]> git.samba.org - sfrench/cifs-2.6.git/blob - arch/x86/events/core.c
perf/x86: Add two more x86_pmu methods
[sfrench/cifs-2.6.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51         .enabled = 1,
52         .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_update,     *x86_pmu.update);
77
78 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
81
82 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
83 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
85
86 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
88
89 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
90 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
91
92 /*
93  * This one is magic, it will get called even when PMU init fails (because
94  * there is no PMU), in which case it should simply return NULL.
95  */
96 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
97
98 u64 __read_mostly hw_cache_event_ids
99                                 [PERF_COUNT_HW_CACHE_MAX]
100                                 [PERF_COUNT_HW_CACHE_OP_MAX]
101                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
102 u64 __read_mostly hw_cache_extra_regs
103                                 [PERF_COUNT_HW_CACHE_MAX]
104                                 [PERF_COUNT_HW_CACHE_OP_MAX]
105                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
106
107 /*
108  * Propagate event elapsed time into the generic event.
109  * Can only be executed on the CPU where the event is active.
110  * Returns the delta events processed.
111  */
112 u64 x86_perf_event_update(struct perf_event *event)
113 {
114         struct hw_perf_event *hwc = &event->hw;
115         int shift = 64 - x86_pmu.cntval_bits;
116         u64 prev_raw_count, new_raw_count;
117         u64 delta;
118
119         if (unlikely(!hwc->event_base))
120                 return 0;
121
122         if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
123                 return x86_pmu.update_topdown_event(event);
124
125         /*
126          * Careful: an NMI might modify the previous event value.
127          *
128          * Our tactic to handle this is to first atomically read and
129          * exchange a new raw count - then add that new-prev delta
130          * count to the generic event atomically:
131          */
132 again:
133         prev_raw_count = local64_read(&hwc->prev_count);
134         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
135
136         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
137                                         new_raw_count) != prev_raw_count)
138                 goto again;
139
140         /*
141          * Now we have the new raw value and have updated the prev
142          * timestamp already. We can now calculate the elapsed delta
143          * (event-)time and add that to the generic event.
144          *
145          * Careful, not all hw sign-extends above the physical width
146          * of the count.
147          */
148         delta = (new_raw_count << shift) - (prev_raw_count << shift);
149         delta >>= shift;
150
151         local64_add(delta, &event->count);
152         local64_sub(delta, &hwc->period_left);
153
154         return new_raw_count;
155 }
156
157 /*
158  * Find and validate any extra registers to set up.
159  */
160 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
161 {
162         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
163         struct hw_perf_event_extra *reg;
164         struct extra_reg *er;
165
166         reg = &event->hw.extra_reg;
167
168         if (!extra_regs)
169                 return 0;
170
171         for (er = extra_regs; er->msr; er++) {
172                 if (er->event != (config & er->config_mask))
173                         continue;
174                 if (event->attr.config1 & ~er->valid_mask)
175                         return -EINVAL;
176                 /* Check if the extra msrs can be safely accessed*/
177                 if (!er->extra_msr_access)
178                         return -ENXIO;
179
180                 reg->idx = er->idx;
181                 reg->config = event->attr.config1;
182                 reg->reg = er->msr;
183                 break;
184         }
185         return 0;
186 }
187
188 static atomic_t active_events;
189 static atomic_t pmc_refcount;
190 static DEFINE_MUTEX(pmc_reserve_mutex);
191
192 #ifdef CONFIG_X86_LOCAL_APIC
193
194 static inline int get_possible_num_counters(void)
195 {
196         int i, num_counters = x86_pmu.num_counters;
197
198         if (!is_hybrid())
199                 return num_counters;
200
201         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
202                 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
203
204         return num_counters;
205 }
206
207 static bool reserve_pmc_hardware(void)
208 {
209         int i, num_counters = get_possible_num_counters();
210
211         for (i = 0; i < num_counters; i++) {
212                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
213                         goto perfctr_fail;
214         }
215
216         for (i = 0; i < num_counters; i++) {
217                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
218                         goto eventsel_fail;
219         }
220
221         return true;
222
223 eventsel_fail:
224         for (i--; i >= 0; i--)
225                 release_evntsel_nmi(x86_pmu_config_addr(i));
226
227         i = num_counters;
228
229 perfctr_fail:
230         for (i--; i >= 0; i--)
231                 release_perfctr_nmi(x86_pmu_event_addr(i));
232
233         return false;
234 }
235
236 static void release_pmc_hardware(void)
237 {
238         int i, num_counters = get_possible_num_counters();
239
240         for (i = 0; i < num_counters; i++) {
241                 release_perfctr_nmi(x86_pmu_event_addr(i));
242                 release_evntsel_nmi(x86_pmu_config_addr(i));
243         }
244 }
245
246 #else
247
248 static bool reserve_pmc_hardware(void) { return true; }
249 static void release_pmc_hardware(void) {}
250
251 #endif
252
253 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
254 {
255         u64 val, val_fail = -1, val_new= ~0;
256         int i, reg, reg_fail = -1, ret = 0;
257         int bios_fail = 0;
258         int reg_safe = -1;
259
260         /*
261          * Check to see if the BIOS enabled any of the counters, if so
262          * complain and bail.
263          */
264         for (i = 0; i < num_counters; i++) {
265                 reg = x86_pmu_config_addr(i);
266                 ret = rdmsrl_safe(reg, &val);
267                 if (ret)
268                         goto msr_fail;
269                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
270                         bios_fail = 1;
271                         val_fail = val;
272                         reg_fail = reg;
273                 } else {
274                         reg_safe = i;
275                 }
276         }
277
278         if (num_counters_fixed) {
279                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
280                 ret = rdmsrl_safe(reg, &val);
281                 if (ret)
282                         goto msr_fail;
283                 for (i = 0; i < num_counters_fixed; i++) {
284                         if (fixed_counter_disabled(i, pmu))
285                                 continue;
286                         if (val & (0x03ULL << i*4)) {
287                                 bios_fail = 1;
288                                 val_fail = val;
289                                 reg_fail = reg;
290                         }
291                 }
292         }
293
294         /*
295          * If all the counters are enabled, the below test will always
296          * fail.  The tools will also become useless in this scenario.
297          * Just fail and disable the hardware counters.
298          */
299
300         if (reg_safe == -1) {
301                 reg = reg_safe;
302                 goto msr_fail;
303         }
304
305         /*
306          * Read the current value, change it and read it back to see if it
307          * matches, this is needed to detect certain hardware emulators
308          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
309          */
310         reg = x86_pmu_event_addr(reg_safe);
311         if (rdmsrl_safe(reg, &val))
312                 goto msr_fail;
313         val ^= 0xffffUL;
314         ret = wrmsrl_safe(reg, val);
315         ret |= rdmsrl_safe(reg, &val_new);
316         if (ret || val != val_new)
317                 goto msr_fail;
318
319         /*
320          * We still allow the PMU driver to operate:
321          */
322         if (bios_fail) {
323                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
324                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
325                               reg_fail, val_fail);
326         }
327
328         return true;
329
330 msr_fail:
331         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
332                 pr_cont("PMU not available due to virtualization, using software events only.\n");
333         } else {
334                 pr_cont("Broken PMU hardware detected, using software events only.\n");
335                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
336                        reg, val_new);
337         }
338
339         return false;
340 }
341
342 static void hw_perf_event_destroy(struct perf_event *event)
343 {
344         x86_release_hardware();
345         atomic_dec(&active_events);
346 }
347
348 void hw_perf_lbr_event_destroy(struct perf_event *event)
349 {
350         hw_perf_event_destroy(event);
351
352         /* undo the lbr/bts event accounting */
353         x86_del_exclusive(x86_lbr_exclusive_lbr);
354 }
355
356 static inline int x86_pmu_initialized(void)
357 {
358         return x86_pmu.handle_irq != NULL;
359 }
360
361 static inline int
362 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
363 {
364         struct perf_event_attr *attr = &event->attr;
365         unsigned int cache_type, cache_op, cache_result;
366         u64 config, val;
367
368         config = attr->config;
369
370         cache_type = (config >> 0) & 0xff;
371         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
372                 return -EINVAL;
373         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
374
375         cache_op = (config >>  8) & 0xff;
376         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
377                 return -EINVAL;
378         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
379
380         cache_result = (config >> 16) & 0xff;
381         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
382                 return -EINVAL;
383         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
384
385         val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
386         if (val == 0)
387                 return -ENOENT;
388
389         if (val == -1)
390                 return -EINVAL;
391
392         hwc->config |= val;
393         attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
394         return x86_pmu_extra_regs(val, event);
395 }
396
397 int x86_reserve_hardware(void)
398 {
399         int err = 0;
400
401         if (!atomic_inc_not_zero(&pmc_refcount)) {
402                 mutex_lock(&pmc_reserve_mutex);
403                 if (atomic_read(&pmc_refcount) == 0) {
404                         if (!reserve_pmc_hardware()) {
405                                 err = -EBUSY;
406                         } else {
407                                 reserve_ds_buffers();
408                                 reserve_lbr_buffers();
409                         }
410                 }
411                 if (!err)
412                         atomic_inc(&pmc_refcount);
413                 mutex_unlock(&pmc_reserve_mutex);
414         }
415
416         return err;
417 }
418
419 void x86_release_hardware(void)
420 {
421         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
422                 release_pmc_hardware();
423                 release_ds_buffers();
424                 release_lbr_buffers();
425                 mutex_unlock(&pmc_reserve_mutex);
426         }
427 }
428
429 /*
430  * Check if we can create event of a certain type (that no conflicting events
431  * are present).
432  */
433 int x86_add_exclusive(unsigned int what)
434 {
435         int i;
436
437         /*
438          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
439          * LBR and BTS are still mutually exclusive.
440          */
441         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
442                 goto out;
443
444         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
445                 mutex_lock(&pmc_reserve_mutex);
446                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
447                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
448                                 goto fail_unlock;
449                 }
450                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
451                 mutex_unlock(&pmc_reserve_mutex);
452         }
453
454 out:
455         atomic_inc(&active_events);
456         return 0;
457
458 fail_unlock:
459         mutex_unlock(&pmc_reserve_mutex);
460         return -EBUSY;
461 }
462
463 void x86_del_exclusive(unsigned int what)
464 {
465         atomic_dec(&active_events);
466
467         /*
468          * See the comment in x86_add_exclusive().
469          */
470         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
471                 return;
472
473         atomic_dec(&x86_pmu.lbr_exclusive[what]);
474 }
475
476 int x86_setup_perfctr(struct perf_event *event)
477 {
478         struct perf_event_attr *attr = &event->attr;
479         struct hw_perf_event *hwc = &event->hw;
480         u64 config;
481
482         if (!is_sampling_event(event)) {
483                 hwc->sample_period = x86_pmu.max_period;
484                 hwc->last_period = hwc->sample_period;
485                 local64_set(&hwc->period_left, hwc->sample_period);
486         }
487
488         if (attr->type == event->pmu->type)
489                 return x86_pmu_extra_regs(event->attr.config, event);
490
491         if (attr->type == PERF_TYPE_HW_CACHE)
492                 return set_ext_hw_attr(hwc, event);
493
494         if (attr->config >= x86_pmu.max_events)
495                 return -EINVAL;
496
497         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
498
499         /*
500          * The generic map:
501          */
502         config = x86_pmu.event_map(attr->config);
503
504         if (config == 0)
505                 return -ENOENT;
506
507         if (config == -1LL)
508                 return -EINVAL;
509
510         hwc->config |= config;
511
512         return 0;
513 }
514
515 /*
516  * check that branch_sample_type is compatible with
517  * settings needed for precise_ip > 1 which implies
518  * using the LBR to capture ALL taken branches at the
519  * priv levels of the measurement
520  */
521 static inline int precise_br_compat(struct perf_event *event)
522 {
523         u64 m = event->attr.branch_sample_type;
524         u64 b = 0;
525
526         /* must capture all branches */
527         if (!(m & PERF_SAMPLE_BRANCH_ANY))
528                 return 0;
529
530         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
531
532         if (!event->attr.exclude_user)
533                 b |= PERF_SAMPLE_BRANCH_USER;
534
535         if (!event->attr.exclude_kernel)
536                 b |= PERF_SAMPLE_BRANCH_KERNEL;
537
538         /*
539          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
540          */
541
542         return m == b;
543 }
544
545 int x86_pmu_max_precise(void)
546 {
547         int precise = 0;
548
549         /* Support for constant skid */
550         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
551                 precise++;
552
553                 /* Support for IP fixup */
554                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
555                         precise++;
556
557                 if (x86_pmu.pebs_prec_dist)
558                         precise++;
559         }
560         return precise;
561 }
562
563 int x86_pmu_hw_config(struct perf_event *event)
564 {
565         if (event->attr.precise_ip) {
566                 int precise = x86_pmu_max_precise();
567
568                 if (event->attr.precise_ip > precise)
569                         return -EOPNOTSUPP;
570
571                 /* There's no sense in having PEBS for non sampling events: */
572                 if (!is_sampling_event(event))
573                         return -EINVAL;
574         }
575         /*
576          * check that PEBS LBR correction does not conflict with
577          * whatever the user is asking with attr->branch_sample_type
578          */
579         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
580                 u64 *br_type = &event->attr.branch_sample_type;
581
582                 if (has_branch_stack(event)) {
583                         if (!precise_br_compat(event))
584                                 return -EOPNOTSUPP;
585
586                         /* branch_sample_type is compatible */
587
588                 } else {
589                         /*
590                          * user did not specify  branch_sample_type
591                          *
592                          * For PEBS fixups, we capture all
593                          * the branches at the priv level of the
594                          * event.
595                          */
596                         *br_type = PERF_SAMPLE_BRANCH_ANY;
597
598                         if (!event->attr.exclude_user)
599                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
600
601                         if (!event->attr.exclude_kernel)
602                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
603                 }
604         }
605
606         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
607                 event->attach_state |= PERF_ATTACH_TASK_DATA;
608
609         /*
610          * Generate PMC IRQs:
611          * (keep 'enabled' bit clear for now)
612          */
613         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
614
615         /*
616          * Count user and OS events unless requested not to
617          */
618         if (!event->attr.exclude_user)
619                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
620         if (!event->attr.exclude_kernel)
621                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
622
623         if (event->attr.type == event->pmu->type)
624                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
625
626         if (event->attr.sample_period && x86_pmu.limit_period) {
627                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
628                                 event->attr.sample_period)
629                         return -EINVAL;
630         }
631
632         /* sample_regs_user never support XMM registers */
633         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
634                 return -EINVAL;
635         /*
636          * Besides the general purpose registers, XMM registers may
637          * be collected in PEBS on some platforms, e.g. Icelake
638          */
639         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
640                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
641                         return -EINVAL;
642
643                 if (!event->attr.precise_ip)
644                         return -EINVAL;
645         }
646
647         return x86_setup_perfctr(event);
648 }
649
650 /*
651  * Setup the hardware configuration for a given attr_type
652  */
653 static int __x86_pmu_event_init(struct perf_event *event)
654 {
655         int err;
656
657         if (!x86_pmu_initialized())
658                 return -ENODEV;
659
660         err = x86_reserve_hardware();
661         if (err)
662                 return err;
663
664         atomic_inc(&active_events);
665         event->destroy = hw_perf_event_destroy;
666
667         event->hw.idx = -1;
668         event->hw.last_cpu = -1;
669         event->hw.last_tag = ~0ULL;
670
671         /* mark unused */
672         event->hw.extra_reg.idx = EXTRA_REG_NONE;
673         event->hw.branch_reg.idx = EXTRA_REG_NONE;
674
675         return x86_pmu.hw_config(event);
676 }
677
678 void x86_pmu_disable_all(void)
679 {
680         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
681         int idx;
682
683         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
684                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
685                 u64 val;
686
687                 if (!test_bit(idx, cpuc->active_mask))
688                         continue;
689                 rdmsrl(x86_pmu_config_addr(idx), val);
690                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
691                         continue;
692                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
693                 wrmsrl(x86_pmu_config_addr(idx), val);
694                 if (is_counter_pair(hwc))
695                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
696         }
697 }
698
699 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
700 {
701         return static_call(x86_pmu_guest_get_msrs)(nr, data);
702 }
703 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
704
705 /*
706  * There may be PMI landing after enabled=0. The PMI hitting could be before or
707  * after disable_all.
708  *
709  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
710  * It will not be re-enabled in the NMI handler again, because enabled=0. After
711  * handling the NMI, disable_all will be called, which will not change the
712  * state either. If PMI hits after disable_all, the PMU is already disabled
713  * before entering NMI handler. The NMI handler will not change the state
714  * either.
715  *
716  * So either situation is harmless.
717  */
718 static void x86_pmu_disable(struct pmu *pmu)
719 {
720         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
721
722         if (!x86_pmu_initialized())
723                 return;
724
725         if (!cpuc->enabled)
726                 return;
727
728         cpuc->n_added = 0;
729         cpuc->enabled = 0;
730         barrier();
731
732         static_call(x86_pmu_disable_all)();
733 }
734
735 void x86_pmu_enable_all(int added)
736 {
737         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
738         int idx;
739
740         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
741                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
742
743                 if (!test_bit(idx, cpuc->active_mask))
744                         continue;
745
746                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
747         }
748 }
749
750 static inline int is_x86_event(struct perf_event *event)
751 {
752         int i;
753
754         if (!is_hybrid())
755                 return event->pmu == &pmu;
756
757         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
758                 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
759                         return true;
760         }
761
762         return false;
763 }
764
765 struct pmu *x86_get_pmu(unsigned int cpu)
766 {
767         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
768
769         /*
770          * All CPUs of the hybrid type have been offline.
771          * The x86_get_pmu() should not be invoked.
772          */
773         if (WARN_ON_ONCE(!cpuc->pmu))
774                 return &pmu;
775
776         return cpuc->pmu;
777 }
778 /*
779  * Event scheduler state:
780  *
781  * Assign events iterating over all events and counters, beginning
782  * with events with least weights first. Keep the current iterator
783  * state in struct sched_state.
784  */
785 struct sched_state {
786         int     weight;
787         int     event;          /* event index */
788         int     counter;        /* counter index */
789         int     unassigned;     /* number of events to be assigned left */
790         int     nr_gp;          /* number of GP counters used */
791         u64     used;
792 };
793
794 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
795 #define SCHED_STATES_MAX        2
796
797 struct perf_sched {
798         int                     max_weight;
799         int                     max_events;
800         int                     max_gp;
801         int                     saved_states;
802         struct event_constraint **constraints;
803         struct sched_state      state;
804         struct sched_state      saved[SCHED_STATES_MAX];
805 };
806
807 /*
808  * Initialize iterator that runs through all events and counters.
809  */
810 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
811                             int num, int wmin, int wmax, int gpmax)
812 {
813         int idx;
814
815         memset(sched, 0, sizeof(*sched));
816         sched->max_events       = num;
817         sched->max_weight       = wmax;
818         sched->max_gp           = gpmax;
819         sched->constraints      = constraints;
820
821         for (idx = 0; idx < num; idx++) {
822                 if (constraints[idx]->weight == wmin)
823                         break;
824         }
825
826         sched->state.event      = idx;          /* start with min weight */
827         sched->state.weight     = wmin;
828         sched->state.unassigned = num;
829 }
830
831 static void perf_sched_save_state(struct perf_sched *sched)
832 {
833         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
834                 return;
835
836         sched->saved[sched->saved_states] = sched->state;
837         sched->saved_states++;
838 }
839
840 static bool perf_sched_restore_state(struct perf_sched *sched)
841 {
842         if (!sched->saved_states)
843                 return false;
844
845         sched->saved_states--;
846         sched->state = sched->saved[sched->saved_states];
847
848         /* this assignment didn't work out */
849         /* XXX broken vs EVENT_PAIR */
850         sched->state.used &= ~BIT_ULL(sched->state.counter);
851
852         /* try the next one */
853         sched->state.counter++;
854
855         return true;
856 }
857
858 /*
859  * Select a counter for the current event to schedule. Return true on
860  * success.
861  */
862 static bool __perf_sched_find_counter(struct perf_sched *sched)
863 {
864         struct event_constraint *c;
865         int idx;
866
867         if (!sched->state.unassigned)
868                 return false;
869
870         if (sched->state.event >= sched->max_events)
871                 return false;
872
873         c = sched->constraints[sched->state.event];
874         /* Prefer fixed purpose counters */
875         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
876                 idx = INTEL_PMC_IDX_FIXED;
877                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
878                         u64 mask = BIT_ULL(idx);
879
880                         if (sched->state.used & mask)
881                                 continue;
882
883                         sched->state.used |= mask;
884                         goto done;
885                 }
886         }
887
888         /* Grab the first unused counter starting with idx */
889         idx = sched->state.counter;
890         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
891                 u64 mask = BIT_ULL(idx);
892
893                 if (c->flags & PERF_X86_EVENT_PAIR)
894                         mask |= mask << 1;
895
896                 if (sched->state.used & mask)
897                         continue;
898
899                 if (sched->state.nr_gp++ >= sched->max_gp)
900                         return false;
901
902                 sched->state.used |= mask;
903                 goto done;
904         }
905
906         return false;
907
908 done:
909         sched->state.counter = idx;
910
911         if (c->overlap)
912                 perf_sched_save_state(sched);
913
914         return true;
915 }
916
917 static bool perf_sched_find_counter(struct perf_sched *sched)
918 {
919         while (!__perf_sched_find_counter(sched)) {
920                 if (!perf_sched_restore_state(sched))
921                         return false;
922         }
923
924         return true;
925 }
926
927 /*
928  * Go through all unassigned events and find the next one to schedule.
929  * Take events with the least weight first. Return true on success.
930  */
931 static bool perf_sched_next_event(struct perf_sched *sched)
932 {
933         struct event_constraint *c;
934
935         if (!sched->state.unassigned || !--sched->state.unassigned)
936                 return false;
937
938         do {
939                 /* next event */
940                 sched->state.event++;
941                 if (sched->state.event >= sched->max_events) {
942                         /* next weight */
943                         sched->state.event = 0;
944                         sched->state.weight++;
945                         if (sched->state.weight > sched->max_weight)
946                                 return false;
947                 }
948                 c = sched->constraints[sched->state.event];
949         } while (c->weight != sched->state.weight);
950
951         sched->state.counter = 0;       /* start with first counter */
952
953         return true;
954 }
955
956 /*
957  * Assign a counter for each event.
958  */
959 int perf_assign_events(struct event_constraint **constraints, int n,
960                         int wmin, int wmax, int gpmax, int *assign)
961 {
962         struct perf_sched sched;
963
964         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
965
966         do {
967                 if (!perf_sched_find_counter(&sched))
968                         break;  /* failed */
969                 if (assign)
970                         assign[sched.state.event] = sched.state.counter;
971         } while (perf_sched_next_event(&sched));
972
973         return sched.state.unassigned;
974 }
975 EXPORT_SYMBOL_GPL(perf_assign_events);
976
977 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
978 {
979         int num_counters = hybrid(cpuc->pmu, num_counters);
980         struct event_constraint *c;
981         struct perf_event *e;
982         int n0, i, wmin, wmax, unsched = 0;
983         struct hw_perf_event *hwc;
984         u64 used_mask = 0;
985
986         /*
987          * Compute the number of events already present; see x86_pmu_add(),
988          * validate_group() and x86_pmu_commit_txn(). For the former two
989          * cpuc->n_events hasn't been updated yet, while for the latter
990          * cpuc->n_txn contains the number of events added in the current
991          * transaction.
992          */
993         n0 = cpuc->n_events;
994         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
995                 n0 -= cpuc->n_txn;
996
997         static_call_cond(x86_pmu_start_scheduling)(cpuc);
998
999         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
1000                 c = cpuc->event_constraint[i];
1001
1002                 /*
1003                  * Previously scheduled events should have a cached constraint,
1004                  * while new events should not have one.
1005                  */
1006                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1007
1008                 /*
1009                  * Request constraints for new events; or for those events that
1010                  * have a dynamic constraint -- for those the constraint can
1011                  * change due to external factors (sibling state, allow_tfa).
1012                  */
1013                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1014                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1015                         cpuc->event_constraint[i] = c;
1016                 }
1017
1018                 wmin = min(wmin, c->weight);
1019                 wmax = max(wmax, c->weight);
1020         }
1021
1022         /*
1023          * fastpath, try to reuse previous register
1024          */
1025         for (i = 0; i < n; i++) {
1026                 u64 mask;
1027
1028                 hwc = &cpuc->event_list[i]->hw;
1029                 c = cpuc->event_constraint[i];
1030
1031                 /* never assigned */
1032                 if (hwc->idx == -1)
1033                         break;
1034
1035                 /* constraint still honored */
1036                 if (!test_bit(hwc->idx, c->idxmsk))
1037                         break;
1038
1039                 mask = BIT_ULL(hwc->idx);
1040                 if (is_counter_pair(hwc))
1041                         mask |= mask << 1;
1042
1043                 /* not already used */
1044                 if (used_mask & mask)
1045                         break;
1046
1047                 used_mask |= mask;
1048
1049                 if (assign)
1050                         assign[i] = hwc->idx;
1051         }
1052
1053         /* slow path */
1054         if (i != n) {
1055                 int gpmax = num_counters;
1056
1057                 /*
1058                  * Do not allow scheduling of more than half the available
1059                  * generic counters.
1060                  *
1061                  * This helps avoid counter starvation of sibling thread by
1062                  * ensuring at most half the counters cannot be in exclusive
1063                  * mode. There is no designated counters for the limits. Any
1064                  * N/2 counters can be used. This helps with events with
1065                  * specific counter constraints.
1066                  */
1067                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1068                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1069                         gpmax /= 2;
1070
1071                 /*
1072                  * Reduce the amount of available counters to allow fitting
1073                  * the extra Merge events needed by large increment events.
1074                  */
1075                 if (x86_pmu.flags & PMU_FL_PAIR) {
1076                         gpmax = num_counters - cpuc->n_pair;
1077                         WARN_ON(gpmax <= 0);
1078                 }
1079
1080                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1081                                              wmax, gpmax, assign);
1082         }
1083
1084         /*
1085          * In case of success (unsched = 0), mark events as committed,
1086          * so we do not put_constraint() in case new events are added
1087          * and fail to be scheduled
1088          *
1089          * We invoke the lower level commit callback to lock the resource
1090          *
1091          * We do not need to do all of this in case we are called to
1092          * validate an event group (assign == NULL)
1093          */
1094         if (!unsched && assign) {
1095                 for (i = 0; i < n; i++)
1096                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1097         } else {
1098                 for (i = n0; i < n; i++) {
1099                         e = cpuc->event_list[i];
1100
1101                         /*
1102                          * release events that failed scheduling
1103                          */
1104                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1105
1106                         cpuc->event_constraint[i] = NULL;
1107                 }
1108         }
1109
1110         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1111
1112         return unsched ? -EINVAL : 0;
1113 }
1114
1115 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1116                                struct perf_event *event)
1117 {
1118         if (is_metric_event(event)) {
1119                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1120                         return -EINVAL;
1121                 cpuc->n_metric++;
1122                 cpuc->n_txn_metric++;
1123         }
1124
1125         return 0;
1126 }
1127
1128 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1129                                 struct perf_event *event)
1130 {
1131         if (is_metric_event(event))
1132                 cpuc->n_metric--;
1133 }
1134
1135 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1136                          int max_count, int n)
1137 {
1138         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1139
1140         if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1141                 return -EINVAL;
1142
1143         if (n >= max_count + cpuc->n_metric)
1144                 return -EINVAL;
1145
1146         cpuc->event_list[n] = event;
1147         if (is_counter_pair(&event->hw)) {
1148                 cpuc->n_pair++;
1149                 cpuc->n_txn_pair++;
1150         }
1151
1152         return 0;
1153 }
1154
1155 /*
1156  * dogrp: true if must collect siblings events (group)
1157  * returns total number of events and error code
1158  */
1159 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1160 {
1161         int num_counters = hybrid(cpuc->pmu, num_counters);
1162         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1163         struct perf_event *event;
1164         int n, max_count;
1165
1166         max_count = num_counters + num_counters_fixed;
1167
1168         /* current number of events already accepted */
1169         n = cpuc->n_events;
1170         if (!cpuc->n_events)
1171                 cpuc->pebs_output = 0;
1172
1173         if (!cpuc->is_fake && leader->attr.precise_ip) {
1174                 /*
1175                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1176                  * away, the group was broken down and this singleton event
1177                  * can't schedule any more.
1178                  */
1179                 if (is_pebs_pt(leader) && !leader->aux_event)
1180                         return -EINVAL;
1181
1182                 /*
1183                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1184                  */
1185                 if (cpuc->pebs_output &&
1186                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1187                         return -EINVAL;
1188
1189                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1190         }
1191
1192         if (is_x86_event(leader)) {
1193                 if (collect_event(cpuc, leader, max_count, n))
1194                         return -EINVAL;
1195                 n++;
1196         }
1197
1198         if (!dogrp)
1199                 return n;
1200
1201         for_each_sibling_event(event, leader) {
1202                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1203                         continue;
1204
1205                 if (collect_event(cpuc, event, max_count, n))
1206                         return -EINVAL;
1207
1208                 n++;
1209         }
1210         return n;
1211 }
1212
1213 static inline void x86_assign_hw_event(struct perf_event *event,
1214                                 struct cpu_hw_events *cpuc, int i)
1215 {
1216         struct hw_perf_event *hwc = &event->hw;
1217         int idx;
1218
1219         idx = hwc->idx = cpuc->assign[i];
1220         hwc->last_cpu = smp_processor_id();
1221         hwc->last_tag = ++cpuc->tags[i];
1222
1223         static_call_cond(x86_pmu_assign)(event, idx);
1224
1225         switch (hwc->idx) {
1226         case INTEL_PMC_IDX_FIXED_BTS:
1227         case INTEL_PMC_IDX_FIXED_VLBR:
1228                 hwc->config_base = 0;
1229                 hwc->event_base = 0;
1230                 break;
1231
1232         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1233                 /* All the metric events are mapped onto the fixed counter 3. */
1234                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1235                 fallthrough;
1236         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1237                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1238                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1239                                 (idx - INTEL_PMC_IDX_FIXED);
1240                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1241                                         INTEL_PMC_FIXED_RDPMC_BASE;
1242                 break;
1243
1244         default:
1245                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1246                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1247                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1248                 break;
1249         }
1250 }
1251
1252 /**
1253  * x86_perf_rdpmc_index - Return PMC counter used for event
1254  * @event: the perf_event to which the PMC counter was assigned
1255  *
1256  * The counter assigned to this performance event may change if interrupts
1257  * are enabled. This counter should thus never be used while interrupts are
1258  * enabled. Before this function is used to obtain the assigned counter the
1259  * event should be checked for validity using, for example,
1260  * perf_event_read_local(), within the same interrupt disabled section in
1261  * which this counter is planned to be used.
1262  *
1263  * Return: The index of the performance monitoring counter assigned to
1264  * @perf_event.
1265  */
1266 int x86_perf_rdpmc_index(struct perf_event *event)
1267 {
1268         lockdep_assert_irqs_disabled();
1269
1270         return event->hw.event_base_rdpmc;
1271 }
1272
1273 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1274                                         struct cpu_hw_events *cpuc,
1275                                         int i)
1276 {
1277         return hwc->idx == cpuc->assign[i] &&
1278                 hwc->last_cpu == smp_processor_id() &&
1279                 hwc->last_tag == cpuc->tags[i];
1280 }
1281
1282 static void x86_pmu_start(struct perf_event *event, int flags);
1283
1284 static void x86_pmu_enable(struct pmu *pmu)
1285 {
1286         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1287         struct perf_event *event;
1288         struct hw_perf_event *hwc;
1289         int i, added = cpuc->n_added;
1290
1291         if (!x86_pmu_initialized())
1292                 return;
1293
1294         if (cpuc->enabled)
1295                 return;
1296
1297         if (cpuc->n_added) {
1298                 int n_running = cpuc->n_events - cpuc->n_added;
1299                 /*
1300                  * apply assignment obtained either from
1301                  * hw_perf_group_sched_in() or x86_pmu_enable()
1302                  *
1303                  * step1: save events moving to new counters
1304                  */
1305                 for (i = 0; i < n_running; i++) {
1306                         event = cpuc->event_list[i];
1307                         hwc = &event->hw;
1308
1309                         /*
1310                          * we can avoid reprogramming counter if:
1311                          * - assigned same counter as last time
1312                          * - running on same CPU as last time
1313                          * - no other event has used the counter since
1314                          */
1315                         if (hwc->idx == -1 ||
1316                             match_prev_assignment(hwc, cpuc, i))
1317                                 continue;
1318
1319                         /*
1320                          * Ensure we don't accidentally enable a stopped
1321                          * counter simply because we rescheduled.
1322                          */
1323                         if (hwc->state & PERF_HES_STOPPED)
1324                                 hwc->state |= PERF_HES_ARCH;
1325
1326                         x86_pmu_stop(event, PERF_EF_UPDATE);
1327                 }
1328
1329                 /*
1330                  * step2: reprogram moved events into new counters
1331                  */
1332                 for (i = 0; i < cpuc->n_events; i++) {
1333                         event = cpuc->event_list[i];
1334                         hwc = &event->hw;
1335
1336                         if (!match_prev_assignment(hwc, cpuc, i))
1337                                 x86_assign_hw_event(event, cpuc, i);
1338                         else if (i < n_running)
1339                                 continue;
1340
1341                         if (hwc->state & PERF_HES_ARCH)
1342                                 continue;
1343
1344                         /*
1345                          * if cpuc->enabled = 0, then no wrmsr as
1346                          * per x86_pmu_enable_event()
1347                          */
1348                         x86_pmu_start(event, PERF_EF_RELOAD);
1349                 }
1350                 cpuc->n_added = 0;
1351                 perf_events_lapic_init();
1352         }
1353
1354         cpuc->enabled = 1;
1355         barrier();
1356
1357         static_call(x86_pmu_enable_all)(added);
1358 }
1359
1360 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1361
1362 /*
1363  * Set the next IRQ period, based on the hwc->period_left value.
1364  * To be called with the event disabled in hw:
1365  */
1366 int x86_perf_event_set_period(struct perf_event *event)
1367 {
1368         struct hw_perf_event *hwc = &event->hw;
1369         s64 left = local64_read(&hwc->period_left);
1370         s64 period = hwc->sample_period;
1371         int ret = 0, idx = hwc->idx;
1372
1373         if (unlikely(!hwc->event_base))
1374                 return 0;
1375
1376         if (unlikely(is_topdown_count(event)) &&
1377             x86_pmu.set_topdown_event_period)
1378                 return x86_pmu.set_topdown_event_period(event);
1379
1380         /*
1381          * If we are way outside a reasonable range then just skip forward:
1382          */
1383         if (unlikely(left <= -period)) {
1384                 left = period;
1385                 local64_set(&hwc->period_left, left);
1386                 hwc->last_period = period;
1387                 ret = 1;
1388         }
1389
1390         if (unlikely(left <= 0)) {
1391                 left += period;
1392                 local64_set(&hwc->period_left, left);
1393                 hwc->last_period = period;
1394                 ret = 1;
1395         }
1396         /*
1397          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1398          */
1399         if (unlikely(left < 2))
1400                 left = 2;
1401
1402         if (left > x86_pmu.max_period)
1403                 left = x86_pmu.max_period;
1404
1405         if (x86_pmu.limit_period)
1406                 left = x86_pmu.limit_period(event, left);
1407
1408         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1409
1410         /*
1411          * The hw event starts counting from this event offset,
1412          * mark it to be able to extra future deltas:
1413          */
1414         local64_set(&hwc->prev_count, (u64)-left);
1415
1416         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1417
1418         /*
1419          * Sign extend the Merge event counter's upper 16 bits since
1420          * we currently declare a 48-bit counter width
1421          */
1422         if (is_counter_pair(hwc))
1423                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1424
1425         /*
1426          * Due to erratum on certan cpu we need
1427          * a second write to be sure the register
1428          * is updated properly
1429          */
1430         if (x86_pmu.perfctr_second_write) {
1431                 wrmsrl(hwc->event_base,
1432                         (u64)(-left) & x86_pmu.cntval_mask);
1433         }
1434
1435         perf_event_update_userpage(event);
1436
1437         return ret;
1438 }
1439
1440 void x86_pmu_enable_event(struct perf_event *event)
1441 {
1442         if (__this_cpu_read(cpu_hw_events.enabled))
1443                 __x86_pmu_enable_event(&event->hw,
1444                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1445 }
1446
1447 /*
1448  * Add a single event to the PMU.
1449  *
1450  * The event is added to the group of enabled events
1451  * but only if it can be scheduled with existing events.
1452  */
1453 static int x86_pmu_add(struct perf_event *event, int flags)
1454 {
1455         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1456         struct hw_perf_event *hwc;
1457         int assign[X86_PMC_IDX_MAX];
1458         int n, n0, ret;
1459
1460         hwc = &event->hw;
1461
1462         n0 = cpuc->n_events;
1463         ret = n = collect_events(cpuc, event, false);
1464         if (ret < 0)
1465                 goto out;
1466
1467         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1468         if (!(flags & PERF_EF_START))
1469                 hwc->state |= PERF_HES_ARCH;
1470
1471         /*
1472          * If group events scheduling transaction was started,
1473          * skip the schedulability test here, it will be performed
1474          * at commit time (->commit_txn) as a whole.
1475          *
1476          * If commit fails, we'll call ->del() on all events
1477          * for which ->add() was called.
1478          */
1479         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1480                 goto done_collect;
1481
1482         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1483         if (ret)
1484                 goto out;
1485         /*
1486          * copy new assignment, now we know it is possible
1487          * will be used by hw_perf_enable()
1488          */
1489         memcpy(cpuc->assign, assign, n*sizeof(int));
1490
1491 done_collect:
1492         /*
1493          * Commit the collect_events() state. See x86_pmu_del() and
1494          * x86_pmu_*_txn().
1495          */
1496         cpuc->n_events = n;
1497         cpuc->n_added += n - n0;
1498         cpuc->n_txn += n - n0;
1499
1500         /*
1501          * This is before x86_pmu_enable() will call x86_pmu_start(),
1502          * so we enable LBRs before an event needs them etc..
1503          */
1504         static_call_cond(x86_pmu_add)(event);
1505
1506         ret = 0;
1507 out:
1508         return ret;
1509 }
1510
1511 static void x86_pmu_start(struct perf_event *event, int flags)
1512 {
1513         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1514         int idx = event->hw.idx;
1515
1516         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1517                 return;
1518
1519         if (WARN_ON_ONCE(idx == -1))
1520                 return;
1521
1522         if (flags & PERF_EF_RELOAD) {
1523                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1524                 static_call(x86_pmu_set_period)(event);
1525         }
1526
1527         event->hw.state = 0;
1528
1529         cpuc->events[idx] = event;
1530         __set_bit(idx, cpuc->active_mask);
1531         static_call(x86_pmu_enable)(event);
1532         perf_event_update_userpage(event);
1533 }
1534
1535 void perf_event_print_debug(void)
1536 {
1537         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1538         u64 pebs, debugctl;
1539         int cpu = smp_processor_id();
1540         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1541         int num_counters = hybrid(cpuc->pmu, num_counters);
1542         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1543         struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1544         unsigned long flags;
1545         int idx;
1546
1547         if (!num_counters)
1548                 return;
1549
1550         local_irq_save(flags);
1551
1552         if (x86_pmu.version >= 2) {
1553                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1554                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1555                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1556                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1557
1558                 pr_info("\n");
1559                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1560                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1561                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1562                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1563                 if (pebs_constraints) {
1564                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1565                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1566                 }
1567                 if (x86_pmu.lbr_nr) {
1568                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1569                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1570                 }
1571         }
1572         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1573
1574         for (idx = 0; idx < num_counters; idx++) {
1575                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1576                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1577
1578                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1579
1580                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1581                         cpu, idx, pmc_ctrl);
1582                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1583                         cpu, idx, pmc_count);
1584                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1585                         cpu, idx, prev_left);
1586         }
1587         for (idx = 0; idx < num_counters_fixed; idx++) {
1588                 if (fixed_counter_disabled(idx, cpuc->pmu))
1589                         continue;
1590                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1591
1592                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1593                         cpu, idx, pmc_count);
1594         }
1595         local_irq_restore(flags);
1596 }
1597
1598 void x86_pmu_stop(struct perf_event *event, int flags)
1599 {
1600         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1601         struct hw_perf_event *hwc = &event->hw;
1602
1603         if (test_bit(hwc->idx, cpuc->active_mask)) {
1604                 static_call(x86_pmu_disable)(event);
1605                 __clear_bit(hwc->idx, cpuc->active_mask);
1606                 cpuc->events[hwc->idx] = NULL;
1607                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1608                 hwc->state |= PERF_HES_STOPPED;
1609         }
1610
1611         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1612                 /*
1613                  * Drain the remaining delta count out of a event
1614                  * that we are disabling:
1615                  */
1616                 static_call(x86_pmu_update)(event);
1617                 hwc->state |= PERF_HES_UPTODATE;
1618         }
1619 }
1620
1621 static void x86_pmu_del(struct perf_event *event, int flags)
1622 {
1623         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1624         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1625         int i;
1626
1627         /*
1628          * If we're called during a txn, we only need to undo x86_pmu.add.
1629          * The events never got scheduled and ->cancel_txn will truncate
1630          * the event_list.
1631          *
1632          * XXX assumes any ->del() called during a TXN will only be on
1633          * an event added during that same TXN.
1634          */
1635         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1636                 goto do_del;
1637
1638         __set_bit(event->hw.idx, cpuc->dirty);
1639
1640         /*
1641          * Not a TXN, therefore cleanup properly.
1642          */
1643         x86_pmu_stop(event, PERF_EF_UPDATE);
1644
1645         for (i = 0; i < cpuc->n_events; i++) {
1646                 if (event == cpuc->event_list[i])
1647                         break;
1648         }
1649
1650         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1651                 return;
1652
1653         /* If we have a newly added event; make sure to decrease n_added. */
1654         if (i >= cpuc->n_events - cpuc->n_added)
1655                 --cpuc->n_added;
1656
1657         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1658
1659         /* Delete the array entry. */
1660         while (++i < cpuc->n_events) {
1661                 cpuc->event_list[i-1] = cpuc->event_list[i];
1662                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1663         }
1664         cpuc->event_constraint[i-1] = NULL;
1665         --cpuc->n_events;
1666         if (intel_cap.perf_metrics)
1667                 del_nr_metric_event(cpuc, event);
1668
1669         perf_event_update_userpage(event);
1670
1671 do_del:
1672
1673         /*
1674          * This is after x86_pmu_stop(); so we disable LBRs after any
1675          * event can need them etc..
1676          */
1677         static_call_cond(x86_pmu_del)(event);
1678 }
1679
1680 int x86_pmu_handle_irq(struct pt_regs *regs)
1681 {
1682         struct perf_sample_data data;
1683         struct cpu_hw_events *cpuc;
1684         struct perf_event *event;
1685         int idx, handled = 0;
1686         u64 val;
1687
1688         cpuc = this_cpu_ptr(&cpu_hw_events);
1689
1690         /*
1691          * Some chipsets need to unmask the LVTPC in a particular spot
1692          * inside the nmi handler.  As a result, the unmasking was pushed
1693          * into all the nmi handlers.
1694          *
1695          * This generic handler doesn't seem to have any issues where the
1696          * unmasking occurs so it was left at the top.
1697          */
1698         apic_write(APIC_LVTPC, APIC_DM_NMI);
1699
1700         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1701                 if (!test_bit(idx, cpuc->active_mask))
1702                         continue;
1703
1704                 event = cpuc->events[idx];
1705
1706                 val = static_call(x86_pmu_update)(event);
1707                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1708                         continue;
1709
1710                 /*
1711                  * event overflow
1712                  */
1713                 handled++;
1714
1715                 if (!static_call(x86_pmu_set_period)(event))
1716                         continue;
1717
1718                 perf_sample_data_init(&data, 0, event->hw.last_period);
1719
1720                 if (has_branch_stack(event)) {
1721                         data.br_stack = &cpuc->lbr_stack;
1722                         data.sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1723                 }
1724
1725                 if (perf_event_overflow(event, &data, regs))
1726                         x86_pmu_stop(event, 0);
1727         }
1728
1729         if (handled)
1730                 inc_irq_stat(apic_perf_irqs);
1731
1732         return handled;
1733 }
1734
1735 void perf_events_lapic_init(void)
1736 {
1737         if (!x86_pmu.apic || !x86_pmu_initialized())
1738                 return;
1739
1740         /*
1741          * Always use NMI for PMU
1742          */
1743         apic_write(APIC_LVTPC, APIC_DM_NMI);
1744 }
1745
1746 static int
1747 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1748 {
1749         u64 start_clock;
1750         u64 finish_clock;
1751         int ret;
1752
1753         /*
1754          * All PMUs/events that share this PMI handler should make sure to
1755          * increment active_events for their events.
1756          */
1757         if (!atomic_read(&active_events))
1758                 return NMI_DONE;
1759
1760         start_clock = sched_clock();
1761         ret = static_call(x86_pmu_handle_irq)(regs);
1762         finish_clock = sched_clock();
1763
1764         perf_sample_event_took(finish_clock - start_clock);
1765
1766         return ret;
1767 }
1768 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1769
1770 struct event_constraint emptyconstraint;
1771 struct event_constraint unconstrained;
1772
1773 static int x86_pmu_prepare_cpu(unsigned int cpu)
1774 {
1775         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1776         int i;
1777
1778         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1779                 cpuc->kfree_on_online[i] = NULL;
1780         if (x86_pmu.cpu_prepare)
1781                 return x86_pmu.cpu_prepare(cpu);
1782         return 0;
1783 }
1784
1785 static int x86_pmu_dead_cpu(unsigned int cpu)
1786 {
1787         if (x86_pmu.cpu_dead)
1788                 x86_pmu.cpu_dead(cpu);
1789         return 0;
1790 }
1791
1792 static int x86_pmu_online_cpu(unsigned int cpu)
1793 {
1794         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1795         int i;
1796
1797         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1798                 kfree(cpuc->kfree_on_online[i]);
1799                 cpuc->kfree_on_online[i] = NULL;
1800         }
1801         return 0;
1802 }
1803
1804 static int x86_pmu_starting_cpu(unsigned int cpu)
1805 {
1806         if (x86_pmu.cpu_starting)
1807                 x86_pmu.cpu_starting(cpu);
1808         return 0;
1809 }
1810
1811 static int x86_pmu_dying_cpu(unsigned int cpu)
1812 {
1813         if (x86_pmu.cpu_dying)
1814                 x86_pmu.cpu_dying(cpu);
1815         return 0;
1816 }
1817
1818 static void __init pmu_check_apic(void)
1819 {
1820         if (boot_cpu_has(X86_FEATURE_APIC))
1821                 return;
1822
1823         x86_pmu.apic = 0;
1824         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1825         pr_info("no hardware sampling interrupt available.\n");
1826
1827         /*
1828          * If we have a PMU initialized but no APIC
1829          * interrupts, we cannot sample hardware
1830          * events (user-space has to fall back and
1831          * sample via a hrtimer based software event):
1832          */
1833         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1834
1835 }
1836
1837 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1838         .name = "format",
1839         .attrs = NULL,
1840 };
1841
1842 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1843 {
1844         struct perf_pmu_events_attr *pmu_attr =
1845                 container_of(attr, struct perf_pmu_events_attr, attr);
1846         u64 config = 0;
1847
1848         if (pmu_attr->id < x86_pmu.max_events)
1849                 config = x86_pmu.event_map(pmu_attr->id);
1850
1851         /* string trumps id */
1852         if (pmu_attr->event_str)
1853                 return sprintf(page, "%s\n", pmu_attr->event_str);
1854
1855         return x86_pmu.events_sysfs_show(page, config);
1856 }
1857 EXPORT_SYMBOL_GPL(events_sysfs_show);
1858
1859 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1860                           char *page)
1861 {
1862         struct perf_pmu_events_ht_attr *pmu_attr =
1863                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1864
1865         /*
1866          * Report conditional events depending on Hyper-Threading.
1867          *
1868          * This is overly conservative as usually the HT special
1869          * handling is not needed if the other CPU thread is idle.
1870          *
1871          * Note this does not (and cannot) handle the case when thread
1872          * siblings are invisible, for example with virtualization
1873          * if they are owned by some other guest.  The user tool
1874          * has to re-read when a thread sibling gets onlined later.
1875          */
1876         return sprintf(page, "%s",
1877                         topology_max_smt_threads() > 1 ?
1878                         pmu_attr->event_str_ht :
1879                         pmu_attr->event_str_noht);
1880 }
1881
1882 ssize_t events_hybrid_sysfs_show(struct device *dev,
1883                                  struct device_attribute *attr,
1884                                  char *page)
1885 {
1886         struct perf_pmu_events_hybrid_attr *pmu_attr =
1887                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1888         struct x86_hybrid_pmu *pmu;
1889         const char *str, *next_str;
1890         int i;
1891
1892         if (hweight64(pmu_attr->pmu_type) == 1)
1893                 return sprintf(page, "%s", pmu_attr->event_str);
1894
1895         /*
1896          * Hybrid PMUs may support the same event name, but with different
1897          * event encoding, e.g., the mem-loads event on an Atom PMU has
1898          * different event encoding from a Core PMU.
1899          *
1900          * The event_str includes all event encodings. Each event encoding
1901          * is divided by ";". The order of the event encodings must follow
1902          * the order of the hybrid PMU index.
1903          */
1904         pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1905
1906         str = pmu_attr->event_str;
1907         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1908                 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1909                         continue;
1910                 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1911                         next_str = strchr(str, ';');
1912                         if (next_str)
1913                                 return snprintf(page, next_str - str + 1, "%s", str);
1914                         else
1915                                 return sprintf(page, "%s", str);
1916                 }
1917                 str = strchr(str, ';');
1918                 str++;
1919         }
1920
1921         return 0;
1922 }
1923 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1924
1925 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1926 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1927 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1928 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1929 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1930 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1931 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1932 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1933 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1934 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1935
1936 static struct attribute *empty_attrs;
1937
1938 static struct attribute *events_attr[] = {
1939         EVENT_PTR(CPU_CYCLES),
1940         EVENT_PTR(INSTRUCTIONS),
1941         EVENT_PTR(CACHE_REFERENCES),
1942         EVENT_PTR(CACHE_MISSES),
1943         EVENT_PTR(BRANCH_INSTRUCTIONS),
1944         EVENT_PTR(BRANCH_MISSES),
1945         EVENT_PTR(BUS_CYCLES),
1946         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1947         EVENT_PTR(STALLED_CYCLES_BACKEND),
1948         EVENT_PTR(REF_CPU_CYCLES),
1949         NULL,
1950 };
1951
1952 /*
1953  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1954  * out of events_attr attributes.
1955  */
1956 static umode_t
1957 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1958 {
1959         struct perf_pmu_events_attr *pmu_attr;
1960
1961         if (idx >= x86_pmu.max_events)
1962                 return 0;
1963
1964         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1965         /* str trumps id */
1966         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1967 }
1968
1969 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1970         .name = "events",
1971         .attrs = events_attr,
1972         .is_visible = is_visible,
1973 };
1974
1975 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1976 {
1977         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1978         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1979         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1980         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1981         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1982         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1983         ssize_t ret;
1984
1985         /*
1986         * We have whole page size to spend and just little data
1987         * to write, so we can safely use sprintf.
1988         */
1989         ret = sprintf(page, "event=0x%02llx", event);
1990
1991         if (umask)
1992                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1993
1994         if (edge)
1995                 ret += sprintf(page + ret, ",edge");
1996
1997         if (pc)
1998                 ret += sprintf(page + ret, ",pc");
1999
2000         if (any)
2001                 ret += sprintf(page + ret, ",any");
2002
2003         if (inv)
2004                 ret += sprintf(page + ret, ",inv");
2005
2006         if (cmask)
2007                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
2008
2009         ret += sprintf(page + ret, "\n");
2010
2011         return ret;
2012 }
2013
2014 static struct attribute_group x86_pmu_attr_group;
2015 static struct attribute_group x86_pmu_caps_group;
2016
2017 static void x86_pmu_static_call_update(void)
2018 {
2019         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2020         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2021         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2022         static_call_update(x86_pmu_enable, x86_pmu.enable);
2023         static_call_update(x86_pmu_disable, x86_pmu.disable);
2024
2025         static_call_update(x86_pmu_assign, x86_pmu.assign);
2026
2027         static_call_update(x86_pmu_add, x86_pmu.add);
2028         static_call_update(x86_pmu_del, x86_pmu.del);
2029         static_call_update(x86_pmu_read, x86_pmu.read);
2030
2031         static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2032         static_call_update(x86_pmu_update, x86_pmu.update);
2033
2034         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2035         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2036         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2037
2038         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2039         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2040         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2041
2042         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2043         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2044
2045         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2046         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2047
2048         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2049 }
2050
2051 static void _x86_pmu_read(struct perf_event *event)
2052 {
2053         static_call(x86_pmu_update)(event);
2054 }
2055
2056 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2057                           u64 intel_ctrl)
2058 {
2059         pr_info("... version:                %d\n",     x86_pmu.version);
2060         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2061         pr_info("... generic registers:      %d\n",     num_counters);
2062         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2063         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2064         pr_info("... fixed-purpose events:   %lu\n",
2065                         hweight64((((1ULL << num_counters_fixed) - 1)
2066                                         << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2067         pr_info("... event mask:             %016Lx\n", intel_ctrl);
2068 }
2069
2070 /*
2071  * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2072  * of the first registered PMU is unconditionally assigned to
2073  * each possible cpuctx->ctx.pmu.
2074  * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2075  */
2076 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2077 {
2078         struct perf_cpu_context *cpuctx;
2079
2080         if (!pmu->pmu_cpu_context)
2081                 return;
2082
2083         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2084         cpuctx->ctx.pmu = pmu;
2085 }
2086
2087 static int __init init_hw_perf_events(void)
2088 {
2089         struct x86_pmu_quirk *quirk;
2090         int err;
2091
2092         pr_info("Performance Events: ");
2093
2094         switch (boot_cpu_data.x86_vendor) {
2095         case X86_VENDOR_INTEL:
2096                 err = intel_pmu_init();
2097                 break;
2098         case X86_VENDOR_AMD:
2099                 err = amd_pmu_init();
2100                 break;
2101         case X86_VENDOR_HYGON:
2102                 err = amd_pmu_init();
2103                 x86_pmu.name = "HYGON";
2104                 break;
2105         case X86_VENDOR_ZHAOXIN:
2106         case X86_VENDOR_CENTAUR:
2107                 err = zhaoxin_pmu_init();
2108                 break;
2109         default:
2110                 err = -ENOTSUPP;
2111         }
2112         if (err != 0) {
2113                 pr_cont("no PMU driver, software events only.\n");
2114                 err = 0;
2115                 goto out_bad_pmu;
2116         }
2117
2118         pmu_check_apic();
2119
2120         /* sanity check that the hardware exists or is emulated */
2121         if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2122                 goto out_bad_pmu;
2123
2124         pr_cont("%s PMU driver.\n", x86_pmu.name);
2125
2126         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2127
2128         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2129                 quirk->func();
2130
2131         if (!x86_pmu.intel_ctrl)
2132                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2133
2134         perf_events_lapic_init();
2135         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2136
2137         unconstrained = (struct event_constraint)
2138                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2139                                    0, x86_pmu.num_counters, 0, 0);
2140
2141         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2142
2143         if (!x86_pmu.events_sysfs_show)
2144                 x86_pmu_events_group.attrs = &empty_attrs;
2145
2146         pmu.attr_update = x86_pmu.attr_update;
2147
2148         if (!is_hybrid()) {
2149                 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2150                                      x86_pmu.num_counters_fixed,
2151                                      x86_pmu.intel_ctrl);
2152         }
2153
2154         if (!x86_pmu.read)
2155                 x86_pmu.read = _x86_pmu_read;
2156
2157         if (!x86_pmu.guest_get_msrs)
2158                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2159
2160         if (!x86_pmu.set_period)
2161                 x86_pmu.set_period = x86_perf_event_set_period;
2162
2163         if (!x86_pmu.update)
2164                 x86_pmu.update = x86_perf_event_update;
2165
2166         x86_pmu_static_call_update();
2167
2168         /*
2169          * Install callbacks. Core will call them for each online
2170          * cpu.
2171          */
2172         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2173                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2174         if (err)
2175                 return err;
2176
2177         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2178                                 "perf/x86:starting", x86_pmu_starting_cpu,
2179                                 x86_pmu_dying_cpu);
2180         if (err)
2181                 goto out;
2182
2183         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2184                                 x86_pmu_online_cpu, NULL);
2185         if (err)
2186                 goto out1;
2187
2188         if (!is_hybrid()) {
2189                 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2190                 if (err)
2191                         goto out2;
2192         } else {
2193                 u8 cpu_type = get_this_hybrid_cpu_type();
2194                 struct x86_hybrid_pmu *hybrid_pmu;
2195                 int i, j;
2196
2197                 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2198                         cpu_type = x86_pmu.get_hybrid_cpu_type();
2199
2200                 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2201                         hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2202
2203                         hybrid_pmu->pmu = pmu;
2204                         hybrid_pmu->pmu.type = -1;
2205                         hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2206                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2207                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2208
2209                         err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2210                                                 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2211                         if (err)
2212                                 break;
2213
2214                         if (cpu_type == hybrid_pmu->cpu_type)
2215                                 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2216                 }
2217
2218                 if (i < x86_pmu.num_hybrid_pmus) {
2219                         for (j = 0; j < i; j++)
2220                                 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2221                         pr_warn("Failed to register hybrid PMUs\n");
2222                         kfree(x86_pmu.hybrid_pmu);
2223                         x86_pmu.hybrid_pmu = NULL;
2224                         x86_pmu.num_hybrid_pmus = 0;
2225                         goto out2;
2226                 }
2227         }
2228
2229         return 0;
2230
2231 out2:
2232         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2233 out1:
2234         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2235 out:
2236         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2237 out_bad_pmu:
2238         memset(&x86_pmu, 0, sizeof(x86_pmu));
2239         return err;
2240 }
2241 early_initcall(init_hw_perf_events);
2242
2243 static void x86_pmu_read(struct perf_event *event)
2244 {
2245         static_call(x86_pmu_read)(event);
2246 }
2247
2248 /*
2249  * Start group events scheduling transaction
2250  * Set the flag to make pmu::enable() not perform the
2251  * schedulability test, it will be performed at commit time
2252  *
2253  * We only support PERF_PMU_TXN_ADD transactions. Save the
2254  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2255  * transactions.
2256  */
2257 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2258 {
2259         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2260
2261         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2262
2263         cpuc->txn_flags = txn_flags;
2264         if (txn_flags & ~PERF_PMU_TXN_ADD)
2265                 return;
2266
2267         perf_pmu_disable(pmu);
2268         __this_cpu_write(cpu_hw_events.n_txn, 0);
2269         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2270         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2271 }
2272
2273 /*
2274  * Stop group events scheduling transaction
2275  * Clear the flag and pmu::enable() will perform the
2276  * schedulability test.
2277  */
2278 static void x86_pmu_cancel_txn(struct pmu *pmu)
2279 {
2280         unsigned int txn_flags;
2281         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2282
2283         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2284
2285         txn_flags = cpuc->txn_flags;
2286         cpuc->txn_flags = 0;
2287         if (txn_flags & ~PERF_PMU_TXN_ADD)
2288                 return;
2289
2290         /*
2291          * Truncate collected array by the number of events added in this
2292          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2293          */
2294         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2295         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2296         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2297         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2298         perf_pmu_enable(pmu);
2299 }
2300
2301 /*
2302  * Commit group events scheduling transaction
2303  * Perform the group schedulability test as a whole
2304  * Return 0 if success
2305  *
2306  * Does not cancel the transaction on failure; expects the caller to do this.
2307  */
2308 static int x86_pmu_commit_txn(struct pmu *pmu)
2309 {
2310         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2311         int assign[X86_PMC_IDX_MAX];
2312         int n, ret;
2313
2314         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2315
2316         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2317                 cpuc->txn_flags = 0;
2318                 return 0;
2319         }
2320
2321         n = cpuc->n_events;
2322
2323         if (!x86_pmu_initialized())
2324                 return -EAGAIN;
2325
2326         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2327         if (ret)
2328                 return ret;
2329
2330         /*
2331          * copy new assignment, now we know it is possible
2332          * will be used by hw_perf_enable()
2333          */
2334         memcpy(cpuc->assign, assign, n*sizeof(int));
2335
2336         cpuc->txn_flags = 0;
2337         perf_pmu_enable(pmu);
2338         return 0;
2339 }
2340 /*
2341  * a fake_cpuc is used to validate event groups. Due to
2342  * the extra reg logic, we need to also allocate a fake
2343  * per_core and per_cpu structure. Otherwise, group events
2344  * using extra reg may conflict without the kernel being
2345  * able to catch this when the last event gets added to
2346  * the group.
2347  */
2348 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2349 {
2350         intel_cpuc_finish(cpuc);
2351         kfree(cpuc);
2352 }
2353
2354 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2355 {
2356         struct cpu_hw_events *cpuc;
2357         int cpu;
2358
2359         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2360         if (!cpuc)
2361                 return ERR_PTR(-ENOMEM);
2362         cpuc->is_fake = 1;
2363
2364         if (is_hybrid()) {
2365                 struct x86_hybrid_pmu *h_pmu;
2366
2367                 h_pmu = hybrid_pmu(event_pmu);
2368                 if (cpumask_empty(&h_pmu->supported_cpus))
2369                         goto error;
2370                 cpu = cpumask_first(&h_pmu->supported_cpus);
2371         } else
2372                 cpu = raw_smp_processor_id();
2373         cpuc->pmu = event_pmu;
2374
2375         if (intel_cpuc_prepare(cpuc, cpu))
2376                 goto error;
2377
2378         return cpuc;
2379 error:
2380         free_fake_cpuc(cpuc);
2381         return ERR_PTR(-ENOMEM);
2382 }
2383
2384 /*
2385  * validate that we can schedule this event
2386  */
2387 static int validate_event(struct perf_event *event)
2388 {
2389         struct cpu_hw_events *fake_cpuc;
2390         struct event_constraint *c;
2391         int ret = 0;
2392
2393         fake_cpuc = allocate_fake_cpuc(event->pmu);
2394         if (IS_ERR(fake_cpuc))
2395                 return PTR_ERR(fake_cpuc);
2396
2397         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2398
2399         if (!c || !c->weight)
2400                 ret = -EINVAL;
2401
2402         if (x86_pmu.put_event_constraints)
2403                 x86_pmu.put_event_constraints(fake_cpuc, event);
2404
2405         free_fake_cpuc(fake_cpuc);
2406
2407         return ret;
2408 }
2409
2410 /*
2411  * validate a single event group
2412  *
2413  * validation include:
2414  *      - check events are compatible which each other
2415  *      - events do not compete for the same counter
2416  *      - number of events <= number of counters
2417  *
2418  * validation ensures the group can be loaded onto the
2419  * PMU if it was the only group available.
2420  */
2421 static int validate_group(struct perf_event *event)
2422 {
2423         struct perf_event *leader = event->group_leader;
2424         struct cpu_hw_events *fake_cpuc;
2425         int ret = -EINVAL, n;
2426
2427         /*
2428          * Reject events from different hybrid PMUs.
2429          */
2430         if (is_hybrid()) {
2431                 struct perf_event *sibling;
2432                 struct pmu *pmu = NULL;
2433
2434                 if (is_x86_event(leader))
2435                         pmu = leader->pmu;
2436
2437                 for_each_sibling_event(sibling, leader) {
2438                         if (!is_x86_event(sibling))
2439                                 continue;
2440                         if (!pmu)
2441                                 pmu = sibling->pmu;
2442                         else if (pmu != sibling->pmu)
2443                                 return ret;
2444                 }
2445         }
2446
2447         fake_cpuc = allocate_fake_cpuc(event->pmu);
2448         if (IS_ERR(fake_cpuc))
2449                 return PTR_ERR(fake_cpuc);
2450         /*
2451          * the event is not yet connected with its
2452          * siblings therefore we must first collect
2453          * existing siblings, then add the new event
2454          * before we can simulate the scheduling
2455          */
2456         n = collect_events(fake_cpuc, leader, true);
2457         if (n < 0)
2458                 goto out;
2459
2460         fake_cpuc->n_events = n;
2461         n = collect_events(fake_cpuc, event, false);
2462         if (n < 0)
2463                 goto out;
2464
2465         fake_cpuc->n_events = 0;
2466         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2467
2468 out:
2469         free_fake_cpuc(fake_cpuc);
2470         return ret;
2471 }
2472
2473 static int x86_pmu_event_init(struct perf_event *event)
2474 {
2475         struct x86_hybrid_pmu *pmu = NULL;
2476         int err;
2477
2478         if ((event->attr.type != event->pmu->type) &&
2479             (event->attr.type != PERF_TYPE_HARDWARE) &&
2480             (event->attr.type != PERF_TYPE_HW_CACHE))
2481                 return -ENOENT;
2482
2483         if (is_hybrid() && (event->cpu != -1)) {
2484                 pmu = hybrid_pmu(event->pmu);
2485                 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2486                         return -ENOENT;
2487         }
2488
2489         err = __x86_pmu_event_init(event);
2490         if (!err) {
2491                 if (event->group_leader != event)
2492                         err = validate_group(event);
2493                 else
2494                         err = validate_event(event);
2495         }
2496         if (err) {
2497                 if (event->destroy)
2498                         event->destroy(event);
2499                 event->destroy = NULL;
2500         }
2501
2502         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2503             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2504                 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2505
2506         return err;
2507 }
2508
2509 void perf_clear_dirty_counters(void)
2510 {
2511         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2512         int i;
2513
2514          /* Don't need to clear the assigned counter. */
2515         for (i = 0; i < cpuc->n_events; i++)
2516                 __clear_bit(cpuc->assign[i], cpuc->dirty);
2517
2518         if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2519                 return;
2520
2521         for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2522                 if (i >= INTEL_PMC_IDX_FIXED) {
2523                         /* Metrics and fake events don't have corresponding HW counters. */
2524                         if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2525                                 continue;
2526
2527                         wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2528                 } else {
2529                         wrmsrl(x86_pmu_event_addr(i), 0);
2530                 }
2531         }
2532
2533         bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2534 }
2535
2536 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2537 {
2538         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2539                 return;
2540
2541         /*
2542          * This function relies on not being called concurrently in two
2543          * tasks in the same mm.  Otherwise one task could observe
2544          * perf_rdpmc_allowed > 1 and return all the way back to
2545          * userspace with CR4.PCE clear while another task is still
2546          * doing on_each_cpu_mask() to propagate CR4.PCE.
2547          *
2548          * For now, this can't happen because all callers hold mmap_lock
2549          * for write.  If this changes, we'll need a different solution.
2550          */
2551         mmap_assert_write_locked(mm);
2552
2553         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2554                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2555 }
2556
2557 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2558 {
2559         if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2560                 return;
2561
2562         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2563                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2564 }
2565
2566 static int x86_pmu_event_idx(struct perf_event *event)
2567 {
2568         struct hw_perf_event *hwc = &event->hw;
2569
2570         if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2571                 return 0;
2572
2573         if (is_metric_idx(hwc->idx))
2574                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2575         else
2576                 return hwc->event_base_rdpmc + 1;
2577 }
2578
2579 static ssize_t get_attr_rdpmc(struct device *cdev,
2580                               struct device_attribute *attr,
2581                               char *buf)
2582 {
2583         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2584 }
2585
2586 static ssize_t set_attr_rdpmc(struct device *cdev,
2587                               struct device_attribute *attr,
2588                               const char *buf, size_t count)
2589 {
2590         unsigned long val;
2591         ssize_t ret;
2592
2593         ret = kstrtoul(buf, 0, &val);
2594         if (ret)
2595                 return ret;
2596
2597         if (val > 2)
2598                 return -EINVAL;
2599
2600         if (x86_pmu.attr_rdpmc_broken)
2601                 return -ENOTSUPP;
2602
2603         if (val != x86_pmu.attr_rdpmc) {
2604                 /*
2605                  * Changing into or out of never available or always available,
2606                  * aka perf-event-bypassing mode. This path is extremely slow,
2607                  * but only root can trigger it, so it's okay.
2608                  */
2609                 if (val == 0)
2610                         static_branch_inc(&rdpmc_never_available_key);
2611                 else if (x86_pmu.attr_rdpmc == 0)
2612                         static_branch_dec(&rdpmc_never_available_key);
2613
2614                 if (val == 2)
2615                         static_branch_inc(&rdpmc_always_available_key);
2616                 else if (x86_pmu.attr_rdpmc == 2)
2617                         static_branch_dec(&rdpmc_always_available_key);
2618
2619                 on_each_cpu(cr4_update_pce, NULL, 1);
2620                 x86_pmu.attr_rdpmc = val;
2621         }
2622
2623         return count;
2624 }
2625
2626 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2627
2628 static struct attribute *x86_pmu_attrs[] = {
2629         &dev_attr_rdpmc.attr,
2630         NULL,
2631 };
2632
2633 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2634         .attrs = x86_pmu_attrs,
2635 };
2636
2637 static ssize_t max_precise_show(struct device *cdev,
2638                                   struct device_attribute *attr,
2639                                   char *buf)
2640 {
2641         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2642 }
2643
2644 static DEVICE_ATTR_RO(max_precise);
2645
2646 static struct attribute *x86_pmu_caps_attrs[] = {
2647         &dev_attr_max_precise.attr,
2648         NULL
2649 };
2650
2651 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2652         .name = "caps",
2653         .attrs = x86_pmu_caps_attrs,
2654 };
2655
2656 static const struct attribute_group *x86_pmu_attr_groups[] = {
2657         &x86_pmu_attr_group,
2658         &x86_pmu_format_group,
2659         &x86_pmu_events_group,
2660         &x86_pmu_caps_group,
2661         NULL,
2662 };
2663
2664 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2665 {
2666         static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2667 }
2668
2669 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2670                                   struct perf_event_context *next)
2671 {
2672         static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2673 }
2674
2675 void perf_check_microcode(void)
2676 {
2677         if (x86_pmu.check_microcode)
2678                 x86_pmu.check_microcode();
2679 }
2680
2681 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2682 {
2683         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2684                 return -EINVAL;
2685
2686         if (value && x86_pmu.limit_period) {
2687                 if (x86_pmu.limit_period(event, value) > value)
2688                         return -EINVAL;
2689         }
2690
2691         return 0;
2692 }
2693
2694 static int x86_pmu_aux_output_match(struct perf_event *event)
2695 {
2696         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2697                 return 0;
2698
2699         if (x86_pmu.aux_output_match)
2700                 return x86_pmu.aux_output_match(event);
2701
2702         return 0;
2703 }
2704
2705 static int x86_pmu_filter_match(struct perf_event *event)
2706 {
2707         if (x86_pmu.filter_match)
2708                 return x86_pmu.filter_match(event);
2709
2710         return 1;
2711 }
2712
2713 static struct pmu pmu = {
2714         .pmu_enable             = x86_pmu_enable,
2715         .pmu_disable            = x86_pmu_disable,
2716
2717         .attr_groups            = x86_pmu_attr_groups,
2718
2719         .event_init             = x86_pmu_event_init,
2720
2721         .event_mapped           = x86_pmu_event_mapped,
2722         .event_unmapped         = x86_pmu_event_unmapped,
2723
2724         .add                    = x86_pmu_add,
2725         .del                    = x86_pmu_del,
2726         .start                  = x86_pmu_start,
2727         .stop                   = x86_pmu_stop,
2728         .read                   = x86_pmu_read,
2729
2730         .start_txn              = x86_pmu_start_txn,
2731         .cancel_txn             = x86_pmu_cancel_txn,
2732         .commit_txn             = x86_pmu_commit_txn,
2733
2734         .event_idx              = x86_pmu_event_idx,
2735         .sched_task             = x86_pmu_sched_task,
2736         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2737         .check_period           = x86_pmu_check_period,
2738
2739         .aux_output_match       = x86_pmu_aux_output_match,
2740
2741         .filter_match           = x86_pmu_filter_match,
2742 };
2743
2744 void arch_perf_update_userpage(struct perf_event *event,
2745                                struct perf_event_mmap_page *userpg, u64 now)
2746 {
2747         struct cyc2ns_data data;
2748         u64 offset;
2749
2750         userpg->cap_user_time = 0;
2751         userpg->cap_user_time_zero = 0;
2752         userpg->cap_user_rdpmc =
2753                 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2754         userpg->pmc_width = x86_pmu.cntval_bits;
2755
2756         if (!using_native_sched_clock() || !sched_clock_stable())
2757                 return;
2758
2759         cyc2ns_read_begin(&data);
2760
2761         offset = data.cyc2ns_offset + __sched_clock_offset;
2762
2763         /*
2764          * Internal timekeeping for enabled/running/stopped times
2765          * is always in the local_clock domain.
2766          */
2767         userpg->cap_user_time = 1;
2768         userpg->time_mult = data.cyc2ns_mul;
2769         userpg->time_shift = data.cyc2ns_shift;
2770         userpg->time_offset = offset - now;
2771
2772         /*
2773          * cap_user_time_zero doesn't make sense when we're using a different
2774          * time base for the records.
2775          */
2776         if (!event->attr.use_clockid) {
2777                 userpg->cap_user_time_zero = 1;
2778                 userpg->time_zero = offset;
2779         }
2780
2781         cyc2ns_read_end();
2782 }
2783
2784 /*
2785  * Determine whether the regs were taken from an irq/exception handler rather
2786  * than from perf_arch_fetch_caller_regs().
2787  */
2788 static bool perf_hw_regs(struct pt_regs *regs)
2789 {
2790         return regs->flags & X86_EFLAGS_FIXED;
2791 }
2792
2793 void
2794 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2795 {
2796         struct unwind_state state;
2797         unsigned long addr;
2798
2799         if (perf_guest_state()) {
2800                 /* TODO: We don't support guest os callchain now */
2801                 return;
2802         }
2803
2804         if (perf_callchain_store(entry, regs->ip))
2805                 return;
2806
2807         if (perf_hw_regs(regs))
2808                 unwind_start(&state, current, regs, NULL);
2809         else
2810                 unwind_start(&state, current, NULL, (void *)regs->sp);
2811
2812         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2813                 addr = unwind_get_return_address(&state);
2814                 if (!addr || perf_callchain_store(entry, addr))
2815                         return;
2816         }
2817 }
2818
2819 static inline int
2820 valid_user_frame(const void __user *fp, unsigned long size)
2821 {
2822         return __access_ok(fp, size);
2823 }
2824
2825 static unsigned long get_segment_base(unsigned int segment)
2826 {
2827         struct desc_struct *desc;
2828         unsigned int idx = segment >> 3;
2829
2830         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2831 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2832                 struct ldt_struct *ldt;
2833
2834                 /* IRQs are off, so this synchronizes with smp_store_release */
2835                 ldt = READ_ONCE(current->active_mm->context.ldt);
2836                 if (!ldt || idx >= ldt->nr_entries)
2837                         return 0;
2838
2839                 desc = &ldt->entries[idx];
2840 #else
2841                 return 0;
2842 #endif
2843         } else {
2844                 if (idx >= GDT_ENTRIES)
2845                         return 0;
2846
2847                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2848         }
2849
2850         return get_desc_base(desc);
2851 }
2852
2853 #ifdef CONFIG_IA32_EMULATION
2854
2855 #include <linux/compat.h>
2856
2857 static inline int
2858 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2859 {
2860         /* 32-bit process in 64-bit kernel. */
2861         unsigned long ss_base, cs_base;
2862         struct stack_frame_ia32 frame;
2863         const struct stack_frame_ia32 __user *fp;
2864
2865         if (user_64bit_mode(regs))
2866                 return 0;
2867
2868         cs_base = get_segment_base(regs->cs);
2869         ss_base = get_segment_base(regs->ss);
2870
2871         fp = compat_ptr(ss_base + regs->bp);
2872         pagefault_disable();
2873         while (entry->nr < entry->max_stack) {
2874                 if (!valid_user_frame(fp, sizeof(frame)))
2875                         break;
2876
2877                 if (__get_user(frame.next_frame, &fp->next_frame))
2878                         break;
2879                 if (__get_user(frame.return_address, &fp->return_address))
2880                         break;
2881
2882                 perf_callchain_store(entry, cs_base + frame.return_address);
2883                 fp = compat_ptr(ss_base + frame.next_frame);
2884         }
2885         pagefault_enable();
2886         return 1;
2887 }
2888 #else
2889 static inline int
2890 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2891 {
2892     return 0;
2893 }
2894 #endif
2895
2896 void
2897 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2898 {
2899         struct stack_frame frame;
2900         const struct stack_frame __user *fp;
2901
2902         if (perf_guest_state()) {
2903                 /* TODO: We don't support guest os callchain now */
2904                 return;
2905         }
2906
2907         /*
2908          * We don't know what to do with VM86 stacks.. ignore them for now.
2909          */
2910         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2911                 return;
2912
2913         fp = (void __user *)regs->bp;
2914
2915         perf_callchain_store(entry, regs->ip);
2916
2917         if (!nmi_uaccess_okay())
2918                 return;
2919
2920         if (perf_callchain_user32(regs, entry))
2921                 return;
2922
2923         pagefault_disable();
2924         while (entry->nr < entry->max_stack) {
2925                 if (!valid_user_frame(fp, sizeof(frame)))
2926                         break;
2927
2928                 if (__get_user(frame.next_frame, &fp->next_frame))
2929                         break;
2930                 if (__get_user(frame.return_address, &fp->return_address))
2931                         break;
2932
2933                 perf_callchain_store(entry, frame.return_address);
2934                 fp = (void __user *)frame.next_frame;
2935         }
2936         pagefault_enable();
2937 }
2938
2939 /*
2940  * Deal with code segment offsets for the various execution modes:
2941  *
2942  *   VM86 - the good olde 16 bit days, where the linear address is
2943  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2944  *
2945  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2946  *          to figure out what the 32bit base address is.
2947  *
2948  *    X32 - has TIF_X32 set, but is running in x86_64
2949  *
2950  * X86_64 - CS,DS,SS,ES are all zero based.
2951  */
2952 static unsigned long code_segment_base(struct pt_regs *regs)
2953 {
2954         /*
2955          * For IA32 we look at the GDT/LDT segment base to convert the
2956          * effective IP to a linear address.
2957          */
2958
2959 #ifdef CONFIG_X86_32
2960         /*
2961          * If we are in VM86 mode, add the segment offset to convert to a
2962          * linear address.
2963          */
2964         if (regs->flags & X86_VM_MASK)
2965                 return 0x10 * regs->cs;
2966
2967         if (user_mode(regs) && regs->cs != __USER_CS)
2968                 return get_segment_base(regs->cs);
2969 #else
2970         if (user_mode(regs) && !user_64bit_mode(regs) &&
2971             regs->cs != __USER32_CS)
2972                 return get_segment_base(regs->cs);
2973 #endif
2974         return 0;
2975 }
2976
2977 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2978 {
2979         if (perf_guest_state())
2980                 return perf_guest_get_ip();
2981
2982         return regs->ip + code_segment_base(regs);
2983 }
2984
2985 unsigned long perf_misc_flags(struct pt_regs *regs)
2986 {
2987         unsigned int guest_state = perf_guest_state();
2988         int misc = 0;
2989
2990         if (guest_state) {
2991                 if (guest_state & PERF_GUEST_USER)
2992                         misc |= PERF_RECORD_MISC_GUEST_USER;
2993                 else
2994                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2995         } else {
2996                 if (user_mode(regs))
2997                         misc |= PERF_RECORD_MISC_USER;
2998                 else
2999                         misc |= PERF_RECORD_MISC_KERNEL;
3000         }
3001
3002         if (regs->flags & PERF_EFLAGS_EXACT)
3003                 misc |= PERF_RECORD_MISC_EXACT_IP;
3004
3005         return misc;
3006 }
3007
3008 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
3009 {
3010         if (!x86_pmu_initialized()) {
3011                 memset(cap, 0, sizeof(*cap));
3012                 return;
3013         }
3014
3015         cap->version            = x86_pmu.version;
3016         /*
3017          * KVM doesn't support the hybrid PMU yet.
3018          * Return the common value in global x86_pmu,
3019          * which available for all cores.
3020          */
3021         cap->num_counters_gp    = x86_pmu.num_counters;
3022         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
3023         cap->bit_width_gp       = x86_pmu.cntval_bits;
3024         cap->bit_width_fixed    = x86_pmu.cntval_bits;
3025         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
3026         cap->events_mask_len    = x86_pmu.events_mask_len;
3027         cap->pebs_ept           = x86_pmu.pebs_ept;
3028 }
3029 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3030
3031 u64 perf_get_hw_event_config(int hw_event)
3032 {
3033         int max = x86_pmu.max_events;
3034
3035         if (hw_event < max)
3036                 return x86_pmu.event_map(array_index_nospec(hw_event, max));
3037
3038         return 0;
3039 }
3040 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);