only with the emulated side. /me
921          * sheds a tear.
922          */
923         for (i = 0; i < num_entries; i++) {
924                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
925                         return true;
926
927                 if (pad[0] || pad[1] || pad[2])
928                         return true;
929         }
930         return false;
931 }
932
933 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
934                             struct kvm_cpuid_entry2 __user *entries,
935                             unsigned int type)
936 {
937         static const u32 funcs[] = {
938                 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
939         };
940
941         struct kvm_cpuid_array array = {
942                 .nent = 0,
943         };
944         int r, i;
945
946         if (cpuid->nent < 1)
947                 return -E2BIG;
948         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
949                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
950
951         if (sanity_check_entries(entries, cpuid->nent, type))
952                 return -EINVAL;
953
954         array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
955                                            cpuid->nent));
956         if (!array.entries)
957                 return -ENOMEM;
958
959         array.maxnent = cpuid->nent;
960
961         for (i = 0; i < ARRAY_SIZE(funcs); i++) {
962                 r = get_cpuid_func(&array, funcs[i], type);
963                 if (r)
964                         goto out_free;
965         }
966         cpuid->nent = array.nent;
967
968         if (copy_to_user(entries, array.entries,
969                          array.nent * sizeof(struct kvm_cpuid_entry2)))
970                 r = -EFAULT;
971
972 out_free:
973         vfree(array.entries);
974         return r;
975 }
976
977 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
978                                               u32 function, u32 index)
979 {
980         return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
981                                  function, index);
982 }
983 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
984
985 /*
986  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
987  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
988  * returns all zeroes for any undefined leaf, whether or not the leaf is in
989  * range.  Centaur/VIA follows Intel semantics.
990  *
991  * A leaf is considered out-of-range if its function is higher than the maximum
992  * supported leaf of its associated class or if its associated class does not
993  * exist.
994  *
995  * There are three primary classes to be considered, with their respective
996  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
997  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
998  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
999  *
1000  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1001  *  - Hypervisor: 0x40000000 - 0x4fffffff
1002  *  - Extended:   0x80000000 - 0xbfffffff
1003  *  - Centaur:    0xc0000000 - 0xcfffffff
1004  *
1005  * The Hypervisor class is further subdivided into sub-classes that each act as
1006  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
1007  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1008  * CPUID sub-classes are:
1009  *
1010  *  - HyperV:     0x40000000 - 0x400000ff
1011  *  - KVM:        0x40000100 - 0x400001ff
1012  */
1013 static struct kvm_cpuid_entry2 *
1014 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1015 {
1016         struct kvm_cpuid_entry2 *basic, *class;
1017         u32 function = *fn_ptr;
1018
1019         basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1020         if (!basic)
1021                 return NULL;
1022
1023         if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1024             is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1025                 return NULL;
1026
1027         if (function >= 0x40000000 && function <= 0x4fffffff)
1028                 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1029         else if (function >= 0xc0000000)
1030                 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1031         else
1032                 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1033
1034         if (class && function <= class->eax)
1035                 return NULL;
1036
1037         /*
1038          * Leaf specific adjustments are also applied when redirecting to the
1039          * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1040          * entry for CPUID.0xb.index (see below), then the output value for EDX
1041          * needs to be pulled from CPUID.0xb.1.
1042          */
1043         *fn_ptr = basic->eax;
1044
1045         /*
1046          * The class does not exist or the requested function is out of range;
1047          * the effective CPUID entry is the max basic leaf.  Note, the index of
1048          * the original requested leaf is observed!
1049          */
1050         return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1051 }
1052
1053 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1054                u32 *ecx, u32 *edx, bool exact_only)
1055 {
1056         u32 orig_function = *eax, function = *eax, index = *ecx;
1057         struct kvm_cpuid_entry2 *entry;
1058         bool exact, used_max_basic = false;
1059
1060         entry = kvm_find_cpuid_entry(vcpu, function, index);
1061         exact = !!entry;
1062
1063         if (!entry && !exact_only) {
1064                 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1065                 used_max_basic = !!entry;
1066         }
1067
1068         if (entry) {
1069                 *eax = entry->eax;
1070                 *ebx = entry->ebx;
1071                 *ecx = entry->ecx;
1072                 *edx = entry->edx;
1073                 if (function == 7 && index == 0) {
1074                         u64 data;
1075                         if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1076                             (data & TSX_CTRL_CPUID_CLEAR))
1077                                 *ebx &= ~(F(RTM) | F(HLE));
1078                 }
1079         } else {
1080                 *eax = *ebx = *ecx = *edx = 0;
1081                 /*
1082                  * When leaf 0BH or 1FH is defined, CL is pass-through
1083                  * and EDX is always the x2APIC ID, even for undefined
1084                  * subleaves. Index 1 will exist iff the leaf is
1085                  * implemented, so we pass through CL iff leaf 1
1086                  * exists. EDX can be copied from any existing index.
1087                  */
1088                 if (function == 0xb || function == 0x1f) {
1089                         entry = kvm_find_cpuid_entry(vcpu, function, 1);
1090                         if (entry) {
1091                                 *ecx = index & 0xff;
1092                                 *edx = entry->edx;
1093                         }
1094                 }
1095         }
1096         trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1097                         used_max_basic);
1098         return exact;
1099 }
1100 EXPORT_SYMBOL_GPL(kvm_cpuid);
1101
1102 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1103 {
1104         u32 eax, ebx, ecx, edx;
1105
1106         if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1107                 return 1;
1108
1109         eax = kvm_rax_read(vcpu);
1110         ecx = kvm_rcx_read(vcpu);
1111         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1112         kvm_rax_write(vcpu, eax);
1113         kvm_rbx_write(vcpu, ebx);
1114         kvm_rcx_write(vcpu, ecx);
1115         kvm_rdx_write(vcpu, edx);
1116         return kvm_skip_emulated_instruction(vcpu);
1117 }
1118 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);