Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[sfrench/cifs-2.6.git] / arch / x86 / include / asm / mmu_context.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9
10 #include <trace/events/tlb.h>
11
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/mpx.h>
16
17 extern atomic64_t last_mm_ctx_id;
18
19 #ifndef CONFIG_PARAVIRT
20 static inline void paravirt_activate_mm(struct mm_struct *prev,
21                                         struct mm_struct *next)
22 {
23 }
24 #endif  /* !CONFIG_PARAVIRT */
25
26 #ifdef CONFIG_PERF_EVENTS
27 extern struct static_key rdpmc_always_available;
28
29 static inline void load_mm_cr4(struct mm_struct *mm)
30 {
31         if (static_key_false(&rdpmc_always_available) ||
32             atomic_read(&mm->context.perf_rdpmc_allowed))
33                 cr4_set_bits(X86_CR4_PCE);
34         else
35                 cr4_clear_bits(X86_CR4_PCE);
36 }
37 #else
38 static inline void load_mm_cr4(struct mm_struct *mm) {}
39 #endif
40
41 #ifdef CONFIG_MODIFY_LDT_SYSCALL
42 /*
43  * ldt_structs can be allocated, used, and freed, but they are never
44  * modified while live.
45  */
46 struct ldt_struct {
47         /*
48          * Xen requires page-aligned LDTs with special permissions.  This is
49          * needed to prevent us from installing evil descriptors such as
50          * call gates.  On native, we could merge the ldt_struct and LDT
51          * allocations, but it's not worth trying to optimize.
52          */
53         struct desc_struct *entries;
54         unsigned int nr_entries;
55 };
56
57 /*
58  * Used for LDT copy/destruction.
59  */
60 int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm);
61 void destroy_context_ldt(struct mm_struct *mm);
62 #else   /* CONFIG_MODIFY_LDT_SYSCALL */
63 static inline int init_new_context_ldt(struct task_struct *tsk,
64                                        struct mm_struct *mm)
65 {
66         return 0;
67 }
68 static inline void destroy_context_ldt(struct mm_struct *mm) {}
69 #endif
70
71 static inline void load_mm_ldt(struct mm_struct *mm)
72 {
73 #ifdef CONFIG_MODIFY_LDT_SYSCALL
74         struct ldt_struct *ldt;
75
76         /* lockless_dereference synchronizes with smp_store_release */
77         ldt = lockless_dereference(mm->context.ldt);
78
79         /*
80          * Any change to mm->context.ldt is followed by an IPI to all
81          * CPUs with the mm active.  The LDT will not be freed until
82          * after the IPI is handled by all such CPUs.  This means that,
83          * if the ldt_struct changes before we return, the values we see
84          * will be safe, and the new values will be loaded before we run
85          * any user code.
86          *
87          * NB: don't try to convert this to use RCU without extreme care.
88          * We would still need IRQs off, because we don't want to change
89          * the local LDT after an IPI loaded a newer value than the one
90          * that we can see.
91          */
92
93         if (unlikely(ldt))
94                 set_ldt(ldt->entries, ldt->nr_entries);
95         else
96                 clear_LDT();
97 #else
98         clear_LDT();
99 #endif
100 }
101
102 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
103 {
104 #ifdef CONFIG_MODIFY_LDT_SYSCALL
105         /*
106          * Load the LDT if either the old or new mm had an LDT.
107          *
108          * An mm will never go from having an LDT to not having an LDT.  Two
109          * mms never share an LDT, so we don't gain anything by checking to
110          * see whether the LDT changed.  There's also no guarantee that
111          * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
112          * then prev->context.ldt will also be non-NULL.
113          *
114          * If we really cared, we could optimize the case where prev == next
115          * and we're exiting lazy mode.  Most of the time, if this happens,
116          * we don't actually need to reload LDTR, but modify_ldt() is mostly
117          * used by legacy code and emulators where we don't need this level of
118          * performance.
119          *
120          * This uses | instead of || because it generates better code.
121          */
122         if (unlikely((unsigned long)prev->context.ldt |
123                      (unsigned long)next->context.ldt))
124                 load_mm_ldt(next);
125 #endif
126
127         DEBUG_LOCKS_WARN_ON(preemptible());
128 }
129
130 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
131
132 static inline int init_new_context(struct task_struct *tsk,
133                                    struct mm_struct *mm)
134 {
135         mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
136         atomic64_set(&mm->context.tlb_gen, 0);
137
138         #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
139         if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
140                 /* pkey 0 is the default and always allocated */
141                 mm->context.pkey_allocation_map = 0x1;
142                 /* -1 means unallocated or invalid */
143                 mm->context.execute_only_pkey = -1;
144         }
145         #endif
146         return init_new_context_ldt(tsk, mm);
147 }
148 static inline void destroy_context(struct mm_struct *mm)
149 {
150         destroy_context_ldt(mm);
151 }
152
153 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
154                       struct task_struct *tsk);
155
156 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
157                                struct task_struct *tsk);
158 #define switch_mm_irqs_off switch_mm_irqs_off
159
160 #define activate_mm(prev, next)                 \
161 do {                                            \
162         paravirt_activate_mm((prev), (next));   \
163         switch_mm((prev), (next), NULL);        \
164 } while (0);
165
166 #ifdef CONFIG_X86_32
167 #define deactivate_mm(tsk, mm)                  \
168 do {                                            \
169         lazy_load_gs(0);                        \
170 } while (0)
171 #else
172 #define deactivate_mm(tsk, mm)                  \
173 do {                                            \
174         load_gs_index(0);                       \
175         loadsegment(fs, 0);                     \
176 } while (0)
177 #endif
178
179 static inline void arch_dup_mmap(struct mm_struct *oldmm,
180                                  struct mm_struct *mm)
181 {
182         paravirt_arch_dup_mmap(oldmm, mm);
183 }
184
185 static inline void arch_exit_mmap(struct mm_struct *mm)
186 {
187         paravirt_arch_exit_mmap(mm);
188 }
189
190 #ifdef CONFIG_X86_64
191 static inline bool is_64bit_mm(struct mm_struct *mm)
192 {
193         return  !IS_ENABLED(CONFIG_IA32_EMULATION) ||
194                 !(mm->context.ia32_compat == TIF_IA32);
195 }
196 #else
197 static inline bool is_64bit_mm(struct mm_struct *mm)
198 {
199         return false;
200 }
201 #endif
202
203 static inline void arch_bprm_mm_init(struct mm_struct *mm,
204                 struct vm_area_struct *vma)
205 {
206         mpx_mm_init(mm);
207 }
208
209 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
210                               unsigned long start, unsigned long end)
211 {
212         /*
213          * mpx_notify_unmap() goes and reads a rarely-hot
214          * cacheline in the mm_struct.  That can be expensive
215          * enough to be seen in profiles.
216          *
217          * The mpx_notify_unmap() call and its contents have been
218          * observed to affect munmap() performance on hardware
219          * where MPX is not present.
220          *
221          * The unlikely() optimizes for the fast case: no MPX
222          * in the CPU, or no MPX use in the process.  Even if
223          * we get this wrong (in the unlikely event that MPX
224          * is widely enabled on some system) the overhead of
225          * MPX itself (reading bounds tables) is expected to
226          * overwhelm the overhead of getting this unlikely()
227          * consistently wrong.
228          */
229         if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
230                 mpx_notify_unmap(mm, vma, start, end);
231 }
232
233 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
234 static inline int vma_pkey(struct vm_area_struct *vma)
235 {
236         unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
237                                       VM_PKEY_BIT2 | VM_PKEY_BIT3;
238
239         return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
240 }
241 #else
242 static inline int vma_pkey(struct vm_area_struct *vma)
243 {
244         return 0;
245 }
246 #endif
247
248 /*
249  * We only want to enforce protection keys on the current process
250  * because we effectively have no access to PKRU for other
251  * processes or any way to tell *which * PKRU in a threaded
252  * process we could use.
253  *
254  * So do not enforce things if the VMA is not from the current
255  * mm, or if we are in a kernel thread.
256  */
257 static inline bool vma_is_foreign(struct vm_area_struct *vma)
258 {
259         if (!current->mm)
260                 return true;
261         /*
262          * Should PKRU be enforced on the access to this VMA?  If
263          * the VMA is from another process, then PKRU has no
264          * relevance and should not be enforced.
265          */
266         if (current->mm != vma->vm_mm)
267                 return true;
268
269         return false;
270 }
271
272 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
273                 bool write, bool execute, bool foreign)
274 {
275         /* pkeys never affect instruction fetches */
276         if (execute)
277                 return true;
278         /* allow access if the VMA is not one from this process */
279         if (foreign || vma_is_foreign(vma))
280                 return true;
281         return __pkru_allows_pkey(vma_pkey(vma), write);
282 }
283
284 /*
285  * If PCID is on, ASID-aware code paths put the ASID+1 into the PCID
286  * bits.  This serves two purposes.  It prevents a nasty situation in
287  * which PCID-unaware code saves CR3, loads some other value (with PCID
288  * == 0), and then restores CR3, thus corrupting the TLB for ASID 0 if
289  * the saved ASID was nonzero.  It also means that any bugs involving
290  * loading a PCID-enabled CR3 with CR4.PCIDE off will trigger
291  * deterministically.
292  */
293
294 static inline unsigned long build_cr3(struct mm_struct *mm, u16 asid)
295 {
296         if (static_cpu_has(X86_FEATURE_PCID)) {
297                 VM_WARN_ON_ONCE(asid > 4094);
298                 return __sme_pa(mm->pgd) | (asid + 1);
299         } else {
300                 VM_WARN_ON_ONCE(asid != 0);
301                 return __sme_pa(mm->pgd);
302         }
303 }
304
305 static inline unsigned long build_cr3_noflush(struct mm_struct *mm, u16 asid)
306 {
307         VM_WARN_ON_ONCE(asid > 4094);
308         return __sme_pa(mm->pgd) | (asid + 1) | CR3_NOFLUSH;
309 }
310
311 /*
312  * This can be used from process context to figure out what the value of
313  * CR3 is without needing to do a (slow) __read_cr3().
314  *
315  * It's intended to be used for code like KVM that sneakily changes CR3
316  * and needs to restore it.  It needs to be used very carefully.
317  */
318 static inline unsigned long __get_current_cr3_fast(void)
319 {
320         unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm),
321                 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
322
323         /* For now, be very restrictive about when this can be called. */
324         VM_WARN_ON(in_nmi() || preemptible());
325
326         VM_BUG_ON(cr3 != __read_cr3());
327         return cr3;
328 }
329
330 #endif /* _ASM_X86_MMU_CONTEXT_H */