Merge tag 'configfs-for-5.2' of git://git.infradead.org/users/hch/configfs
[sfrench/cifs-2.6.git] / arch / x86 / include / asm / processor.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4
5 #include <asm/processor-flags.h>
6
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct vm86;
11
12 #include <asm/math_emu.h>
13 #include <asm/segment.h>
14 #include <asm/types.h>
15 #include <uapi/asm/sigcontext.h>
16 #include <asm/current.h>
17 #include <asm/cpufeatures.h>
18 #include <asm/page.h>
19 #include <asm/pgtable_types.h>
20 #include <asm/percpu.h>
21 #include <asm/msr.h>
22 #include <asm/desc_defs.h>
23 #include <asm/nops.h>
24 #include <asm/special_insns.h>
25 #include <asm/fpu/types.h>
26 #include <asm/unwind_hints.h>
27
28 #include <linux/personality.h>
29 #include <linux/cache.h>
30 #include <linux/threads.h>
31 #include <linux/math64.h>
32 #include <linux/err.h>
33 #include <linux/irqflags.h>
34 #include <linux/mem_encrypt.h>
35
36 /*
37  * We handle most unaligned accesses in hardware.  On the other hand
38  * unaligned DMA can be quite expensive on some Nehalem processors.
39  *
40  * Based on this we disable the IP header alignment in network drivers.
41  */
42 #define NET_IP_ALIGN    0
43
44 #define HBP_NUM 4
45
46 /*
47  * These alignment constraints are for performance in the vSMP case,
48  * but in the task_struct case we must also meet hardware imposed
49  * alignment requirements of the FPU state:
50  */
51 #ifdef CONFIG_X86_VSMP
52 # define ARCH_MIN_TASKALIGN             (1 << INTERNODE_CACHE_SHIFT)
53 # define ARCH_MIN_MMSTRUCT_ALIGN        (1 << INTERNODE_CACHE_SHIFT)
54 #else
55 # define ARCH_MIN_TASKALIGN             __alignof__(union fpregs_state)
56 # define ARCH_MIN_MMSTRUCT_ALIGN        0
57 #endif
58
59 enum tlb_infos {
60         ENTRIES,
61         NR_INFO
62 };
63
64 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
65 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
66 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
67 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
68 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
69 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
71
72 /*
73  *  CPU type and hardware bug flags. Kept separately for each CPU.
74  *  Members of this structure are referenced in head_32.S, so think twice
75  *  before touching them. [mj]
76  */
77
78 struct cpuinfo_x86 {
79         __u8                    x86;            /* CPU family */
80         __u8                    x86_vendor;     /* CPU vendor */
81         __u8                    x86_model;
82         __u8                    x86_stepping;
83 #ifdef CONFIG_X86_64
84         /* Number of 4K pages in DTLB/ITLB combined(in pages): */
85         int                     x86_tlbsize;
86 #endif
87         __u8                    x86_virt_bits;
88         __u8                    x86_phys_bits;
89         /* CPUID returned core id bits: */
90         __u8                    x86_coreid_bits;
91         __u8                    cu_id;
92         /* Max extended CPUID function supported: */
93         __u32                   extended_cpuid_level;
94         /* Maximum supported CPUID level, -1=no CPUID: */
95         int                     cpuid_level;
96         __u32                   x86_capability[NCAPINTS + NBUGINTS];
97         char                    x86_vendor_id[16];
98         char                    x86_model_id[64];
99         /* in KB - valid for CPUS which support this call: */
100         unsigned int            x86_cache_size;
101         int                     x86_cache_alignment;    /* In bytes */
102         /* Cache QoS architectural values: */
103         int                     x86_cache_max_rmid;     /* max index */
104         int                     x86_cache_occ_scale;    /* scale to bytes */
105         int                     x86_power;
106         unsigned long           loops_per_jiffy;
107         /* cpuid returned max cores value: */
108         u16                      x86_max_cores;
109         u16                     apicid;
110         u16                     initial_apicid;
111         u16                     x86_clflush_size;
112         /* number of cores as seen by the OS: */
113         u16                     booted_cores;
114         /* Physical processor id: */
115         u16                     phys_proc_id;
116         /* Logical processor id: */
117         u16                     logical_proc_id;
118         /* Core id: */
119         u16                     cpu_core_id;
120         /* Index into per_cpu list: */
121         u16                     cpu_index;
122         u32                     microcode;
123         /* Address space bits used by the cache internally */
124         u8                      x86_cache_bits;
125         unsigned                initialized : 1;
126 } __randomize_layout;
127
128 struct cpuid_regs {
129         u32 eax, ebx, ecx, edx;
130 };
131
132 enum cpuid_regs_idx {
133         CPUID_EAX = 0,
134         CPUID_EBX,
135         CPUID_ECX,
136         CPUID_EDX,
137 };
138
139 #define X86_VENDOR_INTEL        0
140 #define X86_VENDOR_CYRIX        1
141 #define X86_VENDOR_AMD          2
142 #define X86_VENDOR_UMC          3
143 #define X86_VENDOR_CENTAUR      5
144 #define X86_VENDOR_TRANSMETA    7
145 #define X86_VENDOR_NSC          8
146 #define X86_VENDOR_HYGON        9
147 #define X86_VENDOR_NUM          10
148
149 #define X86_VENDOR_UNKNOWN      0xff
150
151 /*
152  * capabilities of CPUs
153  */
154 extern struct cpuinfo_x86       boot_cpu_data;
155 extern struct cpuinfo_x86       new_cpu_data;
156
157 extern struct x86_hw_tss        doublefault_tss;
158 extern __u32                    cpu_caps_cleared[NCAPINTS + NBUGINTS];
159 extern __u32                    cpu_caps_set[NCAPINTS + NBUGINTS];
160
161 #ifdef CONFIG_SMP
162 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
163 #define cpu_data(cpu)           per_cpu(cpu_info, cpu)
164 #else
165 #define cpu_info                boot_cpu_data
166 #define cpu_data(cpu)           boot_cpu_data
167 #endif
168
169 extern const struct seq_operations cpuinfo_op;
170
171 #define cache_line_size()       (boot_cpu_data.x86_cache_alignment)
172
173 extern void cpu_detect(struct cpuinfo_x86 *c);
174
175 static inline unsigned long long l1tf_pfn_limit(void)
176 {
177         return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
178 }
179
180 extern void early_cpu_init(void);
181 extern void identify_boot_cpu(void);
182 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
183 extern void print_cpu_info(struct cpuinfo_x86 *);
184 void print_cpu_msr(struct cpuinfo_x86 *);
185
186 #ifdef CONFIG_X86_32
187 extern int have_cpuid_p(void);
188 #else
189 static inline int have_cpuid_p(void)
190 {
191         return 1;
192 }
193 #endif
194 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
195                                 unsigned int *ecx, unsigned int *edx)
196 {
197         /* ecx is often an input as well as an output. */
198         asm volatile("cpuid"
199             : "=a" (*eax),
200               "=b" (*ebx),
201               "=c" (*ecx),
202               "=d" (*edx)
203             : "0" (*eax), "2" (*ecx)
204             : "memory");
205 }
206
207 #define native_cpuid_reg(reg)                                   \
208 static inline unsigned int native_cpuid_##reg(unsigned int op)  \
209 {                                                               \
210         unsigned int eax = op, ebx, ecx = 0, edx;               \
211                                                                 \
212         native_cpuid(&eax, &ebx, &ecx, &edx);                   \
213                                                                 \
214         return reg;                                             \
215 }
216
217 /*
218  * Native CPUID functions returning a single datum.
219  */
220 native_cpuid_reg(eax)
221 native_cpuid_reg(ebx)
222 native_cpuid_reg(ecx)
223 native_cpuid_reg(edx)
224
225 /*
226  * Friendlier CR3 helpers.
227  */
228 static inline unsigned long read_cr3_pa(void)
229 {
230         return __read_cr3() & CR3_ADDR_MASK;
231 }
232
233 static inline unsigned long native_read_cr3_pa(void)
234 {
235         return __native_read_cr3() & CR3_ADDR_MASK;
236 }
237
238 static inline void load_cr3(pgd_t *pgdir)
239 {
240         write_cr3(__sme_pa(pgdir));
241 }
242
243 /*
244  * Note that while the legacy 'TSS' name comes from 'Task State Segment',
245  * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
246  * unrelated to the task-switch mechanism:
247  */
248 #ifdef CONFIG_X86_32
249 /* This is the TSS defined by the hardware. */
250 struct x86_hw_tss {
251         unsigned short          back_link, __blh;
252         unsigned long           sp0;
253         unsigned short          ss0, __ss0h;
254         unsigned long           sp1;
255
256         /*
257          * We don't use ring 1, so ss1 is a convenient scratch space in
258          * the same cacheline as sp0.  We use ss1 to cache the value in
259          * MSR_IA32_SYSENTER_CS.  When we context switch
260          * MSR_IA32_SYSENTER_CS, we first check if the new value being
261          * written matches ss1, and, if it's not, then we wrmsr the new
262          * value and update ss1.
263          *
264          * The only reason we context switch MSR_IA32_SYSENTER_CS is
265          * that we set it to zero in vm86 tasks to avoid corrupting the
266          * stack if we were to go through the sysenter path from vm86
267          * mode.
268          */
269         unsigned short          ss1;    /* MSR_IA32_SYSENTER_CS */
270
271         unsigned short          __ss1h;
272         unsigned long           sp2;
273         unsigned short          ss2, __ss2h;
274         unsigned long           __cr3;
275         unsigned long           ip;
276         unsigned long           flags;
277         unsigned long           ax;
278         unsigned long           cx;
279         unsigned long           dx;
280         unsigned long           bx;
281         unsigned long           sp;
282         unsigned long           bp;
283         unsigned long           si;
284         unsigned long           di;
285         unsigned short          es, __esh;
286         unsigned short          cs, __csh;
287         unsigned short          ss, __ssh;
288         unsigned short          ds, __dsh;
289         unsigned short          fs, __fsh;
290         unsigned short          gs, __gsh;
291         unsigned short          ldt, __ldth;
292         unsigned short          trace;
293         unsigned short          io_bitmap_base;
294
295 } __attribute__((packed));
296 #else
297 struct x86_hw_tss {
298         u32                     reserved1;
299         u64                     sp0;
300
301         /*
302          * We store cpu_current_top_of_stack in sp1 so it's always accessible.
303          * Linux does not use ring 1, so sp1 is not otherwise needed.
304          */
305         u64                     sp1;
306
307         /*
308          * Since Linux does not use ring 2, the 'sp2' slot is unused by
309          * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
310          * the user RSP value.
311          */
312         u64                     sp2;
313
314         u64                     reserved2;
315         u64                     ist[7];
316         u32                     reserved3;
317         u32                     reserved4;
318         u16                     reserved5;
319         u16                     io_bitmap_base;
320
321 } __attribute__((packed));
322 #endif
323
324 /*
325  * IO-bitmap sizes:
326  */
327 #define IO_BITMAP_BITS                  65536
328 #define IO_BITMAP_BYTES                 (IO_BITMAP_BITS/8)
329 #define IO_BITMAP_LONGS                 (IO_BITMAP_BYTES/sizeof(long))
330 #define IO_BITMAP_OFFSET                (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
331 #define INVALID_IO_BITMAP_OFFSET        0x8000
332
333 struct entry_stack {
334         unsigned long           words[64];
335 };
336
337 struct entry_stack_page {
338         struct entry_stack stack;
339 } __aligned(PAGE_SIZE);
340
341 struct tss_struct {
342         /*
343          * The fixed hardware portion.  This must not cross a page boundary
344          * at risk of violating the SDM's advice and potentially triggering
345          * errata.
346          */
347         struct x86_hw_tss       x86_tss;
348
349         /*
350          * The extra 1 is there because the CPU will access an
351          * additional byte beyond the end of the IO permission
352          * bitmap. The extra byte must be all 1 bits, and must
353          * be within the limit.
354          */
355         unsigned long           io_bitmap[IO_BITMAP_LONGS + 1];
356 } __aligned(PAGE_SIZE);
357
358 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
359
360 /*
361  * sizeof(unsigned long) coming from an extra "long" at the end
362  * of the iobitmap.
363  *
364  * -1? seg base+limit should be pointing to the address of the
365  * last valid byte
366  */
367 #define __KERNEL_TSS_LIMIT      \
368         (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
369
370 /* Per CPU interrupt stacks */
371 struct irq_stack {
372         char            stack[IRQ_STACK_SIZE];
373 } __aligned(IRQ_STACK_SIZE);
374
375 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
376
377 #ifdef CONFIG_X86_32
378 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
379 #else
380 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
381 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
382 #endif
383
384 #ifdef CONFIG_X86_64
385 struct fixed_percpu_data {
386         /*
387          * GCC hardcodes the stack canary as %gs:40.  Since the
388          * irq_stack is the object at %gs:0, we reserve the bottom
389          * 48 bytes of the irq stack for the canary.
390          */
391         char            gs_base[40];
392         unsigned long   stack_canary;
393 };
394
395 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
396 DECLARE_INIT_PER_CPU(fixed_percpu_data);
397
398 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
399 {
400         return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
401 }
402
403 DECLARE_PER_CPU(unsigned int, irq_count);
404 extern asmlinkage void ignore_sysret(void);
405
406 #if IS_ENABLED(CONFIG_KVM)
407 /* Save actual FS/GS selectors and bases to current->thread */
408 void save_fsgs_for_kvm(void);
409 #endif
410 #else   /* X86_64 */
411 #ifdef CONFIG_STACKPROTECTOR
412 /*
413  * Make sure stack canary segment base is cached-aligned:
414  *   "For Intel Atom processors, avoid non zero segment base address
415  *    that is not aligned to cache line boundary at all cost."
416  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
417  */
418 struct stack_canary {
419         char __pad[20];         /* canary at %gs:20 */
420         unsigned long canary;
421 };
422 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
423 #endif
424 /* Per CPU softirq stack pointer */
425 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
426 #endif  /* X86_64 */
427
428 extern unsigned int fpu_kernel_xstate_size;
429 extern unsigned int fpu_user_xstate_size;
430
431 struct perf_event;
432
433 typedef struct {
434         unsigned long           seg;
435 } mm_segment_t;
436
437 struct thread_struct {
438         /* Cached TLS descriptors: */
439         struct desc_struct      tls_array[GDT_ENTRY_TLS_ENTRIES];
440 #ifdef CONFIG_X86_32
441         unsigned long           sp0;
442 #endif
443         unsigned long           sp;
444 #ifdef CONFIG_X86_32
445         unsigned long           sysenter_cs;
446 #else
447         unsigned short          es;
448         unsigned short          ds;
449         unsigned short          fsindex;
450         unsigned short          gsindex;
451 #endif
452
453 #ifdef CONFIG_X86_64
454         unsigned long           fsbase;
455         unsigned long           gsbase;
456 #else
457         /*
458          * XXX: this could presumably be unsigned short.  Alternatively,
459          * 32-bit kernels could be taught to use fsindex instead.
460          */
461         unsigned long fs;
462         unsigned long gs;
463 #endif
464
465         /* Save middle states of ptrace breakpoints */
466         struct perf_event       *ptrace_bps[HBP_NUM];
467         /* Debug status used for traps, single steps, etc... */
468         unsigned long           debugreg6;
469         /* Keep track of the exact dr7 value set by the user */
470         unsigned long           ptrace_dr7;
471         /* Fault info: */
472         unsigned long           cr2;
473         unsigned long           trap_nr;
474         unsigned long           error_code;
475 #ifdef CONFIG_VM86
476         /* Virtual 86 mode info */
477         struct vm86             *vm86;
478 #endif
479         /* IO permissions: */
480         unsigned long           *io_bitmap_ptr;
481         unsigned long           iopl;
482         /* Max allowed port in the bitmap, in bytes: */
483         unsigned                io_bitmap_max;
484
485         mm_segment_t            addr_limit;
486
487         unsigned int            sig_on_uaccess_err:1;
488         unsigned int            uaccess_err:1;  /* uaccess failed */
489
490         /* Floating point and extended processor state */
491         struct fpu              fpu;
492         /*
493          * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
494          * the end.
495          */
496 };
497
498 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
499 static inline void arch_thread_struct_whitelist(unsigned long *offset,
500                                                 unsigned long *size)
501 {
502         *offset = offsetof(struct thread_struct, fpu.state);
503         *size = fpu_kernel_xstate_size;
504 }
505
506 /*
507  * Thread-synchronous status.
508  *
509  * This is different from the flags in that nobody else
510  * ever touches our thread-synchronous status, so we don't
511  * have to worry about atomic accesses.
512  */
513 #define TS_COMPAT               0x0002  /* 32bit syscall active (64BIT)*/
514
515 /*
516  * Set IOPL bits in EFLAGS from given mask
517  */
518 static inline void native_set_iopl_mask(unsigned mask)
519 {
520 #ifdef CONFIG_X86_32
521         unsigned int reg;
522
523         asm volatile ("pushfl;"
524                       "popl %0;"
525                       "andl %1, %0;"
526                       "orl %2, %0;"
527                       "pushl %0;"
528                       "popfl"
529                       : "=&r" (reg)
530                       : "i" (~X86_EFLAGS_IOPL), "r" (mask));
531 #endif
532 }
533
534 static inline void
535 native_load_sp0(unsigned long sp0)
536 {
537         this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
538 }
539
540 static inline void native_swapgs(void)
541 {
542 #ifdef CONFIG_X86_64
543         asm volatile("swapgs" ::: "memory");
544 #endif
545 }
546
547 static inline unsigned long current_top_of_stack(void)
548 {
549         /*
550          *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
551          *  and around vm86 mode and sp0 on x86_64 is special because of the
552          *  entry trampoline.
553          */
554         return this_cpu_read_stable(cpu_current_top_of_stack);
555 }
556
557 static inline bool on_thread_stack(void)
558 {
559         return (unsigned long)(current_top_of_stack() -
560                                current_stack_pointer) < THREAD_SIZE;
561 }
562
563 #ifdef CONFIG_PARAVIRT_XXL
564 #include <asm/paravirt.h>
565 #else
566 #define __cpuid                 native_cpuid
567
568 static inline void load_sp0(unsigned long sp0)
569 {
570         native_load_sp0(sp0);
571 }
572
573 #define set_iopl_mask native_set_iopl_mask
574 #endif /* CONFIG_PARAVIRT_XXL */
575
576 /* Free all resources held by a thread. */
577 extern void release_thread(struct task_struct *);
578
579 unsigned long get_wchan(struct task_struct *p);
580
581 /*
582  * Generic CPUID function
583  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
584  * resulting in stale register contents being returned.
585  */
586 static inline void cpuid(unsigned int op,
587                          unsigned int *eax, unsigned int *ebx,
588                          unsigned int *ecx, unsigned int *edx)
589 {
590         *eax = op;
591         *ecx = 0;
592         __cpuid(eax, ebx, ecx, edx);
593 }
594
595 /* Some CPUID calls want 'count' to be placed in ecx */
596 static inline void cpuid_count(unsigned int op, int count,
597                                unsigned int *eax, unsigned int *ebx,
598                                unsigned int *ecx, unsigned int *edx)
599 {
600         *eax = op;
601         *ecx = count;
602         __cpuid(eax, ebx, ecx, edx);
603 }
604
605 /*
606  * CPUID functions returning a single datum
607  */
608 static inline unsigned int cpuid_eax(unsigned int op)
609 {
610         unsigned int eax, ebx, ecx, edx;
611
612         cpuid(op, &eax, &ebx, &ecx, &edx);
613
614         return eax;
615 }
616
617 static inline unsigned int cpuid_ebx(unsigned int op)
618 {
619         unsigned int eax, ebx, ecx, edx;
620
621         cpuid(op, &eax, &ebx, &ecx, &edx);
622
623         return ebx;
624 }
625
626 static inline unsigned int cpuid_ecx(unsigned int op)
627 {
628         unsigned int eax, ebx, ecx, edx;
629
630         cpuid(op, &eax, &ebx, &ecx, &edx);
631
632         return ecx;
633 }
634
635 static inline unsigned int cpuid_edx(unsigned int op)
636 {
637         unsigned int eax, ebx, ecx, edx;
638
639         cpuid(op, &eax, &ebx, &ecx, &edx);
640
641         return edx;
642 }
643
644 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
645 static __always_inline void rep_nop(void)
646 {
647         asm volatile("rep; nop" ::: "memory");
648 }
649
650 static __always_inline void cpu_relax(void)
651 {
652         rep_nop();
653 }
654
655 /*
656  * This function forces the icache and prefetched instruction stream to
657  * catch up with reality in two very specific cases:
658  *
659  *  a) Text was modified using one virtual address and is about to be executed
660  *     from the same physical page at a different virtual address.
661  *
662  *  b) Text was modified on a different CPU, may subsequently be
663  *     executed on this CPU, and you want to make sure the new version
664  *     gets executed.  This generally means you're calling this in a IPI.
665  *
666  * If you're calling this for a different reason, you're probably doing
667  * it wrong.
668  */
669 static inline void sync_core(void)
670 {
671         /*
672          * There are quite a few ways to do this.  IRET-to-self is nice
673          * because it works on every CPU, at any CPL (so it's compatible
674          * with paravirtualization), and it never exits to a hypervisor.
675          * The only down sides are that it's a bit slow (it seems to be
676          * a bit more than 2x slower than the fastest options) and that
677          * it unmasks NMIs.  The "push %cs" is needed because, in
678          * paravirtual environments, __KERNEL_CS may not be a valid CS
679          * value when we do IRET directly.
680          *
681          * In case NMI unmasking or performance ever becomes a problem,
682          * the next best option appears to be MOV-to-CR2 and an
683          * unconditional jump.  That sequence also works on all CPUs,
684          * but it will fault at CPL3 (i.e. Xen PV).
685          *
686          * CPUID is the conventional way, but it's nasty: it doesn't
687          * exist on some 486-like CPUs, and it usually exits to a
688          * hypervisor.
689          *
690          * Like all of Linux's memory ordering operations, this is a
691          * compiler barrier as well.
692          */
693 #ifdef CONFIG_X86_32
694         asm volatile (
695                 "pushfl\n\t"
696                 "pushl %%cs\n\t"
697                 "pushl $1f\n\t"
698                 "iret\n\t"
699                 "1:"
700                 : ASM_CALL_CONSTRAINT : : "memory");
701 #else
702         unsigned int tmp;
703
704         asm volatile (
705                 UNWIND_HINT_SAVE
706                 "mov %%ss, %0\n\t"
707                 "pushq %q0\n\t"
708                 "pushq %%rsp\n\t"
709                 "addq $8, (%%rsp)\n\t"
710                 "pushfq\n\t"
711                 "mov %%cs, %0\n\t"
712                 "pushq %q0\n\t"
713                 "pushq $1f\n\t"
714                 "iretq\n\t"
715                 UNWIND_HINT_RESTORE
716                 "1:"
717                 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
718 #endif
719 }
720
721 extern void select_idle_routine(const struct cpuinfo_x86 *c);
722 extern void amd_e400_c1e_apic_setup(void);
723
724 extern unsigned long            boot_option_idle_override;
725
726 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
727                          IDLE_POLL};
728
729 extern void enable_sep_cpu(void);
730 extern int sysenter_setup(void);
731
732
733 /* Defined in head.S */
734 extern struct desc_ptr          early_gdt_descr;
735
736 extern void switch_to_new_gdt(int);
737 extern void load_direct_gdt(int);
738 extern void load_fixmap_gdt(int);
739 extern void load_percpu_segment(int);
740 extern void cpu_init(void);
741
742 static inline unsigned long get_debugctlmsr(void)
743 {
744         unsigned long debugctlmsr = 0;
745
746 #ifndef CONFIG_X86_DEBUGCTLMSR
747         if (boot_cpu_data.x86 < 6)
748                 return 0;
749 #endif
750         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
751
752         return debugctlmsr;
753 }
754
755 static inline void update_debugctlmsr(unsigned long debugctlmsr)
756 {
757 #ifndef CONFIG_X86_DEBUGCTLMSR
758         if (boot_cpu_data.x86 < 6)
759                 return;
760 #endif
761         wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
762 }
763
764 extern void set_task_blockstep(struct task_struct *task, bool on);
765
766 /* Boot loader type from the setup header: */
767 extern int                      bootloader_type;
768 extern int                      bootloader_version;
769
770 extern char                     ignore_fpu_irq;
771
772 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
773 #define ARCH_HAS_PREFETCHW
774 #define ARCH_HAS_SPINLOCK_PREFETCH
775
776 #ifdef CONFIG_X86_32
777 # define BASE_PREFETCH          ""
778 # define ARCH_HAS_PREFETCH
779 #else
780 # define BASE_PREFETCH          "prefetcht0 %P1"
781 #endif
782
783 /*
784  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
785  *
786  * It's not worth to care about 3dnow prefetches for the K6
787  * because they are microcoded there and very slow.
788  */
789 static inline void prefetch(const void *x)
790 {
791         alternative_input(BASE_PREFETCH, "prefetchnta %P1",
792                           X86_FEATURE_XMM,
793                           "m" (*(const char *)x));
794 }
795
796 /*
797  * 3dnow prefetch to get an exclusive cache line.
798  * Useful for spinlocks to avoid one state transition in the
799  * cache coherency protocol:
800  */
801 static inline void prefetchw(const void *x)
802 {
803         alternative_input(BASE_PREFETCH, "prefetchw %P1",
804                           X86_FEATURE_3DNOWPREFETCH,
805                           "m" (*(const char *)x));
806 }
807
808 static inline void spin_lock_prefetch(const void *x)
809 {
810         prefetchw(x);
811 }
812
813 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
814                            TOP_OF_KERNEL_STACK_PADDING)
815
816 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
817
818 #define task_pt_regs(task) \
819 ({                                                                      \
820         unsigned long __ptr = (unsigned long)task_stack_page(task);     \
821         __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;             \
822         ((struct pt_regs *)__ptr) - 1;                                  \
823 })
824
825 #ifdef CONFIG_X86_32
826 /*
827  * User space process size: 3GB (default).
828  */
829 #define IA32_PAGE_OFFSET        PAGE_OFFSET
830 #define TASK_SIZE               PAGE_OFFSET
831 #define TASK_SIZE_LOW           TASK_SIZE
832 #define TASK_SIZE_MAX           TASK_SIZE
833 #define DEFAULT_MAP_WINDOW      TASK_SIZE
834 #define STACK_TOP               TASK_SIZE
835 #define STACK_TOP_MAX           STACK_TOP
836
837 #define INIT_THREAD  {                                                    \
838         .sp0                    = TOP_OF_INIT_STACK,                      \
839         .sysenter_cs            = __KERNEL_CS,                            \
840         .io_bitmap_ptr          = NULL,                                   \
841         .addr_limit             = KERNEL_DS,                              \
842 }
843
844 #define KSTK_ESP(task)          (task_pt_regs(task)->sp)
845
846 #else
847 /*
848  * User space process size.  This is the first address outside the user range.
849  * There are a few constraints that determine this:
850  *
851  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
852  * address, then that syscall will enter the kernel with a
853  * non-canonical return address, and SYSRET will explode dangerously.
854  * We avoid this particular problem by preventing anything executable
855  * from being mapped at the maximum canonical address.
856  *
857  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
858  * CPUs malfunction if they execute code from the highest canonical page.
859  * They'll speculate right off the end of the canonical space, and
860  * bad things happen.  This is worked around in the same way as the
861  * Intel problem.
862  *
863  * With page table isolation enabled, we map the LDT in ... [stay tuned]
864  */
865 #define TASK_SIZE_MAX   ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
866
867 #define DEFAULT_MAP_WINDOW      ((1UL << 47) - PAGE_SIZE)
868
869 /* This decides where the kernel will search for a free chunk of vm
870  * space during mmap's.
871  */
872 #define IA32_PAGE_OFFSET        ((current->personality & ADDR_LIMIT_3GB) ? \
873                                         0xc0000000 : 0xFFFFe000)
874
875 #define TASK_SIZE_LOW           (test_thread_flag(TIF_ADDR32) ? \
876                                         IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
877 #define TASK_SIZE               (test_thread_flag(TIF_ADDR32) ? \
878                                         IA32_PAGE_OFFSET : TASK_SIZE_MAX)
879 #define TASK_SIZE_OF(child)     ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
880                                         IA32_PAGE_OFFSET : TASK_SIZE_MAX)
881
882 #define STACK_TOP               TASK_SIZE_LOW
883 #define STACK_TOP_MAX           TASK_SIZE_MAX
884
885 #define INIT_THREAD  {                                          \
886         .addr_limit             = KERNEL_DS,                    \
887 }
888
889 extern unsigned long KSTK_ESP(struct task_struct *task);
890
891 #endif /* CONFIG_X86_64 */
892
893 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
894                                                unsigned long new_sp);
895
896 /*
897  * This decides where the kernel will search for a free chunk of vm
898  * space during mmap's.
899  */
900 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
901 #define TASK_UNMAPPED_BASE              __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
902
903 #define KSTK_EIP(task)          (task_pt_regs(task)->ip)
904
905 /* Get/set a process' ability to use the timestamp counter instruction */
906 #define GET_TSC_CTL(adr)        get_tsc_mode((adr))
907 #define SET_TSC_CTL(val)        set_tsc_mode((val))
908
909 extern int get_tsc_mode(unsigned long adr);
910 extern int set_tsc_mode(unsigned int val);
911
912 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
913
914 /* Register/unregister a process' MPX related resource */
915 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
916 #define MPX_DISABLE_MANAGEMENT()        mpx_disable_management()
917
918 #ifdef CONFIG_X86_INTEL_MPX
919 extern int mpx_enable_management(void);
920 extern int mpx_disable_management(void);
921 #else
922 static inline int mpx_enable_management(void)
923 {
924         return -EINVAL;
925 }
926 static inline int mpx_disable_management(void)
927 {
928         return -EINVAL;
929 }
930 #endif /* CONFIG_X86_INTEL_MPX */
931
932 #ifdef CONFIG_CPU_SUP_AMD
933 extern u16 amd_get_nb_id(int cpu);
934 extern u32 amd_get_nodes_per_socket(void);
935 #else
936 static inline u16 amd_get_nb_id(int cpu)                { return 0; }
937 static inline u32 amd_get_nodes_per_socket(void)        { return 0; }
938 #endif
939
940 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
941 {
942         uint32_t base, eax, signature[3];
943
944         for (base = 0x40000000; base < 0x40010000; base += 0x100) {
945                 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
946
947                 if (!memcmp(sig, signature, 12) &&
948                     (leaves == 0 || ((eax - base) >= leaves)))
949                         return base;
950         }
951
952         return 0;
953 }
954
955 extern unsigned long arch_align_stack(unsigned long sp);
956 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
957 extern void free_kernel_image_pages(void *begin, void *end);
958
959 void default_idle(void);
960 #ifdef  CONFIG_XEN
961 bool xen_set_default_idle(void);
962 #else
963 #define xen_set_default_idle 0
964 #endif
965
966 void stop_this_cpu(void *dummy);
967 void df_debug(struct pt_regs *regs, long error_code);
968 void microcode_check(void);
969
970 enum l1tf_mitigations {
971         L1TF_MITIGATION_OFF,
972         L1TF_MITIGATION_FLUSH_NOWARN,
973         L1TF_MITIGATION_FLUSH,
974         L1TF_MITIGATION_FLUSH_NOSMT,
975         L1TF_MITIGATION_FULL,
976         L1TF_MITIGATION_FULL_FORCE
977 };
978
979 extern enum l1tf_mitigations l1tf_mitigation;
980
981 enum mds_mitigations {
982         MDS_MITIGATION_OFF,
983         MDS_MITIGATION_FULL,
984         MDS_MITIGATION_VMWERV,
985 };
986
987 #endif /* _ASM_X86_PROCESSOR_H */