Merge tag 'reset-for-v5.3' of git://git.pengutronix.de/git/pza/linux into arm/drivers
[sfrench/cifs-2.6.git] / arch / x86 / hyperv / hv_init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * X86 specific Hyper-V initialization code.
4  *
5  * Copyright (C) 2016, Microsoft, Inc.
6  *
7  * Author : K. Y. Srinivasan <kys@microsoft.com>
8  */
9
10 #include <linux/efi.h>
11 #include <linux/types.h>
12 #include <asm/apic.h>
13 #include <asm/desc.h>
14 #include <asm/hypervisor.h>
15 #include <asm/hyperv-tlfs.h>
16 #include <asm/mshyperv.h>
17 #include <linux/version.h>
18 #include <linux/vmalloc.h>
19 #include <linux/mm.h>
20 #include <linux/clockchips.h>
21 #include <linux/hyperv.h>
22 #include <linux/slab.h>
23 #include <linux/cpuhotplug.h>
24
25 #ifdef CONFIG_HYPERV_TSCPAGE
26
27 static struct ms_hyperv_tsc_page *tsc_pg;
28
29 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
30 {
31         return tsc_pg;
32 }
33 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
34
35 static u64 read_hv_clock_tsc(struct clocksource *arg)
36 {
37         u64 current_tick = hv_read_tsc_page(tsc_pg);
38
39         if (current_tick == U64_MAX)
40                 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
41
42         return current_tick;
43 }
44
45 static struct clocksource hyperv_cs_tsc = {
46                 .name           = "hyperv_clocksource_tsc_page",
47                 .rating         = 400,
48                 .read           = read_hv_clock_tsc,
49                 .mask           = CLOCKSOURCE_MASK(64),
50                 .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
51 };
52 #endif
53
54 static u64 read_hv_clock_msr(struct clocksource *arg)
55 {
56         u64 current_tick;
57         /*
58          * Read the partition counter to get the current tick count. This count
59          * is set to 0 when the partition is created and is incremented in
60          * 100 nanosecond units.
61          */
62         rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
63         return current_tick;
64 }
65
66 static struct clocksource hyperv_cs_msr = {
67         .name           = "hyperv_clocksource_msr",
68         .rating         = 400,
69         .read           = read_hv_clock_msr,
70         .mask           = CLOCKSOURCE_MASK(64),
71         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
72 };
73
74 void *hv_hypercall_pg;
75 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
76 struct clocksource *hyperv_cs;
77 EXPORT_SYMBOL_GPL(hyperv_cs);
78
79 u32 *hv_vp_index;
80 EXPORT_SYMBOL_GPL(hv_vp_index);
81
82 struct hv_vp_assist_page **hv_vp_assist_page;
83 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
84
85 void  __percpu **hyperv_pcpu_input_arg;
86 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
87
88 u32 hv_max_vp_index;
89 EXPORT_SYMBOL_GPL(hv_max_vp_index);
90
91 static int hv_cpu_init(unsigned int cpu)
92 {
93         u64 msr_vp_index;
94         struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
95         void **input_arg;
96         struct page *pg;
97
98         input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
99         pg = alloc_page(GFP_KERNEL);
100         if (unlikely(!pg))
101                 return -ENOMEM;
102         *input_arg = page_address(pg);
103
104         hv_get_vp_index(msr_vp_index);
105
106         hv_vp_index[smp_processor_id()] = msr_vp_index;
107
108         if (msr_vp_index > hv_max_vp_index)
109                 hv_max_vp_index = msr_vp_index;
110
111         if (!hv_vp_assist_page)
112                 return 0;
113
114         if (!*hvp)
115                 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
116
117         if (*hvp) {
118                 u64 val;
119
120                 val = vmalloc_to_pfn(*hvp);
121                 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
122                         HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
123
124                 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
125         }
126
127         return 0;
128 }
129
130 static void (*hv_reenlightenment_cb)(void);
131
132 static void hv_reenlightenment_notify(struct work_struct *dummy)
133 {
134         struct hv_tsc_emulation_status emu_status;
135
136         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
137
138         /* Don't issue the callback if TSC accesses are not emulated */
139         if (hv_reenlightenment_cb && emu_status.inprogress)
140                 hv_reenlightenment_cb();
141 }
142 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
143
144 void hyperv_stop_tsc_emulation(void)
145 {
146         u64 freq;
147         struct hv_tsc_emulation_status emu_status;
148
149         rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
150         emu_status.inprogress = 0;
151         wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
152
153         rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
154         tsc_khz = div64_u64(freq, 1000);
155 }
156 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
157
158 static inline bool hv_reenlightenment_available(void)
159 {
160         /*
161          * Check for required features and priviliges to make TSC frequency
162          * change notifications work.
163          */
164         return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
165                 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
166                 ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
167 }
168
169 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
170 {
171         entering_ack_irq();
172
173         inc_irq_stat(irq_hv_reenlightenment_count);
174
175         schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
176
177         exiting_irq();
178 }
179
180 void set_hv_tscchange_cb(void (*cb)(void))
181 {
182         struct hv_reenlightenment_control re_ctrl = {
183                 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
184                 .enabled = 1,
185                 .target_vp = hv_vp_index[smp_processor_id()]
186         };
187         struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
188
189         if (!hv_reenlightenment_available()) {
190                 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
191                 return;
192         }
193
194         hv_reenlightenment_cb = cb;
195
196         /* Make sure callback is registered before we write to MSRs */
197         wmb();
198
199         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
200         wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
201 }
202 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
203
204 void clear_hv_tscchange_cb(void)
205 {
206         struct hv_reenlightenment_control re_ctrl;
207
208         if (!hv_reenlightenment_available())
209                 return;
210
211         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
212         re_ctrl.enabled = 0;
213         wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
214
215         hv_reenlightenment_cb = NULL;
216 }
217 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
218
219 static int hv_cpu_die(unsigned int cpu)
220 {
221         struct hv_reenlightenment_control re_ctrl;
222         unsigned int new_cpu;
223         unsigned long flags;
224         void **input_arg;
225         void *input_pg = NULL;
226
227         local_irq_save(flags);
228         input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
229         input_pg = *input_arg;
230         *input_arg = NULL;
231         local_irq_restore(flags);
232         free_page((unsigned long)input_pg);
233
234         if (hv_vp_assist_page && hv_vp_assist_page[cpu])
235                 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
236
237         if (hv_reenlightenment_cb == NULL)
238                 return 0;
239
240         rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
241         if (re_ctrl.target_vp == hv_vp_index[cpu]) {
242                 /* Reassign to some other online CPU */
243                 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
244
245                 re_ctrl.target_vp = hv_vp_index[new_cpu];
246                 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
247         }
248
249         return 0;
250 }
251
252 static int __init hv_pci_init(void)
253 {
254         int gen2vm = efi_enabled(EFI_BOOT);
255
256         /*
257          * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
258          * The purpose is to suppress the harmless warning:
259          * "PCI: Fatal: No config space access function found"
260          */
261         if (gen2vm)
262                 return 0;
263
264         /* For Generation-1 VM, we'll proceed in pci_arch_init().  */
265         return 1;
266 }
267
268 /*
269  * This function is to be invoked early in the boot sequence after the
270  * hypervisor has been detected.
271  *
272  * 1. Setup the hypercall page.
273  * 2. Register Hyper-V specific clocksource.
274  * 3. Setup Hyper-V specific APIC entry points.
275  */
276 void __init hyperv_init(void)
277 {
278         u64 guest_id, required_msrs;
279         union hv_x64_msr_hypercall_contents hypercall_msr;
280         int cpuhp, i;
281
282         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
283                 return;
284
285         /* Absolutely required MSRs */
286         required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
287                 HV_X64_MSR_VP_INDEX_AVAILABLE;
288
289         if ((ms_hyperv.features & required_msrs) != required_msrs)
290                 return;
291
292         /*
293          * Allocate the per-CPU state for the hypercall input arg.
294          * If this allocation fails, we will not be able to setup
295          * (per-CPU) hypercall input page and thus this failure is
296          * fatal on Hyper-V.
297          */
298         hyperv_pcpu_input_arg = alloc_percpu(void  *);
299
300         BUG_ON(hyperv_pcpu_input_arg == NULL);
301
302         /* Allocate percpu VP index */
303         hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
304                                     GFP_KERNEL);
305         if (!hv_vp_index)
306                 return;
307
308         for (i = 0; i < num_possible_cpus(); i++)
309                 hv_vp_index[i] = VP_INVAL;
310
311         hv_vp_assist_page = kcalloc(num_possible_cpus(),
312                                     sizeof(*hv_vp_assist_page), GFP_KERNEL);
313         if (!hv_vp_assist_page) {
314                 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
315                 goto free_vp_index;
316         }
317
318         cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
319                                   hv_cpu_init, hv_cpu_die);
320         if (cpuhp < 0)
321                 goto free_vp_assist_page;
322
323         /*
324          * Setup the hypercall page and enable hypercalls.
325          * 1. Register the guest ID
326          * 2. Enable the hypercall and register the hypercall page
327          */
328         guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
329         wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
330
331         hv_hypercall_pg  = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
332         if (hv_hypercall_pg == NULL) {
333                 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
334                 goto remove_cpuhp_state;
335         }
336
337         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
338         hypercall_msr.enable = 1;
339         hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
340         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
341
342         hv_apic_init();
343
344         x86_init.pci.arch_init = hv_pci_init;
345
346         /*
347          * Register Hyper-V specific clocksource.
348          */
349 #ifdef CONFIG_HYPERV_TSCPAGE
350         if (ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE) {
351                 union hv_x64_msr_hypercall_contents tsc_msr;
352
353                 tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
354                 if (!tsc_pg)
355                         goto register_msr_cs;
356
357                 hyperv_cs = &hyperv_cs_tsc;
358
359                 rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
360
361                 tsc_msr.enable = 1;
362                 tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
363
364                 wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
365
366                 hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
367
368                 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
369                 return;
370         }
371 register_msr_cs:
372 #endif
373         /*
374          * For 32 bit guests just use the MSR based mechanism for reading
375          * the partition counter.
376          */
377
378         hyperv_cs = &hyperv_cs_msr;
379         if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
380                 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
381
382         return;
383
384 remove_cpuhp_state:
385         cpuhp_remove_state(cpuhp);
386 free_vp_assist_page:
387         kfree(hv_vp_assist_page);
388         hv_vp_assist_page = NULL;
389 free_vp_index:
390         kfree(hv_vp_index);
391         hv_vp_index = NULL;
392 }
393
394 /*
395  * This routine is called before kexec/kdump, it does the required cleanup.
396  */
397 void hyperv_cleanup(void)
398 {
399         union hv_x64_msr_hypercall_contents hypercall_msr;
400
401         /* Reset our OS id */
402         wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
403
404         /*
405          * Reset hypercall page reference before reset the page,
406          * let hypercall operations fail safely rather than
407          * panic the kernel for using invalid hypercall page
408          */
409         hv_hypercall_pg = NULL;
410
411         /* Reset the hypercall page */
412         hypercall_msr.as_uint64 = 0;
413         wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
414
415         /* Reset the TSC page */
416         hypercall_msr.as_uint64 = 0;
417         wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
418 }
419 EXPORT_SYMBOL_GPL(hyperv_cleanup);
420
421 void hyperv_report_panic(struct pt_regs *regs, long err)
422 {
423         static bool panic_reported;
424         u64 guest_id;
425
426         /*
427          * We prefer to report panic on 'die' chain as we have proper
428          * registers to report, but if we miss it (e.g. on BUG()) we need
429          * to report it on 'panic'.
430          */
431         if (panic_reported)
432                 return;
433         panic_reported = true;
434
435         rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
436
437         wrmsrl(HV_X64_MSR_CRASH_P0, err);
438         wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
439         wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
440         wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
441         wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
442
443         /*
444          * Let Hyper-V know there is crash data available
445          */
446         wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
447 }
448 EXPORT_SYMBOL_GPL(hyperv_report_panic);
449
450 /**
451  * hyperv_report_panic_msg - report panic message to Hyper-V
452  * @pa: physical address of the panic page containing the message
453  * @size: size of the message in the page
454  */
455 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
456 {
457         /*
458          * P3 to contain the physical address of the panic page & P4 to
459          * contain the size of the panic data in that page. Rest of the
460          * registers are no-op when the NOTIFY_MSG flag is set.
461          */
462         wrmsrl(HV_X64_MSR_CRASH_P0, 0);
463         wrmsrl(HV_X64_MSR_CRASH_P1, 0);
464         wrmsrl(HV_X64_MSR_CRASH_P2, 0);
465         wrmsrl(HV_X64_MSR_CRASH_P3, pa);
466         wrmsrl(HV_X64_MSR_CRASH_P4, size);
467
468         /*
469          * Let Hyper-V know there is crash data available along with
470          * the panic message.
471          */
472         wrmsrl(HV_X64_MSR_CRASH_CTL,
473                (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
474 }
475 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
476
477 bool hv_is_hyperv_initialized(void)
478 {
479         union hv_x64_msr_hypercall_contents hypercall_msr;
480
481         /*
482          * Ensure that we're really on Hyper-V, and not a KVM or Xen
483          * emulation of Hyper-V
484          */
485         if (x86_hyper_type != X86_HYPER_MS_HYPERV)
486                 return false;
487
488         /*
489          * Verify that earlier initialization succeeded by checking
490          * that the hypercall page is setup
491          */
492         hypercall_msr.as_uint64 = 0;
493         rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
494
495         return hypercall_msr.enable;
496 }
497 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);