dt-bindings: reset: imx7: Fix the spelling of 'indices'
[sfrench/cifs-2.6.git] / arch / x86 / kernel / cpu / mce / amd.c
1 /*
2  *  (c) 2005-2016 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Written by Jacob Shin - AMD, Inc.
8  *  Maintained by: Borislav Petkov <bp@alien8.de>
9  *
10  *  All MC4_MISCi registers are shared between cores on a node.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
24
25 #include <asm/amd_nb.h>
26 #include <asm/traps.h>
27 #include <asm/apic.h>
28 #include <asm/mce.h>
29 #include <asm/msr.h>
30 #include <asm/trace/irq_vectors.h>
31
32 #include "internal.h"
33
34 #define NR_BLOCKS         5
35 #define THRESHOLD_MAX     0xFFF
36 #define INT_TYPE_APIC     0x00020000
37 #define MASK_VALID_HI     0x80000000
38 #define MASK_CNTP_HI      0x40000000
39 #define MASK_LOCKED_HI    0x20000000
40 #define MASK_LVTOFF_HI    0x00F00000
41 #define MASK_COUNT_EN_HI  0x00080000
42 #define MASK_INT_TYPE_HI  0x00060000
43 #define MASK_OVERFLOW_HI  0x00010000
44 #define MASK_ERR_COUNT_HI 0x00000FFF
45 #define MASK_BLKPTR_LO    0xFF000000
46 #define MCG_XBLK_ADDR     0xC0000400
47
48 /* Deferred error settings */
49 #define MSR_CU_DEF_ERR          0xC0000410
50 #define MASK_DEF_LVTOFF         0x000000F0
51 #define MASK_DEF_INT_TYPE       0x00000006
52 #define DEF_LVT_OFF             0x2
53 #define DEF_INT_TYPE_APIC       0x2
54
55 /* Scalable MCA: */
56
57 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
58 #define SMCA_THR_LVT_OFF        0xF000
59
60 static bool thresholding_irq_en;
61
62 static const char * const th_names[] = {
63         "load_store",
64         "insn_fetch",
65         "combined_unit",
66         "decode_unit",
67         "northbridge",
68         "execution_unit",
69 };
70
71 static const char * const smca_umc_block_names[] = {
72         "dram_ecc",
73         "misc_umc"
74 };
75
76 struct smca_bank_name {
77         const char *name;       /* Short name for sysfs */
78         const char *long_name;  /* Long name for pretty-printing */
79 };
80
81 static struct smca_bank_name smca_names[] = {
82         [SMCA_LS]       = { "load_store",       "Load Store Unit" },
83         [SMCA_IF]       = { "insn_fetch",       "Instruction Fetch Unit" },
84         [SMCA_L2_CACHE] = { "l2_cache",         "L2 Cache" },
85         [SMCA_DE]       = { "decode_unit",      "Decode Unit" },
86         [SMCA_RESERVED] = { "reserved",         "Reserved" },
87         [SMCA_EX]       = { "execution_unit",   "Execution Unit" },
88         [SMCA_FP]       = { "floating_point",   "Floating Point Unit" },
89         [SMCA_L3_CACHE] = { "l3_cache",         "L3 Cache" },
90         [SMCA_CS]       = { "coherent_slave",   "Coherent Slave" },
91         [SMCA_CS_V2]    = { "coherent_slave",   "Coherent Slave" },
92         [SMCA_PIE]      = { "pie",              "Power, Interrupts, etc." },
93         [SMCA_UMC]      = { "umc",              "Unified Memory Controller" },
94         [SMCA_PB]       = { "param_block",      "Parameter Block" },
95         [SMCA_PSP]      = { "psp",              "Platform Security Processor" },
96         [SMCA_PSP_V2]   = { "psp",              "Platform Security Processor" },
97         [SMCA_SMU]      = { "smu",              "System Management Unit" },
98         [SMCA_SMU_V2]   = { "smu",              "System Management Unit" },
99         [SMCA_MP5]      = { "mp5",              "Microprocessor 5 Unit" },
100         [SMCA_NBIO]     = { "nbio",             "Northbridge IO Unit" },
101         [SMCA_PCIE]     = { "pcie",             "PCI Express Unit" },
102 };
103
104 static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
105 {
106         [0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
107 };
108
109 static const char *smca_get_name(enum smca_bank_types t)
110 {
111         if (t >= N_SMCA_BANK_TYPES)
112                 return NULL;
113
114         return smca_names[t].name;
115 }
116
117 const char *smca_get_long_name(enum smca_bank_types t)
118 {
119         if (t >= N_SMCA_BANK_TYPES)
120                 return NULL;
121
122         return smca_names[t].long_name;
123 }
124 EXPORT_SYMBOL_GPL(smca_get_long_name);
125
126 static enum smca_bank_types smca_get_bank_type(unsigned int bank)
127 {
128         struct smca_bank *b;
129
130         if (bank >= MAX_NR_BANKS)
131                 return N_SMCA_BANK_TYPES;
132
133         b = &smca_banks[bank];
134         if (!b->hwid)
135                 return N_SMCA_BANK_TYPES;
136
137         return b->hwid->bank_type;
138 }
139
140 static struct smca_hwid smca_hwid_mcatypes[] = {
141         /* { bank_type, hwid_mcatype, xec_bitmap } */
142
143         /* Reserved type */
144         { SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0), 0x0 },
145
146         /* ZN Core (HWID=0xB0) MCA types */
147         { SMCA_LS,       HWID_MCATYPE(0xB0, 0x0), 0x1FFFFF },
148         { SMCA_IF,       HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
149         { SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2), 0xF },
150         { SMCA_DE,       HWID_MCATYPE(0xB0, 0x3), 0x1FF },
151         /* HWID 0xB0 MCATYPE 0x4 is Reserved */
152         { SMCA_EX,       HWID_MCATYPE(0xB0, 0x5), 0xFFF },
153         { SMCA_FP,       HWID_MCATYPE(0xB0, 0x6), 0x7F },
154         { SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7), 0xFF },
155
156         /* Data Fabric MCA types */
157         { SMCA_CS,       HWID_MCATYPE(0x2E, 0x0), 0x1FF },
158         { SMCA_PIE,      HWID_MCATYPE(0x2E, 0x1), 0x1F },
159         { SMCA_CS_V2,    HWID_MCATYPE(0x2E, 0x2), 0x3FFF },
160
161         /* Unified Memory Controller MCA type */
162         { SMCA_UMC,      HWID_MCATYPE(0x96, 0x0), 0xFF },
163
164         /* Parameter Block MCA type */
165         { SMCA_PB,       HWID_MCATYPE(0x05, 0x0), 0x1 },
166
167         /* Platform Security Processor MCA type */
168         { SMCA_PSP,      HWID_MCATYPE(0xFF, 0x0), 0x1 },
169         { SMCA_PSP_V2,   HWID_MCATYPE(0xFF, 0x1), 0x3FFFF },
170
171         /* System Management Unit MCA type */
172         { SMCA_SMU,      HWID_MCATYPE(0x01, 0x0), 0x1 },
173         { SMCA_SMU_V2,   HWID_MCATYPE(0x01, 0x1), 0x7FF },
174
175         /* Microprocessor 5 Unit MCA type */
176         { SMCA_MP5,      HWID_MCATYPE(0x01, 0x2), 0x3FF },
177
178         /* Northbridge IO Unit MCA type */
179         { SMCA_NBIO,     HWID_MCATYPE(0x18, 0x0), 0x1F },
180
181         /* PCI Express Unit MCA type */
182         { SMCA_PCIE,     HWID_MCATYPE(0x46, 0x0), 0x1F },
183 };
184
185 struct smca_bank smca_banks[MAX_NR_BANKS];
186 EXPORT_SYMBOL_GPL(smca_banks);
187
188 /*
189  * In SMCA enabled processors, we can have multiple banks for a given IP type.
190  * So to define a unique name for each bank, we use a temp c-string to append
191  * the MCA_IPID[InstanceId] to type's name in get_name().
192  *
193  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
194  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
195  */
196 #define MAX_MCATYPE_NAME_LEN    30
197 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
198
199 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
200 static DEFINE_PER_CPU(unsigned int, bank_map);  /* see which banks are on */
201
202 static void amd_threshold_interrupt(void);
203 static void amd_deferred_error_interrupt(void);
204
205 static void default_deferred_error_interrupt(void)
206 {
207         pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
208 }
209 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
210
211 static void smca_configure(unsigned int bank, unsigned int cpu)
212 {
213         unsigned int i, hwid_mcatype;
214         struct smca_hwid *s_hwid;
215         u32 high, low;
216         u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
217
218         /* Set appropriate bits in MCA_CONFIG */
219         if (!rdmsr_safe(smca_config, &low, &high)) {
220                 /*
221                  * OS is required to set the MCAX bit to acknowledge that it is
222                  * now using the new MSR ranges and new registers under each
223                  * bank. It also means that the OS will configure deferred
224                  * errors in the new MCx_CONFIG register. If the bit is not set,
225                  * uncorrectable errors will cause a system panic.
226                  *
227                  * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
228                  */
229                 high |= BIT(0);
230
231                 /*
232                  * SMCA sets the Deferred Error Interrupt type per bank.
233                  *
234                  * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
235                  * if the DeferredIntType bit field is available.
236                  *
237                  * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
238                  * high portion of the MSR). OS should set this to 0x1 to enable
239                  * APIC based interrupt. First, check that no interrupt has been
240                  * set.
241                  */
242                 if ((low & BIT(5)) && !((high >> 5) & 0x3))
243                         high |= BIT(5);
244
245                 wrmsr(smca_config, low, high);
246         }
247
248         /* Return early if this bank was already initialized. */
249         if (smca_banks[bank].hwid)
250                 return;
251
252         if (rdmsr_safe_on_cpu(cpu, MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
253                 pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
254                 return;
255         }
256
257         hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
258                                     (high & MCI_IPID_MCATYPE) >> 16);
259
260         for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
261                 s_hwid = &smca_hwid_mcatypes[i];
262                 if (hwid_mcatype == s_hwid->hwid_mcatype) {
263                         smca_banks[bank].hwid = s_hwid;
264                         smca_banks[bank].id = low;
265                         smca_banks[bank].sysfs_id = s_hwid->count++;
266                         break;
267                 }
268         }
269 }
270
271 struct thresh_restart {
272         struct threshold_block  *b;
273         int                     reset;
274         int                     set_lvt_off;
275         int                     lvt_off;
276         u16                     old_limit;
277 };
278
279 static inline bool is_shared_bank(int bank)
280 {
281         /*
282          * Scalable MCA provides for only one core to have access to the MSRs of
283          * a shared bank.
284          */
285         if (mce_flags.smca)
286                 return false;
287
288         /* Bank 4 is for northbridge reporting and is thus shared */
289         return (bank == 4);
290 }
291
292 static const char *bank4_names(const struct threshold_block *b)
293 {
294         switch (b->address) {
295         /* MSR4_MISC0 */
296         case 0x00000413:
297                 return "dram";
298
299         case 0xc0000408:
300                 return "ht_links";
301
302         case 0xc0000409:
303                 return "l3_cache";
304
305         default:
306                 WARN(1, "Funny MSR: 0x%08x\n", b->address);
307                 return "";
308         }
309 };
310
311
312 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
313 {
314         /*
315          * bank 4 supports APIC LVT interrupts implicitly since forever.
316          */
317         if (bank == 4)
318                 return true;
319
320         /*
321          * IntP: interrupt present; if this bit is set, the thresholding
322          * bank can generate APIC LVT interrupts
323          */
324         return msr_high_bits & BIT(28);
325 }
326
327 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
328 {
329         int msr = (hi & MASK_LVTOFF_HI) >> 20;
330
331         if (apic < 0) {
332                 pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
333                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
334                        b->bank, b->block, b->address, hi, lo);
335                 return 0;
336         }
337
338         if (apic != msr) {
339                 /*
340                  * On SMCA CPUs, LVT offset is programmed at a different MSR, and
341                  * the BIOS provides the value. The original field where LVT offset
342                  * was set is reserved. Return early here:
343                  */
344                 if (mce_flags.smca)
345                         return 0;
346
347                 pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
348                        "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
349                        b->cpu, apic, b->bank, b->block, b->address, hi, lo);
350                 return 0;
351         }
352
353         return 1;
354 };
355
356 /* Reprogram MCx_MISC MSR behind this threshold bank. */
357 static void threshold_restart_bank(void *_tr)
358 {
359         struct thresh_restart *tr = _tr;
360         u32 hi, lo;
361
362         rdmsr(tr->b->address, lo, hi);
363
364         if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
365                 tr->reset = 1;  /* limit cannot be lower than err count */
366
367         if (tr->reset) {                /* reset err count and overflow bit */
368                 hi =
369                     (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
370                     (THRESHOLD_MAX - tr->b->threshold_limit);
371         } else if (tr->old_limit) {     /* change limit w/o reset */
372                 int new_count = (hi & THRESHOLD_MAX) +
373                     (tr->old_limit - tr->b->threshold_limit);
374
375                 hi = (hi & ~MASK_ERR_COUNT_HI) |
376                     (new_count & THRESHOLD_MAX);
377         }
378
379         /* clear IntType */
380         hi &= ~MASK_INT_TYPE_HI;
381
382         if (!tr->b->interrupt_capable)
383                 goto done;
384
385         if (tr->set_lvt_off) {
386                 if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
387                         /* set new lvt offset */
388                         hi &= ~MASK_LVTOFF_HI;
389                         hi |= tr->lvt_off << 20;
390                 }
391         }
392
393         if (tr->b->interrupt_enable)
394                 hi |= INT_TYPE_APIC;
395
396  done:
397
398         hi |= MASK_COUNT_EN_HI;
399         wrmsr(tr->b->address, lo, hi);
400 }
401
402 static void mce_threshold_block_init(struct threshold_block *b, int offset)
403 {
404         struct thresh_restart tr = {
405                 .b                      = b,
406                 .set_lvt_off            = 1,
407                 .lvt_off                = offset,
408         };
409
410         b->threshold_limit              = THRESHOLD_MAX;
411         threshold_restart_bank(&tr);
412 };
413
414 static int setup_APIC_mce_threshold(int reserved, int new)
415 {
416         if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
417                                               APIC_EILVT_MSG_FIX, 0))
418                 return new;
419
420         return reserved;
421 }
422
423 static int setup_APIC_deferred_error(int reserved, int new)
424 {
425         if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
426                                               APIC_EILVT_MSG_FIX, 0))
427                 return new;
428
429         return reserved;
430 }
431
432 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
433 {
434         u32 low = 0, high = 0;
435         int def_offset = -1, def_new;
436
437         if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
438                 return;
439
440         def_new = (low & MASK_DEF_LVTOFF) >> 4;
441         if (!(low & MASK_DEF_LVTOFF)) {
442                 pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
443                 def_new = DEF_LVT_OFF;
444                 low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
445         }
446
447         def_offset = setup_APIC_deferred_error(def_offset, def_new);
448         if ((def_offset == def_new) &&
449             (deferred_error_int_vector != amd_deferred_error_interrupt))
450                 deferred_error_int_vector = amd_deferred_error_interrupt;
451
452         if (!mce_flags.smca)
453                 low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
454
455         wrmsr(MSR_CU_DEF_ERR, low, high);
456 }
457
458 static u32 smca_get_block_address(unsigned int bank, unsigned int block)
459 {
460         u32 low, high;
461         u32 addr = 0;
462
463         if (smca_get_bank_type(bank) == SMCA_RESERVED)
464                 return addr;
465
466         if (!block)
467                 return MSR_AMD64_SMCA_MCx_MISC(bank);
468
469         /* Check our cache first: */
470         if (smca_bank_addrs[bank][block] != -1)
471                 return smca_bank_addrs[bank][block];
472
473         /*
474          * For SMCA enabled processors, BLKPTR field of the first MISC register
475          * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
476          */
477         if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
478                 goto out;
479
480         if (!(low & MCI_CONFIG_MCAX))
481                 goto out;
482
483         if (!rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high) &&
484             (low & MASK_BLKPTR_LO))
485                 addr = MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
486
487 out:
488         smca_bank_addrs[bank][block] = addr;
489         return addr;
490 }
491
492 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
493                              unsigned int bank, unsigned int block)
494 {
495         u32 addr = 0, offset = 0;
496
497         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
498                 return addr;
499
500         if (mce_flags.smca)
501                 return smca_get_block_address(bank, block);
502
503         /* Fall back to method we used for older processors: */
504         switch (block) {
505         case 0:
506                 addr = msr_ops.misc(bank);
507                 break;
508         case 1:
509                 offset = ((low & MASK_BLKPTR_LO) >> 21);
510                 if (offset)
511                         addr = MCG_XBLK_ADDR + offset;
512                 break;
513         default:
514                 addr = ++current_addr;
515         }
516         return addr;
517 }
518
519 static int
520 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
521                         int offset, u32 misc_high)
522 {
523         unsigned int cpu = smp_processor_id();
524         u32 smca_low, smca_high;
525         struct threshold_block b;
526         int new;
527
528         if (!block)
529                 per_cpu(bank_map, cpu) |= (1 << bank);
530
531         memset(&b, 0, sizeof(b));
532         b.cpu                   = cpu;
533         b.bank                  = bank;
534         b.block                 = block;
535         b.address               = addr;
536         b.interrupt_capable     = lvt_interrupt_supported(bank, misc_high);
537
538         if (!b.interrupt_capable)
539                 goto done;
540
541         b.interrupt_enable = 1;
542
543         if (!mce_flags.smca) {
544                 new = (misc_high & MASK_LVTOFF_HI) >> 20;
545                 goto set_offset;
546         }
547
548         /* Gather LVT offset for thresholding: */
549         if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
550                 goto out;
551
552         new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
553
554 set_offset:
555         offset = setup_APIC_mce_threshold(offset, new);
556         if (offset == new)
557                 thresholding_irq_en = true;
558
559 done:
560         mce_threshold_block_init(&b, offset);
561
562 out:
563         return offset;
564 }
565
566 bool amd_filter_mce(struct mce *m)
567 {
568         enum smca_bank_types bank_type = smca_get_bank_type(m->bank);
569         struct cpuinfo_x86 *c = &boot_cpu_data;
570         u8 xec = (m->status >> 16) & 0x3F;
571
572         /* See Family 17h Models 10h-2Fh Erratum #1114. */
573         if (c->x86 == 0x17 &&
574             c->x86_model >= 0x10 && c->x86_model <= 0x2F &&
575             bank_type == SMCA_IF && xec == 10)
576                 return true;
577
578         return false;
579 }
580
581 /*
582  * Turn off thresholding banks for the following conditions:
583  * - MC4_MISC thresholding is not supported on Family 0x15.
584  * - Prevent possible spurious interrupts from the IF bank on Family 0x17
585  *   Models 0x10-0x2F due to Erratum #1114.
586  */
587 void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank)
588 {
589         int i, num_msrs;
590         u64 hwcr;
591         bool need_toggle;
592         u32 msrs[NR_BLOCKS];
593
594         if (c->x86 == 0x15 && bank == 4) {
595                 msrs[0] = 0x00000413; /* MC4_MISC0 */
596                 msrs[1] = 0xc0000408; /* MC4_MISC1 */
597                 num_msrs = 2;
598         } else if (c->x86 == 0x17 &&
599                    (c->x86_model >= 0x10 && c->x86_model <= 0x2F)) {
600
601                 if (smca_get_bank_type(bank) != SMCA_IF)
602                         return;
603
604                 msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank);
605                 num_msrs = 1;
606         } else {
607                 return;
608         }
609
610         rdmsrl(MSR_K7_HWCR, hwcr);
611
612         /* McStatusWrEn has to be set */
613         need_toggle = !(hwcr & BIT(18));
614         if (need_toggle)
615                 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
616
617         /* Clear CntP bit safely */
618         for (i = 0; i < num_msrs; i++)
619                 msr_clear_bit(msrs[i], 62);
620
621         /* restore old settings */
622         if (need_toggle)
623                 wrmsrl(MSR_K7_HWCR, hwcr);
624 }
625
626 /* cpu init entry point, called from mce.c with preempt off */
627 void mce_amd_feature_init(struct cpuinfo_x86 *c)
628 {
629         u32 low = 0, high = 0, address = 0;
630         unsigned int bank, block, cpu = smp_processor_id();
631         int offset = -1;
632
633         for (bank = 0; bank < mca_cfg.banks; ++bank) {
634                 if (mce_flags.smca)
635                         smca_configure(bank, cpu);
636
637                 disable_err_thresholding(c, bank);
638
639                 for (block = 0; block < NR_BLOCKS; ++block) {
640                         address = get_block_address(address, low, high, bank, block);
641                         if (!address)
642                                 break;
643
644                         if (rdmsr_safe(address, &low, &high))
645                                 break;
646
647                         if (!(high & MASK_VALID_HI))
648                                 continue;
649
650                         if (!(high & MASK_CNTP_HI)  ||
651                              (high & MASK_LOCKED_HI))
652                                 continue;
653
654                         offset = prepare_threshold_block(bank, block, address, offset, high);
655                 }
656         }
657
658         if (mce_flags.succor)
659                 deferred_error_interrupt_enable(c);
660 }
661
662 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
663 {
664         u64 dram_base_addr, dram_limit_addr, dram_hole_base;
665         /* We start from the normalized address */
666         u64 ret_addr = norm_addr;
667
668         u32 tmp;
669
670         u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
671         u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
672         u8 intlv_addr_sel, intlv_addr_bit;
673         u8 num_intlv_bits, hashed_bit;
674         u8 lgcy_mmio_hole_en, base = 0;
675         u8 cs_mask, cs_id = 0;
676         bool hash_enabled = false;
677
678         /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
679         if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
680                 goto out_err;
681
682         /* Remove HiAddrOffset from normalized address, if enabled: */
683         if (tmp & BIT(0)) {
684                 u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
685
686                 if (norm_addr >= hi_addr_offset) {
687                         ret_addr -= hi_addr_offset;
688                         base = 1;
689                 }
690         }
691
692         /* Read D18F0x110 (DramBaseAddress). */
693         if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
694                 goto out_err;
695
696         /* Check if address range is valid. */
697         if (!(tmp & BIT(0))) {
698                 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
699                         __func__, tmp);
700                 goto out_err;
701         }
702
703         lgcy_mmio_hole_en = tmp & BIT(1);
704         intlv_num_chan    = (tmp >> 4) & 0xF;
705         intlv_addr_sel    = (tmp >> 8) & 0x7;
706         dram_base_addr    = (tmp & GENMASK_ULL(31, 12)) << 16;
707
708         /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
709         if (intlv_addr_sel > 3) {
710                 pr_err("%s: Invalid interleave address select %d.\n",
711                         __func__, intlv_addr_sel);
712                 goto out_err;
713         }
714
715         /* Read D18F0x114 (DramLimitAddress). */
716         if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
717                 goto out_err;
718
719         intlv_num_sockets = (tmp >> 8) & 0x1;
720         intlv_num_dies    = (tmp >> 10) & 0x3;
721         dram_limit_addr   = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
722
723         intlv_addr_bit = intlv_addr_sel + 8;
724
725         /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
726         switch (intlv_num_chan) {
727         case 0: intlv_num_chan = 0; break;
728         case 1: intlv_num_chan = 1; break;
729         case 3: intlv_num_chan = 2; break;
730         case 5: intlv_num_chan = 3; break;
731         case 7: intlv_num_chan = 4; break;
732
733         case 8: intlv_num_chan = 1;
734                 hash_enabled = true;
735                 break;
736         default:
737                 pr_err("%s: Invalid number of interleaved channels %d.\n",
738                         __func__, intlv_num_chan);
739                 goto out_err;
740         }
741
742         num_intlv_bits = intlv_num_chan;
743
744         if (intlv_num_dies > 2) {
745                 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
746                         __func__, intlv_num_dies);
747                 goto out_err;
748         }
749
750         num_intlv_bits += intlv_num_dies;
751
752         /* Add a bit if sockets are interleaved. */
753         num_intlv_bits += intlv_num_sockets;
754
755         /* Assert num_intlv_bits <= 4 */
756         if (num_intlv_bits > 4) {
757                 pr_err("%s: Invalid interleave bits %d.\n",
758                         __func__, num_intlv_bits);
759                 goto out_err;
760         }
761
762         if (num_intlv_bits > 0) {
763                 u64 temp_addr_x, temp_addr_i, temp_addr_y;
764                 u8 die_id_bit, sock_id_bit, cs_fabric_id;
765
766                 /*
767                  * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
768                  * This is the fabric id for this coherent slave. Use
769                  * umc/channel# as instance id of the coherent slave
770                  * for FICAA.
771                  */
772                 if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
773                         goto out_err;
774
775                 cs_fabric_id = (tmp >> 8) & 0xFF;
776                 die_id_bit   = 0;
777
778                 /* If interleaved over more than 1 channel: */
779                 if (intlv_num_chan) {
780                         die_id_bit = intlv_num_chan;
781                         cs_mask    = (1 << die_id_bit) - 1;
782                         cs_id      = cs_fabric_id & cs_mask;
783                 }
784
785                 sock_id_bit = die_id_bit;
786
787                 /* Read D18F1x208 (SystemFabricIdMask). */
788                 if (intlv_num_dies || intlv_num_sockets)
789                         if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
790                                 goto out_err;
791
792                 /* If interleaved over more than 1 die. */
793                 if (intlv_num_dies) {
794                         sock_id_bit  = die_id_bit + intlv_num_dies;
795                         die_id_shift = (tmp >> 24) & 0xF;
796                         die_id_mask  = (tmp >> 8) & 0xFF;
797
798                         cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
799                 }
800
801                 /* If interleaved over more than 1 socket. */
802                 if (intlv_num_sockets) {
803                         socket_id_shift = (tmp >> 28) & 0xF;
804                         socket_id_mask  = (tmp >> 16) & 0xFF;
805
806                         cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
807                 }
808
809                 /*
810                  * The pre-interleaved address consists of XXXXXXIIIYYYYY
811                  * where III is the ID for this CS, and XXXXXXYYYYY are the
812                  * address bits from the post-interleaved address.
813                  * "num_intlv_bits" has been calculated to tell us how many "I"
814                  * bits there are. "intlv_addr_bit" tells us how many "Y" bits
815                  * there are (where "I" starts).
816                  */
817                 temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
818                 temp_addr_i = (cs_id << intlv_addr_bit);
819                 temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
820                 ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
821         }
822
823         /* Add dram base address */
824         ret_addr += dram_base_addr;
825
826         /* If legacy MMIO hole enabled */
827         if (lgcy_mmio_hole_en) {
828                 if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
829                         goto out_err;
830
831                 dram_hole_base = tmp & GENMASK(31, 24);
832                 if (ret_addr >= dram_hole_base)
833                         ret_addr += (BIT_ULL(32) - dram_hole_base);
834         }
835
836         if (hash_enabled) {
837                 /* Save some parentheses and grab ls-bit at the end. */
838                 hashed_bit =    (ret_addr >> 12) ^
839                                 (ret_addr >> 18) ^
840                                 (ret_addr >> 21) ^
841                                 (ret_addr >> 30) ^
842                                 cs_id;
843
844                 hashed_bit &= BIT(0);
845
846                 if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
847                         ret_addr ^= BIT(intlv_addr_bit);
848         }
849
850         /* Is calculated system address is above DRAM limit address? */
851         if (ret_addr > dram_limit_addr)
852                 goto out_err;
853
854         *sys_addr = ret_addr;
855         return 0;
856
857 out_err:
858         return -EINVAL;
859 }
860 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
861
862 bool amd_mce_is_memory_error(struct mce *m)
863 {
864         /* ErrCodeExt[20:16] */
865         u8 xec = (m->status >> 16) & 0x1f;
866
867         if (mce_flags.smca)
868                 return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
869
870         return m->bank == 4 && xec == 0x8;
871 }
872
873 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
874 {
875         struct mce m;
876
877         mce_setup(&m);
878
879         m.status = status;
880         m.misc   = misc;
881         m.bank   = bank;
882         m.tsc    = rdtsc();
883
884         if (m.status & MCI_STATUS_ADDRV) {
885                 m.addr = addr;
886
887                 /*
888                  * Extract [55:<lsb>] where lsb is the least significant
889                  * *valid* bit of the address bits.
890                  */
891                 if (mce_flags.smca) {
892                         u8 lsb = (m.addr >> 56) & 0x3f;
893
894                         m.addr &= GENMASK_ULL(55, lsb);
895                 }
896         }
897
898         if (mce_flags.smca) {
899                 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
900
901                 if (m.status & MCI_STATUS_SYNDV)
902                         rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
903         }
904
905         mce_log(&m);
906 }
907
908 asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs)
909 {
910         entering_irq();
911         trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
912         inc_irq_stat(irq_deferred_error_count);
913         deferred_error_int_vector();
914         trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
915         exiting_ack_irq();
916 }
917
918 /*
919  * Returns true if the logged error is deferred. False, otherwise.
920  */
921 static inline bool
922 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
923 {
924         u64 status, addr = 0;
925
926         rdmsrl(msr_stat, status);
927         if (!(status & MCI_STATUS_VAL))
928                 return false;
929
930         if (status & MCI_STATUS_ADDRV)
931                 rdmsrl(msr_addr, addr);
932
933         __log_error(bank, status, addr, misc);
934
935         wrmsrl(msr_stat, 0);
936
937         return status & MCI_STATUS_DEFERRED;
938 }
939
940 /*
941  * We have three scenarios for checking for Deferred errors:
942  *
943  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
944  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
945  *    clear MCA_DESTAT.
946  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
947  *    log it.
948  */
949 static void log_error_deferred(unsigned int bank)
950 {
951         bool defrd;
952
953         defrd = _log_error_bank(bank, msr_ops.status(bank),
954                                         msr_ops.addr(bank), 0);
955
956         if (!mce_flags.smca)
957                 return;
958
959         /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
960         if (defrd) {
961                 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
962                 return;
963         }
964
965         /*
966          * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
967          * for a valid error.
968          */
969         _log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
970                               MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
971 }
972
973 /* APIC interrupt handler for deferred errors */
974 static void amd_deferred_error_interrupt(void)
975 {
976         unsigned int bank;
977
978         for (bank = 0; bank < mca_cfg.banks; ++bank)
979                 log_error_deferred(bank);
980 }
981
982 static void log_error_thresholding(unsigned int bank, u64 misc)
983 {
984         _log_error_bank(bank, msr_ops.status(bank), msr_ops.addr(bank), misc);
985 }
986
987 static void log_and_reset_block(struct threshold_block *block)
988 {
989         struct thresh_restart tr;
990         u32 low = 0, high = 0;
991
992         if (!block)
993                 return;
994
995         if (rdmsr_safe(block->address, &low, &high))
996                 return;
997
998         if (!(high & MASK_OVERFLOW_HI))
999                 return;
1000
1001         /* Log the MCE which caused the threshold event. */
1002         log_error_thresholding(block->bank, ((u64)high << 32) | low);
1003
1004         /* Reset threshold block after logging error. */
1005         memset(&tr, 0, sizeof(tr));
1006         tr.b = block;
1007         threshold_restart_bank(&tr);
1008 }
1009
1010 /*
1011  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
1012  * goes off when error_count reaches threshold_limit.
1013  */
1014 static void amd_threshold_interrupt(void)
1015 {
1016         struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
1017         unsigned int bank, cpu = smp_processor_id();
1018
1019         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1020                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1021                         continue;
1022
1023                 first_block = per_cpu(threshold_banks, cpu)[bank]->blocks;
1024                 if (!first_block)
1025                         continue;
1026
1027                 /*
1028                  * The first block is also the head of the list. Check it first
1029                  * before iterating over the rest.
1030                  */
1031                 log_and_reset_block(first_block);
1032                 list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
1033                         log_and_reset_block(block);
1034         }
1035 }
1036
1037 /*
1038  * Sysfs Interface
1039  */
1040
1041 struct threshold_attr {
1042         struct attribute attr;
1043         ssize_t (*show) (struct threshold_block *, char *);
1044         ssize_t (*store) (struct threshold_block *, const char *, size_t count);
1045 };
1046
1047 #define SHOW_FIELDS(name)                                               \
1048 static ssize_t show_ ## name(struct threshold_block *b, char *buf)      \
1049 {                                                                       \
1050         return sprintf(buf, "%lu\n", (unsigned long) b->name);          \
1051 }
1052 SHOW_FIELDS(interrupt_enable)
1053 SHOW_FIELDS(threshold_limit)
1054
1055 static ssize_t
1056 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
1057 {
1058         struct thresh_restart tr;
1059         unsigned long new;
1060
1061         if (!b->interrupt_capable)
1062                 return -EINVAL;
1063
1064         if (kstrtoul(buf, 0, &new) < 0)
1065                 return -EINVAL;
1066
1067         b->interrupt_enable = !!new;
1068
1069         memset(&tr, 0, sizeof(tr));
1070         tr.b            = b;
1071
1072         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1073
1074         return size;
1075 }
1076
1077 static ssize_t
1078 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
1079 {
1080         struct thresh_restart tr;
1081         unsigned long new;
1082
1083         if (kstrtoul(buf, 0, &new) < 0)
1084                 return -EINVAL;
1085
1086         if (new > THRESHOLD_MAX)
1087                 new = THRESHOLD_MAX;
1088         if (new < 1)
1089                 new = 1;
1090
1091         memset(&tr, 0, sizeof(tr));
1092         tr.old_limit = b->threshold_limit;
1093         b->threshold_limit = new;
1094         tr.b = b;
1095
1096         smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1);
1097
1098         return size;
1099 }
1100
1101 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1102 {
1103         u32 lo, hi;
1104
1105         rdmsr_on_cpu(b->cpu, b->address, &lo, &hi);
1106
1107         return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1108                                      (THRESHOLD_MAX - b->threshold_limit)));
1109 }
1110
1111 static struct threshold_attr error_count = {
1112         .attr = {.name = __stringify(error_count), .mode = 0444 },
1113         .show = show_error_count,
1114 };
1115
1116 #define RW_ATTR(val)                                                    \
1117 static struct threshold_attr val = {                                    \
1118         .attr   = {.name = __stringify(val), .mode = 0644 },            \
1119         .show   = show_## val,                                          \
1120         .store  = store_## val,                                         \
1121 };
1122
1123 RW_ATTR(interrupt_enable);
1124 RW_ATTR(threshold_limit);
1125
1126 static struct attribute *default_attrs[] = {
1127         &threshold_limit.attr,
1128         &error_count.attr,
1129         NULL,   /* possibly interrupt_enable if supported, see below */
1130         NULL,
1131 };
1132
1133 #define to_block(k)     container_of(k, struct threshold_block, kobj)
1134 #define to_attr(a)      container_of(a, struct threshold_attr, attr)
1135
1136 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1137 {
1138         struct threshold_block *b = to_block(kobj);
1139         struct threshold_attr *a = to_attr(attr);
1140         ssize_t ret;
1141
1142         ret = a->show ? a->show(b, buf) : -EIO;
1143
1144         return ret;
1145 }
1146
1147 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1148                      const char *buf, size_t count)
1149 {
1150         struct threshold_block *b = to_block(kobj);
1151         struct threshold_attr *a = to_attr(attr);
1152         ssize_t ret;
1153
1154         ret = a->store ? a->store(b, buf, count) : -EIO;
1155
1156         return ret;
1157 }
1158
1159 static const struct sysfs_ops threshold_ops = {
1160         .show                   = show,
1161         .store                  = store,
1162 };
1163
1164 static struct kobj_type threshold_ktype = {
1165         .sysfs_ops              = &threshold_ops,
1166         .default_attrs          = default_attrs,
1167 };
1168
1169 static const char *get_name(unsigned int bank, struct threshold_block *b)
1170 {
1171         enum smca_bank_types bank_type;
1172
1173         if (!mce_flags.smca) {
1174                 if (b && bank == 4)
1175                         return bank4_names(b);
1176
1177                 return th_names[bank];
1178         }
1179
1180         bank_type = smca_get_bank_type(bank);
1181         if (bank_type >= N_SMCA_BANK_TYPES)
1182                 return NULL;
1183
1184         if (b && bank_type == SMCA_UMC) {
1185                 if (b->block < ARRAY_SIZE(smca_umc_block_names))
1186                         return smca_umc_block_names[b->block];
1187                 return NULL;
1188         }
1189
1190         if (smca_banks[bank].hwid->count == 1)
1191                 return smca_get_name(bank_type);
1192
1193         snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1194                  "%s_%x", smca_get_name(bank_type),
1195                           smca_banks[bank].sysfs_id);
1196         return buf_mcatype;
1197 }
1198
1199 static int allocate_threshold_blocks(unsigned int cpu, unsigned int bank,
1200                                      unsigned int block, u32 address)
1201 {
1202         struct threshold_block *b = NULL;
1203         u32 low, high;
1204         int err;
1205
1206         if ((bank >= mca_cfg.banks) || (block >= NR_BLOCKS))
1207                 return 0;
1208
1209         if (rdmsr_safe_on_cpu(cpu, address, &low, &high))
1210                 return 0;
1211
1212         if (!(high & MASK_VALID_HI)) {
1213                 if (block)
1214                         goto recurse;
1215                 else
1216                         return 0;
1217         }
1218
1219         if (!(high & MASK_CNTP_HI)  ||
1220              (high & MASK_LOCKED_HI))
1221                 goto recurse;
1222
1223         b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1224         if (!b)
1225                 return -ENOMEM;
1226
1227         b->block                = block;
1228         b->bank                 = bank;
1229         b->cpu                  = cpu;
1230         b->address              = address;
1231         b->interrupt_enable     = 0;
1232         b->interrupt_capable    = lvt_interrupt_supported(bank, high);
1233         b->threshold_limit      = THRESHOLD_MAX;
1234
1235         if (b->interrupt_capable) {
1236                 threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1237                 b->interrupt_enable = 1;
1238         } else {
1239                 threshold_ktype.default_attrs[2] = NULL;
1240         }
1241
1242         INIT_LIST_HEAD(&b->miscj);
1243
1244         if (per_cpu(threshold_banks, cpu)[bank]->blocks) {
1245                 list_add(&b->miscj,
1246                          &per_cpu(threshold_banks, cpu)[bank]->blocks->miscj);
1247         } else {
1248                 per_cpu(threshold_banks, cpu)[bank]->blocks = b;
1249         }
1250
1251         err = kobject_init_and_add(&b->kobj, &threshold_ktype,
1252                                    per_cpu(threshold_banks, cpu)[bank]->kobj,
1253                                    get_name(bank, b));
1254         if (err)
1255                 goto out_free;
1256 recurse:
1257         address = get_block_address(address, low, high, bank, ++block);
1258         if (!address)
1259                 return 0;
1260
1261         err = allocate_threshold_blocks(cpu, bank, block, address);
1262         if (err)
1263                 goto out_free;
1264
1265         if (b)
1266                 kobject_uevent(&b->kobj, KOBJ_ADD);
1267
1268         return err;
1269
1270 out_free:
1271         if (b) {
1272                 kobject_put(&b->kobj);
1273                 list_del(&b->miscj);
1274                 kfree(b);
1275         }
1276         return err;
1277 }
1278
1279 static int __threshold_add_blocks(struct threshold_bank *b)
1280 {
1281         struct list_head *head = &b->blocks->miscj;
1282         struct threshold_block *pos = NULL;
1283         struct threshold_block *tmp = NULL;
1284         int err = 0;
1285
1286         err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1287         if (err)
1288                 return err;
1289
1290         list_for_each_entry_safe(pos, tmp, head, miscj) {
1291
1292                 err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1293                 if (err) {
1294                         list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1295                                 kobject_del(&pos->kobj);
1296
1297                         return err;
1298                 }
1299         }
1300         return err;
1301 }
1302
1303 static int threshold_create_bank(unsigned int cpu, unsigned int bank)
1304 {
1305         struct device *dev = per_cpu(mce_device, cpu);
1306         struct amd_northbridge *nb = NULL;
1307         struct threshold_bank *b = NULL;
1308         const char *name = get_name(bank, NULL);
1309         int err = 0;
1310
1311         if (!dev)
1312                 return -ENODEV;
1313
1314         if (is_shared_bank(bank)) {
1315                 nb = node_to_amd_nb(amd_get_nb_id(cpu));
1316
1317                 /* threshold descriptor already initialized on this node? */
1318                 if (nb && nb->bank4) {
1319                         /* yes, use it */
1320                         b = nb->bank4;
1321                         err = kobject_add(b->kobj, &dev->kobj, name);
1322                         if (err)
1323                                 goto out;
1324
1325                         per_cpu(threshold_banks, cpu)[bank] = b;
1326                         refcount_inc(&b->cpus);
1327
1328                         err = __threshold_add_blocks(b);
1329
1330                         goto out;
1331                 }
1332         }
1333
1334         b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1335         if (!b) {
1336                 err = -ENOMEM;
1337                 goto out;
1338         }
1339
1340         b->kobj = kobject_create_and_add(name, &dev->kobj);
1341         if (!b->kobj) {
1342                 err = -EINVAL;
1343                 goto out_free;
1344         }
1345
1346         per_cpu(threshold_banks, cpu)[bank] = b;
1347
1348         if (is_shared_bank(bank)) {
1349                 refcount_set(&b->cpus, 1);
1350
1351                 /* nb is already initialized, see above */
1352                 if (nb) {
1353                         WARN_ON(nb->bank4);
1354                         nb->bank4 = b;
1355                 }
1356         }
1357
1358         err = allocate_threshold_blocks(cpu, bank, 0, msr_ops.misc(bank));
1359         if (!err)
1360                 goto out;
1361
1362  out_free:
1363         kfree(b);
1364
1365  out:
1366         return err;
1367 }
1368
1369 static void deallocate_threshold_block(unsigned int cpu,
1370                                                  unsigned int bank)
1371 {
1372         struct threshold_block *pos = NULL;
1373         struct threshold_block *tmp = NULL;
1374         struct threshold_bank *head = per_cpu(threshold_banks, cpu)[bank];
1375
1376         if (!head)
1377                 return;
1378
1379         list_for_each_entry_safe(pos, tmp, &head->blocks->miscj, miscj) {
1380                 kobject_put(&pos->kobj);
1381                 list_del(&pos->miscj);
1382                 kfree(pos);
1383         }
1384
1385         kfree(per_cpu(threshold_banks, cpu)[bank]->blocks);
1386         per_cpu(threshold_banks, cpu)[bank]->blocks = NULL;
1387 }
1388
1389 static void __threshold_remove_blocks(struct threshold_bank *b)
1390 {
1391         struct threshold_block *pos = NULL;
1392         struct threshold_block *tmp = NULL;
1393
1394         kobject_del(b->kobj);
1395
1396         list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1397                 kobject_del(&pos->kobj);
1398 }
1399
1400 static void threshold_remove_bank(unsigned int cpu, int bank)
1401 {
1402         struct amd_northbridge *nb;
1403         struct threshold_bank *b;
1404
1405         b = per_cpu(threshold_banks, cpu)[bank];
1406         if (!b)
1407                 return;
1408
1409         if (!b->blocks)
1410                 goto free_out;
1411
1412         if (is_shared_bank(bank)) {
1413                 if (!refcount_dec_and_test(&b->cpus)) {
1414                         __threshold_remove_blocks(b);
1415                         per_cpu(threshold_banks, cpu)[bank] = NULL;
1416                         return;
1417                 } else {
1418                         /*
1419                          * the last CPU on this node using the shared bank is
1420                          * going away, remove that bank now.
1421                          */
1422                         nb = node_to_amd_nb(amd_get_nb_id(cpu));
1423                         nb->bank4 = NULL;
1424                 }
1425         }
1426
1427         deallocate_threshold_block(cpu, bank);
1428
1429 free_out:
1430         kobject_del(b->kobj);
1431         kobject_put(b->kobj);
1432         kfree(b);
1433         per_cpu(threshold_banks, cpu)[bank] = NULL;
1434 }
1435
1436 int mce_threshold_remove_device(unsigned int cpu)
1437 {
1438         unsigned int bank;
1439
1440         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1441                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1442                         continue;
1443                 threshold_remove_bank(cpu, bank);
1444         }
1445         kfree(per_cpu(threshold_banks, cpu));
1446         per_cpu(threshold_banks, cpu) = NULL;
1447         return 0;
1448 }
1449
1450 /* create dir/files for all valid threshold banks */
1451 int mce_threshold_create_device(unsigned int cpu)
1452 {
1453         unsigned int bank;
1454         struct threshold_bank **bp;
1455         int err = 0;
1456
1457         bp = per_cpu(threshold_banks, cpu);
1458         if (bp)
1459                 return 0;
1460
1461         bp = kcalloc(mca_cfg.banks, sizeof(struct threshold_bank *),
1462                      GFP_KERNEL);
1463         if (!bp)
1464                 return -ENOMEM;
1465
1466         per_cpu(threshold_banks, cpu) = bp;
1467
1468         for (bank = 0; bank < mca_cfg.banks; ++bank) {
1469                 if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1470                         continue;
1471                 err = threshold_create_bank(cpu, bank);
1472                 if (err)
1473                         goto err;
1474         }
1475         return err;
1476 err:
1477         mce_threshold_remove_device(cpu);
1478         return err;
1479 }
1480
1481 static __init int threshold_init_device(void)
1482 {
1483         unsigned lcpu = 0;
1484
1485         /* to hit CPUs online before the notifier is up */
1486         for_each_online_cpu(lcpu) {
1487                 int err = mce_threshold_create_device(lcpu);
1488
1489                 if (err)
1490                         return err;
1491         }
1492
1493         if (thresholding_irq_en)
1494                 mce_threshold_vector = amd_threshold_interrupt;
1495
1496         return 0;
1497 }
1498 /*
1499  * there are 3 funcs which need to be _initcalled in a logic sequence:
1500  * 1. xen_late_init_mcelog
1501  * 2. mcheck_init_device
1502  * 3. threshold_init_device
1503  *
1504  * xen_late_init_mcelog must register xen_mce_chrdev_device before
1505  * native mce_chrdev_device registration if running under xen platform;
1506  *
1507  * mcheck_init_device should be inited before threshold_init_device to
1508  * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1509  *
1510  * so we use following _initcalls
1511  * 1. device_initcall(xen_late_init_mcelog);
1512  * 2. device_initcall_sync(mcheck_init_device);
1513  * 3. late_initcall(threshold_init_device);
1514  *
1515  * when running under xen, the initcall order is 1,2,3;
1516  * on baremetal, we skip 1 and we do only 2 and 3.
1517  */
1518 late_initcall(threshold_init_device);