Merge branch 'kcsan.2020.11.06a' into HEAD
[sfrench/cifs-2.6.git] / arch / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *      x86 SMP booting functions
4  *
5  *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *      Much of the core SMP work is based on previous work by Thomas Radke, to
10  *      whom a great many thanks are extended.
11  *
12  *      Thanks to Intel for making available several different Pentium,
13  *      Pentium Pro and Pentium-II/Xeon MP machines.
14  *      Original development of Linux SMP code supported by Caldera.
15  *
16  *      Fixes
17  *              Felix Koop      :       NR_CPUS used properly
18  *              Jose Renau      :       Handle single CPU case.
19  *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
20  *              Greg Wright     :       Fix for kernel stacks panic.
21  *              Erich Boleyn    :       MP v1.4 and additional changes.
22  *      Matthias Sattler        :       Changes for 2.1 kernel map.
23  *      Michel Lespinasse       :       Changes for 2.1 kernel map.
24  *      Michael Chastain        :       Change trampoline.S to gnu as.
25  *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
26  *              Ingo Molnar     :       Added APIC timers, based on code
27  *                                      from Jose Renau
28  *              Ingo Molnar     :       various cleanups and rewrites
29  *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
30  *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
31  *      Andi Kleen              :       Changed for SMP boot into long mode.
32  *              Martin J. Bligh :       Added support for multi-quad systems
33  *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
34  *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *      Ashok Raj               :       CPU hotplug support
37  *      Glauber Costa           :       i386 and x86_64 integration
38  */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
84
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92
93 /* representing HT, core, and die siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
96
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
98
99 /* Per CPU bogomips and other parameters */
100 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
101 EXPORT_PER_CPU_SYMBOL(cpu_info);
102
103 /* Logical package management. We might want to allocate that dynamically */
104 unsigned int __max_logical_packages __read_mostly;
105 EXPORT_SYMBOL(__max_logical_packages);
106 static unsigned int logical_packages __read_mostly;
107 static unsigned int logical_die __read_mostly;
108
109 /* Maximum number of SMT threads on any online core */
110 int __read_mostly __max_smt_threads = 1;
111
112 /* Flag to indicate if a complete sched domain rebuild is required */
113 bool x86_topology_update;
114
115 int arch_update_cpu_topology(void)
116 {
117         int retval = x86_topology_update;
118
119         x86_topology_update = false;
120         return retval;
121 }
122
123 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
124 {
125         unsigned long flags;
126
127         spin_lock_irqsave(&rtc_lock, flags);
128         CMOS_WRITE(0xa, 0xf);
129         spin_unlock_irqrestore(&rtc_lock, flags);
130         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
131                                                         start_eip >> 4;
132         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
133                                                         start_eip & 0xf;
134 }
135
136 static inline void smpboot_restore_warm_reset_vector(void)
137 {
138         unsigned long flags;
139
140         /*
141          * Paranoid:  Set warm reset code and vector here back
142          * to default values.
143          */
144         spin_lock_irqsave(&rtc_lock, flags);
145         CMOS_WRITE(0, 0xf);
146         spin_unlock_irqrestore(&rtc_lock, flags);
147
148         *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
149 }
150
151 static void init_freq_invariance(bool secondary);
152
153 /*
154  * Report back to the Boot Processor during boot time or to the caller processor
155  * during CPU online.
156  */
157 static void smp_callin(void)
158 {
159         int cpuid;
160
161         /*
162          * If waken up by an INIT in an 82489DX configuration
163          * cpu_callout_mask guarantees we don't get here before
164          * an INIT_deassert IPI reaches our local APIC, so it is
165          * now safe to touch our local APIC.
166          */
167         cpuid = smp_processor_id();
168
169         /*
170          * the boot CPU has finished the init stage and is spinning
171          * on callin_map until we finish. We are free to set up this
172          * CPU, first the APIC. (this is probably redundant on most
173          * boards)
174          */
175         apic_ap_setup();
176
177         /*
178          * Save our processor parameters. Note: this information
179          * is needed for clock calibration.
180          */
181         smp_store_cpu_info(cpuid);
182
183         /*
184          * The topology information must be up to date before
185          * calibrate_delay() and notify_cpu_starting().
186          */
187         set_cpu_sibling_map(raw_smp_processor_id());
188
189         init_freq_invariance(true);
190
191         /*
192          * Get our bogomips.
193          * Update loops_per_jiffy in cpu_data. Previous call to
194          * smp_store_cpu_info() stored a value that is close but not as
195          * accurate as the value just calculated.
196          */
197         calibrate_delay();
198         cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
199         pr_debug("Stack at about %p\n", &cpuid);
200
201         wmb();
202
203         notify_cpu_starting(cpuid);
204
205         /*
206          * Allow the master to continue.
207          */
208         cpumask_set_cpu(cpuid, cpu_callin_mask);
209 }
210
211 static int cpu0_logical_apicid;
212 static int enable_start_cpu0;
213 /*
214  * Activate a secondary processor.
215  */
216 static void notrace start_secondary(void *unused)
217 {
218         /*
219          * Don't put *anything* except direct CPU state initialization
220          * before cpu_init(), SMP booting is too fragile that we want to
221          * limit the things done here to the most necessary things.
222          */
223         cr4_init();
224
225 #ifdef CONFIG_X86_32
226         /* switch away from the initial page table */
227         load_cr3(swapper_pg_dir);
228         __flush_tlb_all();
229 #endif
230         cpu_init_exception_handling();
231         cpu_init();
232         rcu_cpu_starting(raw_smp_processor_id());
233         x86_cpuinit.early_percpu_clock_init();
234         preempt_disable();
235         smp_callin();
236
237         enable_start_cpu0 = 0;
238
239         /* otherwise gcc will move up smp_processor_id before the cpu_init */
240         barrier();
241         /*
242          * Check TSC synchronization with the boot CPU:
243          */
244         check_tsc_sync_target();
245
246         speculative_store_bypass_ht_init();
247
248         /*
249          * Lock vector_lock, set CPU online and bring the vector
250          * allocator online. Online must be set with vector_lock held
251          * to prevent a concurrent irq setup/teardown from seeing a
252          * half valid vector space.
253          */
254         lock_vector_lock();
255         set_cpu_online(smp_processor_id(), true);
256         lapic_online();
257         unlock_vector_lock();
258         cpu_set_state_online(smp_processor_id());
259         x86_platform.nmi_init();
260
261         /* enable local interrupts */
262         local_irq_enable();
263
264         x86_cpuinit.setup_percpu_clockev();
265
266         wmb();
267         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
268 }
269
270 /**
271  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
272  * @cpu:        CPU to check
273  */
274 bool topology_is_primary_thread(unsigned int cpu)
275 {
276         return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
277 }
278
279 /**
280  * topology_smt_supported - Check whether SMT is supported by the CPUs
281  */
282 bool topology_smt_supported(void)
283 {
284         return smp_num_siblings > 1;
285 }
286
287 /**
288  * topology_phys_to_logical_pkg - Map a physical package id to a logical
289  *
290  * Returns logical package id or -1 if not found
291  */
292 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
293 {
294         int cpu;
295
296         for_each_possible_cpu(cpu) {
297                 struct cpuinfo_x86 *c = &cpu_data(cpu);
298
299                 if (c->initialized && c->phys_proc_id == phys_pkg)
300                         return c->logical_proc_id;
301         }
302         return -1;
303 }
304 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
305 /**
306  * topology_phys_to_logical_die - Map a physical die id to logical
307  *
308  * Returns logical die id or -1 if not found
309  */
310 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
311 {
312         int cpu;
313         int proc_id = cpu_data(cur_cpu).phys_proc_id;
314
315         for_each_possible_cpu(cpu) {
316                 struct cpuinfo_x86 *c = &cpu_data(cpu);
317
318                 if (c->initialized && c->cpu_die_id == die_id &&
319                     c->phys_proc_id == proc_id)
320                         return c->logical_die_id;
321         }
322         return -1;
323 }
324 EXPORT_SYMBOL(topology_phys_to_logical_die);
325
326 /**
327  * topology_update_package_map - Update the physical to logical package map
328  * @pkg:        The physical package id as retrieved via CPUID
329  * @cpu:        The cpu for which this is updated
330  */
331 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
332 {
333         int new;
334
335         /* Already available somewhere? */
336         new = topology_phys_to_logical_pkg(pkg);
337         if (new >= 0)
338                 goto found;
339
340         new = logical_packages++;
341         if (new != pkg) {
342                 pr_info("CPU %u Converting physical %u to logical package %u\n",
343                         cpu, pkg, new);
344         }
345 found:
346         cpu_data(cpu).logical_proc_id = new;
347         return 0;
348 }
349 /**
350  * topology_update_die_map - Update the physical to logical die map
351  * @die:        The die id as retrieved via CPUID
352  * @cpu:        The cpu for which this is updated
353  */
354 int topology_update_die_map(unsigned int die, unsigned int cpu)
355 {
356         int new;
357
358         /* Already available somewhere? */
359         new = topology_phys_to_logical_die(die, cpu);
360         if (new >= 0)
361                 goto found;
362
363         new = logical_die++;
364         if (new != die) {
365                 pr_info("CPU %u Converting physical %u to logical die %u\n",
366                         cpu, die, new);
367         }
368 found:
369         cpu_data(cpu).logical_die_id = new;
370         return 0;
371 }
372
373 void __init smp_store_boot_cpu_info(void)
374 {
375         int id = 0; /* CPU 0 */
376         struct cpuinfo_x86 *c = &cpu_data(id);
377
378         *c = boot_cpu_data;
379         c->cpu_index = id;
380         topology_update_package_map(c->phys_proc_id, id);
381         topology_update_die_map(c->cpu_die_id, id);
382         c->initialized = true;
383 }
384
385 /*
386  * The bootstrap kernel entry code has set these up. Save them for
387  * a given CPU
388  */
389 void smp_store_cpu_info(int id)
390 {
391         struct cpuinfo_x86 *c = &cpu_data(id);
392
393         /* Copy boot_cpu_data only on the first bringup */
394         if (!c->initialized)
395                 *c = boot_cpu_data;
396         c->cpu_index = id;
397         /*
398          * During boot time, CPU0 has this setup already. Save the info when
399          * bringing up AP or offlined CPU0.
400          */
401         identify_secondary_cpu(c);
402         c->initialized = true;
403 }
404
405 static bool
406 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
407 {
408         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
409
410         return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
411 }
412
413 static bool
414 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
415 {
416         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
417
418         return !WARN_ONCE(!topology_same_node(c, o),
419                 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
420                 "[node: %d != %d]. Ignoring dependency.\n",
421                 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
422 }
423
424 #define link_mask(mfunc, c1, c2)                                        \
425 do {                                                                    \
426         cpumask_set_cpu((c1), mfunc(c2));                               \
427         cpumask_set_cpu((c2), mfunc(c1));                               \
428 } while (0)
429
430 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
431 {
432         if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
433                 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
434
435                 if (c->phys_proc_id == o->phys_proc_id &&
436                     c->cpu_die_id == o->cpu_die_id &&
437                     per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
438                         if (c->cpu_core_id == o->cpu_core_id)
439                                 return topology_sane(c, o, "smt");
440
441                         if ((c->cu_id != 0xff) &&
442                             (o->cu_id != 0xff) &&
443                             (c->cu_id == o->cu_id))
444                                 return topology_sane(c, o, "smt");
445                 }
446
447         } else if (c->phys_proc_id == o->phys_proc_id &&
448                    c->cpu_die_id == o->cpu_die_id &&
449                    c->cpu_core_id == o->cpu_core_id) {
450                 return topology_sane(c, o, "smt");
451         }
452
453         return false;
454 }
455
456 /*
457  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
458  *
459  * These are Intel CPUs that enumerate an LLC that is shared by
460  * multiple NUMA nodes. The LLC on these systems is shared for
461  * off-package data access but private to the NUMA node (half
462  * of the package) for on-package access.
463  *
464  * CPUID (the source of the information about the LLC) can only
465  * enumerate the cache as being shared *or* unshared, but not
466  * this particular configuration. The CPU in this case enumerates
467  * the cache to be shared across the entire package (spanning both
468  * NUMA nodes).
469  */
470
471 static const struct x86_cpu_id snc_cpu[] = {
472         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
473         {}
474 };
475
476 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
477 {
478         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
479
480         /* Do not match if we do not have a valid APICID for cpu: */
481         if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
482                 return false;
483
484         /* Do not match if LLC id does not match: */
485         if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
486                 return false;
487
488         /*
489          * Allow the SNC topology without warning. Return of false
490          * means 'c' does not share the LLC of 'o'. This will be
491          * reflected to userspace.
492          */
493         if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
494                 return false;
495
496         return topology_sane(c, o, "llc");
497 }
498
499 /*
500  * Unlike the other levels, we do not enforce keeping a
501  * multicore group inside a NUMA node.  If this happens, we will
502  * discard the MC level of the topology later.
503  */
504 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
505 {
506         if (c->phys_proc_id == o->phys_proc_id)
507                 return true;
508         return false;
509 }
510
511 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
512 {
513         if ((c->phys_proc_id == o->phys_proc_id) &&
514                 (c->cpu_die_id == o->cpu_die_id))
515                 return true;
516         return false;
517 }
518
519
520 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
521 static inline int x86_sched_itmt_flags(void)
522 {
523         return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
524 }
525
526 #ifdef CONFIG_SCHED_MC
527 static int x86_core_flags(void)
528 {
529         return cpu_core_flags() | x86_sched_itmt_flags();
530 }
531 #endif
532 #ifdef CONFIG_SCHED_SMT
533 static int x86_smt_flags(void)
534 {
535         return cpu_smt_flags() | x86_sched_itmt_flags();
536 }
537 #endif
538 #endif
539
540 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
541 #ifdef CONFIG_SCHED_SMT
542         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
543 #endif
544 #ifdef CONFIG_SCHED_MC
545         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
546 #endif
547         { NULL, },
548 };
549
550 static struct sched_domain_topology_level x86_topology[] = {
551 #ifdef CONFIG_SCHED_SMT
552         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
553 #endif
554 #ifdef CONFIG_SCHED_MC
555         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
556 #endif
557         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
558         { NULL, },
559 };
560
561 /*
562  * Set if a package/die has multiple NUMA nodes inside.
563  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
564  * Sub-NUMA Clustering have this.
565  */
566 static bool x86_has_numa_in_package;
567
568 void set_cpu_sibling_map(int cpu)
569 {
570         bool has_smt = smp_num_siblings > 1;
571         bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
572         struct cpuinfo_x86 *c = &cpu_data(cpu);
573         struct cpuinfo_x86 *o;
574         int i, threads;
575
576         cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
577
578         if (!has_mp) {
579                 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
580                 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
581                 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
582                 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
583                 c->booted_cores = 1;
584                 return;
585         }
586
587         for_each_cpu(i, cpu_sibling_setup_mask) {
588                 o = &cpu_data(i);
589
590                 if ((i == cpu) || (has_smt && match_smt(c, o)))
591                         link_mask(topology_sibling_cpumask, cpu, i);
592
593                 if ((i == cpu) || (has_mp && match_llc(c, o)))
594                         link_mask(cpu_llc_shared_mask, cpu, i);
595
596         }
597
598         /*
599          * This needs a separate iteration over the cpus because we rely on all
600          * topology_sibling_cpumask links to be set-up.
601          */
602         for_each_cpu(i, cpu_sibling_setup_mask) {
603                 o = &cpu_data(i);
604
605                 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
606                         link_mask(topology_core_cpumask, cpu, i);
607
608                         /*
609                          *  Does this new cpu bringup a new core?
610                          */
611                         if (cpumask_weight(
612                             topology_sibling_cpumask(cpu)) == 1) {
613                                 /*
614                                  * for each core in package, increment
615                                  * the booted_cores for this new cpu
616                                  */
617                                 if (cpumask_first(
618                                     topology_sibling_cpumask(i)) == i)
619                                         c->booted_cores++;
620                                 /*
621                                  * increment the core count for all
622                                  * the other cpus in this package
623                                  */
624                                 if (i != cpu)
625                                         cpu_data(i).booted_cores++;
626                         } else if (i != cpu && !c->booted_cores)
627                                 c->booted_cores = cpu_data(i).booted_cores;
628                 }
629                 if (match_pkg(c, o) && !topology_same_node(c, o))
630                         x86_has_numa_in_package = true;
631
632                 if ((i == cpu) || (has_mp && match_die(c, o)))
633                         link_mask(topology_die_cpumask, cpu, i);
634         }
635
636         threads = cpumask_weight(topology_sibling_cpumask(cpu));
637         if (threads > __max_smt_threads)
638                 __max_smt_threads = threads;
639 }
640
641 /* maps the cpu to the sched domain representing multi-core */
642 const struct cpumask *cpu_coregroup_mask(int cpu)
643 {
644         return cpu_llc_shared_mask(cpu);
645 }
646
647 static void impress_friends(void)
648 {
649         int cpu;
650         unsigned long bogosum = 0;
651         /*
652          * Allow the user to impress friends.
653          */
654         pr_debug("Before bogomips\n");
655         for_each_possible_cpu(cpu)
656                 if (cpumask_test_cpu(cpu, cpu_callout_mask))
657                         bogosum += cpu_data(cpu).loops_per_jiffy;
658         pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
659                 num_online_cpus(),
660                 bogosum/(500000/HZ),
661                 (bogosum/(5000/HZ))%100);
662
663         pr_debug("Before bogocount - setting activated=1\n");
664 }
665
666 void __inquire_remote_apic(int apicid)
667 {
668         unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
669         const char * const names[] = { "ID", "VERSION", "SPIV" };
670         int timeout;
671         u32 status;
672
673         pr_info("Inquiring remote APIC 0x%x...\n", apicid);
674
675         for (i = 0; i < ARRAY_SIZE(regs); i++) {
676                 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
677
678                 /*
679                  * Wait for idle.
680                  */
681                 status = safe_apic_wait_icr_idle();
682                 if (status)
683                         pr_cont("a previous APIC delivery may have failed\n");
684
685                 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
686
687                 timeout = 0;
688                 do {
689                         udelay(100);
690                         status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
691                 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
692
693                 switch (status) {
694                 case APIC_ICR_RR_VALID:
695                         status = apic_read(APIC_RRR);
696                         pr_cont("%08x\n", status);
697                         break;
698                 default:
699                         pr_cont("failed\n");
700                 }
701         }
702 }
703
704 /*
705  * The Multiprocessor Specification 1.4 (1997) example code suggests
706  * that there should be a 10ms delay between the BSP asserting INIT
707  * and de-asserting INIT, when starting a remote processor.
708  * But that slows boot and resume on modern processors, which include
709  * many cores and don't require that delay.
710  *
711  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
712  * Modern processor families are quirked to remove the delay entirely.
713  */
714 #define UDELAY_10MS_DEFAULT 10000
715
716 static unsigned int init_udelay = UINT_MAX;
717
718 static int __init cpu_init_udelay(char *str)
719 {
720         get_option(&str, &init_udelay);
721
722         return 0;
723 }
724 early_param("cpu_init_udelay", cpu_init_udelay);
725
726 static void __init smp_quirk_init_udelay(void)
727 {
728         /* if cmdline changed it from default, leave it alone */
729         if (init_udelay != UINT_MAX)
730                 return;
731
732         /* if modern processor, use no delay */
733         if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
734             ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
735             ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
736                 init_udelay = 0;
737                 return;
738         }
739         /* else, use legacy delay */
740         init_udelay = UDELAY_10MS_DEFAULT;
741 }
742
743 /*
744  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
745  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
746  * won't ... remember to clear down the APIC, etc later.
747  */
748 int
749 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
750 {
751         unsigned long send_status, accept_status = 0;
752         int maxlvt;
753
754         /* Target chip */
755         /* Boot on the stack */
756         /* Kick the second */
757         apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
758
759         pr_debug("Waiting for send to finish...\n");
760         send_status = safe_apic_wait_icr_idle();
761
762         /*
763          * Give the other CPU some time to accept the IPI.
764          */
765         udelay(200);
766         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
767                 maxlvt = lapic_get_maxlvt();
768                 if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
769                         apic_write(APIC_ESR, 0);
770                 accept_status = (apic_read(APIC_ESR) & 0xEF);
771         }
772         pr_debug("NMI sent\n");
773
774         if (send_status)
775                 pr_err("APIC never delivered???\n");
776         if (accept_status)
777                 pr_err("APIC delivery error (%lx)\n", accept_status);
778
779         return (send_status | accept_status);
780 }
781
782 static int
783 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
784 {
785         unsigned long send_status = 0, accept_status = 0;
786         int maxlvt, num_starts, j;
787
788         maxlvt = lapic_get_maxlvt();
789
790         /*
791          * Be paranoid about clearing APIC errors.
792          */
793         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
794                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
795                         apic_write(APIC_ESR, 0);
796                 apic_read(APIC_ESR);
797         }
798
799         pr_debug("Asserting INIT\n");
800
801         /*
802          * Turn INIT on target chip
803          */
804         /*
805          * Send IPI
806          */
807         apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
808                        phys_apicid);
809
810         pr_debug("Waiting for send to finish...\n");
811         send_status = safe_apic_wait_icr_idle();
812
813         udelay(init_udelay);
814
815         pr_debug("Deasserting INIT\n");
816
817         /* Target chip */
818         /* Send IPI */
819         apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
820
821         pr_debug("Waiting for send to finish...\n");
822         send_status = safe_apic_wait_icr_idle();
823
824         mb();
825
826         /*
827          * Should we send STARTUP IPIs ?
828          *
829          * Determine this based on the APIC version.
830          * If we don't have an integrated APIC, don't send the STARTUP IPIs.
831          */
832         if (APIC_INTEGRATED(boot_cpu_apic_version))
833                 num_starts = 2;
834         else
835                 num_starts = 0;
836
837         /*
838          * Run STARTUP IPI loop.
839          */
840         pr_debug("#startup loops: %d\n", num_starts);
841
842         for (j = 1; j <= num_starts; j++) {
843                 pr_debug("Sending STARTUP #%d\n", j);
844                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
845                         apic_write(APIC_ESR, 0);
846                 apic_read(APIC_ESR);
847                 pr_debug("After apic_write\n");
848
849                 /*
850                  * STARTUP IPI
851                  */
852
853                 /* Target chip */
854                 /* Boot on the stack */
855                 /* Kick the second */
856                 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
857                                phys_apicid);
858
859                 /*
860                  * Give the other CPU some time to accept the IPI.
861                  */
862                 if (init_udelay == 0)
863                         udelay(10);
864                 else
865                         udelay(300);
866
867                 pr_debug("Startup point 1\n");
868
869                 pr_debug("Waiting for send to finish...\n");
870                 send_status = safe_apic_wait_icr_idle();
871
872                 /*
873                  * Give the other CPU some time to accept the IPI.
874                  */
875                 if (init_udelay == 0)
876                         udelay(10);
877                 else
878                         udelay(200);
879
880                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
881                         apic_write(APIC_ESR, 0);
882                 accept_status = (apic_read(APIC_ESR) & 0xEF);
883                 if (send_status || accept_status)
884                         break;
885         }
886         pr_debug("After Startup\n");
887
888         if (send_status)
889                 pr_err("APIC never delivered???\n");
890         if (accept_status)
891                 pr_err("APIC delivery error (%lx)\n", accept_status);
892
893         return (send_status | accept_status);
894 }
895
896 /* reduce the number of lines printed when booting a large cpu count system */
897 static void announce_cpu(int cpu, int apicid)
898 {
899         static int current_node = NUMA_NO_NODE;
900         int node = early_cpu_to_node(cpu);
901         static int width, node_width;
902
903         if (!width)
904                 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
905
906         if (!node_width)
907                 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
908
909         if (cpu == 1)
910                 printk(KERN_INFO "x86: Booting SMP configuration:\n");
911
912         if (system_state < SYSTEM_RUNNING) {
913                 if (node != current_node) {
914                         if (current_node > (-1))
915                                 pr_cont("\n");
916                         current_node = node;
917
918                         printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
919                                node_width - num_digits(node), " ", node);
920                 }
921
922                 /* Add padding for the BSP */
923                 if (cpu == 1)
924                         pr_cont("%*s", width + 1, " ");
925
926                 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
927
928         } else
929                 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
930                         node, cpu, apicid);
931 }
932
933 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
934 {
935         int cpu;
936
937         cpu = smp_processor_id();
938         if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
939                 return NMI_HANDLED;
940
941         return NMI_DONE;
942 }
943
944 /*
945  * Wake up AP by INIT, INIT, STARTUP sequence.
946  *
947  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
948  * boot-strap code which is not a desired behavior for waking up BSP. To
949  * void the boot-strap code, wake up CPU0 by NMI instead.
950  *
951  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
952  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
953  * We'll change this code in the future to wake up hard offlined CPU0 if
954  * real platform and request are available.
955  */
956 static int
957 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
958                int *cpu0_nmi_registered)
959 {
960         int id;
961         int boot_error;
962
963         preempt_disable();
964
965         /*
966          * Wake up AP by INIT, INIT, STARTUP sequence.
967          */
968         if (cpu) {
969                 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
970                 goto out;
971         }
972
973         /*
974          * Wake up BSP by nmi.
975          *
976          * Register a NMI handler to help wake up CPU0.
977          */
978         boot_error = register_nmi_handler(NMI_LOCAL,
979                                           wakeup_cpu0_nmi, 0, "wake_cpu0");
980
981         if (!boot_error) {
982                 enable_start_cpu0 = 1;
983                 *cpu0_nmi_registered = 1;
984                 if (apic->dest_logical == APIC_DEST_LOGICAL)
985                         id = cpu0_logical_apicid;
986                 else
987                         id = apicid;
988                 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
989         }
990
991 out:
992         preempt_enable();
993
994         return boot_error;
995 }
996
997 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
998 {
999         int ret;
1000
1001         /* Just in case we booted with a single CPU. */
1002         alternatives_enable_smp();
1003
1004         per_cpu(current_task, cpu) = idle;
1005         cpu_init_stack_canary(cpu, idle);
1006
1007         /* Initialize the interrupt stack(s) */
1008         ret = irq_init_percpu_irqstack(cpu);
1009         if (ret)
1010                 return ret;
1011
1012 #ifdef CONFIG_X86_32
1013         /* Stack for startup_32 can be just as for start_secondary onwards */
1014         per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1015 #else
1016         initial_gs = per_cpu_offset(cpu);
1017 #endif
1018         return 0;
1019 }
1020
1021 /*
1022  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1023  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1024  * Returns zero if CPU booted OK, else error code from
1025  * ->wakeup_secondary_cpu.
1026  */
1027 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1028                        int *cpu0_nmi_registered)
1029 {
1030         /* start_ip had better be page-aligned! */
1031         unsigned long start_ip = real_mode_header->trampoline_start;
1032
1033         unsigned long boot_error = 0;
1034         unsigned long timeout;
1035
1036         idle->thread.sp = (unsigned long)task_pt_regs(idle);
1037         early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1038         initial_code = (unsigned long)start_secondary;
1039         initial_stack  = idle->thread.sp;
1040
1041         /* Enable the espfix hack for this CPU */
1042         init_espfix_ap(cpu);
1043
1044         /* So we see what's up */
1045         announce_cpu(cpu, apicid);
1046
1047         /*
1048          * This grunge runs the startup process for
1049          * the targeted processor.
1050          */
1051
1052         if (x86_platform.legacy.warm_reset) {
1053
1054                 pr_debug("Setting warm reset code and vector.\n");
1055
1056                 smpboot_setup_warm_reset_vector(start_ip);
1057                 /*
1058                  * Be paranoid about clearing APIC errors.
1059                 */
1060                 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1061                         apic_write(APIC_ESR, 0);
1062                         apic_read(APIC_ESR);
1063                 }
1064         }
1065
1066         /*
1067          * AP might wait on cpu_callout_mask in cpu_init() with
1068          * cpu_initialized_mask set if previous attempt to online
1069          * it timed-out. Clear cpu_initialized_mask so that after
1070          * INIT/SIPI it could start with a clean state.
1071          */
1072         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1073         smp_mb();
1074
1075         /*
1076          * Wake up a CPU in difference cases:
1077          * - Use the method in the APIC driver if it's defined
1078          * Otherwise,
1079          * - Use an INIT boot APIC message for APs or NMI for BSP.
1080          */
1081         if (apic->wakeup_secondary_cpu)
1082                 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1083         else
1084                 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1085                                                      cpu0_nmi_registered);
1086
1087         if (!boot_error) {
1088                 /*
1089                  * Wait 10s total for first sign of life from AP
1090                  */
1091                 boot_error = -1;
1092                 timeout = jiffies + 10*HZ;
1093                 while (time_before(jiffies, timeout)) {
1094                         if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1095                                 /*
1096                                  * Tell AP to proceed with initialization
1097                                  */
1098                                 cpumask_set_cpu(cpu, cpu_callout_mask);
1099                                 boot_error = 0;
1100                                 break;
1101                         }
1102                         schedule();
1103                 }
1104         }
1105
1106         if (!boot_error) {
1107                 /*
1108                  * Wait till AP completes initial initialization
1109                  */
1110                 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1111                         /*
1112                          * Allow other tasks to run while we wait for the
1113                          * AP to come online. This also gives a chance
1114                          * for the MTRR work(triggered by the AP coming online)
1115                          * to be completed in the stop machine context.
1116                          */
1117                         schedule();
1118                 }
1119         }
1120
1121         if (x86_platform.legacy.warm_reset) {
1122                 /*
1123                  * Cleanup possible dangling ends...
1124                  */
1125                 smpboot_restore_warm_reset_vector();
1126         }
1127
1128         return boot_error;
1129 }
1130
1131 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1132 {
1133         int apicid = apic->cpu_present_to_apicid(cpu);
1134         int cpu0_nmi_registered = 0;
1135         unsigned long flags;
1136         int err, ret = 0;
1137
1138         lockdep_assert_irqs_enabled();
1139
1140         pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1141
1142         if (apicid == BAD_APICID ||
1143             !physid_isset(apicid, phys_cpu_present_map) ||
1144             !apic->apic_id_valid(apicid)) {
1145                 pr_err("%s: bad cpu %d\n", __func__, cpu);
1146                 return -EINVAL;
1147         }
1148
1149         /*
1150          * Already booted CPU?
1151          */
1152         if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1153                 pr_debug("do_boot_cpu %d Already started\n", cpu);
1154                 return -ENOSYS;
1155         }
1156
1157         /*
1158          * Save current MTRR state in case it was changed since early boot
1159          * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1160          */
1161         mtrr_save_state();
1162
1163         /* x86 CPUs take themselves offline, so delayed offline is OK. */
1164         err = cpu_check_up_prepare(cpu);
1165         if (err && err != -EBUSY)
1166                 return err;
1167
1168         /* the FPU context is blank, nobody can own it */
1169         per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1170
1171         err = common_cpu_up(cpu, tidle);
1172         if (err)
1173                 return err;
1174
1175         err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1176         if (err) {
1177                 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1178                 ret = -EIO;
1179                 goto unreg_nmi;
1180         }
1181
1182         /*
1183          * Check TSC synchronization with the AP (keep irqs disabled
1184          * while doing so):
1185          */
1186         local_irq_save(flags);
1187         check_tsc_sync_source(cpu);
1188         local_irq_restore(flags);
1189
1190         while (!cpu_online(cpu)) {
1191                 cpu_relax();
1192                 touch_nmi_watchdog();
1193         }
1194
1195 unreg_nmi:
1196         /*
1197          * Clean up the nmi handler. Do this after the callin and callout sync
1198          * to avoid impact of possible long unregister time.
1199          */
1200         if (cpu0_nmi_registered)
1201                 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1202
1203         return ret;
1204 }
1205
1206 /**
1207  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1208  */
1209 void arch_disable_smp_support(void)
1210 {
1211         disable_ioapic_support();
1212 }
1213
1214 /*
1215  * Fall back to non SMP mode after errors.
1216  *
1217  * RED-PEN audit/test this more. I bet there is more state messed up here.
1218  */
1219 static __init void disable_smp(void)
1220 {
1221         pr_info("SMP disabled\n");
1222
1223         disable_ioapic_support();
1224
1225         init_cpu_present(cpumask_of(0));
1226         init_cpu_possible(cpumask_of(0));
1227
1228         if (smp_found_config)
1229                 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1230         else
1231                 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1232         cpumask_set_cpu(0, topology_sibling_cpumask(0));
1233         cpumask_set_cpu(0, topology_core_cpumask(0));
1234         cpumask_set_cpu(0, topology_die_cpumask(0));
1235 }
1236
1237 /*
1238  * Various sanity checks.
1239  */
1240 static void __init smp_sanity_check(void)
1241 {
1242         preempt_disable();
1243
1244 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1245         if (def_to_bigsmp && nr_cpu_ids > 8) {
1246                 unsigned int cpu;
1247                 unsigned nr;
1248
1249                 pr_warn("More than 8 CPUs detected - skipping them\n"
1250                         "Use CONFIG_X86_BIGSMP\n");
1251
1252                 nr = 0;
1253                 for_each_present_cpu(cpu) {
1254                         if (nr >= 8)
1255                                 set_cpu_present(cpu, false);
1256                         nr++;
1257                 }
1258
1259                 nr = 0;
1260                 for_each_possible_cpu(cpu) {
1261                         if (nr >= 8)
1262                                 set_cpu_possible(cpu, false);
1263                         nr++;
1264                 }
1265
1266                 nr_cpu_ids = 8;
1267         }
1268 #endif
1269
1270         if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1271                 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1272                         hard_smp_processor_id());
1273
1274                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1275         }
1276
1277         /*
1278          * Should not be necessary because the MP table should list the boot
1279          * CPU too, but we do it for the sake of robustness anyway.
1280          */
1281         if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1282                 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1283                           boot_cpu_physical_apicid);
1284                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1285         }
1286         preempt_enable();
1287 }
1288
1289 static void __init smp_cpu_index_default(void)
1290 {
1291         int i;
1292         struct cpuinfo_x86 *c;
1293
1294         for_each_possible_cpu(i) {
1295                 c = &cpu_data(i);
1296                 /* mark all to hotplug */
1297                 c->cpu_index = nr_cpu_ids;
1298         }
1299 }
1300
1301 static void __init smp_get_logical_apicid(void)
1302 {
1303         if (x2apic_mode)
1304                 cpu0_logical_apicid = apic_read(APIC_LDR);
1305         else
1306                 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1307 }
1308
1309 /*
1310  * Prepare for SMP bootup.
1311  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1312  *            for common interface support.
1313  */
1314 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1315 {
1316         unsigned int i;
1317
1318         smp_cpu_index_default();
1319
1320         /*
1321          * Setup boot CPU information
1322          */
1323         smp_store_boot_cpu_info(); /* Final full version of the data */
1324         cpumask_copy(cpu_callin_mask, cpumask_of(0));
1325         mb();
1326
1327         for_each_possible_cpu(i) {
1328                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1329                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1330                 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1331                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1332         }
1333
1334         /*
1335          * Set 'default' x86 topology, this matches default_topology() in that
1336          * it has NUMA nodes as a topology level. See also
1337          * native_smp_cpus_done().
1338          *
1339          * Must be done before set_cpus_sibling_map() is ran.
1340          */
1341         set_sched_topology(x86_topology);
1342
1343         set_cpu_sibling_map(0);
1344         init_freq_invariance(false);
1345         smp_sanity_check();
1346
1347         switch (apic_intr_mode) {
1348         case APIC_PIC:
1349         case APIC_VIRTUAL_WIRE_NO_CONFIG:
1350                 disable_smp();
1351                 return;
1352         case APIC_SYMMETRIC_IO_NO_ROUTING:
1353                 disable_smp();
1354                 /* Setup local timer */
1355                 x86_init.timers.setup_percpu_clockev();
1356                 return;
1357         case APIC_VIRTUAL_WIRE:
1358         case APIC_SYMMETRIC_IO:
1359                 break;
1360         }
1361
1362         /* Setup local timer */
1363         x86_init.timers.setup_percpu_clockev();
1364
1365         smp_get_logical_apicid();
1366
1367         pr_info("CPU0: ");
1368         print_cpu_info(&cpu_data(0));
1369
1370         uv_system_init();
1371
1372         set_mtrr_aps_delayed_init();
1373
1374         smp_quirk_init_udelay();
1375
1376         speculative_store_bypass_ht_init();
1377 }
1378
1379 void arch_thaw_secondary_cpus_begin(void)
1380 {
1381         set_mtrr_aps_delayed_init();
1382 }
1383
1384 void arch_thaw_secondary_cpus_end(void)
1385 {
1386         mtrr_aps_init();
1387 }
1388
1389 /*
1390  * Early setup to make printk work.
1391  */
1392 void __init native_smp_prepare_boot_cpu(void)
1393 {
1394         int me = smp_processor_id();
1395         switch_to_new_gdt(me);
1396         /* already set me in cpu_online_mask in boot_cpu_init() */
1397         cpumask_set_cpu(me, cpu_callout_mask);
1398         cpu_set_state_online(me);
1399         native_pv_lock_init();
1400 }
1401
1402 void __init calculate_max_logical_packages(void)
1403 {
1404         int ncpus;
1405
1406         /*
1407          * Today neither Intel nor AMD support heterogenous systems so
1408          * extrapolate the boot cpu's data to all packages.
1409          */
1410         ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1411         __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1412         pr_info("Max logical packages: %u\n", __max_logical_packages);
1413 }
1414
1415 void __init native_smp_cpus_done(unsigned int max_cpus)
1416 {
1417         pr_debug("Boot done\n");
1418
1419         calculate_max_logical_packages();
1420
1421         if (x86_has_numa_in_package)
1422                 set_sched_topology(x86_numa_in_package_topology);
1423
1424         nmi_selftest();
1425         impress_friends();
1426         mtrr_aps_init();
1427 }
1428
1429 static int __initdata setup_possible_cpus = -1;
1430 static int __init _setup_possible_cpus(char *str)
1431 {
1432         get_option(&str, &setup_possible_cpus);
1433         return 0;
1434 }
1435 early_param("possible_cpus", _setup_possible_cpus);
1436
1437
1438 /*
1439  * cpu_possible_mask should be static, it cannot change as cpu's
1440  * are onlined, or offlined. The reason is per-cpu data-structures
1441  * are allocated by some modules at init time, and don't expect to
1442  * do this dynamically on cpu arrival/departure.
1443  * cpu_present_mask on the other hand can change dynamically.
1444  * In case when cpu_hotplug is not compiled, then we resort to current
1445  * behaviour, which is cpu_possible == cpu_present.
1446  * - Ashok Raj
1447  *
1448  * Three ways to find out the number of additional hotplug CPUs:
1449  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1450  * - The user can overwrite it with possible_cpus=NUM
1451  * - Otherwise don't reserve additional CPUs.
1452  * We do this because additional CPUs waste a lot of memory.
1453  * -AK
1454  */
1455 __init void prefill_possible_map(void)
1456 {
1457         int i, possible;
1458
1459         /* No boot processor was found in mptable or ACPI MADT */
1460         if (!num_processors) {
1461                 if (boot_cpu_has(X86_FEATURE_APIC)) {
1462                         int apicid = boot_cpu_physical_apicid;
1463                         int cpu = hard_smp_processor_id();
1464
1465                         pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1466
1467                         /* Make sure boot cpu is enumerated */
1468                         if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1469                             apic->apic_id_valid(apicid))
1470                                 generic_processor_info(apicid, boot_cpu_apic_version);
1471                 }
1472
1473                 if (!num_processors)
1474                         num_processors = 1;
1475         }
1476
1477         i = setup_max_cpus ?: 1;
1478         if (setup_possible_cpus == -1) {
1479                 possible = num_processors;
1480 #ifdef CONFIG_HOTPLUG_CPU
1481                 if (setup_max_cpus)
1482                         possible += disabled_cpus;
1483 #else
1484                 if (possible > i)
1485                         possible = i;
1486 #endif
1487         } else
1488                 possible = setup_possible_cpus;
1489
1490         total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1491
1492         /* nr_cpu_ids could be reduced via nr_cpus= */
1493         if (possible > nr_cpu_ids) {
1494                 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1495                         possible, nr_cpu_ids);
1496                 possible = nr_cpu_ids;
1497         }
1498
1499 #ifdef CONFIG_HOTPLUG_CPU
1500         if (!setup_max_cpus)
1501 #endif
1502         if (possible > i) {
1503                 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1504                         possible, setup_max_cpus);
1505                 possible = i;
1506         }
1507
1508         nr_cpu_ids = possible;
1509
1510         pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1511                 possible, max_t(int, possible - num_processors, 0));
1512
1513         reset_cpu_possible_mask();
1514
1515         for (i = 0; i < possible; i++)
1516                 set_cpu_possible(i, true);
1517 }
1518
1519 #ifdef CONFIG_HOTPLUG_CPU
1520
1521 /* Recompute SMT state for all CPUs on offline */
1522 static void recompute_smt_state(void)
1523 {
1524         int max_threads, cpu;
1525
1526         max_threads = 0;
1527         for_each_online_cpu (cpu) {
1528                 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1529
1530                 if (threads > max_threads)
1531                         max_threads = threads;
1532         }
1533         __max_smt_threads = max_threads;
1534 }
1535
1536 static void remove_siblinginfo(int cpu)
1537 {
1538         int sibling;
1539         struct cpuinfo_x86 *c = &cpu_data(cpu);
1540
1541         for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1542                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1543                 /*/
1544                  * last thread sibling in this cpu core going down
1545                  */
1546                 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1547                         cpu_data(sibling).booted_cores--;
1548         }
1549
1550         for_each_cpu(sibling, topology_die_cpumask(cpu))
1551                 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1552         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1553                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1554         for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1555                 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1556         cpumask_clear(cpu_llc_shared_mask(cpu));
1557         cpumask_clear(topology_sibling_cpumask(cpu));
1558         cpumask_clear(topology_core_cpumask(cpu));
1559         cpumask_clear(topology_die_cpumask(cpu));
1560         c->cpu_core_id = 0;
1561         c->booted_cores = 0;
1562         cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1563         recompute_smt_state();
1564 }
1565
1566 static void remove_cpu_from_maps(int cpu)
1567 {
1568         set_cpu_online(cpu, false);
1569         cpumask_clear_cpu(cpu, cpu_callout_mask);
1570         cpumask_clear_cpu(cpu, cpu_callin_mask);
1571         /* was set by cpu_init() */
1572         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1573         numa_remove_cpu(cpu);
1574 }
1575
1576 void cpu_disable_common(void)
1577 {
1578         int cpu = smp_processor_id();
1579
1580         remove_siblinginfo(cpu);
1581
1582         /* It's now safe to remove this processor from the online map */
1583         lock_vector_lock();
1584         remove_cpu_from_maps(cpu);
1585         unlock_vector_lock();
1586         fixup_irqs();
1587         lapic_offline();
1588 }
1589
1590 int native_cpu_disable(void)
1591 {
1592         int ret;
1593
1594         ret = lapic_can_unplug_cpu();
1595         if (ret)
1596                 return ret;
1597
1598         cpu_disable_common();
1599
1600         /*
1601          * Disable the local APIC. Otherwise IPI broadcasts will reach
1602          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1603          * messages.
1604          *
1605          * Disabling the APIC must happen after cpu_disable_common()
1606          * which invokes fixup_irqs().
1607          *
1608          * Disabling the APIC preserves already set bits in IRR, but
1609          * an interrupt arriving after disabling the local APIC does not
1610          * set the corresponding IRR bit.
1611          *
1612          * fixup_irqs() scans IRR for set bits so it can raise a not
1613          * yet handled interrupt on the new destination CPU via an IPI
1614          * but obviously it can't do so for IRR bits which are not set.
1615          * IOW, interrupts arriving after disabling the local APIC will
1616          * be lost.
1617          */
1618         apic_soft_disable();
1619
1620         return 0;
1621 }
1622
1623 int common_cpu_die(unsigned int cpu)
1624 {
1625         int ret = 0;
1626
1627         /* We don't do anything here: idle task is faking death itself. */
1628
1629         /* They ack this in play_dead() by setting CPU_DEAD */
1630         if (cpu_wait_death(cpu, 5)) {
1631                 if (system_state == SYSTEM_RUNNING)
1632                         pr_info("CPU %u is now offline\n", cpu);
1633         } else {
1634                 pr_err("CPU %u didn't die...\n", cpu);
1635                 ret = -1;
1636         }
1637
1638         return ret;
1639 }
1640
1641 void native_cpu_die(unsigned int cpu)
1642 {
1643         common_cpu_die(cpu);
1644 }
1645
1646 void play_dead_common(void)
1647 {
1648         idle_task_exit();
1649
1650         /* Ack it */
1651         (void)cpu_report_death();
1652
1653         /*
1654          * With physical CPU hotplug, we should halt the cpu
1655          */
1656         local_irq_disable();
1657 }
1658
1659 static bool wakeup_cpu0(void)
1660 {
1661         if (smp_processor_id() == 0 && enable_start_cpu0)
1662                 return true;
1663
1664         return false;
1665 }
1666
1667 /*
1668  * We need to flush the caches before going to sleep, lest we have
1669  * dirty data in our caches when we come back up.
1670  */
1671 static inline void mwait_play_dead(void)
1672 {
1673         unsigned int eax, ebx, ecx, edx;
1674         unsigned int highest_cstate = 0;
1675         unsigned int highest_subcstate = 0;
1676         void *mwait_ptr;
1677         int i;
1678
1679         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1680             boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1681                 return;
1682         if (!this_cpu_has(X86_FEATURE_MWAIT))
1683                 return;
1684         if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1685                 return;
1686         if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1687                 return;
1688
1689         eax = CPUID_MWAIT_LEAF;
1690         ecx = 0;
1691         native_cpuid(&eax, &ebx, &ecx, &edx);
1692
1693         /*
1694          * eax will be 0 if EDX enumeration is not valid.
1695          * Initialized below to cstate, sub_cstate value when EDX is valid.
1696          */
1697         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1698                 eax = 0;
1699         } else {
1700                 edx >>= MWAIT_SUBSTATE_SIZE;
1701                 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1702                         if (edx & MWAIT_SUBSTATE_MASK) {
1703                                 highest_cstate = i;
1704                                 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1705                         }
1706                 }
1707                 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1708                         (highest_subcstate - 1);
1709         }
1710
1711         /*
1712          * This should be a memory location in a cache line which is
1713          * unlikely to be touched by other processors.  The actual
1714          * content is immaterial as it is not actually modified in any way.
1715          */
1716         mwait_ptr = &current_thread_info()->flags;
1717
1718         wbinvd();
1719
1720         while (1) {
1721                 /*
1722                  * The CLFLUSH is a workaround for erratum AAI65 for
1723                  * the Xeon 7400 series.  It's not clear it is actually
1724                  * needed, but it should be harmless in either case.
1725                  * The WBINVD is insufficient due to the spurious-wakeup
1726                  * case where we return around the loop.
1727                  */
1728                 mb();
1729                 clflush(mwait_ptr);
1730                 mb();
1731                 __monitor(mwait_ptr, 0, 0);
1732                 mb();
1733                 __mwait(eax, 0);
1734                 /*
1735                  * If NMI wants to wake up CPU0, start CPU0.
1736                  */
1737                 if (wakeup_cpu0())
1738                         start_cpu0();
1739         }
1740 }
1741
1742 void hlt_play_dead(void)
1743 {
1744         if (__this_cpu_read(cpu_info.x86) >= 4)
1745                 wbinvd();
1746
1747         while (1) {
1748                 native_halt();
1749                 /*
1750                  * If NMI wants to wake up CPU0, start CPU0.
1751                  */
1752                 if (wakeup_cpu0())
1753                         start_cpu0();
1754         }
1755 }
1756
1757 void native_play_dead(void)
1758 {
1759         play_dead_common();
1760         tboot_shutdown(TB_SHUTDOWN_WFS);
1761
1762         mwait_play_dead();      /* Only returns on failure */
1763         if (cpuidle_play_dead())
1764                 hlt_play_dead();
1765 }
1766
1767 #else /* ... !CONFIG_HOTPLUG_CPU */
1768 int native_cpu_disable(void)
1769 {
1770         return -ENOSYS;
1771 }
1772
1773 void native_cpu_die(unsigned int cpu)
1774 {
1775         /* We said "no" in __cpu_disable */
1776         BUG();
1777 }
1778
1779 void native_play_dead(void)
1780 {
1781         BUG();
1782 }
1783
1784 #endif
1785
1786 #ifdef CONFIG_X86_64
1787 /*
1788  * APERF/MPERF frequency ratio computation.
1789  *
1790  * The scheduler wants to do frequency invariant accounting and needs a <1
1791  * ratio to account for the 'current' frequency, corresponding to
1792  * freq_curr / freq_max.
1793  *
1794  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1795  * our P-state setting is little more than a request/hint, we need to observe
1796  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1797  * interval after discarding idle time. This is given by:
1798  *
1799  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1800  *
1801  * where freq_base is the max non-turbo P-state.
1802  *
1803  * The freq_max term has to be set to a somewhat arbitrary value, because we
1804  * can't know which turbo states will be available at a given point in time:
1805  * it all depends on the thermal headroom of the entire package. We set it to
1806  * the turbo level with 4 cores active.
1807  *
1808  * Benchmarks show that's a good compromise between the 1C turbo ratio
1809  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1810  * which would ignore the entire turbo range (a conspicuous part, making
1811  * freq_curr/freq_max always maxed out).
1812  *
1813  * An exception to the heuristic above is the Atom uarch, where we choose the
1814  * highest turbo level for freq_max since Atom's are generally oriented towards
1815  * power efficiency.
1816  *
1817  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1818  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1819  */
1820
1821 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1822
1823 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1824 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1825 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1826 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1827
1828 void arch_set_max_freq_ratio(bool turbo_disabled)
1829 {
1830         arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1831                                         arch_turbo_freq_ratio;
1832 }
1833
1834 static bool turbo_disabled(void)
1835 {
1836         u64 misc_en;
1837         int err;
1838
1839         err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1840         if (err)
1841                 return false;
1842
1843         return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1844 }
1845
1846 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1847 {
1848         int err;
1849
1850         err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1851         if (err)
1852                 return false;
1853
1854         err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1855         if (err)
1856                 return false;
1857
1858         *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1859         *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1860
1861         return true;
1862 }
1863
1864 #include <asm/cpu_device_id.h>
1865 #include <asm/intel-family.h>
1866
1867 #define X86_MATCH(model)                                        \
1868         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,            \
1869                 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1870
1871 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1872         X86_MATCH(XEON_PHI_KNL),
1873         X86_MATCH(XEON_PHI_KNM),
1874         {}
1875 };
1876
1877 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1878         X86_MATCH(SKYLAKE_X),
1879         {}
1880 };
1881
1882 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1883         X86_MATCH(ATOM_GOLDMONT),
1884         X86_MATCH(ATOM_GOLDMONT_D),
1885         X86_MATCH(ATOM_GOLDMONT_PLUS),
1886         {}
1887 };
1888
1889 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1890                                 int num_delta_fratio)
1891 {
1892         int fratio, delta_fratio, found;
1893         int err, i;
1894         u64 msr;
1895
1896         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1897         if (err)
1898                 return false;
1899
1900         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1901
1902         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1903         if (err)
1904                 return false;
1905
1906         fratio = (msr >> 8) & 0xFF;
1907         i = 16;
1908         found = 0;
1909         do {
1910                 if (found >= num_delta_fratio) {
1911                         *turbo_freq = fratio;
1912                         return true;
1913                 }
1914
1915                 delta_fratio = (msr >> (i + 5)) & 0x7;
1916
1917                 if (delta_fratio) {
1918                         found += 1;
1919                         fratio -= delta_fratio;
1920                 }
1921
1922                 i += 8;
1923         } while (i < 64);
1924
1925         return true;
1926 }
1927
1928 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1929 {
1930         u64 ratios, counts;
1931         u32 group_size;
1932         int err, i;
1933
1934         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1935         if (err)
1936                 return false;
1937
1938         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1939
1940         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1941         if (err)
1942                 return false;
1943
1944         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1945         if (err)
1946                 return false;
1947
1948         for (i = 0; i < 64; i += 8) {
1949                 group_size = (counts >> i) & 0xFF;
1950                 if (group_size >= size) {
1951                         *turbo_freq = (ratios >> i) & 0xFF;
1952                         return true;
1953                 }
1954         }
1955
1956         return false;
1957 }
1958
1959 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1960 {
1961         u64 msr;
1962         int err;
1963
1964         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1965         if (err)
1966                 return false;
1967
1968         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1969         if (err)
1970                 return false;
1971
1972         *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1973         *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1974
1975         /* The CPU may have less than 4 cores */
1976         if (!*turbo_freq)
1977                 *turbo_freq = msr & 0xFF;         /* 1C turbo    */
1978
1979         return true;
1980 }
1981
1982 static bool intel_set_max_freq_ratio(void)
1983 {
1984         u64 base_freq, turbo_freq;
1985         u64 turbo_ratio;
1986
1987         if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1988                 goto out;
1989
1990         if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1991             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1992                 goto out;
1993
1994         if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1995             knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1996                 goto out;
1997
1998         if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1999             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2000                 goto out;
2001
2002         if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2003                 goto out;
2004
2005         return false;
2006
2007 out:
2008         /*
2009          * Some hypervisors advertise X86_FEATURE_APERFMPERF
2010          * but then fill all MSR's with zeroes.
2011          * Some CPUs have turbo boost but don't declare any turbo ratio
2012          * in MSR_TURBO_RATIO_LIMIT.
2013          */
2014         if (!base_freq || !turbo_freq) {
2015                 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2016                 return false;
2017         }
2018
2019         turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2020         if (!turbo_ratio) {
2021                 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2022                 return false;
2023         }
2024
2025         arch_turbo_freq_ratio = turbo_ratio;
2026         arch_set_max_freq_ratio(turbo_disabled());
2027
2028         return true;
2029 }
2030
2031 static void init_counter_refs(void)
2032 {
2033         u64 aperf, mperf;
2034
2035         rdmsrl(MSR_IA32_APERF, aperf);
2036         rdmsrl(MSR_IA32_MPERF, mperf);
2037
2038         this_cpu_write(arch_prev_aperf, aperf);
2039         this_cpu_write(arch_prev_mperf, mperf);
2040 }
2041
2042 static void init_freq_invariance(bool secondary)
2043 {
2044         bool ret = false;
2045
2046         if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2047                 return;
2048
2049         if (secondary) {
2050                 if (static_branch_likely(&arch_scale_freq_key)) {
2051                         init_counter_refs();
2052                 }
2053                 return;
2054         }
2055
2056         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2057                 ret = intel_set_max_freq_ratio();
2058
2059         if (ret) {
2060                 init_counter_refs();
2061                 static_branch_enable(&arch_scale_freq_key);
2062         } else {
2063                 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2064         }
2065 }
2066
2067 static void disable_freq_invariance_workfn(struct work_struct *work)
2068 {
2069         static_branch_disable(&arch_scale_freq_key);
2070 }
2071
2072 static DECLARE_WORK(disable_freq_invariance_work,
2073                     disable_freq_invariance_workfn);
2074
2075 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2076
2077 void arch_scale_freq_tick(void)
2078 {
2079         u64 freq_scale = SCHED_CAPACITY_SCALE;
2080         u64 aperf, mperf;
2081         u64 acnt, mcnt;
2082
2083         if (!arch_scale_freq_invariant())
2084                 return;
2085
2086         rdmsrl(MSR_IA32_APERF, aperf);
2087         rdmsrl(MSR_IA32_MPERF, mperf);
2088
2089         acnt = aperf - this_cpu_read(arch_prev_aperf);
2090         mcnt = mperf - this_cpu_read(arch_prev_mperf);
2091
2092         this_cpu_write(arch_prev_aperf, aperf);
2093         this_cpu_write(arch_prev_mperf, mperf);
2094
2095         if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2096                 goto error;
2097
2098         if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2099                 goto error;
2100
2101         freq_scale = div64_u64(acnt, mcnt);
2102         if (!freq_scale)
2103                 goto error;
2104
2105         if (freq_scale > SCHED_CAPACITY_SCALE)
2106                 freq_scale = SCHED_CAPACITY_SCALE;
2107
2108         this_cpu_write(arch_freq_scale, freq_scale);
2109         return;
2110
2111 error:
2112         pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2113         schedule_work(&disable_freq_invariance_work);
2114 }
2115 #else
2116 static inline void init_freq_invariance(bool secondary)
2117 {
2118 }
2119 #endif /* CONFIG_X86_64 */