Merge tag 'scmi-fixes-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *      x86 SMP booting functions
4  *
5  *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *      Much of the core SMP work is based on previous work by Thomas Radke, to
10  *      whom a great many thanks are extended.
11  *
12  *      Thanks to Intel for making available several different Pentium,
13  *      Pentium Pro and Pentium-II/Xeon MP machines.
14  *      Original development of Linux SMP code supported by Caldera.
15  *
16  *      Fixes
17  *              Felix Koop      :       NR_CPUS used properly
18  *              Jose Renau      :       Handle single CPU case.
19  *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
20  *              Greg Wright     :       Fix for kernel stacks panic.
21  *              Erich Boleyn    :       MP v1.4 and additional changes.
22  *      Matthias Sattler        :       Changes for 2.1 kernel map.
23  *      Michel Lespinasse       :       Changes for 2.1 kernel map.
24  *      Michael Chastain        :       Change trampoline.S to gnu as.
25  *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
26  *              Ingo Molnar     :       Added APIC timers, based on code
27  *                                      from Jose Renau
28  *              Ingo Molnar     :       various cleanups and rewrites
29  *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
30  *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
31  *      Andi Kleen              :       Changed for SMP boot into long mode.
32  *              Martin J. Bligh :       Added support for multi-quad systems
33  *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
34  *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *      Ashok Raj               :       CPU hotplug support
37  *      Glauber Costa           :       i386 and x86_64 integration
38  */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
84
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92
93 /* representing HT, core, and die siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
96
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
98
99 /* Per CPU bogomips and other parameters */
100 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
101 EXPORT_PER_CPU_SYMBOL(cpu_info);
102
103 /* Logical package management. We might want to allocate that dynamically */
104 unsigned int __max_logical_packages __read_mostly;
105 EXPORT_SYMBOL(__max_logical_packages);
106 static unsigned int logical_packages __read_mostly;
107 static unsigned int logical_die __read_mostly;
108
109 /* Maximum number of SMT threads on any online core */
110 int __read_mostly __max_smt_threads = 1;
111
112 /* Flag to indicate if a complete sched domain rebuild is required */
113 bool x86_topology_update;
114
115 int arch_update_cpu_topology(void)
116 {
117         int retval = x86_topology_update;
118
119         x86_topology_update = false;
120         return retval;
121 }
122
123 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
124 {
125         unsigned long flags;
126
127         spin_lock_irqsave(&rtc_lock, flags);
128         CMOS_WRITE(0xa, 0xf);
129         spin_unlock_irqrestore(&rtc_lock, flags);
130         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
131                                                         start_eip >> 4;
132         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
133                                                         start_eip & 0xf;
134 }
135
136 static inline void smpboot_restore_warm_reset_vector(void)
137 {
138         unsigned long flags;
139
140         /*
141          * Paranoid:  Set warm reset code and vector here back
142          * to default values.
143          */
144         spin_lock_irqsave(&rtc_lock, flags);
145         CMOS_WRITE(0, 0xf);
146         spin_unlock_irqrestore(&rtc_lock, flags);
147
148         *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
149 }
150
151 static void init_freq_invariance(bool secondary);
152
153 /*
154  * Report back to the Boot Processor during boot time or to the caller processor
155  * during CPU online.
156  */
157 static void smp_callin(void)
158 {
159         int cpuid;
160
161         /*
162          * If waken up by an INIT in an 82489DX configuration
163          * cpu_callout_mask guarantees we don't get here before
164          * an INIT_deassert IPI reaches our local APIC, so it is
165          * now safe to touch our local APIC.
166          */
167         cpuid = smp_processor_id();
168
169         /*
170          * the boot CPU has finished the init stage and is spinning
171          * on callin_map until we finish. We are free to set up this
172          * CPU, first the APIC. (this is probably redundant on most
173          * boards)
174          */
175         apic_ap_setup();
176
177         /*
178          * Save our processor parameters. Note: this information
179          * is needed for clock calibration.
180          */
181         smp_store_cpu_info(cpuid);
182
183         /*
184          * The topology information must be up to date before
185          * calibrate_delay() and notify_cpu_starting().
186          */
187         set_cpu_sibling_map(raw_smp_processor_id());
188
189         init_freq_invariance(true);
190
191         /*
192          * Get our bogomips.
193          * Update loops_per_jiffy in cpu_data. Previous call to
194          * smp_store_cpu_info() stored a value that is close but not as
195          * accurate as the value just calculated.
196          */
197         calibrate_delay();
198         cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
199         pr_debug("Stack at about %p\n", &cpuid);
200
201         wmb();
202
203         notify_cpu_starting(cpuid);
204
205         /*
206          * Allow the master to continue.
207          */
208         cpumask_set_cpu(cpuid, cpu_callin_mask);
209 }
210
211 static int cpu0_logical_apicid;
212 static int enable_start_cpu0;
213 /*
214  * Activate a secondary processor.
215  */
216 static void notrace start_secondary(void *unused)
217 {
218         /*
219          * Don't put *anything* except direct CPU state initialization
220          * before cpu_init(), SMP booting is too fragile that we want to
221          * limit the things done here to the most necessary things.
222          */
223         cr4_init();
224
225 #ifdef CONFIG_X86_32
226         /* switch away from the initial page table */
227         load_cr3(swapper_pg_dir);
228         __flush_tlb_all();
229 #endif
230         cpu_init_exception_handling();
231         cpu_init();
232         x86_cpuinit.early_percpu_clock_init();
233         preempt_disable();
234         smp_callin();
235
236         enable_start_cpu0 = 0;
237
238         /* otherwise gcc will move up smp_processor_id before the cpu_init */
239         barrier();
240         /*
241          * Check TSC synchronization with the boot CPU:
242          */
243         check_tsc_sync_target();
244
245         speculative_store_bypass_ht_init();
246
247         /*
248          * Lock vector_lock, set CPU online and bring the vector
249          * allocator online. Online must be set with vector_lock held
250          * to prevent a concurrent irq setup/teardown from seeing a
251          * half valid vector space.
252          */
253         lock_vector_lock();
254         set_cpu_online(smp_processor_id(), true);
255         lapic_online();
256         unlock_vector_lock();
257         cpu_set_state_online(smp_processor_id());
258         x86_platform.nmi_init();
259
260         /* enable local interrupts */
261         local_irq_enable();
262
263         x86_cpuinit.setup_percpu_clockev();
264
265         wmb();
266         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
267 }
268
269 /**
270  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
271  * @cpu:        CPU to check
272  */
273 bool topology_is_primary_thread(unsigned int cpu)
274 {
275         return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
276 }
277
278 /**
279  * topology_smt_supported - Check whether SMT is supported by the CPUs
280  */
281 bool topology_smt_supported(void)
282 {
283         return smp_num_siblings > 1;
284 }
285
286 /**
287  * topology_phys_to_logical_pkg - Map a physical package id to a logical
288  *
289  * Returns logical package id or -1 if not found
290  */
291 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
292 {
293         int cpu;
294
295         for_each_possible_cpu(cpu) {
296                 struct cpuinfo_x86 *c = &cpu_data(cpu);
297
298                 if (c->initialized && c->phys_proc_id == phys_pkg)
299                         return c->logical_proc_id;
300         }
301         return -1;
302 }
303 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
304 /**
305  * topology_phys_to_logical_die - Map a physical die id to logical
306  *
307  * Returns logical die id or -1 if not found
308  */
309 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
310 {
311         int cpu;
312         int proc_id = cpu_data(cur_cpu).phys_proc_id;
313
314         for_each_possible_cpu(cpu) {
315                 struct cpuinfo_x86 *c = &cpu_data(cpu);
316
317                 if (c->initialized && c->cpu_die_id == die_id &&
318                     c->phys_proc_id == proc_id)
319                         return c->logical_die_id;
320         }
321         return -1;
322 }
323 EXPORT_SYMBOL(topology_phys_to_logical_die);
324
325 /**
326  * topology_update_package_map - Update the physical to logical package map
327  * @pkg:        The physical package id as retrieved via CPUID
328  * @cpu:        The cpu for which this is updated
329  */
330 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
331 {
332         int new;
333
334         /* Already available somewhere? */
335         new = topology_phys_to_logical_pkg(pkg);
336         if (new >= 0)
337                 goto found;
338
339         new = logical_packages++;
340         if (new != pkg) {
341                 pr_info("CPU %u Converting physical %u to logical package %u\n",
342                         cpu, pkg, new);
343         }
344 found:
345         cpu_data(cpu).logical_proc_id = new;
346         return 0;
347 }
348 /**
349  * topology_update_die_map - Update the physical to logical die map
350  * @die:        The die id as retrieved via CPUID
351  * @cpu:        The cpu for which this is updated
352  */
353 int topology_update_die_map(unsigned int die, unsigned int cpu)
354 {
355         int new;
356
357         /* Already available somewhere? */
358         new = topology_phys_to_logical_die(die, cpu);
359         if (new >= 0)
360                 goto found;
361
362         new = logical_die++;
363         if (new != die) {
364                 pr_info("CPU %u Converting physical %u to logical die %u\n",
365                         cpu, die, new);
366         }
367 found:
368         cpu_data(cpu).logical_die_id = new;
369         return 0;
370 }
371
372 void __init smp_store_boot_cpu_info(void)
373 {
374         int id = 0; /* CPU 0 */
375         struct cpuinfo_x86 *c = &cpu_data(id);
376
377         *c = boot_cpu_data;
378         c->cpu_index = id;
379         topology_update_package_map(c->phys_proc_id, id);
380         topology_update_die_map(c->cpu_die_id, id);
381         c->initialized = true;
382 }
383
384 /*
385  * The bootstrap kernel entry code has set these up. Save them for
386  * a given CPU
387  */
388 void smp_store_cpu_info(int id)
389 {
390         struct cpuinfo_x86 *c = &cpu_data(id);
391
392         /* Copy boot_cpu_data only on the first bringup */
393         if (!c->initialized)
394                 *c = boot_cpu_data;
395         c->cpu_index = id;
396         /*
397          * During boot time, CPU0 has this setup already. Save the info when
398          * bringing up AP or offlined CPU0.
399          */
400         identify_secondary_cpu(c);
401         c->initialized = true;
402 }
403
404 static bool
405 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406 {
407         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
408
409         return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
410 }
411
412 static bool
413 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
414 {
415         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
416
417         return !WARN_ONCE(!topology_same_node(c, o),
418                 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
419                 "[node: %d != %d]. Ignoring dependency.\n",
420                 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
421 }
422
423 #define link_mask(mfunc, c1, c2)                                        \
424 do {                                                                    \
425         cpumask_set_cpu((c1), mfunc(c2));                               \
426         cpumask_set_cpu((c2), mfunc(c1));                               \
427 } while (0)
428
429 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
430 {
431         if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
432                 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
433
434                 if (c->phys_proc_id == o->phys_proc_id &&
435                     c->cpu_die_id == o->cpu_die_id &&
436                     per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
437                         if (c->cpu_core_id == o->cpu_core_id)
438                                 return topology_sane(c, o, "smt");
439
440                         if ((c->cu_id != 0xff) &&
441                             (o->cu_id != 0xff) &&
442                             (c->cu_id == o->cu_id))
443                                 return topology_sane(c, o, "smt");
444                 }
445
446         } else if (c->phys_proc_id == o->phys_proc_id &&
447                    c->cpu_die_id == o->cpu_die_id &&
448                    c->cpu_core_id == o->cpu_core_id) {
449                 return topology_sane(c, o, "smt");
450         }
451
452         return false;
453 }
454
455 /*
456  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
457  *
458  * These are Intel CPUs that enumerate an LLC that is shared by
459  * multiple NUMA nodes. The LLC on these systems is shared for
460  * off-package data access but private to the NUMA node (half
461  * of the package) for on-package access.
462  *
463  * CPUID (the source of the information about the LLC) can only
464  * enumerate the cache as being shared *or* unshared, but not
465  * this particular configuration. The CPU in this case enumerates
466  * the cache to be shared across the entire package (spanning both
467  * NUMA nodes).
468  */
469
470 static const struct x86_cpu_id snc_cpu[] = {
471         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
472         {}
473 };
474
475 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
476 {
477         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
478
479         /* Do not match if we do not have a valid APICID for cpu: */
480         if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
481                 return false;
482
483         /* Do not match if LLC id does not match: */
484         if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
485                 return false;
486
487         /*
488          * Allow the SNC topology without warning. Return of false
489          * means 'c' does not share the LLC of 'o'. This will be
490          * reflected to userspace.
491          */
492         if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
493                 return false;
494
495         return topology_sane(c, o, "llc");
496 }
497
498 /*
499  * Unlike the other levels, we do not enforce keeping a
500  * multicore group inside a NUMA node.  If this happens, we will
501  * discard the MC level of the topology later.
502  */
503 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
504 {
505         if (c->phys_proc_id == o->phys_proc_id)
506                 return true;
507         return false;
508 }
509
510 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
511 {
512         if ((c->phys_proc_id == o->phys_proc_id) &&
513                 (c->cpu_die_id == o->cpu_die_id))
514                 return true;
515         return false;
516 }
517
518
519 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
520 static inline int x86_sched_itmt_flags(void)
521 {
522         return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
523 }
524
525 #ifdef CONFIG_SCHED_MC
526 static int x86_core_flags(void)
527 {
528         return cpu_core_flags() | x86_sched_itmt_flags();
529 }
530 #endif
531 #ifdef CONFIG_SCHED_SMT
532 static int x86_smt_flags(void)
533 {
534         return cpu_smt_flags() | x86_sched_itmt_flags();
535 }
536 #endif
537 #endif
538
539 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
540 #ifdef CONFIG_SCHED_SMT
541         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
542 #endif
543 #ifdef CONFIG_SCHED_MC
544         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
545 #endif
546         { NULL, },
547 };
548
549 static struct sched_domain_topology_level x86_topology[] = {
550 #ifdef CONFIG_SCHED_SMT
551         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
552 #endif
553 #ifdef CONFIG_SCHED_MC
554         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
555 #endif
556         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
557         { NULL, },
558 };
559
560 /*
561  * Set if a package/die has multiple NUMA nodes inside.
562  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
563  * Sub-NUMA Clustering have this.
564  */
565 static bool x86_has_numa_in_package;
566
567 void set_cpu_sibling_map(int cpu)
568 {
569         bool has_smt = smp_num_siblings > 1;
570         bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
571         struct cpuinfo_x86 *c = &cpu_data(cpu);
572         struct cpuinfo_x86 *o;
573         int i, threads;
574
575         cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
576
577         if (!has_mp) {
578                 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
579                 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
580                 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
581                 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
582                 c->booted_cores = 1;
583                 return;
584         }
585
586         for_each_cpu(i, cpu_sibling_setup_mask) {
587                 o = &cpu_data(i);
588
589                 if ((i == cpu) || (has_smt && match_smt(c, o)))
590                         link_mask(topology_sibling_cpumask, cpu, i);
591
592                 if ((i == cpu) || (has_mp && match_llc(c, o)))
593                         link_mask(cpu_llc_shared_mask, cpu, i);
594
595         }
596
597         /*
598          * This needs a separate iteration over the cpus because we rely on all
599          * topology_sibling_cpumask links to be set-up.
600          */
601         for_each_cpu(i, cpu_sibling_setup_mask) {
602                 o = &cpu_data(i);
603
604                 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
605                         link_mask(topology_core_cpumask, cpu, i);
606
607                         /*
608                          *  Does this new cpu bringup a new core?
609                          */
610                         if (cpumask_weight(
611                             topology_sibling_cpumask(cpu)) == 1) {
612                                 /*
613                                  * for each core in package, increment
614                                  * the booted_cores for this new cpu
615                                  */
616                                 if (cpumask_first(
617                                     topology_sibling_cpumask(i)) == i)
618                                         c->booted_cores++;
619                                 /*
620                                  * increment the core count for all
621                                  * the other cpus in this package
622                                  */
623                                 if (i != cpu)
624                                         cpu_data(i).booted_cores++;
625                         } else if (i != cpu && !c->booted_cores)
626                                 c->booted_cores = cpu_data(i).booted_cores;
627                 }
628                 if (match_pkg(c, o) && !topology_same_node(c, o))
629                         x86_has_numa_in_package = true;
630
631                 if ((i == cpu) || (has_mp && match_die(c, o)))
632                         link_mask(topology_die_cpumask, cpu, i);
633         }
634
635         threads = cpumask_weight(topology_sibling_cpumask(cpu));
636         if (threads > __max_smt_threads)
637                 __max_smt_threads = threads;
638 }
639
640 /* maps the cpu to the sched domain representing multi-core */
641 const struct cpumask *cpu_coregroup_mask(int cpu)
642 {
643         return cpu_llc_shared_mask(cpu);
644 }
645
646 static void impress_friends(void)
647 {
648         int cpu;
649         unsigned long bogosum = 0;
650         /*
651          * Allow the user to impress friends.
652          */
653         pr_debug("Before bogomips\n");
654         for_each_possible_cpu(cpu)
655                 if (cpumask_test_cpu(cpu, cpu_callout_mask))
656                         bogosum += cpu_data(cpu).loops_per_jiffy;
657         pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
658                 num_online_cpus(),
659                 bogosum/(500000/HZ),
660                 (bogosum/(5000/HZ))%100);
661
662         pr_debug("Before bogocount - setting activated=1\n");
663 }
664
665 void __inquire_remote_apic(int apicid)
666 {
667         unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
668         const char * const names[] = { "ID", "VERSION", "SPIV" };
669         int timeout;
670         u32 status;
671
672         pr_info("Inquiring remote APIC 0x%x...\n", apicid);
673
674         for (i = 0; i < ARRAY_SIZE(regs); i++) {
675                 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
676
677                 /*
678                  * Wait for idle.
679                  */
680                 status = safe_apic_wait_icr_idle();
681                 if (status)
682                         pr_cont("a previous APIC delivery may have failed\n");
683
684                 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
685
686                 timeout = 0;
687                 do {
688                         udelay(100);
689                         status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
690                 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
691
692                 switch (status) {
693                 case APIC_ICR_RR_VALID:
694                         status = apic_read(APIC_RRR);
695                         pr_cont("%08x\n", status);
696                         break;
697                 default:
698                         pr_cont("failed\n");
699                 }
700         }
701 }
702
703 /*
704  * The Multiprocessor Specification 1.4 (1997) example code suggests
705  * that there should be a 10ms delay between the BSP asserting INIT
706  * and de-asserting INIT, when starting a remote processor.
707  * But that slows boot and resume on modern processors, which include
708  * many cores and don't require that delay.
709  *
710  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
711  * Modern processor families are quirked to remove the delay entirely.
712  */
713 #define UDELAY_10MS_DEFAULT 10000
714
715 static unsigned int init_udelay = UINT_MAX;
716
717 static int __init cpu_init_udelay(char *str)
718 {
719         get_option(&str, &init_udelay);
720
721         return 0;
722 }
723 early_param("cpu_init_udelay", cpu_init_udelay);
724
725 static void __init smp_quirk_init_udelay(void)
726 {
727         /* if cmdline changed it from default, leave it alone */
728         if (init_udelay != UINT_MAX)
729                 return;
730
731         /* if modern processor, use no delay */
732         if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
733             ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
734             ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
735                 init_udelay = 0;
736                 return;
737         }
738         /* else, use legacy delay */
739         init_udelay = UDELAY_10MS_DEFAULT;
740 }
741
742 /*
743  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
744  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
745  * won't ... remember to clear down the APIC, etc later.
746  */
747 int
748 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
749 {
750         unsigned long send_status, accept_status = 0;
751         int maxlvt;
752
753         /* Target chip */
754         /* Boot on the stack */
755         /* Kick the second */
756         apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
757
758         pr_debug("Waiting for send to finish...\n");
759         send_status = safe_apic_wait_icr_idle();
760
761         /*
762          * Give the other CPU some time to accept the IPI.
763          */
764         udelay(200);
765         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
766                 maxlvt = lapic_get_maxlvt();
767                 if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
768                         apic_write(APIC_ESR, 0);
769                 accept_status = (apic_read(APIC_ESR) & 0xEF);
770         }
771         pr_debug("NMI sent\n");
772
773         if (send_status)
774                 pr_err("APIC never delivered???\n");
775         if (accept_status)
776                 pr_err("APIC delivery error (%lx)\n", accept_status);
777
778         return (send_status | accept_status);
779 }
780
781 static int
782 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
783 {
784         unsigned long send_status = 0, accept_status = 0;
785         int maxlvt, num_starts, j;
786
787         maxlvt = lapic_get_maxlvt();
788
789         /*
790          * Be paranoid about clearing APIC errors.
791          */
792         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
793                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
794                         apic_write(APIC_ESR, 0);
795                 apic_read(APIC_ESR);
796         }
797
798         pr_debug("Asserting INIT\n");
799
800         /*
801          * Turn INIT on target chip
802          */
803         /*
804          * Send IPI
805          */
806         apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
807                        phys_apicid);
808
809         pr_debug("Waiting for send to finish...\n");
810         send_status = safe_apic_wait_icr_idle();
811
812         udelay(init_udelay);
813
814         pr_debug("Deasserting INIT\n");
815
816         /* Target chip */
817         /* Send IPI */
818         apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
819
820         pr_debug("Waiting for send to finish...\n");
821         send_status = safe_apic_wait_icr_idle();
822
823         mb();
824
825         /*
826          * Should we send STARTUP IPIs ?
827          *
828          * Determine this based on the APIC version.
829          * If we don't have an integrated APIC, don't send the STARTUP IPIs.
830          */
831         if (APIC_INTEGRATED(boot_cpu_apic_version))
832                 num_starts = 2;
833         else
834                 num_starts = 0;
835
836         /*
837          * Run STARTUP IPI loop.
838          */
839         pr_debug("#startup loops: %d\n", num_starts);
840
841         for (j = 1; j <= num_starts; j++) {
842                 pr_debug("Sending STARTUP #%d\n", j);
843                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
844                         apic_write(APIC_ESR, 0);
845                 apic_read(APIC_ESR);
846                 pr_debug("After apic_write\n");
847
848                 /*
849                  * STARTUP IPI
850                  */
851
852                 /* Target chip */
853                 /* Boot on the stack */
854                 /* Kick the second */
855                 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
856                                phys_apicid);
857
858                 /*
859                  * Give the other CPU some time to accept the IPI.
860                  */
861                 if (init_udelay == 0)
862                         udelay(10);
863                 else
864                         udelay(300);
865
866                 pr_debug("Startup point 1\n");
867
868                 pr_debug("Waiting for send to finish...\n");
869                 send_status = safe_apic_wait_icr_idle();
870
871                 /*
872                  * Give the other CPU some time to accept the IPI.
873                  */
874                 if (init_udelay == 0)
875                         udelay(10);
876                 else
877                         udelay(200);
878
879                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
880                         apic_write(APIC_ESR, 0);
881                 accept_status = (apic_read(APIC_ESR) & 0xEF);
882                 if (send_status || accept_status)
883                         break;
884         }
885         pr_debug("After Startup\n");
886
887         if (send_status)
888                 pr_err("APIC never delivered???\n");
889         if (accept_status)
890                 pr_err("APIC delivery error (%lx)\n", accept_status);
891
892         return (send_status | accept_status);
893 }
894
895 /* reduce the number of lines printed when booting a large cpu count system */
896 static void announce_cpu(int cpu, int apicid)
897 {
898         static int current_node = NUMA_NO_NODE;
899         int node = early_cpu_to_node(cpu);
900         static int width, node_width;
901
902         if (!width)
903                 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
904
905         if (!node_width)
906                 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
907
908         if (cpu == 1)
909                 printk(KERN_INFO "x86: Booting SMP configuration:\n");
910
911         if (system_state < SYSTEM_RUNNING) {
912                 if (node != current_node) {
913                         if (current_node > (-1))
914                                 pr_cont("\n");
915                         current_node = node;
916
917                         printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
918                                node_width - num_digits(node), " ", node);
919                 }
920
921                 /* Add padding for the BSP */
922                 if (cpu == 1)
923                         pr_cont("%*s", width + 1, " ");
924
925                 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
926
927         } else
928                 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
929                         node, cpu, apicid);
930 }
931
932 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
933 {
934         int cpu;
935
936         cpu = smp_processor_id();
937         if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
938                 return NMI_HANDLED;
939
940         return NMI_DONE;
941 }
942
943 /*
944  * Wake up AP by INIT, INIT, STARTUP sequence.
945  *
946  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
947  * boot-strap code which is not a desired behavior for waking up BSP. To
948  * void the boot-strap code, wake up CPU0 by NMI instead.
949  *
950  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
951  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
952  * We'll change this code in the future to wake up hard offlined CPU0 if
953  * real platform and request are available.
954  */
955 static int
956 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
957                int *cpu0_nmi_registered)
958 {
959         int id;
960         int boot_error;
961
962         preempt_disable();
963
964         /*
965          * Wake up AP by INIT, INIT, STARTUP sequence.
966          */
967         if (cpu) {
968                 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
969                 goto out;
970         }
971
972         /*
973          * Wake up BSP by nmi.
974          *
975          * Register a NMI handler to help wake up CPU0.
976          */
977         boot_error = register_nmi_handler(NMI_LOCAL,
978                                           wakeup_cpu0_nmi, 0, "wake_cpu0");
979
980         if (!boot_error) {
981                 enable_start_cpu0 = 1;
982                 *cpu0_nmi_registered = 1;
983                 if (apic->dest_logical == APIC_DEST_LOGICAL)
984                         id = cpu0_logical_apicid;
985                 else
986                         id = apicid;
987                 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
988         }
989
990 out:
991         preempt_enable();
992
993         return boot_error;
994 }
995
996 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
997 {
998         int ret;
999
1000         /* Just in case we booted with a single CPU. */
1001         alternatives_enable_smp();
1002
1003         per_cpu(current_task, cpu) = idle;
1004         cpu_init_stack_canary(cpu, idle);
1005
1006         /* Initialize the interrupt stack(s) */
1007         ret = irq_init_percpu_irqstack(cpu);
1008         if (ret)
1009                 return ret;
1010
1011 #ifdef CONFIG_X86_32
1012         /* Stack for startup_32 can be just as for start_secondary onwards */
1013         per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1014 #else
1015         initial_gs = per_cpu_offset(cpu);
1016 #endif
1017         return 0;
1018 }
1019
1020 /*
1021  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1022  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1023  * Returns zero if CPU booted OK, else error code from
1024  * ->wakeup_secondary_cpu.
1025  */
1026 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1027                        int *cpu0_nmi_registered)
1028 {
1029         /* start_ip had better be page-aligned! */
1030         unsigned long start_ip = real_mode_header->trampoline_start;
1031
1032         unsigned long boot_error = 0;
1033         unsigned long timeout;
1034
1035         idle->thread.sp = (unsigned long)task_pt_regs(idle);
1036         early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1037         initial_code = (unsigned long)start_secondary;
1038         initial_stack  = idle->thread.sp;
1039
1040         /* Enable the espfix hack for this CPU */
1041         init_espfix_ap(cpu);
1042
1043         /* So we see what's up */
1044         announce_cpu(cpu, apicid);
1045
1046         /*
1047          * This grunge runs the startup process for
1048          * the targeted processor.
1049          */
1050
1051         if (x86_platform.legacy.warm_reset) {
1052
1053                 pr_debug("Setting warm reset code and vector.\n");
1054
1055                 smpboot_setup_warm_reset_vector(start_ip);
1056                 /*
1057                  * Be paranoid about clearing APIC errors.
1058                 */
1059                 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1060                         apic_write(APIC_ESR, 0);
1061                         apic_read(APIC_ESR);
1062                 }
1063         }
1064
1065         /*
1066          * AP might wait on cpu_callout_mask in cpu_init() with
1067          * cpu_initialized_mask set if previous attempt to online
1068          * it timed-out. Clear cpu_initialized_mask so that after
1069          * INIT/SIPI it could start with a clean state.
1070          */
1071         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1072         smp_mb();
1073
1074         /*
1075          * Wake up a CPU in difference cases:
1076          * - Use the method in the APIC driver if it's defined
1077          * Otherwise,
1078          * - Use an INIT boot APIC message for APs or NMI for BSP.
1079          */
1080         if (apic->wakeup_secondary_cpu)
1081                 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1082         else
1083                 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1084                                                      cpu0_nmi_registered);
1085
1086         if (!boot_error) {
1087                 /*
1088                  * Wait 10s total for first sign of life from AP
1089                  */
1090                 boot_error = -1;
1091                 timeout = jiffies + 10*HZ;
1092                 while (time_before(jiffies, timeout)) {
1093                         if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1094                                 /*
1095                                  * Tell AP to proceed with initialization
1096                                  */
1097                                 cpumask_set_cpu(cpu, cpu_callout_mask);
1098                                 boot_error = 0;
1099                                 break;
1100                         }
1101                         schedule();
1102                 }
1103         }
1104
1105         if (!boot_error) {
1106                 /*
1107                  * Wait till AP completes initial initialization
1108                  */
1109                 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1110                         /*
1111                          * Allow other tasks to run while we wait for the
1112                          * AP to come online. This also gives a chance
1113                          * for the MTRR work(triggered by the AP coming online)
1114                          * to be completed in the stop machine context.
1115                          */
1116                         schedule();
1117                 }
1118         }
1119
1120         if (x86_platform.legacy.warm_reset) {
1121                 /*
1122                  * Cleanup possible dangling ends...
1123                  */
1124                 smpboot_restore_warm_reset_vector();
1125         }
1126
1127         return boot_error;
1128 }
1129
1130 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1131 {
1132         int apicid = apic->cpu_present_to_apicid(cpu);
1133         int cpu0_nmi_registered = 0;
1134         unsigned long flags;
1135         int err, ret = 0;
1136
1137         lockdep_assert_irqs_enabled();
1138
1139         pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1140
1141         if (apicid == BAD_APICID ||
1142             !physid_isset(apicid, phys_cpu_present_map) ||
1143             !apic->apic_id_valid(apicid)) {
1144                 pr_err("%s: bad cpu %d\n", __func__, cpu);
1145                 return -EINVAL;
1146         }
1147
1148         /*
1149          * Already booted CPU?
1150          */
1151         if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1152                 pr_debug("do_boot_cpu %d Already started\n", cpu);
1153                 return -ENOSYS;
1154         }
1155
1156         /*
1157          * Save current MTRR state in case it was changed since early boot
1158          * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1159          */
1160         mtrr_save_state();
1161
1162         /* x86 CPUs take themselves offline, so delayed offline is OK. */
1163         err = cpu_check_up_prepare(cpu);
1164         if (err && err != -EBUSY)
1165                 return err;
1166
1167         /* the FPU context is blank, nobody can own it */
1168         per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1169
1170         err = common_cpu_up(cpu, tidle);
1171         if (err)
1172                 return err;
1173
1174         err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1175         if (err) {
1176                 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1177                 ret = -EIO;
1178                 goto unreg_nmi;
1179         }
1180
1181         /*
1182          * Check TSC synchronization with the AP (keep irqs disabled
1183          * while doing so):
1184          */
1185         local_irq_save(flags);
1186         check_tsc_sync_source(cpu);
1187         local_irq_restore(flags);
1188
1189         while (!cpu_online(cpu)) {
1190                 cpu_relax();
1191                 touch_nmi_watchdog();
1192         }
1193
1194 unreg_nmi:
1195         /*
1196          * Clean up the nmi handler. Do this after the callin and callout sync
1197          * to avoid impact of possible long unregister time.
1198          */
1199         if (cpu0_nmi_registered)
1200                 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1201
1202         return ret;
1203 }
1204
1205 /**
1206  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1207  */
1208 void arch_disable_smp_support(void)
1209 {
1210         disable_ioapic_support();
1211 }
1212
1213 /*
1214  * Fall back to non SMP mode after errors.
1215  *
1216  * RED-PEN audit/test this more. I bet there is more state messed up here.
1217  */
1218 static __init void disable_smp(void)
1219 {
1220         pr_info("SMP disabled\n");
1221
1222         disable_ioapic_support();
1223
1224         init_cpu_present(cpumask_of(0));
1225         init_cpu_possible(cpumask_of(0));
1226
1227         if (smp_found_config)
1228                 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1229         else
1230                 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1231         cpumask_set_cpu(0, topology_sibling_cpumask(0));
1232         cpumask_set_cpu(0, topology_core_cpumask(0));
1233         cpumask_set_cpu(0, topology_die_cpumask(0));
1234 }
1235
1236 /*
1237  * Various sanity checks.
1238  */
1239 static void __init smp_sanity_check(void)
1240 {
1241         preempt_disable();
1242
1243 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1244         if (def_to_bigsmp && nr_cpu_ids > 8) {
1245                 unsigned int cpu;
1246                 unsigned nr;
1247
1248                 pr_warn("More than 8 CPUs detected - skipping them\n"
1249                         "Use CONFIG_X86_BIGSMP\n");
1250
1251                 nr = 0;
1252                 for_each_present_cpu(cpu) {
1253                         if (nr >= 8)
1254                                 set_cpu_present(cpu, false);
1255                         nr++;
1256                 }
1257
1258                 nr = 0;
1259                 for_each_possible_cpu(cpu) {
1260                         if (nr >= 8)
1261                                 set_cpu_possible(cpu, false);
1262                         nr++;
1263                 }
1264
1265                 nr_cpu_ids = 8;
1266         }
1267 #endif
1268
1269         if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1270                 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1271                         hard_smp_processor_id());
1272
1273                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1274         }
1275
1276         /*
1277          * Should not be necessary because the MP table should list the boot
1278          * CPU too, but we do it for the sake of robustness anyway.
1279          */
1280         if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1281                 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1282                           boot_cpu_physical_apicid);
1283                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1284         }
1285         preempt_enable();
1286 }
1287
1288 static void __init smp_cpu_index_default(void)
1289 {
1290         int i;
1291         struct cpuinfo_x86 *c;
1292
1293         for_each_possible_cpu(i) {
1294                 c = &cpu_data(i);
1295                 /* mark all to hotplug */
1296                 c->cpu_index = nr_cpu_ids;
1297         }
1298 }
1299
1300 static void __init smp_get_logical_apicid(void)
1301 {
1302         if (x2apic_mode)
1303                 cpu0_logical_apicid = apic_read(APIC_LDR);
1304         else
1305                 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1306 }
1307
1308 /*
1309  * Prepare for SMP bootup.
1310  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1311  *            for common interface support.
1312  */
1313 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1314 {
1315         unsigned int i;
1316
1317         smp_cpu_index_default();
1318
1319         /*
1320          * Setup boot CPU information
1321          */
1322         smp_store_boot_cpu_info(); /* Final full version of the data */
1323         cpumask_copy(cpu_callin_mask, cpumask_of(0));
1324         mb();
1325
1326         for_each_possible_cpu(i) {
1327                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1328                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1329                 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1330                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1331         }
1332
1333         /*
1334          * Set 'default' x86 topology, this matches default_topology() in that
1335          * it has NUMA nodes as a topology level. See also
1336          * native_smp_cpus_done().
1337          *
1338          * Must be done before set_cpus_sibling_map() is ran.
1339          */
1340         set_sched_topology(x86_topology);
1341
1342         set_cpu_sibling_map(0);
1343         init_freq_invariance(false);
1344         smp_sanity_check();
1345
1346         switch (apic_intr_mode) {
1347         case APIC_PIC:
1348         case APIC_VIRTUAL_WIRE_NO_CONFIG:
1349                 disable_smp();
1350                 return;
1351         case APIC_SYMMETRIC_IO_NO_ROUTING:
1352                 disable_smp();
1353                 /* Setup local timer */
1354                 x86_init.timers.setup_percpu_clockev();
1355                 return;
1356         case APIC_VIRTUAL_WIRE:
1357         case APIC_SYMMETRIC_IO:
1358                 break;
1359         }
1360
1361         /* Setup local timer */
1362         x86_init.timers.setup_percpu_clockev();
1363
1364         smp_get_logical_apicid();
1365
1366         pr_info("CPU0: ");
1367         print_cpu_info(&cpu_data(0));
1368
1369         uv_system_init();
1370
1371         set_mtrr_aps_delayed_init();
1372
1373         smp_quirk_init_udelay();
1374
1375         speculative_store_bypass_ht_init();
1376 }
1377
1378 void arch_thaw_secondary_cpus_begin(void)
1379 {
1380         set_mtrr_aps_delayed_init();
1381 }
1382
1383 void arch_thaw_secondary_cpus_end(void)
1384 {
1385         mtrr_aps_init();
1386 }
1387
1388 /*
1389  * Early setup to make printk work.
1390  */
1391 void __init native_smp_prepare_boot_cpu(void)
1392 {
1393         int me = smp_processor_id();
1394         switch_to_new_gdt(me);
1395         /* already set me in cpu_online_mask in boot_cpu_init() */
1396         cpumask_set_cpu(me, cpu_callout_mask);
1397         cpu_set_state_online(me);
1398         native_pv_lock_init();
1399 }
1400
1401 void __init calculate_max_logical_packages(void)
1402 {
1403         int ncpus;
1404
1405         /*
1406          * Today neither Intel nor AMD support heterogenous systems so
1407          * extrapolate the boot cpu's data to all packages.
1408          */
1409         ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1410         __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1411         pr_info("Max logical packages: %u\n", __max_logical_packages);
1412 }
1413
1414 void __init native_smp_cpus_done(unsigned int max_cpus)
1415 {
1416         pr_debug("Boot done\n");
1417
1418         calculate_max_logical_packages();
1419
1420         if (x86_has_numa_in_package)
1421                 set_sched_topology(x86_numa_in_package_topology);
1422
1423         nmi_selftest();
1424         impress_friends();
1425         mtrr_aps_init();
1426 }
1427
1428 static int __initdata setup_possible_cpus = -1;
1429 static int __init _setup_possible_cpus(char *str)
1430 {
1431         get_option(&str, &setup_possible_cpus);
1432         return 0;
1433 }
1434 early_param("possible_cpus", _setup_possible_cpus);
1435
1436
1437 /*
1438  * cpu_possible_mask should be static, it cannot change as cpu's
1439  * are onlined, or offlined. The reason is per-cpu data-structures
1440  * are allocated by some modules at init time, and don't expect to
1441  * do this dynamically on cpu arrival/departure.
1442  * cpu_present_mask on the other hand can change dynamically.
1443  * In case when cpu_hotplug is not compiled, then we resort to current
1444  * behaviour, which is cpu_possible == cpu_present.
1445  * - Ashok Raj
1446  *
1447  * Three ways to find out the number of additional hotplug CPUs:
1448  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1449  * - The user can overwrite it with possible_cpus=NUM
1450  * - Otherwise don't reserve additional CPUs.
1451  * We do this because additional CPUs waste a lot of memory.
1452  * -AK
1453  */
1454 __init void prefill_possible_map(void)
1455 {
1456         int i, possible;
1457
1458         /* No boot processor was found in mptable or ACPI MADT */
1459         if (!num_processors) {
1460                 if (boot_cpu_has(X86_FEATURE_APIC)) {
1461                         int apicid = boot_cpu_physical_apicid;
1462                         int cpu = hard_smp_processor_id();
1463
1464                         pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1465
1466                         /* Make sure boot cpu is enumerated */
1467                         if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1468                             apic->apic_id_valid(apicid))
1469                                 generic_processor_info(apicid, boot_cpu_apic_version);
1470                 }
1471
1472                 if (!num_processors)
1473                         num_processors = 1;
1474         }
1475
1476         i = setup_max_cpus ?: 1;
1477         if (setup_possible_cpus == -1) {
1478                 possible = num_processors;
1479 #ifdef CONFIG_HOTPLUG_CPU
1480                 if (setup_max_cpus)
1481                         possible += disabled_cpus;
1482 #else
1483                 if (possible > i)
1484                         possible = i;
1485 #endif
1486         } else
1487                 possible = setup_possible_cpus;
1488
1489         total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1490
1491         /* nr_cpu_ids could be reduced via nr_cpus= */
1492         if (possible > nr_cpu_ids) {
1493                 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1494                         possible, nr_cpu_ids);
1495                 possible = nr_cpu_ids;
1496         }
1497
1498 #ifdef CONFIG_HOTPLUG_CPU
1499         if (!setup_max_cpus)
1500 #endif
1501         if (possible > i) {
1502                 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1503                         possible, setup_max_cpus);
1504                 possible = i;
1505         }
1506
1507         nr_cpu_ids = possible;
1508
1509         pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1510                 possible, max_t(int, possible - num_processors, 0));
1511
1512         reset_cpu_possible_mask();
1513
1514         for (i = 0; i < possible; i++)
1515                 set_cpu_possible(i, true);
1516 }
1517
1518 #ifdef CONFIG_HOTPLUG_CPU
1519
1520 /* Recompute SMT state for all CPUs on offline */
1521 static void recompute_smt_state(void)
1522 {
1523         int max_threads, cpu;
1524
1525         max_threads = 0;
1526         for_each_online_cpu (cpu) {
1527                 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1528
1529                 if (threads > max_threads)
1530                         max_threads = threads;
1531         }
1532         __max_smt_threads = max_threads;
1533 }
1534
1535 static void remove_siblinginfo(int cpu)
1536 {
1537         int sibling;
1538         struct cpuinfo_x86 *c = &cpu_data(cpu);
1539
1540         for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1541                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1542                 /*/
1543                  * last thread sibling in this cpu core going down
1544                  */
1545                 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1546                         cpu_data(sibling).booted_cores--;
1547         }
1548
1549         for_each_cpu(sibling, topology_die_cpumask(cpu))
1550                 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1551         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1552                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1553         for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1554                 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1555         cpumask_clear(cpu_llc_shared_mask(cpu));
1556         cpumask_clear(topology_sibling_cpumask(cpu));
1557         cpumask_clear(topology_core_cpumask(cpu));
1558         cpumask_clear(topology_die_cpumask(cpu));
1559         c->cpu_core_id = 0;
1560         c->booted_cores = 0;
1561         cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1562         recompute_smt_state();
1563 }
1564
1565 static void remove_cpu_from_maps(int cpu)
1566 {
1567         set_cpu_online(cpu, false);
1568         cpumask_clear_cpu(cpu, cpu_callout_mask);
1569         cpumask_clear_cpu(cpu, cpu_callin_mask);
1570         /* was set by cpu_init() */
1571         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1572         numa_remove_cpu(cpu);
1573 }
1574
1575 void cpu_disable_common(void)
1576 {
1577         int cpu = smp_processor_id();
1578
1579         remove_siblinginfo(cpu);
1580
1581         /* It's now safe to remove this processor from the online map */
1582         lock_vector_lock();
1583         remove_cpu_from_maps(cpu);
1584         unlock_vector_lock();
1585         fixup_irqs();
1586         lapic_offline();
1587 }
1588
1589 int native_cpu_disable(void)
1590 {
1591         int ret;
1592
1593         ret = lapic_can_unplug_cpu();
1594         if (ret)
1595                 return ret;
1596
1597         cpu_disable_common();
1598
1599         /*
1600          * Disable the local APIC. Otherwise IPI broadcasts will reach
1601          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1602          * messages.
1603          *
1604          * Disabling the APIC must happen after cpu_disable_common()
1605          * which invokes fixup_irqs().
1606          *
1607          * Disabling the APIC preserves already set bits in IRR, but
1608          * an interrupt arriving after disabling the local APIC does not
1609          * set the corresponding IRR bit.
1610          *
1611          * fixup_irqs() scans IRR for set bits so it can raise a not
1612          * yet handled interrupt on the new destination CPU via an IPI
1613          * but obviously it can't do so for IRR bits which are not set.
1614          * IOW, interrupts arriving after disabling the local APIC will
1615          * be lost.
1616          */
1617         apic_soft_disable();
1618
1619         return 0;
1620 }
1621
1622 int common_cpu_die(unsigned int cpu)
1623 {
1624         int ret = 0;
1625
1626         /* We don't do anything here: idle task is faking death itself. */
1627
1628         /* They ack this in play_dead() by setting CPU_DEAD */
1629         if (cpu_wait_death(cpu, 5)) {
1630                 if (system_state == SYSTEM_RUNNING)
1631                         pr_info("CPU %u is now offline\n", cpu);
1632         } else {
1633                 pr_err("CPU %u didn't die...\n", cpu);
1634                 ret = -1;
1635         }
1636
1637         return ret;
1638 }
1639
1640 void native_cpu_die(unsigned int cpu)
1641 {
1642         common_cpu_die(cpu);
1643 }
1644
1645 void play_dead_common(void)
1646 {
1647         idle_task_exit();
1648
1649         /* Ack it */
1650         (void)cpu_report_death();
1651
1652         /*
1653          * With physical CPU hotplug, we should halt the cpu
1654          */
1655         local_irq_disable();
1656 }
1657
1658 static bool wakeup_cpu0(void)
1659 {
1660         if (smp_processor_id() == 0 && enable_start_cpu0)
1661                 return true;
1662
1663         return false;
1664 }
1665
1666 /*
1667  * We need to flush the caches before going to sleep, lest we have
1668  * dirty data in our caches when we come back up.
1669  */
1670 static inline void mwait_play_dead(void)
1671 {
1672         unsigned int eax, ebx, ecx, edx;
1673         unsigned int highest_cstate = 0;
1674         unsigned int highest_subcstate = 0;
1675         void *mwait_ptr;
1676         int i;
1677
1678         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1679             boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1680                 return;
1681         if (!this_cpu_has(X86_FEATURE_MWAIT))
1682                 return;
1683         if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1684                 return;
1685         if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1686                 return;
1687
1688         eax = CPUID_MWAIT_LEAF;
1689         ecx = 0;
1690         native_cpuid(&eax, &ebx, &ecx, &edx);
1691
1692         /*
1693          * eax will be 0 if EDX enumeration is not valid.
1694          * Initialized below to cstate, sub_cstate value when EDX is valid.
1695          */
1696         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1697                 eax = 0;
1698         } else {
1699                 edx >>= MWAIT_SUBSTATE_SIZE;
1700                 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1701                         if (edx & MWAIT_SUBSTATE_MASK) {
1702                                 highest_cstate = i;
1703                                 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1704                         }
1705                 }
1706                 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1707                         (highest_subcstate - 1);
1708         }
1709
1710         /*
1711          * This should be a memory location in a cache line which is
1712          * unlikely to be touched by other processors.  The actual
1713          * content is immaterial as it is not actually modified in any way.
1714          */
1715         mwait_ptr = &current_thread_info()->flags;
1716
1717         wbinvd();
1718
1719         while (1) {
1720                 /*
1721                  * The CLFLUSH is a workaround for erratum AAI65 for
1722                  * the Xeon 7400 series.  It's not clear it is actually
1723                  * needed, but it should be harmless in either case.
1724                  * The WBINVD is insufficient due to the spurious-wakeup
1725                  * case where we return around the loop.
1726                  */
1727                 mb();
1728                 clflush(mwait_ptr);
1729                 mb();
1730                 __monitor(mwait_ptr, 0, 0);
1731                 mb();
1732                 __mwait(eax, 0);
1733                 /*
1734                  * If NMI wants to wake up CPU0, start CPU0.
1735                  */
1736                 if (wakeup_cpu0())
1737                         start_cpu0();
1738         }
1739 }
1740
1741 void hlt_play_dead(void)
1742 {
1743         if (__this_cpu_read(cpu_info.x86) >= 4)
1744                 wbinvd();
1745
1746         while (1) {
1747                 native_halt();
1748                 /*
1749                  * If NMI wants to wake up CPU0, start CPU0.
1750                  */
1751                 if (wakeup_cpu0())
1752                         start_cpu0();
1753         }
1754 }
1755
1756 void native_play_dead(void)
1757 {
1758         play_dead_common();
1759         tboot_shutdown(TB_SHUTDOWN_WFS);
1760
1761         mwait_play_dead();      /* Only returns on failure */
1762         if (cpuidle_play_dead())
1763                 hlt_play_dead();
1764 }
1765
1766 #else /* ... !CONFIG_HOTPLUG_CPU */
1767 int native_cpu_disable(void)
1768 {
1769         return -ENOSYS;
1770 }
1771
1772 void native_cpu_die(unsigned int cpu)
1773 {
1774         /* We said "no" in __cpu_disable */
1775         BUG();
1776 }
1777
1778 void native_play_dead(void)
1779 {
1780         BUG();
1781 }
1782
1783 #endif
1784
1785 #ifdef CONFIG_X86_64
1786 /*
1787  * APERF/MPERF frequency ratio computation.
1788  *
1789  * The scheduler wants to do frequency invariant accounting and needs a <1
1790  * ratio to account for the 'current' frequency, corresponding to
1791  * freq_curr / freq_max.
1792  *
1793  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1794  * our P-state setting is little more than a request/hint, we need to observe
1795  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1796  * interval after discarding idle time. This is given by:
1797  *
1798  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1799  *
1800  * where freq_base is the max non-turbo P-state.
1801  *
1802  * The freq_max term has to be set to a somewhat arbitrary value, because we
1803  * can't know which turbo states will be available at a given point in time:
1804  * it all depends on the thermal headroom of the entire package. We set it to
1805  * the turbo level with 4 cores active.
1806  *
1807  * Benchmarks show that's a good compromise between the 1C turbo ratio
1808  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1809  * which would ignore the entire turbo range (a conspicuous part, making
1810  * freq_curr/freq_max always maxed out).
1811  *
1812  * An exception to the heuristic above is the Atom uarch, where we choose the
1813  * highest turbo level for freq_max since Atom's are generally oriented towards
1814  * power efficiency.
1815  *
1816  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1817  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1818  */
1819
1820 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1821
1822 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1823 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1824 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1825 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1826
1827 void arch_set_max_freq_ratio(bool turbo_disabled)
1828 {
1829         arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1830                                         arch_turbo_freq_ratio;
1831 }
1832
1833 static bool turbo_disabled(void)
1834 {
1835         u64 misc_en;
1836         int err;
1837
1838         err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1839         if (err)
1840                 return false;
1841
1842         return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1843 }
1844
1845 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1846 {
1847         int err;
1848
1849         err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1850         if (err)
1851                 return false;
1852
1853         err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1854         if (err)
1855                 return false;
1856
1857         *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1858         *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1859
1860         return true;
1861 }
1862
1863 #include <asm/cpu_device_id.h>
1864 #include <asm/intel-family.h>
1865
1866 #define X86_MATCH(model)                                        \
1867         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,            \
1868                 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1869
1870 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1871         X86_MATCH(XEON_PHI_KNL),
1872         X86_MATCH(XEON_PHI_KNM),
1873         {}
1874 };
1875
1876 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1877         X86_MATCH(SKYLAKE_X),
1878         {}
1879 };
1880
1881 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1882         X86_MATCH(ATOM_GOLDMONT),
1883         X86_MATCH(ATOM_GOLDMONT_D),
1884         X86_MATCH(ATOM_GOLDMONT_PLUS),
1885         {}
1886 };
1887
1888 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1889                                 int num_delta_fratio)
1890 {
1891         int fratio, delta_fratio, found;
1892         int err, i;
1893         u64 msr;
1894
1895         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1896         if (err)
1897                 return false;
1898
1899         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1900
1901         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1902         if (err)
1903                 return false;
1904
1905         fratio = (msr >> 8) & 0xFF;
1906         i = 16;
1907         found = 0;
1908         do {
1909                 if (found >= num_delta_fratio) {
1910                         *turbo_freq = fratio;
1911                         return true;
1912                 }
1913
1914                 delta_fratio = (msr >> (i + 5)) & 0x7;
1915
1916                 if (delta_fratio) {
1917                         found += 1;
1918                         fratio -= delta_fratio;
1919                 }
1920
1921                 i += 8;
1922         } while (i < 64);
1923
1924         return true;
1925 }
1926
1927 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1928 {
1929         u64 ratios, counts;
1930         u32 group_size;
1931         int err, i;
1932
1933         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1934         if (err)
1935                 return false;
1936
1937         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1938
1939         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1940         if (err)
1941                 return false;
1942
1943         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1944         if (err)
1945                 return false;
1946
1947         for (i = 0; i < 64; i += 8) {
1948                 group_size = (counts >> i) & 0xFF;
1949                 if (group_size >= size) {
1950                         *turbo_freq = (ratios >> i) & 0xFF;
1951                         return true;
1952                 }
1953         }
1954
1955         return false;
1956 }
1957
1958 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1959 {
1960         u64 msr;
1961         int err;
1962
1963         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1964         if (err)
1965                 return false;
1966
1967         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1968         if (err)
1969                 return false;
1970
1971         *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1972         *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1973
1974         /* The CPU may have less than 4 cores */
1975         if (!*turbo_freq)
1976                 *turbo_freq = msr & 0xFF;         /* 1C turbo    */
1977
1978         return true;
1979 }
1980
1981 static bool intel_set_max_freq_ratio(void)
1982 {
1983         u64 base_freq, turbo_freq;
1984         u64 turbo_ratio;
1985
1986         if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1987                 goto out;
1988
1989         if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1990             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1991                 goto out;
1992
1993         if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1994             knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1995                 goto out;
1996
1997         if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1998             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1999                 goto out;
2000
2001         if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2002                 goto out;
2003
2004         return false;
2005
2006 out:
2007         /*
2008          * Some hypervisors advertise X86_FEATURE_APERFMPERF
2009          * but then fill all MSR's with zeroes.
2010          * Some CPUs have turbo boost but don't declare any turbo ratio
2011          * in MSR_TURBO_RATIO_LIMIT.
2012          */
2013         if (!base_freq || !turbo_freq) {
2014                 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2015                 return false;
2016         }
2017
2018         turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2019         if (!turbo_ratio) {
2020                 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2021                 return false;
2022         }
2023
2024         arch_turbo_freq_ratio = turbo_ratio;
2025         arch_set_max_freq_ratio(turbo_disabled());
2026
2027         return true;
2028 }
2029
2030 static void init_counter_refs(void)
2031 {
2032         u64 aperf, mperf;
2033
2034         rdmsrl(MSR_IA32_APERF, aperf);
2035         rdmsrl(MSR_IA32_MPERF, mperf);
2036
2037         this_cpu_write(arch_prev_aperf, aperf);
2038         this_cpu_write(arch_prev_mperf, mperf);
2039 }
2040
2041 static void init_freq_invariance(bool secondary)
2042 {
2043         bool ret = false;
2044
2045         if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2046                 return;
2047
2048         if (secondary) {
2049                 if (static_branch_likely(&arch_scale_freq_key)) {
2050                         init_counter_refs();
2051                 }
2052                 return;
2053         }
2054
2055         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2056                 ret = intel_set_max_freq_ratio();
2057
2058         if (ret) {
2059                 init_counter_refs();
2060                 static_branch_enable(&arch_scale_freq_key);
2061         } else {
2062                 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2063         }
2064 }
2065
2066 static void disable_freq_invariance_workfn(struct work_struct *work)
2067 {
2068         static_branch_disable(&arch_scale_freq_key);
2069 }
2070
2071 static DECLARE_WORK(disable_freq_invariance_work,
2072                     disable_freq_invariance_workfn);
2073
2074 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2075
2076 void arch_scale_freq_tick(void)
2077 {
2078         u64 freq_scale = SCHED_CAPACITY_SCALE;
2079         u64 aperf, mperf;
2080         u64 acnt, mcnt;
2081
2082         if (!arch_scale_freq_invariant())
2083                 return;
2084
2085         rdmsrl(MSR_IA32_APERF, aperf);
2086         rdmsrl(MSR_IA32_MPERF, mperf);
2087
2088         acnt = aperf - this_cpu_read(arch_prev_aperf);
2089         mcnt = mperf - this_cpu_read(arch_prev_mperf);
2090
2091         this_cpu_write(arch_prev_aperf, aperf);
2092         this_cpu_write(arch_prev_mperf, mperf);
2093
2094         if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2095                 goto error;
2096
2097         if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2098                 goto error;
2099
2100         freq_scale = div64_u64(acnt, mcnt);
2101         if (!freq_scale)
2102                 goto error;
2103
2104         if (freq_scale > SCHED_CAPACITY_SCALE)
2105                 freq_scale = SCHED_CAPACITY_SCALE;
2106
2107         this_cpu_write(arch_freq_scale, freq_scale);
2108         return;
2109
2110 error:
2111         pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2112         schedule_work(&disable_freq_invariance_work);
2113 }
2114 #else
2115 static inline void init_freq_invariance(bool secondary)
2116 {
2117 }
2118 #endif /* CONFIG_X86_64 */