xsk: Fix possible crash when multiple sockets are created
[sfrench/cifs-2.6.git] / arch / x86 / kernel / fpu / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *      Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/sched.h>
12 #include <asm/fpu/signal.h>
13 #include <asm/fpu/types.h>
14 #include <asm/traps.h>
15 #include <asm/irq_regs.h>
16
17 #include <linux/hardirq.h>
18 #include <linux/pkeys.h>
19 #include <linux/vmalloc.h>
20
21 #include "context.h"
22 #include "internal.h"
23 #include "legacy.h"
24 #include "xstate.h"
25
26 #define CREATE_TRACE_POINTS
27 #include <asm/trace/fpu.h>
28
29 #ifdef CONFIG_X86_64
30 DEFINE_STATIC_KEY_FALSE(__fpu_state_size_dynamic);
31 DEFINE_PER_CPU(u64, xfd_state);
32 #endif
33
34 /* The FPU state configuration data for kernel and user space */
35 struct fpu_state_config fpu_kernel_cfg __ro_after_init;
36 struct fpu_state_config fpu_user_cfg __ro_after_init;
37
38 /*
39  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
40  * depending on the FPU hardware format:
41  */
42 struct fpstate init_fpstate __ro_after_init;
43
44 /*
45  * Track whether the kernel is using the FPU state
46  * currently.
47  *
48  * This flag is used:
49  *
50  *   - by IRQ context code to potentially use the FPU
51  *     if it's unused.
52  *
53  *   - to debug kernel_fpu_begin()/end() correctness
54  */
55 static DEFINE_PER_CPU(bool, in_kernel_fpu);
56
57 /*
58  * Track which context is using the FPU on the CPU:
59  */
60 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
61
62 static bool kernel_fpu_disabled(void)
63 {
64         return this_cpu_read(in_kernel_fpu);
65 }
66
67 static bool interrupted_kernel_fpu_idle(void)
68 {
69         return !kernel_fpu_disabled();
70 }
71
72 /*
73  * Were we in user mode (or vm86 mode) when we were
74  * interrupted?
75  *
76  * Doing kernel_fpu_begin/end() is ok if we are running
77  * in an interrupt context from user mode - we'll just
78  * save the FPU state as required.
79  */
80 static bool interrupted_user_mode(void)
81 {
82         struct pt_regs *regs = get_irq_regs();
83         return regs && user_mode(regs);
84 }
85
86 /*
87  * Can we use the FPU in kernel mode with the
88  * whole "kernel_fpu_begin/end()" sequence?
89  *
90  * It's always ok in process context (ie "not interrupt")
91  * but it is sometimes ok even from an irq.
92  */
93 bool irq_fpu_usable(void)
94 {
95         return !in_interrupt() ||
96                 interrupted_user_mode() ||
97                 interrupted_kernel_fpu_idle();
98 }
99 EXPORT_SYMBOL(irq_fpu_usable);
100
101 /*
102  * Track AVX512 state use because it is known to slow the max clock
103  * speed of the core.
104  */
105 static void update_avx_timestamp(struct fpu *fpu)
106 {
107
108 #define AVX512_TRACKING_MASK    (XFEATURE_MASK_ZMM_Hi256 | XFEATURE_MASK_Hi16_ZMM)
109
110         if (fpu->fpstate->regs.xsave.header.xfeatures & AVX512_TRACKING_MASK)
111                 fpu->avx512_timestamp = jiffies;
112 }
113
114 /*
115  * Save the FPU register state in fpu->fpstate->regs. The register state is
116  * preserved.
117  *
118  * Must be called with fpregs_lock() held.
119  *
120  * The legacy FNSAVE instruction clears all FPU state unconditionally, so
121  * register state has to be reloaded. That might be a pointless exercise
122  * when the FPU is going to be used by another task right after that. But
123  * this only affects 20+ years old 32bit systems and avoids conditionals all
124  * over the place.
125  *
126  * FXSAVE and all XSAVE variants preserve the FPU register state.
127  */
128 void save_fpregs_to_fpstate(struct fpu *fpu)
129 {
130         if (likely(use_xsave())) {
131                 os_xsave(fpu->fpstate);
132                 update_avx_timestamp(fpu);
133                 return;
134         }
135
136         if (likely(use_fxsr())) {
137                 fxsave(&fpu->fpstate->regs.fxsave);
138                 return;
139         }
140
141         /*
142          * Legacy FPU register saving, FNSAVE always clears FPU registers,
143          * so we have to reload them from the memory state.
144          */
145         asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->fpstate->regs.fsave));
146         frstor(&fpu->fpstate->regs.fsave);
147 }
148
149 void restore_fpregs_from_fpstate(struct fpstate *fpstate, u64 mask)
150 {
151         /*
152          * AMD K7/K8 and later CPUs up to Zen don't save/restore
153          * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
154          * here by setting it to fixed values.  "m" is a random variable
155          * that should be in L1.
156          */
157         if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
158                 asm volatile(
159                         "fnclex\n\t"
160                         "emms\n\t"
161                         "fildl %P[addr]"        /* set F?P to defined value */
162                         : : [addr] "m" (fpstate));
163         }
164
165         if (use_xsave()) {
166                 /*
167                  * Dynamically enabled features are enabled in XCR0, but
168                  * usage requires also that the corresponding bits in XFD
169                  * are cleared.  If the bits are set then using a related
170                  * instruction will raise #NM. This allows to do the
171                  * allocation of the larger FPU buffer lazy from #NM or if
172                  * the task has no permission to kill it which would happen
173                  * via #UD if the feature is disabled in XCR0.
174                  *
175                  * XFD state is following the same life time rules as
176                  * XSTATE and to restore state correctly XFD has to be
177                  * updated before XRSTORS otherwise the component would
178                  * stay in or go into init state even if the bits are set
179                  * in fpstate::regs::xsave::xfeatures.
180                  */
181                 xfd_update_state(fpstate);
182
183                 /*
184                  * Restoring state always needs to modify all features
185                  * which are in @mask even if the current task cannot use
186                  * extended features.
187                  *
188                  * So fpstate->xfeatures cannot be used here, because then
189                  * a feature for which the task has no permission but was
190                  * used by the previous task would not go into init state.
191                  */
192                 mask = fpu_kernel_cfg.max_features & mask;
193
194                 os_xrstor(fpstate, mask);
195         } else {
196                 if (use_fxsr())
197                         fxrstor(&fpstate->regs.fxsave);
198                 else
199                         frstor(&fpstate->regs.fsave);
200         }
201 }
202
203 void fpu_reset_from_exception_fixup(void)
204 {
205         restore_fpregs_from_fpstate(&init_fpstate, XFEATURE_MASK_FPSTATE);
206 }
207
208 #if IS_ENABLED(CONFIG_KVM)
209 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd);
210
211 static void fpu_init_guest_permissions(struct fpu_guest *gfpu)
212 {
213         struct fpu_state_perm *fpuperm;
214         u64 perm;
215
216         if (!IS_ENABLED(CONFIG_X86_64))
217                 return;
218
219         spin_lock_irq(&current->sighand->siglock);
220         fpuperm = &current->group_leader->thread.fpu.guest_perm;
221         perm = fpuperm->__state_perm;
222
223         /* First fpstate allocation locks down permissions. */
224         WRITE_ONCE(fpuperm->__state_perm, perm | FPU_GUEST_PERM_LOCKED);
225
226         spin_unlock_irq(&current->sighand->siglock);
227
228         gfpu->perm = perm & ~FPU_GUEST_PERM_LOCKED;
229 }
230
231 bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu)
232 {
233         struct fpstate *fpstate;
234         unsigned int size;
235
236         size = fpu_user_cfg.default_size + ALIGN(offsetof(struct fpstate, regs), 64);
237         fpstate = vzalloc(size);
238         if (!fpstate)
239                 return false;
240
241         /* Leave xfd to 0 (the reset value defined by spec) */
242         __fpstate_reset(fpstate, 0);
243         fpstate_init_user(fpstate);
244         fpstate->is_valloc      = true;
245         fpstate->is_guest       = true;
246
247         gfpu->fpstate           = fpstate;
248         gfpu->xfeatures         = fpu_user_cfg.default_features;
249         gfpu->perm              = fpu_user_cfg.default_features;
250         gfpu->uabi_size         = fpu_user_cfg.default_size;
251         fpu_init_guest_permissions(gfpu);
252
253         return true;
254 }
255 EXPORT_SYMBOL_GPL(fpu_alloc_guest_fpstate);
256
257 void fpu_free_guest_fpstate(struct fpu_guest *gfpu)
258 {
259         struct fpstate *fps = gfpu->fpstate;
260
261         if (!fps)
262                 return;
263
264         if (WARN_ON_ONCE(!fps->is_valloc || !fps->is_guest || fps->in_use))
265                 return;
266
267         gfpu->fpstate = NULL;
268         vfree(fps);
269 }
270 EXPORT_SYMBOL_GPL(fpu_free_guest_fpstate);
271
272 /*
273   * fpu_enable_guest_xfd_features - Check xfeatures against guest perm and enable
274   * @guest_fpu:         Pointer to the guest FPU container
275   * @xfeatures:         Features requested by guest CPUID
276   *
277   * Enable all dynamic xfeatures according to guest perm and requested CPUID.
278   *
279   * Return: 0 on success, error code otherwise
280   */
281 int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures)
282 {
283         lockdep_assert_preemption_enabled();
284
285         /* Nothing to do if all requested features are already enabled. */
286         xfeatures &= ~guest_fpu->xfeatures;
287         if (!xfeatures)
288                 return 0;
289
290         return __xfd_enable_feature(xfeatures, guest_fpu);
291 }
292 EXPORT_SYMBOL_GPL(fpu_enable_guest_xfd_features);
293
294 #ifdef CONFIG_X86_64
295 void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd)
296 {
297         fpregs_lock();
298         guest_fpu->fpstate->xfd = xfd;
299         if (guest_fpu->fpstate->in_use)
300                 xfd_update_state(guest_fpu->fpstate);
301         fpregs_unlock();
302 }
303 EXPORT_SYMBOL_GPL(fpu_update_guest_xfd);
304
305 /**
306  * fpu_sync_guest_vmexit_xfd_state - Synchronize XFD MSR and software state
307  *
308  * Must be invoked from KVM after a VMEXIT before enabling interrupts when
309  * XFD write emulation is disabled. This is required because the guest can
310  * freely modify XFD and the state at VMEXIT is not guaranteed to be the
311  * same as the state on VMENTER. So software state has to be udpated before
312  * any operation which depends on it can take place.
313  *
314  * Note: It can be invoked unconditionally even when write emulation is
315  * enabled for the price of a then pointless MSR read.
316  */
317 void fpu_sync_guest_vmexit_xfd_state(void)
318 {
319         struct fpstate *fps = current->thread.fpu.fpstate;
320
321         lockdep_assert_irqs_disabled();
322         if (fpu_state_size_dynamic()) {
323                 rdmsrl(MSR_IA32_XFD, fps->xfd);
324                 __this_cpu_write(xfd_state, fps->xfd);
325         }
326 }
327 EXPORT_SYMBOL_GPL(fpu_sync_guest_vmexit_xfd_state);
328 #endif /* CONFIG_X86_64 */
329
330 int fpu_swap_kvm_fpstate(struct fpu_guest *guest_fpu, bool enter_guest)
331 {
332         struct fpstate *guest_fps = guest_fpu->fpstate;
333         struct fpu *fpu = &current->thread.fpu;
334         struct fpstate *cur_fps = fpu->fpstate;
335
336         fpregs_lock();
337         if (!cur_fps->is_confidential && !test_thread_flag(TIF_NEED_FPU_LOAD))
338                 save_fpregs_to_fpstate(fpu);
339
340         /* Swap fpstate */
341         if (enter_guest) {
342                 fpu->__task_fpstate = cur_fps;
343                 fpu->fpstate = guest_fps;
344                 guest_fps->in_use = true;
345         } else {
346                 guest_fps->in_use = false;
347                 fpu->fpstate = fpu->__task_fpstate;
348                 fpu->__task_fpstate = NULL;
349         }
350
351         cur_fps = fpu->fpstate;
352
353         if (!cur_fps->is_confidential) {
354                 /* Includes XFD update */
355                 restore_fpregs_from_fpstate(cur_fps, XFEATURE_MASK_FPSTATE);
356         } else {
357                 /*
358                  * XSTATE is restored by firmware from encrypted
359                  * memory. Make sure XFD state is correct while
360                  * running with guest fpstate
361                  */
362                 xfd_update_state(cur_fps);
363         }
364
365         fpregs_mark_activate();
366         fpregs_unlock();
367         return 0;
368 }
369 EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpstate);
370
371 void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
372                                     unsigned int size, u32 pkru)
373 {
374         struct fpstate *kstate = gfpu->fpstate;
375         union fpregs_state *ustate = buf;
376         struct membuf mb = { .p = buf, .left = size };
377
378         if (cpu_feature_enabled(X86_FEATURE_XSAVE)) {
379                 __copy_xstate_to_uabi_buf(mb, kstate, pkru, XSTATE_COPY_XSAVE);
380         } else {
381                 memcpy(&ustate->fxsave, &kstate->regs.fxsave,
382                        sizeof(ustate->fxsave));
383                 /* Make it restorable on a XSAVE enabled host */
384                 ustate->xsave.header.xfeatures = XFEATURE_MASK_FPSSE;
385         }
386 }
387 EXPORT_SYMBOL_GPL(fpu_copy_guest_fpstate_to_uabi);
388
389 int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf,
390                                    u64 xcr0, u32 *vpkru)
391 {
392         struct fpstate *kstate = gfpu->fpstate;
393         const union fpregs_state *ustate = buf;
394         struct pkru_state *xpkru;
395         int ret;
396
397         if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
398                 if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
399                         return -EINVAL;
400                 if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
401                         return -EINVAL;
402                 memcpy(&kstate->regs.fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
403                 return 0;
404         }
405
406         if (ustate->xsave.header.xfeatures & ~xcr0)
407                 return -EINVAL;
408
409         ret = copy_uabi_from_kernel_to_xstate(kstate, ustate);
410         if (ret)
411                 return ret;
412
413         /* Retrieve PKRU if not in init state */
414         if (kstate->regs.xsave.header.xfeatures & XFEATURE_MASK_PKRU) {
415                 xpkru = get_xsave_addr(&kstate->regs.xsave, XFEATURE_PKRU);
416                 *vpkru = xpkru->pkru;
417         }
418
419         /* Ensure that XCOMP_BV is set up for XSAVES */
420         xstate_init_xcomp_bv(&kstate->regs.xsave, kstate->xfeatures);
421         return 0;
422 }
423 EXPORT_SYMBOL_GPL(fpu_copy_uabi_to_guest_fpstate);
424 #endif /* CONFIG_KVM */
425
426 void kernel_fpu_begin_mask(unsigned int kfpu_mask)
427 {
428         preempt_disable();
429
430         WARN_ON_FPU(!irq_fpu_usable());
431         WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
432
433         this_cpu_write(in_kernel_fpu, true);
434
435         if (!(current->flags & PF_KTHREAD) &&
436             !test_thread_flag(TIF_NEED_FPU_LOAD)) {
437                 set_thread_flag(TIF_NEED_FPU_LOAD);
438                 save_fpregs_to_fpstate(&current->thread.fpu);
439         }
440         __cpu_invalidate_fpregs_state();
441
442         /* Put sane initial values into the control registers. */
443         if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
444                 ldmxcsr(MXCSR_DEFAULT);
445
446         if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
447                 asm volatile ("fninit");
448 }
449 EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);
450
451 void kernel_fpu_end(void)
452 {
453         WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
454
455         this_cpu_write(in_kernel_fpu, false);
456         preempt_enable();
457 }
458 EXPORT_SYMBOL_GPL(kernel_fpu_end);
459
460 /*
461  * Sync the FPU register state to current's memory register state when the
462  * current task owns the FPU. The hardware register state is preserved.
463  */
464 void fpu_sync_fpstate(struct fpu *fpu)
465 {
466         WARN_ON_FPU(fpu != &current->thread.fpu);
467
468         fpregs_lock();
469         trace_x86_fpu_before_save(fpu);
470
471         if (!test_thread_flag(TIF_NEED_FPU_LOAD))
472                 save_fpregs_to_fpstate(fpu);
473
474         trace_x86_fpu_after_save(fpu);
475         fpregs_unlock();
476 }
477
478 static inline unsigned int init_fpstate_copy_size(void)
479 {
480         if (!use_xsave())
481                 return fpu_kernel_cfg.default_size;
482
483         /* XSAVE(S) just needs the legacy and the xstate header part */
484         return sizeof(init_fpstate.regs.xsave);
485 }
486
487 static inline void fpstate_init_fxstate(struct fpstate *fpstate)
488 {
489         fpstate->regs.fxsave.cwd = 0x37f;
490         fpstate->regs.fxsave.mxcsr = MXCSR_DEFAULT;
491 }
492
493 /*
494  * Legacy x87 fpstate state init:
495  */
496 static inline void fpstate_init_fstate(struct fpstate *fpstate)
497 {
498         fpstate->regs.fsave.cwd = 0xffff037fu;
499         fpstate->regs.fsave.swd = 0xffff0000u;
500         fpstate->regs.fsave.twd = 0xffffffffu;
501         fpstate->regs.fsave.fos = 0xffff0000u;
502 }
503
504 /*
505  * Used in two places:
506  * 1) Early boot to setup init_fpstate for non XSAVE systems
507  * 2) fpu_init_fpstate_user() which is invoked from KVM
508  */
509 void fpstate_init_user(struct fpstate *fpstate)
510 {
511         if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
512                 fpstate_init_soft(&fpstate->regs.soft);
513                 return;
514         }
515
516         xstate_init_xcomp_bv(&fpstate->regs.xsave, fpstate->xfeatures);
517
518         if (cpu_feature_enabled(X86_FEATURE_FXSR))
519                 fpstate_init_fxstate(fpstate);
520         else
521                 fpstate_init_fstate(fpstate);
522 }
523
524 static void __fpstate_reset(struct fpstate *fpstate, u64 xfd)
525 {
526         /* Initialize sizes and feature masks */
527         fpstate->size           = fpu_kernel_cfg.default_size;
528         fpstate->user_size      = fpu_user_cfg.default_size;
529         fpstate->xfeatures      = fpu_kernel_cfg.default_features;
530         fpstate->user_xfeatures = fpu_user_cfg.default_features;
531         fpstate->xfd            = xfd;
532 }
533
534 void fpstate_reset(struct fpu *fpu)
535 {
536         /* Set the fpstate pointer to the default fpstate */
537         fpu->fpstate = &fpu->__fpstate;
538         __fpstate_reset(fpu->fpstate, init_fpstate.xfd);
539
540         /* Initialize the permission related info in fpu */
541         fpu->perm.__state_perm          = fpu_kernel_cfg.default_features;
542         fpu->perm.__state_size          = fpu_kernel_cfg.default_size;
543         fpu->perm.__user_state_size     = fpu_user_cfg.default_size;
544         /* Same defaults for guests */
545         fpu->guest_perm = fpu->perm;
546 }
547
548 static inline void fpu_inherit_perms(struct fpu *dst_fpu)
549 {
550         if (fpu_state_size_dynamic()) {
551                 struct fpu *src_fpu = &current->group_leader->thread.fpu;
552
553                 spin_lock_irq(&current->sighand->siglock);
554                 /* Fork also inherits the permissions of the parent */
555                 dst_fpu->perm = src_fpu->perm;
556                 dst_fpu->guest_perm = src_fpu->guest_perm;
557                 spin_unlock_irq(&current->sighand->siglock);
558         }
559 }
560
561 /* Clone current's FPU state on fork */
562 int fpu_clone(struct task_struct *dst, unsigned long clone_flags)
563 {
564         struct fpu *src_fpu = &current->thread.fpu;
565         struct fpu *dst_fpu = &dst->thread.fpu;
566
567         /* The new task's FPU state cannot be valid in the hardware. */
568         dst_fpu->last_cpu = -1;
569
570         fpstate_reset(dst_fpu);
571
572         if (!cpu_feature_enabled(X86_FEATURE_FPU))
573                 return 0;
574
575         /*
576          * Enforce reload for user space tasks and prevent kernel threads
577          * from trying to save the FPU registers on context switch.
578          */
579         set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
580
581         /*
582          * No FPU state inheritance for kernel threads and IO
583          * worker threads.
584          */
585         if (dst->flags & (PF_KTHREAD | PF_IO_WORKER)) {
586                 /* Clear out the minimal state */
587                 memcpy(&dst_fpu->fpstate->regs, &init_fpstate.regs,
588                        init_fpstate_copy_size());
589                 return 0;
590         }
591
592         /*
593          * If a new feature is added, ensure all dynamic features are
594          * caller-saved from here!
595          */
596         BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
597
598         /*
599          * Save the default portion of the current FPU state into the
600          * clone. Assume all dynamic features to be defined as caller-
601          * saved, which enables skipping both the expansion of fpstate
602          * and the copying of any dynamic state.
603          *
604          * Do not use memcpy() when TIF_NEED_FPU_LOAD is set because
605          * copying is not valid when current uses non-default states.
606          */
607         fpregs_lock();
608         if (test_thread_flag(TIF_NEED_FPU_LOAD))
609                 fpregs_restore_userregs();
610         save_fpregs_to_fpstate(dst_fpu);
611         if (!(clone_flags & CLONE_THREAD))
612                 fpu_inherit_perms(dst_fpu);
613         fpregs_unlock();
614
615         /*
616          * Children never inherit PASID state.
617          * Force it to have its init value:
618          */
619         if (use_xsave())
620                 dst_fpu->fpstate->regs.xsave.header.xfeatures &= ~XFEATURE_MASK_PASID;
621
622         trace_x86_fpu_copy_src(src_fpu);
623         trace_x86_fpu_copy_dst(dst_fpu);
624
625         return 0;
626 }
627
628 /*
629  * Whitelist the FPU register state embedded into task_struct for hardened
630  * usercopy.
631  */
632 void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size)
633 {
634         *offset = offsetof(struct thread_struct, fpu.__fpstate.regs);
635         *size = fpu_kernel_cfg.default_size;
636 }
637
638 /*
639  * Drops current FPU state: deactivates the fpregs and
640  * the fpstate. NOTE: it still leaves previous contents
641  * in the fpregs in the eager-FPU case.
642  *
643  * This function can be used in cases where we know that
644  * a state-restore is coming: either an explicit one,
645  * or a reschedule.
646  */
647 void fpu__drop(struct fpu *fpu)
648 {
649         preempt_disable();
650
651         if (fpu == &current->thread.fpu) {
652                 /* Ignore delayed exceptions from user space */
653                 asm volatile("1: fwait\n"
654                              "2:\n"
655                              _ASM_EXTABLE(1b, 2b));
656                 fpregs_deactivate(fpu);
657         }
658
659         trace_x86_fpu_dropped(fpu);
660
661         preempt_enable();
662 }
663
664 /*
665  * Clear FPU registers by setting them up from the init fpstate.
666  * Caller must do fpregs_[un]lock() around it.
667  */
668 static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
669 {
670         if (use_xsave())
671                 os_xrstor(&init_fpstate, features_mask);
672         else if (use_fxsr())
673                 fxrstor(&init_fpstate.regs.fxsave);
674         else
675                 frstor(&init_fpstate.regs.fsave);
676
677         pkru_write_default();
678 }
679
680 /*
681  * Reset current->fpu memory state to the init values.
682  */
683 static void fpu_reset_fpregs(void)
684 {
685         struct fpu *fpu = &current->thread.fpu;
686
687         fpregs_lock();
688         fpu__drop(fpu);
689         /*
690          * This does not change the actual hardware registers. It just
691          * resets the memory image and sets TIF_NEED_FPU_LOAD so a
692          * subsequent return to usermode will reload the registers from the
693          * task's memory image.
694          *
695          * Do not use fpstate_init() here. Just copy init_fpstate which has
696          * the correct content already except for PKRU.
697          *
698          * PKRU handling does not rely on the xstate when restoring for
699          * user space as PKRU is eagerly written in switch_to() and
700          * flush_thread().
701          */
702         memcpy(&fpu->fpstate->regs, &init_fpstate.regs, init_fpstate_copy_size());
703         set_thread_flag(TIF_NEED_FPU_LOAD);
704         fpregs_unlock();
705 }
706
707 /*
708  * Reset current's user FPU states to the init states.  current's
709  * supervisor states, if any, are not modified by this function.  The
710  * caller guarantees that the XSTATE header in memory is intact.
711  */
712 void fpu__clear_user_states(struct fpu *fpu)
713 {
714         WARN_ON_FPU(fpu != &current->thread.fpu);
715
716         fpregs_lock();
717         if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
718                 fpu_reset_fpregs();
719                 fpregs_unlock();
720                 return;
721         }
722
723         /*
724          * Ensure that current's supervisor states are loaded into their
725          * corresponding registers.
726          */
727         if (xfeatures_mask_supervisor() &&
728             !fpregs_state_valid(fpu, smp_processor_id()))
729                 os_xrstor_supervisor(fpu->fpstate);
730
731         /* Reset user states in registers. */
732         restore_fpregs_from_init_fpstate(XFEATURE_MASK_USER_RESTORE);
733
734         /*
735          * Now all FPU registers have their desired values.  Inform the FPU
736          * state machine that current's FPU registers are in the hardware
737          * registers. The memory image does not need to be updated because
738          * any operation relying on it has to save the registers first when
739          * current's FPU is marked active.
740          */
741         fpregs_mark_activate();
742         fpregs_unlock();
743 }
744
745 void fpu_flush_thread(void)
746 {
747         fpstate_reset(&current->thread.fpu);
748         fpu_reset_fpregs();
749 }
750 /*
751  * Load FPU context before returning to userspace.
752  */
753 void switch_fpu_return(void)
754 {
755         if (!static_cpu_has(X86_FEATURE_FPU))
756                 return;
757
758         fpregs_restore_userregs();
759 }
760 EXPORT_SYMBOL_GPL(switch_fpu_return);
761
762 #ifdef CONFIG_X86_DEBUG_FPU
763 /*
764  * If current FPU state according to its tracking (loaded FPU context on this
765  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
766  * loaded on return to userland.
767  */
768 void fpregs_assert_state_consistent(void)
769 {
770         struct fpu *fpu = &current->thread.fpu;
771
772         if (test_thread_flag(TIF_NEED_FPU_LOAD))
773                 return;
774
775         WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
776 }
777 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
778 #endif
779
780 void fpregs_mark_activate(void)
781 {
782         struct fpu *fpu = &current->thread.fpu;
783
784         fpregs_activate(fpu);
785         fpu->last_cpu = smp_processor_id();
786         clear_thread_flag(TIF_NEED_FPU_LOAD);
787 }
788
789 /*
790  * x87 math exception handling:
791  */
792
793 int fpu__exception_code(struct fpu *fpu, int trap_nr)
794 {
795         int err;
796
797         if (trap_nr == X86_TRAP_MF) {
798                 unsigned short cwd, swd;
799                 /*
800                  * (~cwd & swd) will mask out exceptions that are not set to unmasked
801                  * status.  0x3f is the exception bits in these regs, 0x200 is the
802                  * C1 reg you need in case of a stack fault, 0x040 is the stack
803                  * fault bit.  We should only be taking one exception at a time,
804                  * so if this combination doesn't produce any single exception,
805                  * then we have a bad program that isn't synchronizing its FPU usage
806                  * and it will suffer the consequences since we won't be able to
807                  * fully reproduce the context of the exception.
808                  */
809                 if (boot_cpu_has(X86_FEATURE_FXSR)) {
810                         cwd = fpu->fpstate->regs.fxsave.cwd;
811                         swd = fpu->fpstate->regs.fxsave.swd;
812                 } else {
813                         cwd = (unsigned short)fpu->fpstate->regs.fsave.cwd;
814                         swd = (unsigned short)fpu->fpstate->regs.fsave.swd;
815                 }
816
817                 err = swd & ~cwd;
818         } else {
819                 /*
820                  * The SIMD FPU exceptions are handled a little differently, as there
821                  * is only a single status/control register.  Thus, to determine which
822                  * unmasked exception was caught we must mask the exception mask bits
823                  * at 0x1f80, and then use these to mask the exception bits at 0x3f.
824                  */
825                 unsigned short mxcsr = MXCSR_DEFAULT;
826
827                 if (boot_cpu_has(X86_FEATURE_XMM))
828                         mxcsr = fpu->fpstate->regs.fxsave.mxcsr;
829
830                 err = ~(mxcsr >> 7) & mxcsr;
831         }
832
833         if (err & 0x001) {      /* Invalid op */
834                 /*
835                  * swd & 0x240 == 0x040: Stack Underflow
836                  * swd & 0x240 == 0x240: Stack Overflow
837                  * User must clear the SF bit (0x40) if set
838                  */
839                 return FPE_FLTINV;
840         } else if (err & 0x004) { /* Divide by Zero */
841                 return FPE_FLTDIV;
842         } else if (err & 0x008) { /* Overflow */
843                 return FPE_FLTOVF;
844         } else if (err & 0x012) { /* Denormal, Underflow */
845                 return FPE_FLTUND;
846         } else if (err & 0x020) { /* Precision */
847                 return FPE_FLTRES;
848         }
849
850         /*
851          * If we're using IRQ 13, or supposedly even some trap
852          * X86_TRAP_MF implementations, it's possible
853          * we get a spurious trap, which is not an error.
854          */
855         return 0;
856 }