selinux: kill 'flags' argument in avc_has_perm_flags() and avc_audit()
[sfrench/cifs-2.6.git] / arch / x86 / kernel / umip.c
1 /*
2  * umip.c Emulation for instruction protected by the User-Mode Instruction
3  * Prevention feature
4  *
5  * Copyright (c) 2017, Intel Corporation.
6  * Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
7  */
8
9 #include <linux/uaccess.h>
10 #include <asm/umip.h>
11 #include <asm/traps.h>
12 #include <asm/insn.h>
13 #include <asm/insn-eval.h>
14 #include <linux/ratelimit.h>
15
16 #undef pr_fmt
17 #define pr_fmt(fmt) "umip: " fmt
18
19 /** DOC: Emulation for User-Mode Instruction Prevention (UMIP)
20  *
21  * User-Mode Instruction Prevention is a security feature present in recent
22  * x86 processors that, when enabled, prevents a group of instructions (SGDT,
23  * SIDT, SLDT, SMSW and STR) from being run in user mode by issuing a general
24  * protection fault if the instruction is executed with CPL > 0.
25  *
26  * Rather than relaying to the user space the general protection fault caused by
27  * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be
28  * trapped and emulate the result of such instructions to provide dummy values.
29  * This allows to both conserve the current kernel behavior and not reveal the
30  * system resources that UMIP intends to protect (i.e., the locations of the
31  * global descriptor and interrupt descriptor tables, the segment selectors of
32  * the local descriptor table, the value of the task state register and the
33  * contents of the CR0 register).
34  *
35  * This emulation is needed because certain applications (e.g., WineHQ and
36  * DOSEMU2) rely on this subset of instructions to function.
37  *
38  * The instructions protected by UMIP can be split in two groups. Those which
39  * return a kernel memory address (SGDT and SIDT) and those which return a
40  * value (SLDT, STR and SMSW).
41  *
42  * For the instructions that return a kernel memory address, applications
43  * such as WineHQ rely on the result being located in the kernel memory space,
44  * not the actual location of the table. The result is emulated as a hard-coded
45  * value that, lies close to the top of the kernel memory. The limit for the GDT
46  * and the IDT are set to zero.
47  *
48  * The instruction SMSW is emulated to return the value that the register CR0
49  * has at boot time as set in the head_32.
50  * SLDT and STR are emulated to return the values that the kernel programmatically
51  * assigns:
52  * - SLDT returns (GDT_ENTRY_LDT * 8) if an LDT has been set, 0 if not.
53  * - STR returns (GDT_ENTRY_TSS * 8).
54  *
55  * Emulation is provided for both 32-bit and 64-bit processes.
56  *
57  * Care is taken to appropriately emulate the results when segmentation is
58  * used. That is, rather than relying on USER_DS and USER_CS, the function
59  * insn_get_addr_ref() inspects the segment descriptor pointed by the
60  * registers in pt_regs. This ensures that we correctly obtain the segment
61  * base address and the address and operand sizes even if the user space
62  * application uses a local descriptor table.
63  */
64
65 #define UMIP_DUMMY_GDT_BASE 0xfffffffffffe0000ULL
66 #define UMIP_DUMMY_IDT_BASE 0xffffffffffff0000ULL
67
68 /*
69  * The SGDT and SIDT instructions store the contents of the global descriptor
70  * table and interrupt table registers, respectively. The destination is a
71  * memory operand of X+2 bytes. X bytes are used to store the base address of
72  * the table and 2 bytes are used to store the limit. In 32-bit processes X
73  * has a value of 4, in 64-bit processes X has a value of 8.
74  */
75 #define UMIP_GDT_IDT_BASE_SIZE_64BIT 8
76 #define UMIP_GDT_IDT_BASE_SIZE_32BIT 4
77 #define UMIP_GDT_IDT_LIMIT_SIZE 2
78
79 #define UMIP_INST_SGDT  0       /* 0F 01 /0 */
80 #define UMIP_INST_SIDT  1       /* 0F 01 /1 */
81 #define UMIP_INST_SMSW  2       /* 0F 01 /4 */
82 #define UMIP_INST_SLDT  3       /* 0F 00 /0 */
83 #define UMIP_INST_STR   4       /* 0F 00 /1 */
84
85 static const char * const umip_insns[5] = {
86         [UMIP_INST_SGDT] = "SGDT",
87         [UMIP_INST_SIDT] = "SIDT",
88         [UMIP_INST_SMSW] = "SMSW",
89         [UMIP_INST_SLDT] = "SLDT",
90         [UMIP_INST_STR] = "STR",
91 };
92
93 #define umip_pr_err(regs, fmt, ...) \
94         umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__)
95 #define umip_pr_warn(regs, fmt, ...) \
96         umip_printk(regs, KERN_WARNING, fmt,  ##__VA_ARGS__)
97
98 /**
99  * umip_printk() - Print a rate-limited message
100  * @regs:       Register set with the context in which the warning is printed
101  * @log_level:  Kernel log level to print the message
102  * @fmt:        The text string to print
103  *
104  * Print the text contained in @fmt. The print rate is limited to bursts of 5
105  * messages every two minutes. The purpose of this customized version of
106  * printk() is to print messages when user space processes use any of the
107  * UMIP-protected instructions. Thus, the printed text is prepended with the
108  * task name and process ID number of the current task as well as the
109  * instruction and stack pointers in @regs as seen when entering kernel mode.
110  *
111  * Returns:
112  *
113  * None.
114  */
115 static __printf(3, 4)
116 void umip_printk(const struct pt_regs *regs, const char *log_level,
117                  const char *fmt, ...)
118 {
119         /* Bursts of 5 messages every two minutes */
120         static DEFINE_RATELIMIT_STATE(ratelimit, 2 * 60 * HZ, 5);
121         struct task_struct *tsk = current;
122         struct va_format vaf;
123         va_list args;
124
125         if (!__ratelimit(&ratelimit))
126                 return;
127
128         va_start(args, fmt);
129         vaf.fmt = fmt;
130         vaf.va = &args;
131         printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level, tsk->comm,
132                task_pid_nr(tsk), regs->ip, regs->sp, &vaf);
133         va_end(args);
134 }
135
136 /**
137  * identify_insn() - Identify a UMIP-protected instruction
138  * @insn:       Instruction structure with opcode and ModRM byte.
139  *
140  * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected
141  * instruction that can be emulated.
142  *
143  * Returns:
144  *
145  * On success, a constant identifying a specific UMIP-protected instruction that
146  * can be emulated.
147  *
148  * -EINVAL on error or when not an UMIP-protected instruction that can be
149  * emulated.
150  */
151 static int identify_insn(struct insn *insn)
152 {
153         /* By getting modrm we also get the opcode. */
154         insn_get_modrm(insn);
155
156         if (!insn->modrm.nbytes)
157                 return -EINVAL;
158
159         /* All the instructions of interest start with 0x0f. */
160         if (insn->opcode.bytes[0] != 0xf)
161                 return -EINVAL;
162
163         if (insn->opcode.bytes[1] == 0x1) {
164                 switch (X86_MODRM_REG(insn->modrm.value)) {
165                 case 0:
166                         return UMIP_INST_SGDT;
167                 case 1:
168                         return UMIP_INST_SIDT;
169                 case 4:
170                         return UMIP_INST_SMSW;
171                 default:
172                         return -EINVAL;
173                 }
174         } else if (insn->opcode.bytes[1] == 0x0) {
175                 if (X86_MODRM_REG(insn->modrm.value) == 0)
176                         return UMIP_INST_SLDT;
177                 else if (X86_MODRM_REG(insn->modrm.value) == 1)
178                         return UMIP_INST_STR;
179                 else
180                         return -EINVAL;
181         } else {
182                 return -EINVAL;
183         }
184 }
185
186 /**
187  * emulate_umip_insn() - Emulate UMIP instructions and return dummy values
188  * @insn:       Instruction structure with operands
189  * @umip_inst:  A constant indicating the instruction to emulate
190  * @data:       Buffer into which the dummy result is stored
191  * @data_size:  Size of the emulated result
192  * @x86_64:     true if process is 64-bit, false otherwise
193  *
194  * Emulate an instruction protected by UMIP and provide a dummy result. The
195  * result of the emulation is saved in @data. The size of the results depends
196  * on both the instruction and type of operand (register vs memory address).
197  * The size of the result is updated in @data_size. Caller is responsible
198  * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE +
199  * UMIP_GDT_IDT_LIMIT_SIZE bytes.
200  *
201  * Returns:
202  *
203  * 0 on success, -EINVAL on error while emulating.
204  */
205 static int emulate_umip_insn(struct insn *insn, int umip_inst,
206                              unsigned char *data, int *data_size, bool x86_64)
207 {
208         if (!data || !data_size || !insn)
209                 return -EINVAL;
210         /*
211          * These two instructions return the base address and limit of the
212          * global and interrupt descriptor table, respectively. According to the
213          * Intel Software Development manual, the base address can be 24-bit,
214          * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is
215          * 16-bit, the returned value of the base address is supposed to be a
216          * zero-extended 24-byte number. However, it seems that a 32-byte number
217          * is always returned irrespective of the operand size.
218          */
219         if (umip_inst == UMIP_INST_SGDT || umip_inst == UMIP_INST_SIDT) {
220                 u64 dummy_base_addr;
221                 u16 dummy_limit = 0;
222
223                 /* SGDT and SIDT do not use registers operands. */
224                 if (X86_MODRM_MOD(insn->modrm.value) == 3)
225                         return -EINVAL;
226
227                 if (umip_inst == UMIP_INST_SGDT)
228                         dummy_base_addr = UMIP_DUMMY_GDT_BASE;
229                 else
230                         dummy_base_addr = UMIP_DUMMY_IDT_BASE;
231
232                 /*
233                  * 64-bit processes use the entire dummy base address.
234                  * 32-bit processes use the lower 32 bits of the base address.
235                  * dummy_base_addr is always 64 bits, but we memcpy the correct
236                  * number of bytes from it to the destination.
237                  */
238                 if (x86_64)
239                         *data_size = UMIP_GDT_IDT_BASE_SIZE_64BIT;
240                 else
241                         *data_size = UMIP_GDT_IDT_BASE_SIZE_32BIT;
242
243                 memcpy(data + 2, &dummy_base_addr, *data_size);
244
245                 *data_size += UMIP_GDT_IDT_LIMIT_SIZE;
246                 memcpy(data, &dummy_limit, UMIP_GDT_IDT_LIMIT_SIZE);
247
248         } else if (umip_inst == UMIP_INST_SMSW || umip_inst == UMIP_INST_SLDT ||
249                    umip_inst == UMIP_INST_STR) {
250                 unsigned long dummy_value;
251
252                 if (umip_inst == UMIP_INST_SMSW) {
253                         dummy_value = CR0_STATE;
254                 } else if (umip_inst == UMIP_INST_STR) {
255                         dummy_value = GDT_ENTRY_TSS * 8;
256                 } else if (umip_inst == UMIP_INST_SLDT) {
257 #ifdef CONFIG_MODIFY_LDT_SYSCALL
258                         down_read(&current->mm->context.ldt_usr_sem);
259                         if (current->mm->context.ldt)
260                                 dummy_value = GDT_ENTRY_LDT * 8;
261                         else
262                                 dummy_value = 0;
263                         up_read(&current->mm->context.ldt_usr_sem);
264 #else
265                         dummy_value = 0;
266 #endif
267                 }
268
269                 /*
270                  * For these 3 instructions, the number
271                  * of bytes to be copied in the result buffer is determined
272                  * by whether the operand is a register or a memory location.
273                  * If operand is a register, return as many bytes as the operand
274                  * size. If operand is memory, return only the two least
275                  * significant bytes.
276                  */
277                 if (X86_MODRM_MOD(insn->modrm.value) == 3)
278                         *data_size = insn->opnd_bytes;
279                 else
280                         *data_size = 2;
281
282                 memcpy(data, &dummy_value, *data_size);
283         } else {
284                 return -EINVAL;
285         }
286
287         return 0;
288 }
289
290 /**
291  * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR
292  * @addr:       Address that caused the signal
293  * @regs:       Register set containing the instruction pointer
294  *
295  * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is
296  * intended to be used to provide a segmentation fault when the result of the
297  * UMIP emulation could not be copied to the user space memory.
298  *
299  * Returns: none
300  */
301 static void force_sig_info_umip_fault(void __user *addr, struct pt_regs *regs)
302 {
303         struct task_struct *tsk = current;
304
305         tsk->thread.cr2         = (unsigned long)addr;
306         tsk->thread.error_code  = X86_PF_USER | X86_PF_WRITE;
307         tsk->thread.trap_nr     = X86_TRAP_PF;
308
309         force_sig_fault(SIGSEGV, SEGV_MAPERR, addr);
310
311         if (!(show_unhandled_signals && unhandled_signal(tsk, SIGSEGV)))
312                 return;
313
314         umip_pr_err(regs, "segfault in emulation. error%x\n",
315                     X86_PF_USER | X86_PF_WRITE);
316 }
317
318 /**
319  * fixup_umip_exception() - Fixup a general protection fault caused by UMIP
320  * @regs:       Registers as saved when entering the #GP handler
321  *
322  * The instructions SGDT, SIDT, STR, SMSW and SLDT cause a general protection
323  * fault if executed with CPL > 0 (i.e., from user space). This function fixes
324  * the exception up and provides dummy results for SGDT, SIDT and SMSW; STR
325  * and SLDT are not fixed up.
326  *
327  * If operands are memory addresses, results are copied to user-space memory as
328  * indicated by the instruction pointed by eIP using the registers indicated in
329  * the instruction operands. If operands are registers, results are copied into
330  * the context that was saved when entering kernel mode.
331  *
332  * Returns:
333  *
334  * True if emulation was successful; false if not.
335  */
336 bool fixup_umip_exception(struct pt_regs *regs)
337 {
338         int nr_copied, reg_offset, dummy_data_size, umip_inst;
339         /* 10 bytes is the maximum size of the result of UMIP instructions */
340         unsigned char dummy_data[10] = { 0 };
341         unsigned char buf[MAX_INSN_SIZE];
342         unsigned long *reg_addr;
343         void __user *uaddr;
344         struct insn insn;
345
346         if (!regs)
347                 return false;
348
349         nr_copied = insn_fetch_from_user(regs, buf);
350
351         /*
352          * The insn_fetch_from_user above could have failed if user code
353          * is protected by a memory protection key. Give up on emulation
354          * in such a case.  Should we issue a page fault?
355          */
356         if (!nr_copied)
357                 return false;
358
359         if (!insn_decode_from_regs(&insn, regs, buf, nr_copied))
360                 return false;
361
362         umip_inst = identify_insn(&insn);
363         if (umip_inst < 0)
364                 return false;
365
366         umip_pr_warn(regs, "%s instruction cannot be used by applications.\n",
367                         umip_insns[umip_inst]);
368
369         umip_pr_warn(regs, "For now, expensive software emulation returns the result.\n");
370
371         if (emulate_umip_insn(&insn, umip_inst, dummy_data, &dummy_data_size,
372                               user_64bit_mode(regs)))
373                 return false;
374
375         /*
376          * If operand is a register, write result to the copy of the register
377          * value that was pushed to the stack when entering into kernel mode.
378          * Upon exit, the value we write will be restored to the actual hardware
379          * register.
380          */
381         if (X86_MODRM_MOD(insn.modrm.value) == 3) {
382                 reg_offset = insn_get_modrm_rm_off(&insn, regs);
383
384                 /*
385                  * Negative values are usually errors. In memory addressing,
386                  * the exception is -EDOM. Since we expect a register operand,
387                  * all negative values are errors.
388                  */
389                 if (reg_offset < 0)
390                         return false;
391
392                 reg_addr = (unsigned long *)((unsigned long)regs + reg_offset);
393                 memcpy(reg_addr, dummy_data, dummy_data_size);
394         } else {
395                 uaddr = insn_get_addr_ref(&insn, regs);
396                 if ((unsigned long)uaddr == -1L)
397                         return false;
398
399                 nr_copied = copy_to_user(uaddr, dummy_data, dummy_data_size);
400                 if (nr_copied  > 0) {
401                         /*
402                          * If copy fails, send a signal and tell caller that
403                          * fault was fixed up.
404                          */
405                         force_sig_info_umip_fault(uaddr, regs);
406                         return true;
407                 }
408         }
409
410         /* increase IP to let the program keep going */
411         regs->ip += insn.length;
412         return true;
413 }