selinux: kill 'flags' argument in avc_has_perm_flags() and avc_audit()
[sfrench/cifs-2.6.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51         .enabled = 1,
52         .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61  * from just a typename, as opposed to an actual function.
62  */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
70 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
71 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
72
73 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
76
77 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
80
81 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
83
84 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
86
87 /*
88  * This one is magic, it will get called even when PMU init fails (because
89  * there is no PMU), in which case it should simply return NULL.
90  */
91 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
92
93 u64 __read_mostly hw_cache_event_ids
94                                 [PERF_COUNT_HW_CACHE_MAX]
95                                 [PERF_COUNT_HW_CACHE_OP_MAX]
96                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
97 u64 __read_mostly hw_cache_extra_regs
98                                 [PERF_COUNT_HW_CACHE_MAX]
99                                 [PERF_COUNT_HW_CACHE_OP_MAX]
100                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
101
102 /*
103  * Propagate event elapsed time into the generic event.
104  * Can only be executed on the CPU where the event is active.
105  * Returns the delta events processed.
106  */
107 u64 x86_perf_event_update(struct perf_event *event)
108 {
109         struct hw_perf_event *hwc = &event->hw;
110         int shift = 64 - x86_pmu.cntval_bits;
111         u64 prev_raw_count, new_raw_count;
112         u64 delta;
113
114         if (unlikely(!hwc->event_base))
115                 return 0;
116
117         if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
118                 return x86_pmu.update_topdown_event(event);
119
120         /*
121          * Careful: an NMI might modify the previous event value.
122          *
123          * Our tactic to handle this is to first atomically read and
124          * exchange a new raw count - then add that new-prev delta
125          * count to the generic event atomically:
126          */
127 again:
128         prev_raw_count = local64_read(&hwc->prev_count);
129         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
130
131         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
132                                         new_raw_count) != prev_raw_count)
133                 goto again;
134
135         /*
136          * Now we have the new raw value and have updated the prev
137          * timestamp already. We can now calculate the elapsed delta
138          * (event-)time and add that to the generic event.
139          *
140          * Careful, not all hw sign-extends above the physical width
141          * of the count.
142          */
143         delta = (new_raw_count << shift) - (prev_raw_count << shift);
144         delta >>= shift;
145
146         local64_add(delta, &event->count);
147         local64_sub(delta, &hwc->period_left);
148
149         return new_raw_count;
150 }
151
152 /*
153  * Find and validate any extra registers to set up.
154  */
155 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
156 {
157         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
158         struct hw_perf_event_extra *reg;
159         struct extra_reg *er;
160
161         reg = &event->hw.extra_reg;
162
163         if (!extra_regs)
164                 return 0;
165
166         for (er = extra_regs; er->msr; er++) {
167                 if (er->event != (config & er->config_mask))
168                         continue;
169                 if (event->attr.config1 & ~er->valid_mask)
170                         return -EINVAL;
171                 /* Check if the extra msrs can be safely accessed*/
172                 if (!er->extra_msr_access)
173                         return -ENXIO;
174
175                 reg->idx = er->idx;
176                 reg->config = event->attr.config1;
177                 reg->reg = er->msr;
178                 break;
179         }
180         return 0;
181 }
182
183 static atomic_t active_events;
184 static atomic_t pmc_refcount;
185 static DEFINE_MUTEX(pmc_reserve_mutex);
186
187 #ifdef CONFIG_X86_LOCAL_APIC
188
189 static inline int get_possible_num_counters(void)
190 {
191         int i, num_counters = x86_pmu.num_counters;
192
193         if (!is_hybrid())
194                 return num_counters;
195
196         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
197                 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
198
199         return num_counters;
200 }
201
202 static bool reserve_pmc_hardware(void)
203 {
204         int i, num_counters = get_possible_num_counters();
205
206         for (i = 0; i < num_counters; i++) {
207                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
208                         goto perfctr_fail;
209         }
210
211         for (i = 0; i < num_counters; i++) {
212                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
213                         goto eventsel_fail;
214         }
215
216         return true;
217
218 eventsel_fail:
219         for (i--; i >= 0; i--)
220                 release_evntsel_nmi(x86_pmu_config_addr(i));
221
222         i = num_counters;
223
224 perfctr_fail:
225         for (i--; i >= 0; i--)
226                 release_perfctr_nmi(x86_pmu_event_addr(i));
227
228         return false;
229 }
230
231 static void release_pmc_hardware(void)
232 {
233         int i, num_counters = get_possible_num_counters();
234
235         for (i = 0; i < num_counters; i++) {
236                 release_perfctr_nmi(x86_pmu_event_addr(i));
237                 release_evntsel_nmi(x86_pmu_config_addr(i));
238         }
239 }
240
241 #else
242
243 static bool reserve_pmc_hardware(void) { return true; }
244 static void release_pmc_hardware(void) {}
245
246 #endif
247
248 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
249 {
250         u64 val, val_fail = -1, val_new= ~0;
251         int i, reg, reg_fail = -1, ret = 0;
252         int bios_fail = 0;
253         int reg_safe = -1;
254
255         /*
256          * Check to see if the BIOS enabled any of the counters, if so
257          * complain and bail.
258          */
259         for (i = 0; i < num_counters; i++) {
260                 reg = x86_pmu_config_addr(i);
261                 ret = rdmsrl_safe(reg, &val);
262                 if (ret)
263                         goto msr_fail;
264                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
265                         bios_fail = 1;
266                         val_fail = val;
267                         reg_fail = reg;
268                 } else {
269                         reg_safe = i;
270                 }
271         }
272
273         if (num_counters_fixed) {
274                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
275                 ret = rdmsrl_safe(reg, &val);
276                 if (ret)
277                         goto msr_fail;
278                 for (i = 0; i < num_counters_fixed; i++) {
279                         if (fixed_counter_disabled(i, pmu))
280                                 continue;
281                         if (val & (0x03ULL << i*4)) {
282                                 bios_fail = 1;
283                                 val_fail = val;
284                                 reg_fail = reg;
285                         }
286                 }
287         }
288
289         /*
290          * If all the counters are enabled, the below test will always
291          * fail.  The tools will also become useless in this scenario.
292          * Just fail and disable the hardware counters.
293          */
294
295         if (reg_safe == -1) {
296                 reg = reg_safe;
297                 goto msr_fail;
298         }
299
300         /*
301          * Read the current value, change it and read it back to see if it
302          * matches, this is needed to detect certain hardware emulators
303          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
304          */
305         reg = x86_pmu_event_addr(reg_safe);
306         if (rdmsrl_safe(reg, &val))
307                 goto msr_fail;
308         val ^= 0xffffUL;
309         ret = wrmsrl_safe(reg, val);
310         ret |= rdmsrl_safe(reg, &val_new);
311         if (ret || val != val_new)
312                 goto msr_fail;
313
314         /*
315          * We still allow the PMU driver to operate:
316          */
317         if (bios_fail) {
318                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
319                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
320                               reg_fail, val_fail);
321         }
322
323         return true;
324
325 msr_fail:
326         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
327                 pr_cont("PMU not available due to virtualization, using software events only.\n");
328         } else {
329                 pr_cont("Broken PMU hardware detected, using software events only.\n");
330                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
331                        reg, val_new);
332         }
333
334         return false;
335 }
336
337 static void hw_perf_event_destroy(struct perf_event *event)
338 {
339         x86_release_hardware();
340         atomic_dec(&active_events);
341 }
342
343 void hw_perf_lbr_event_destroy(struct perf_event *event)
344 {
345         hw_perf_event_destroy(event);
346
347         /* undo the lbr/bts event accounting */
348         x86_del_exclusive(x86_lbr_exclusive_lbr);
349 }
350
351 static inline int x86_pmu_initialized(void)
352 {
353         return x86_pmu.handle_irq != NULL;
354 }
355
356 static inline int
357 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
358 {
359         struct perf_event_attr *attr = &event->attr;
360         unsigned int cache_type, cache_op, cache_result;
361         u64 config, val;
362
363         config = attr->config;
364
365         cache_type = (config >> 0) & 0xff;
366         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
367                 return -EINVAL;
368         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
369
370         cache_op = (config >>  8) & 0xff;
371         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
372                 return -EINVAL;
373         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
374
375         cache_result = (config >> 16) & 0xff;
376         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
377                 return -EINVAL;
378         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
379
380         val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
381         if (val == 0)
382                 return -ENOENT;
383
384         if (val == -1)
385                 return -EINVAL;
386
387         hwc->config |= val;
388         attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
389         return x86_pmu_extra_regs(val, event);
390 }
391
392 int x86_reserve_hardware(void)
393 {
394         int err = 0;
395
396         if (!atomic_inc_not_zero(&pmc_refcount)) {
397                 mutex_lock(&pmc_reserve_mutex);
398                 if (atomic_read(&pmc_refcount) == 0) {
399                         if (!reserve_pmc_hardware())
400                                 err = -EBUSY;
401                         else
402                                 reserve_ds_buffers();
403                 }
404                 if (!err)
405                         atomic_inc(&pmc_refcount);
406                 mutex_unlock(&pmc_reserve_mutex);
407         }
408
409         return err;
410 }
411
412 void x86_release_hardware(void)
413 {
414         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
415                 release_pmc_hardware();
416                 release_ds_buffers();
417                 release_lbr_buffers();
418                 mutex_unlock(&pmc_reserve_mutex);
419         }
420 }
421
422 /*
423  * Check if we can create event of a certain type (that no conflicting events
424  * are present).
425  */
426 int x86_add_exclusive(unsigned int what)
427 {
428         int i;
429
430         /*
431          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
432          * LBR and BTS are still mutually exclusive.
433          */
434         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
435                 goto out;
436
437         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
438                 mutex_lock(&pmc_reserve_mutex);
439                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
440                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
441                                 goto fail_unlock;
442                 }
443                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
444                 mutex_unlock(&pmc_reserve_mutex);
445         }
446
447 out:
448         atomic_inc(&active_events);
449         return 0;
450
451 fail_unlock:
452         mutex_unlock(&pmc_reserve_mutex);
453         return -EBUSY;
454 }
455
456 void x86_del_exclusive(unsigned int what)
457 {
458         atomic_dec(&active_events);
459
460         /*
461          * See the comment in x86_add_exclusive().
462          */
463         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
464                 return;
465
466         atomic_dec(&x86_pmu.lbr_exclusive[what]);
467 }
468
469 int x86_setup_perfctr(struct perf_event *event)
470 {
471         struct perf_event_attr *attr = &event->attr;
472         struct hw_perf_event *hwc = &event->hw;
473         u64 config;
474
475         if (!is_sampling_event(event)) {
476                 hwc->sample_period = x86_pmu.max_period;
477                 hwc->last_period = hwc->sample_period;
478                 local64_set(&hwc->period_left, hwc->sample_period);
479         }
480
481         if (attr->type == event->pmu->type)
482                 return x86_pmu_extra_regs(event->attr.config, event);
483
484         if (attr->type == PERF_TYPE_HW_CACHE)
485                 return set_ext_hw_attr(hwc, event);
486
487         if (attr->config >= x86_pmu.max_events)
488                 return -EINVAL;
489
490         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
491
492         /*
493          * The generic map:
494          */
495         config = x86_pmu.event_map(attr->config);
496
497         if (config == 0)
498                 return -ENOENT;
499
500         if (config == -1LL)
501                 return -EINVAL;
502
503         hwc->config |= config;
504
505         return 0;
506 }
507
508 /*
509  * check that branch_sample_type is compatible with
510  * settings needed for precise_ip > 1 which implies
511  * using the LBR to capture ALL taken branches at the
512  * priv levels of the measurement
513  */
514 static inline int precise_br_compat(struct perf_event *event)
515 {
516         u64 m = event->attr.branch_sample_type;
517         u64 b = 0;
518
519         /* must capture all branches */
520         if (!(m & PERF_SAMPLE_BRANCH_ANY))
521                 return 0;
522
523         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
524
525         if (!event->attr.exclude_user)
526                 b |= PERF_SAMPLE_BRANCH_USER;
527
528         if (!event->attr.exclude_kernel)
529                 b |= PERF_SAMPLE_BRANCH_KERNEL;
530
531         /*
532          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
533          */
534
535         return m == b;
536 }
537
538 int x86_pmu_max_precise(void)
539 {
540         int precise = 0;
541
542         /* Support for constant skid */
543         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
544                 precise++;
545
546                 /* Support for IP fixup */
547                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
548                         precise++;
549
550                 if (x86_pmu.pebs_prec_dist)
551                         precise++;
552         }
553         return precise;
554 }
555
556 int x86_pmu_hw_config(struct perf_event *event)
557 {
558         if (event->attr.precise_ip) {
559                 int precise = x86_pmu_max_precise();
560
561                 if (event->attr.precise_ip > precise)
562                         return -EOPNOTSUPP;
563
564                 /* There's no sense in having PEBS for non sampling events: */
565                 if (!is_sampling_event(event))
566                         return -EINVAL;
567         }
568         /*
569          * check that PEBS LBR correction does not conflict with
570          * whatever the user is asking with attr->branch_sample_type
571          */
572         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
573                 u64 *br_type = &event->attr.branch_sample_type;
574
575                 if (has_branch_stack(event)) {
576                         if (!precise_br_compat(event))
577                                 return -EOPNOTSUPP;
578
579                         /* branch_sample_type is compatible */
580
581                 } else {
582                         /*
583                          * user did not specify  branch_sample_type
584                          *
585                          * For PEBS fixups, we capture all
586                          * the branches at the priv level of the
587                          * event.
588                          */
589                         *br_type = PERF_SAMPLE_BRANCH_ANY;
590
591                         if (!event->attr.exclude_user)
592                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
593
594                         if (!event->attr.exclude_kernel)
595                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
596                 }
597         }
598
599         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
600                 event->attach_state |= PERF_ATTACH_TASK_DATA;
601
602         /*
603          * Generate PMC IRQs:
604          * (keep 'enabled' bit clear for now)
605          */
606         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
607
608         /*
609          * Count user and OS events unless requested not to
610          */
611         if (!event->attr.exclude_user)
612                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
613         if (!event->attr.exclude_kernel)
614                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
615
616         if (event->attr.type == event->pmu->type)
617                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
618
619         if (event->attr.sample_period && x86_pmu.limit_period) {
620                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
621                                 event->attr.sample_period)
622                         return -EINVAL;
623         }
624
625         /* sample_regs_user never support XMM registers */
626         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
627                 return -EINVAL;
628         /*
629          * Besides the general purpose registers, XMM registers may
630          * be collected in PEBS on some platforms, e.g. Icelake
631          */
632         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
633                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
634                         return -EINVAL;
635
636                 if (!event->attr.precise_ip)
637                         return -EINVAL;
638         }
639
640         return x86_setup_perfctr(event);
641 }
642
643 /*
644  * Setup the hardware configuration for a given attr_type
645  */
646 static int __x86_pmu_event_init(struct perf_event *event)
647 {
648         int err;
649
650         if (!x86_pmu_initialized())
651                 return -ENODEV;
652
653         err = x86_reserve_hardware();
654         if (err)
655                 return err;
656
657         atomic_inc(&active_events);
658         event->destroy = hw_perf_event_destroy;
659
660         event->hw.idx = -1;
661         event->hw.last_cpu = -1;
662         event->hw.last_tag = ~0ULL;
663
664         /* mark unused */
665         event->hw.extra_reg.idx = EXTRA_REG_NONE;
666         event->hw.branch_reg.idx = EXTRA_REG_NONE;
667
668         return x86_pmu.hw_config(event);
669 }
670
671 void x86_pmu_disable_all(void)
672 {
673         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
674         int idx;
675
676         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
677                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
678                 u64 val;
679
680                 if (!test_bit(idx, cpuc->active_mask))
681                         continue;
682                 rdmsrl(x86_pmu_config_addr(idx), val);
683                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
684                         continue;
685                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
686                 wrmsrl(x86_pmu_config_addr(idx), val);
687                 if (is_counter_pair(hwc))
688                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
689         }
690 }
691
692 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
693 {
694         return static_call(x86_pmu_guest_get_msrs)(nr);
695 }
696 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
697
698 /*
699  * There may be PMI landing after enabled=0. The PMI hitting could be before or
700  * after disable_all.
701  *
702  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
703  * It will not be re-enabled in the NMI handler again, because enabled=0. After
704  * handling the NMI, disable_all will be called, which will not change the
705  * state either. If PMI hits after disable_all, the PMU is already disabled
706  * before entering NMI handler. The NMI handler will not change the state
707  * either.
708  *
709  * So either situation is harmless.
710  */
711 static void x86_pmu_disable(struct pmu *pmu)
712 {
713         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
714
715         if (!x86_pmu_initialized())
716                 return;
717
718         if (!cpuc->enabled)
719                 return;
720
721         cpuc->n_added = 0;
722         cpuc->enabled = 0;
723         barrier();
724
725         static_call(x86_pmu_disable_all)();
726 }
727
728 void x86_pmu_enable_all(int added)
729 {
730         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
731         int idx;
732
733         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
734                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
735
736                 if (!test_bit(idx, cpuc->active_mask))
737                         continue;
738
739                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
740         }
741 }
742
743 static inline int is_x86_event(struct perf_event *event)
744 {
745         int i;
746
747         if (!is_hybrid())
748                 return event->pmu == &pmu;
749
750         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
751                 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
752                         return true;
753         }
754
755         return false;
756 }
757
758 struct pmu *x86_get_pmu(unsigned int cpu)
759 {
760         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
761
762         /*
763          * All CPUs of the hybrid type have been offline.
764          * The x86_get_pmu() should not be invoked.
765          */
766         if (WARN_ON_ONCE(!cpuc->pmu))
767                 return &pmu;
768
769         return cpuc->pmu;
770 }
771 /*
772  * Event scheduler state:
773  *
774  * Assign events iterating over all events and counters, beginning
775  * with events with least weights first. Keep the current iterator
776  * state in struct sched_state.
777  */
778 struct sched_state {
779         int     weight;
780         int     event;          /* event index */
781         int     counter;        /* counter index */
782         int     unassigned;     /* number of events to be assigned left */
783         int     nr_gp;          /* number of GP counters used */
784         u64     used;
785 };
786
787 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
788 #define SCHED_STATES_MAX        2
789
790 struct perf_sched {
791         int                     max_weight;
792         int                     max_events;
793         int                     max_gp;
794         int                     saved_states;
795         struct event_constraint **constraints;
796         struct sched_state      state;
797         struct sched_state      saved[SCHED_STATES_MAX];
798 };
799
800 /*
801  * Initialize iterator that runs through all events and counters.
802  */
803 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
804                             int num, int wmin, int wmax, int gpmax)
805 {
806         int idx;
807
808         memset(sched, 0, sizeof(*sched));
809         sched->max_events       = num;
810         sched->max_weight       = wmax;
811         sched->max_gp           = gpmax;
812         sched->constraints      = constraints;
813
814         for (idx = 0; idx < num; idx++) {
815                 if (constraints[idx]->weight == wmin)
816                         break;
817         }
818
819         sched->state.event      = idx;          /* start with min weight */
820         sched->state.weight     = wmin;
821         sched->state.unassigned = num;
822 }
823
824 static void perf_sched_save_state(struct perf_sched *sched)
825 {
826         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
827                 return;
828
829         sched->saved[sched->saved_states] = sched->state;
830         sched->saved_states++;
831 }
832
833 static bool perf_sched_restore_state(struct perf_sched *sched)
834 {
835         if (!sched->saved_states)
836                 return false;
837
838         sched->saved_states--;
839         sched->state = sched->saved[sched->saved_states];
840
841         /* this assignment didn't work out */
842         /* XXX broken vs EVENT_PAIR */
843         sched->state.used &= ~BIT_ULL(sched->state.counter);
844
845         /* try the next one */
846         sched->state.counter++;
847
848         return true;
849 }
850
851 /*
852  * Select a counter for the current event to schedule. Return true on
853  * success.
854  */
855 static bool __perf_sched_find_counter(struct perf_sched *sched)
856 {
857         struct event_constraint *c;
858         int idx;
859
860         if (!sched->state.unassigned)
861                 return false;
862
863         if (sched->state.event >= sched->max_events)
864                 return false;
865
866         c = sched->constraints[sched->state.event];
867         /* Prefer fixed purpose counters */
868         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
869                 idx = INTEL_PMC_IDX_FIXED;
870                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
871                         u64 mask = BIT_ULL(idx);
872
873                         if (sched->state.used & mask)
874                                 continue;
875
876                         sched->state.used |= mask;
877                         goto done;
878                 }
879         }
880
881         /* Grab the first unused counter starting with idx */
882         idx = sched->state.counter;
883         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
884                 u64 mask = BIT_ULL(idx);
885
886                 if (c->flags & PERF_X86_EVENT_PAIR)
887                         mask |= mask << 1;
888
889                 if (sched->state.used & mask)
890                         continue;
891
892                 if (sched->state.nr_gp++ >= sched->max_gp)
893                         return false;
894
895                 sched->state.used |= mask;
896                 goto done;
897         }
898
899         return false;
900
901 done:
902         sched->state.counter = idx;
903
904         if (c->overlap)
905                 perf_sched_save_state(sched);
906
907         return true;
908 }
909
910 static bool perf_sched_find_counter(struct perf_sched *sched)
911 {
912         while (!__perf_sched_find_counter(sched)) {
913                 if (!perf_sched_restore_state(sched))
914                         return false;
915         }
916
917         return true;
918 }
919
920 /*
921  * Go through all unassigned events and find the next one to schedule.
922  * Take events with the least weight first. Return true on success.
923  */
924 static bool perf_sched_next_event(struct perf_sched *sched)
925 {
926         struct event_constraint *c;
927
928         if (!sched->state.unassigned || !--sched->state.unassigned)
929                 return false;
930
931         do {
932                 /* next event */
933                 sched->state.event++;
934                 if (sched->state.event >= sched->max_events) {
935                         /* next weight */
936                         sched->state.event = 0;
937                         sched->state.weight++;
938                         if (sched->state.weight > sched->max_weight)
939                                 return false;
940                 }
941                 c = sched->constraints[sched->state.event];
942         } while (c->weight != sched->state.weight);
943
944         sched->state.counter = 0;       /* start with first counter */
945
946         return true;
947 }
948
949 /*
950  * Assign a counter for each event.
951  */
952 int perf_assign_events(struct event_constraint **constraints, int n,
953                         int wmin, int wmax, int gpmax, int *assign)
954 {
955         struct perf_sched sched;
956
957         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
958
959         do {
960                 if (!perf_sched_find_counter(&sched))
961                         break;  /* failed */
962                 if (assign)
963                         assign[sched.state.event] = sched.state.counter;
964         } while (perf_sched_next_event(&sched));
965
966         return sched.state.unassigned;
967 }
968 EXPORT_SYMBOL_GPL(perf_assign_events);
969
970 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
971 {
972         int num_counters = hybrid(cpuc->pmu, num_counters);
973         struct event_constraint *c;
974         struct perf_event *e;
975         int n0, i, wmin, wmax, unsched = 0;
976         struct hw_perf_event *hwc;
977         u64 used_mask = 0;
978
979         /*
980          * Compute the number of events already present; see x86_pmu_add(),
981          * validate_group() and x86_pmu_commit_txn(). For the former two
982          * cpuc->n_events hasn't been updated yet, while for the latter
983          * cpuc->n_txn contains the number of events added in the current
984          * transaction.
985          */
986         n0 = cpuc->n_events;
987         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
988                 n0 -= cpuc->n_txn;
989
990         static_call_cond(x86_pmu_start_scheduling)(cpuc);
991
992         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
993                 c = cpuc->event_constraint[i];
994
995                 /*
996                  * Previously scheduled events should have a cached constraint,
997                  * while new events should not have one.
998                  */
999                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1000
1001                 /*
1002                  * Request constraints for new events; or for those events that
1003                  * have a dynamic constraint -- for those the constraint can
1004                  * change due to external factors (sibling state, allow_tfa).
1005                  */
1006                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1007                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1008                         cpuc->event_constraint[i] = c;
1009                 }
1010
1011                 wmin = min(wmin, c->weight);
1012                 wmax = max(wmax, c->weight);
1013         }
1014
1015         /*
1016          * fastpath, try to reuse previous register
1017          */
1018         for (i = 0; i < n; i++) {
1019                 u64 mask;
1020
1021                 hwc = &cpuc->event_list[i]->hw;
1022                 c = cpuc->event_constraint[i];
1023
1024                 /* never assigned */
1025                 if (hwc->idx == -1)
1026                         break;
1027
1028                 /* constraint still honored */
1029                 if (!test_bit(hwc->idx, c->idxmsk))
1030                         break;
1031
1032                 mask = BIT_ULL(hwc->idx);
1033                 if (is_counter_pair(hwc))
1034                         mask |= mask << 1;
1035
1036                 /* not already used */
1037                 if (used_mask & mask)
1038                         break;
1039
1040                 used_mask |= mask;
1041
1042                 if (assign)
1043                         assign[i] = hwc->idx;
1044         }
1045
1046         /* slow path */
1047         if (i != n) {
1048                 int gpmax = num_counters;
1049
1050                 /*
1051                  * Do not allow scheduling of more than half the available
1052                  * generic counters.
1053                  *
1054                  * This helps avoid counter starvation of sibling thread by
1055                  * ensuring at most half the counters cannot be in exclusive
1056                  * mode. There is no designated counters for the limits. Any
1057                  * N/2 counters can be used. This helps with events with
1058                  * specific counter constraints.
1059                  */
1060                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1061                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1062                         gpmax /= 2;
1063
1064                 /*
1065                  * Reduce the amount of available counters to allow fitting
1066                  * the extra Merge events needed by large increment events.
1067                  */
1068                 if (x86_pmu.flags & PMU_FL_PAIR) {
1069                         gpmax = num_counters - cpuc->n_pair;
1070                         WARN_ON(gpmax <= 0);
1071                 }
1072
1073                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1074                                              wmax, gpmax, assign);
1075         }
1076
1077         /*
1078          * In case of success (unsched = 0), mark events as committed,
1079          * so we do not put_constraint() in case new events are added
1080          * and fail to be scheduled
1081          *
1082          * We invoke the lower level commit callback to lock the resource
1083          *
1084          * We do not need to do all of this in case we are called to
1085          * validate an event group (assign == NULL)
1086          */
1087         if (!unsched && assign) {
1088                 for (i = 0; i < n; i++) {
1089                         e = cpuc->event_list[i];
1090                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1091                 }
1092         } else {
1093                 for (i = n0; i < n; i++) {
1094                         e = cpuc->event_list[i];
1095
1096                         /*
1097                          * release events that failed scheduling
1098                          */
1099                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1100
1101                         cpuc->event_constraint[i] = NULL;
1102                 }
1103         }
1104
1105         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1106
1107         return unsched ? -EINVAL : 0;
1108 }
1109
1110 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1111                                struct perf_event *event)
1112 {
1113         if (is_metric_event(event)) {
1114                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1115                         return -EINVAL;
1116                 cpuc->n_metric++;
1117                 cpuc->n_txn_metric++;
1118         }
1119
1120         return 0;
1121 }
1122
1123 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1124                                 struct perf_event *event)
1125 {
1126         if (is_metric_event(event))
1127                 cpuc->n_metric--;
1128 }
1129
1130 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1131                          int max_count, int n)
1132 {
1133         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1134
1135         if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1136                 return -EINVAL;
1137
1138         if (n >= max_count + cpuc->n_metric)
1139                 return -EINVAL;
1140
1141         cpuc->event_list[n] = event;
1142         if (is_counter_pair(&event->hw)) {
1143                 cpuc->n_pair++;
1144                 cpuc->n_txn_pair++;
1145         }
1146
1147         return 0;
1148 }
1149
1150 /*
1151  * dogrp: true if must collect siblings events (group)
1152  * returns total number of events and error code
1153  */
1154 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1155 {
1156         int num_counters = hybrid(cpuc->pmu, num_counters);
1157         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1158         struct perf_event *event;
1159         int n, max_count;
1160
1161         max_count = num_counters + num_counters_fixed;
1162
1163         /* current number of events already accepted */
1164         n = cpuc->n_events;
1165         if (!cpuc->n_events)
1166                 cpuc->pebs_output = 0;
1167
1168         if (!cpuc->is_fake && leader->attr.precise_ip) {
1169                 /*
1170                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1171                  * away, the group was broken down and this singleton event
1172                  * can't schedule any more.
1173                  */
1174                 if (is_pebs_pt(leader) && !leader->aux_event)
1175                         return -EINVAL;
1176
1177                 /*
1178                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1179                  */
1180                 if (cpuc->pebs_output &&
1181                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1182                         return -EINVAL;
1183
1184                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1185         }
1186
1187         if (is_x86_event(leader)) {
1188                 if (collect_event(cpuc, leader, max_count, n))
1189                         return -EINVAL;
1190                 n++;
1191         }
1192
1193         if (!dogrp)
1194                 return n;
1195
1196         for_each_sibling_event(event, leader) {
1197                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1198                         continue;
1199
1200                 if (collect_event(cpuc, event, max_count, n))
1201                         return -EINVAL;
1202
1203                 n++;
1204         }
1205         return n;
1206 }
1207
1208 static inline void x86_assign_hw_event(struct perf_event *event,
1209                                 struct cpu_hw_events *cpuc, int i)
1210 {
1211         struct hw_perf_event *hwc = &event->hw;
1212         int idx;
1213
1214         idx = hwc->idx = cpuc->assign[i];
1215         hwc->last_cpu = smp_processor_id();
1216         hwc->last_tag = ++cpuc->tags[i];
1217
1218         switch (hwc->idx) {
1219         case INTEL_PMC_IDX_FIXED_BTS:
1220         case INTEL_PMC_IDX_FIXED_VLBR:
1221                 hwc->config_base = 0;
1222                 hwc->event_base = 0;
1223                 break;
1224
1225         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1226                 /* All the metric events are mapped onto the fixed counter 3. */
1227                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1228                 fallthrough;
1229         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1230                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1231                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1232                                 (idx - INTEL_PMC_IDX_FIXED);
1233                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1234                                         INTEL_PMC_FIXED_RDPMC_BASE;
1235                 break;
1236
1237         default:
1238                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1239                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1240                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1241                 break;
1242         }
1243 }
1244
1245 /**
1246  * x86_perf_rdpmc_index - Return PMC counter used for event
1247  * @event: the perf_event to which the PMC counter was assigned
1248  *
1249  * The counter assigned to this performance event may change if interrupts
1250  * are enabled. This counter should thus never be used while interrupts are
1251  * enabled. Before this function is used to obtain the assigned counter the
1252  * event should be checked for validity using, for example,
1253  * perf_event_read_local(), within the same interrupt disabled section in
1254  * which this counter is planned to be used.
1255  *
1256  * Return: The index of the performance monitoring counter assigned to
1257  * @perf_event.
1258  */
1259 int x86_perf_rdpmc_index(struct perf_event *event)
1260 {
1261         lockdep_assert_irqs_disabled();
1262
1263         return event->hw.event_base_rdpmc;
1264 }
1265
1266 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1267                                         struct cpu_hw_events *cpuc,
1268                                         int i)
1269 {
1270         return hwc->idx == cpuc->assign[i] &&
1271                 hwc->last_cpu == smp_processor_id() &&
1272                 hwc->last_tag == cpuc->tags[i];
1273 }
1274
1275 static void x86_pmu_start(struct perf_event *event, int flags);
1276
1277 static void x86_pmu_enable(struct pmu *pmu)
1278 {
1279         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1280         struct perf_event *event;
1281         struct hw_perf_event *hwc;
1282         int i, added = cpuc->n_added;
1283
1284         if (!x86_pmu_initialized())
1285                 return;
1286
1287         if (cpuc->enabled)
1288                 return;
1289
1290         if (cpuc->n_added) {
1291                 int n_running = cpuc->n_events - cpuc->n_added;
1292                 /*
1293                  * apply assignment obtained either from
1294                  * hw_perf_group_sched_in() or x86_pmu_enable()
1295                  *
1296                  * step1: save events moving to new counters
1297                  */
1298                 for (i = 0; i < n_running; i++) {
1299                         event = cpuc->event_list[i];
1300                         hwc = &event->hw;
1301
1302                         /*
1303                          * we can avoid reprogramming counter if:
1304                          * - assigned same counter as last time
1305                          * - running on same CPU as last time
1306                          * - no other event has used the counter since
1307                          */
1308                         if (hwc->idx == -1 ||
1309                             match_prev_assignment(hwc, cpuc, i))
1310                                 continue;
1311
1312                         /*
1313                          * Ensure we don't accidentally enable a stopped
1314                          * counter simply because we rescheduled.
1315                          */
1316                         if (hwc->state & PERF_HES_STOPPED)
1317                                 hwc->state |= PERF_HES_ARCH;
1318
1319                         x86_pmu_stop(event, PERF_EF_UPDATE);
1320                 }
1321
1322                 /*
1323                  * step2: reprogram moved events into new counters
1324                  */
1325                 for (i = 0; i < cpuc->n_events; i++) {
1326                         event = cpuc->event_list[i];
1327                         hwc = &event->hw;
1328
1329                         if (!match_prev_assignment(hwc, cpuc, i))
1330                                 x86_assign_hw_event(event, cpuc, i);
1331                         else if (i < n_running)
1332                                 continue;
1333
1334                         if (hwc->state & PERF_HES_ARCH)
1335                                 continue;
1336
1337                         x86_pmu_start(event, PERF_EF_RELOAD);
1338                 }
1339                 cpuc->n_added = 0;
1340                 perf_events_lapic_init();
1341         }
1342
1343         cpuc->enabled = 1;
1344         barrier();
1345
1346         static_call(x86_pmu_enable_all)(added);
1347 }
1348
1349 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1350
1351 /*
1352  * Set the next IRQ period, based on the hwc->period_left value.
1353  * To be called with the event disabled in hw:
1354  */
1355 int x86_perf_event_set_period(struct perf_event *event)
1356 {
1357         struct hw_perf_event *hwc = &event->hw;
1358         s64 left = local64_read(&hwc->period_left);
1359         s64 period = hwc->sample_period;
1360         int ret = 0, idx = hwc->idx;
1361
1362         if (unlikely(!hwc->event_base))
1363                 return 0;
1364
1365         if (unlikely(is_topdown_count(event)) &&
1366             x86_pmu.set_topdown_event_period)
1367                 return x86_pmu.set_topdown_event_period(event);
1368
1369         /*
1370          * If we are way outside a reasonable range then just skip forward:
1371          */
1372         if (unlikely(left <= -period)) {
1373                 left = period;
1374                 local64_set(&hwc->period_left, left);
1375                 hwc->last_period = period;
1376                 ret = 1;
1377         }
1378
1379         if (unlikely(left <= 0)) {
1380                 left += period;
1381                 local64_set(&hwc->period_left, left);
1382                 hwc->last_period = period;
1383                 ret = 1;
1384         }
1385         /*
1386          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1387          */
1388         if (unlikely(left < 2))
1389                 left = 2;
1390
1391         if (left > x86_pmu.max_period)
1392                 left = x86_pmu.max_period;
1393
1394         if (x86_pmu.limit_period)
1395                 left = x86_pmu.limit_period(event, left);
1396
1397         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1398
1399         /*
1400          * The hw event starts counting from this event offset,
1401          * mark it to be able to extra future deltas:
1402          */
1403         local64_set(&hwc->prev_count, (u64)-left);
1404
1405         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1406
1407         /*
1408          * Sign extend the Merge event counter's upper 16 bits since
1409          * we currently declare a 48-bit counter width
1410          */
1411         if (is_counter_pair(hwc))
1412                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1413
1414         /*
1415          * Due to erratum on certan cpu we need
1416          * a second write to be sure the register
1417          * is updated properly
1418          */
1419         if (x86_pmu.perfctr_second_write) {
1420                 wrmsrl(hwc->event_base,
1421                         (u64)(-left) & x86_pmu.cntval_mask);
1422         }
1423
1424         perf_event_update_userpage(event);
1425
1426         return ret;
1427 }
1428
1429 void x86_pmu_enable_event(struct perf_event *event)
1430 {
1431         if (__this_cpu_read(cpu_hw_events.enabled))
1432                 __x86_pmu_enable_event(&event->hw,
1433                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1434 }
1435
1436 /*
1437  * Add a single event to the PMU.
1438  *
1439  * The event is added to the group of enabled events
1440  * but only if it can be scheduled with existing events.
1441  */
1442 static int x86_pmu_add(struct perf_event *event, int flags)
1443 {
1444         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1445         struct hw_perf_event *hwc;
1446         int assign[X86_PMC_IDX_MAX];
1447         int n, n0, ret;
1448
1449         hwc = &event->hw;
1450
1451         n0 = cpuc->n_events;
1452         ret = n = collect_events(cpuc, event, false);
1453         if (ret < 0)
1454                 goto out;
1455
1456         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1457         if (!(flags & PERF_EF_START))
1458                 hwc->state |= PERF_HES_ARCH;
1459
1460         /*
1461          * If group events scheduling transaction was started,
1462          * skip the schedulability test here, it will be performed
1463          * at commit time (->commit_txn) as a whole.
1464          *
1465          * If commit fails, we'll call ->del() on all events
1466          * for which ->add() was called.
1467          */
1468         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1469                 goto done_collect;
1470
1471         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1472         if (ret)
1473                 goto out;
1474         /*
1475          * copy new assignment, now we know it is possible
1476          * will be used by hw_perf_enable()
1477          */
1478         memcpy(cpuc->assign, assign, n*sizeof(int));
1479
1480 done_collect:
1481         /*
1482          * Commit the collect_events() state. See x86_pmu_del() and
1483          * x86_pmu_*_txn().
1484          */
1485         cpuc->n_events = n;
1486         cpuc->n_added += n - n0;
1487         cpuc->n_txn += n - n0;
1488
1489         /*
1490          * This is before x86_pmu_enable() will call x86_pmu_start(),
1491          * so we enable LBRs before an event needs them etc..
1492          */
1493         static_call_cond(x86_pmu_add)(event);
1494
1495         ret = 0;
1496 out:
1497         return ret;
1498 }
1499
1500 static void x86_pmu_start(struct perf_event *event, int flags)
1501 {
1502         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1503         int idx = event->hw.idx;
1504
1505         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1506                 return;
1507
1508         if (WARN_ON_ONCE(idx == -1))
1509                 return;
1510
1511         if (flags & PERF_EF_RELOAD) {
1512                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1513                 x86_perf_event_set_period(event);
1514         }
1515
1516         event->hw.state = 0;
1517
1518         cpuc->events[idx] = event;
1519         __set_bit(idx, cpuc->active_mask);
1520         static_call(x86_pmu_enable)(event);
1521         perf_event_update_userpage(event);
1522 }
1523
1524 void perf_event_print_debug(void)
1525 {
1526         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1527         u64 pebs, debugctl;
1528         int cpu = smp_processor_id();
1529         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1530         int num_counters = hybrid(cpuc->pmu, num_counters);
1531         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1532         struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1533         unsigned long flags;
1534         int idx;
1535
1536         if (!num_counters)
1537                 return;
1538
1539         local_irq_save(flags);
1540
1541         if (x86_pmu.version >= 2) {
1542                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1543                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1544                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1545                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1546
1547                 pr_info("\n");
1548                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1549                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1550                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1551                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1552                 if (pebs_constraints) {
1553                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1554                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1555                 }
1556                 if (x86_pmu.lbr_nr) {
1557                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1558                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1559                 }
1560         }
1561         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1562
1563         for (idx = 0; idx < num_counters; idx++) {
1564                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1565                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1566
1567                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1568
1569                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1570                         cpu, idx, pmc_ctrl);
1571                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1572                         cpu, idx, pmc_count);
1573                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1574                         cpu, idx, prev_left);
1575         }
1576         for (idx = 0; idx < num_counters_fixed; idx++) {
1577                 if (fixed_counter_disabled(idx, cpuc->pmu))
1578                         continue;
1579                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1580
1581                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1582                         cpu, idx, pmc_count);
1583         }
1584         local_irq_restore(flags);
1585 }
1586
1587 void x86_pmu_stop(struct perf_event *event, int flags)
1588 {
1589         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1590         struct hw_perf_event *hwc = &event->hw;
1591
1592         if (test_bit(hwc->idx, cpuc->active_mask)) {
1593                 static_call(x86_pmu_disable)(event);
1594                 __clear_bit(hwc->idx, cpuc->active_mask);
1595                 cpuc->events[hwc->idx] = NULL;
1596                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1597                 hwc->state |= PERF_HES_STOPPED;
1598         }
1599
1600         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1601                 /*
1602                  * Drain the remaining delta count out of a event
1603                  * that we are disabling:
1604                  */
1605                 x86_perf_event_update(event);
1606                 hwc->state |= PERF_HES_UPTODATE;
1607         }
1608 }
1609
1610 static void x86_pmu_del(struct perf_event *event, int flags)
1611 {
1612         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1613         union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1614         int i;
1615
1616         /*
1617          * If we're called during a txn, we only need to undo x86_pmu.add.
1618          * The events never got scheduled and ->cancel_txn will truncate
1619          * the event_list.
1620          *
1621          * XXX assumes any ->del() called during a TXN will only be on
1622          * an event added during that same TXN.
1623          */
1624         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1625                 goto do_del;
1626
1627         /*
1628          * Not a TXN, therefore cleanup properly.
1629          */
1630         x86_pmu_stop(event, PERF_EF_UPDATE);
1631
1632         for (i = 0; i < cpuc->n_events; i++) {
1633                 if (event == cpuc->event_list[i])
1634                         break;
1635         }
1636
1637         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1638                 return;
1639
1640         /* If we have a newly added event; make sure to decrease n_added. */
1641         if (i >= cpuc->n_events - cpuc->n_added)
1642                 --cpuc->n_added;
1643
1644         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1645
1646         /* Delete the array entry. */
1647         while (++i < cpuc->n_events) {
1648                 cpuc->event_list[i-1] = cpuc->event_list[i];
1649                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1650         }
1651         cpuc->event_constraint[i-1] = NULL;
1652         --cpuc->n_events;
1653         if (intel_cap.perf_metrics)
1654                 del_nr_metric_event(cpuc, event);
1655
1656         perf_event_update_userpage(event);
1657
1658 do_del:
1659
1660         /*
1661          * This is after x86_pmu_stop(); so we disable LBRs after any
1662          * event can need them etc..
1663          */
1664         static_call_cond(x86_pmu_del)(event);
1665 }
1666
1667 int x86_pmu_handle_irq(struct pt_regs *regs)
1668 {
1669         struct perf_sample_data data;
1670         struct cpu_hw_events *cpuc;
1671         struct perf_event *event;
1672         int idx, handled = 0;
1673         u64 val;
1674
1675         cpuc = this_cpu_ptr(&cpu_hw_events);
1676
1677         /*
1678          * Some chipsets need to unmask the LVTPC in a particular spot
1679          * inside the nmi handler.  As a result, the unmasking was pushed
1680          * into all the nmi handlers.
1681          *
1682          * This generic handler doesn't seem to have any issues where the
1683          * unmasking occurs so it was left at the top.
1684          */
1685         apic_write(APIC_LVTPC, APIC_DM_NMI);
1686
1687         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1688                 if (!test_bit(idx, cpuc->active_mask))
1689                         continue;
1690
1691                 event = cpuc->events[idx];
1692
1693                 val = x86_perf_event_update(event);
1694                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1695                         continue;
1696
1697                 /*
1698                  * event overflow
1699                  */
1700                 handled++;
1701                 perf_sample_data_init(&data, 0, event->hw.last_period);
1702
1703                 if (!x86_perf_event_set_period(event))
1704                         continue;
1705
1706                 if (perf_event_overflow(event, &data, regs))
1707                         x86_pmu_stop(event, 0);
1708         }
1709
1710         if (handled)
1711                 inc_irq_stat(apic_perf_irqs);
1712
1713         return handled;
1714 }
1715
1716 void perf_events_lapic_init(void)
1717 {
1718         if (!x86_pmu.apic || !x86_pmu_initialized())
1719                 return;
1720
1721         /*
1722          * Always use NMI for PMU
1723          */
1724         apic_write(APIC_LVTPC, APIC_DM_NMI);
1725 }
1726
1727 static int
1728 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1729 {
1730         u64 start_clock;
1731         u64 finish_clock;
1732         int ret;
1733
1734         /*
1735          * All PMUs/events that share this PMI handler should make sure to
1736          * increment active_events for their events.
1737          */
1738         if (!atomic_read(&active_events))
1739                 return NMI_DONE;
1740
1741         start_clock = sched_clock();
1742         ret = static_call(x86_pmu_handle_irq)(regs);
1743         finish_clock = sched_clock();
1744
1745         perf_sample_event_took(finish_clock - start_clock);
1746
1747         return ret;
1748 }
1749 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1750
1751 struct event_constraint emptyconstraint;
1752 struct event_constraint unconstrained;
1753
1754 static int x86_pmu_prepare_cpu(unsigned int cpu)
1755 {
1756         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1757         int i;
1758
1759         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1760                 cpuc->kfree_on_online[i] = NULL;
1761         if (x86_pmu.cpu_prepare)
1762                 return x86_pmu.cpu_prepare(cpu);
1763         return 0;
1764 }
1765
1766 static int x86_pmu_dead_cpu(unsigned int cpu)
1767 {
1768         if (x86_pmu.cpu_dead)
1769                 x86_pmu.cpu_dead(cpu);
1770         return 0;
1771 }
1772
1773 static int x86_pmu_online_cpu(unsigned int cpu)
1774 {
1775         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1776         int i;
1777
1778         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1779                 kfree(cpuc->kfree_on_online[i]);
1780                 cpuc->kfree_on_online[i] = NULL;
1781         }
1782         return 0;
1783 }
1784
1785 static int x86_pmu_starting_cpu(unsigned int cpu)
1786 {
1787         if (x86_pmu.cpu_starting)
1788                 x86_pmu.cpu_starting(cpu);
1789         return 0;
1790 }
1791
1792 static int x86_pmu_dying_cpu(unsigned int cpu)
1793 {
1794         if (x86_pmu.cpu_dying)
1795                 x86_pmu.cpu_dying(cpu);
1796         return 0;
1797 }
1798
1799 static void __init pmu_check_apic(void)
1800 {
1801         if (boot_cpu_has(X86_FEATURE_APIC))
1802                 return;
1803
1804         x86_pmu.apic = 0;
1805         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1806         pr_info("no hardware sampling interrupt available.\n");
1807
1808         /*
1809          * If we have a PMU initialized but no APIC
1810          * interrupts, we cannot sample hardware
1811          * events (user-space has to fall back and
1812          * sample via a hrtimer based software event):
1813          */
1814         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1815
1816 }
1817
1818 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1819         .name = "format",
1820         .attrs = NULL,
1821 };
1822
1823 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1824 {
1825         struct perf_pmu_events_attr *pmu_attr =
1826                 container_of(attr, struct perf_pmu_events_attr, attr);
1827         u64 config = 0;
1828
1829         if (pmu_attr->id < x86_pmu.max_events)
1830                 config = x86_pmu.event_map(pmu_attr->id);
1831
1832         /* string trumps id */
1833         if (pmu_attr->event_str)
1834                 return sprintf(page, "%s", pmu_attr->event_str);
1835
1836         return x86_pmu.events_sysfs_show(page, config);
1837 }
1838 EXPORT_SYMBOL_GPL(events_sysfs_show);
1839
1840 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1841                           char *page)
1842 {
1843         struct perf_pmu_events_ht_attr *pmu_attr =
1844                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1845
1846         /*
1847          * Report conditional events depending on Hyper-Threading.
1848          *
1849          * This is overly conservative as usually the HT special
1850          * handling is not needed if the other CPU thread is idle.
1851          *
1852          * Note this does not (and cannot) handle the case when thread
1853          * siblings are invisible, for example with virtualization
1854          * if they are owned by some other guest.  The user tool
1855          * has to re-read when a thread sibling gets onlined later.
1856          */
1857         return sprintf(page, "%s",
1858                         topology_max_smt_threads() > 1 ?
1859                         pmu_attr->event_str_ht :
1860                         pmu_attr->event_str_noht);
1861 }
1862
1863 ssize_t events_hybrid_sysfs_show(struct device *dev,
1864                                  struct device_attribute *attr,
1865                                  char *page)
1866 {
1867         struct perf_pmu_events_hybrid_attr *pmu_attr =
1868                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1869         struct x86_hybrid_pmu *pmu;
1870         const char *str, *next_str;
1871         int i;
1872
1873         if (hweight64(pmu_attr->pmu_type) == 1)
1874                 return sprintf(page, "%s", pmu_attr->event_str);
1875
1876         /*
1877          * Hybrid PMUs may support the same event name, but with different
1878          * event encoding, e.g., the mem-loads event on an Atom PMU has
1879          * different event encoding from a Core PMU.
1880          *
1881          * The event_str includes all event encodings. Each event encoding
1882          * is divided by ";". The order of the event encodings must follow
1883          * the order of the hybrid PMU index.
1884          */
1885         pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1886
1887         str = pmu_attr->event_str;
1888         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1889                 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1890                         continue;
1891                 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1892                         next_str = strchr(str, ';');
1893                         if (next_str)
1894                                 return snprintf(page, next_str - str + 1, "%s", str);
1895                         else
1896                                 return sprintf(page, "%s", str);
1897                 }
1898                 str = strchr(str, ';');
1899                 str++;
1900         }
1901
1902         return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1905
1906 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1907 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1908 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1909 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1910 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1911 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1912 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1913 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1914 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1915 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1916
1917 static struct attribute *empty_attrs;
1918
1919 static struct attribute *events_attr[] = {
1920         EVENT_PTR(CPU_CYCLES),
1921         EVENT_PTR(INSTRUCTIONS),
1922         EVENT_PTR(CACHE_REFERENCES),
1923         EVENT_PTR(CACHE_MISSES),
1924         EVENT_PTR(BRANCH_INSTRUCTIONS),
1925         EVENT_PTR(BRANCH_MISSES),
1926         EVENT_PTR(BUS_CYCLES),
1927         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1928         EVENT_PTR(STALLED_CYCLES_BACKEND),
1929         EVENT_PTR(REF_CPU_CYCLES),
1930         NULL,
1931 };
1932
1933 /*
1934  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1935  * out of events_attr attributes.
1936  */
1937 static umode_t
1938 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1939 {
1940         struct perf_pmu_events_attr *pmu_attr;
1941
1942         if (idx >= x86_pmu.max_events)
1943                 return 0;
1944
1945         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1946         /* str trumps id */
1947         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1948 }
1949
1950 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1951         .name = "events",
1952         .attrs = events_attr,
1953         .is_visible = is_visible,
1954 };
1955
1956 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1957 {
1958         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1959         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1960         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1961         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1962         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1963         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1964         ssize_t ret;
1965
1966         /*
1967         * We have whole page size to spend and just little data
1968         * to write, so we can safely use sprintf.
1969         */
1970         ret = sprintf(page, "event=0x%02llx", event);
1971
1972         if (umask)
1973                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1974
1975         if (edge)
1976                 ret += sprintf(page + ret, ",edge");
1977
1978         if (pc)
1979                 ret += sprintf(page + ret, ",pc");
1980
1981         if (any)
1982                 ret += sprintf(page + ret, ",any");
1983
1984         if (inv)
1985                 ret += sprintf(page + ret, ",inv");
1986
1987         if (cmask)
1988                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1989
1990         ret += sprintf(page + ret, "\n");
1991
1992         return ret;
1993 }
1994
1995 static struct attribute_group x86_pmu_attr_group;
1996 static struct attribute_group x86_pmu_caps_group;
1997
1998 static void x86_pmu_static_call_update(void)
1999 {
2000         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2001         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2002         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2003         static_call_update(x86_pmu_enable, x86_pmu.enable);
2004         static_call_update(x86_pmu_disable, x86_pmu.disable);
2005
2006         static_call_update(x86_pmu_add, x86_pmu.add);
2007         static_call_update(x86_pmu_del, x86_pmu.del);
2008         static_call_update(x86_pmu_read, x86_pmu.read);
2009
2010         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2011         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2012         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2013
2014         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2015         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2016         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2017
2018         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2019         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2020
2021         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2022         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2023
2024         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2025 }
2026
2027 static void _x86_pmu_read(struct perf_event *event)
2028 {
2029         x86_perf_event_update(event);
2030 }
2031
2032 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2033                           u64 intel_ctrl)
2034 {
2035         pr_info("... version:                %d\n",     x86_pmu.version);
2036         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2037         pr_info("... generic registers:      %d\n",     num_counters);
2038         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2039         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2040         pr_info("... fixed-purpose events:   %lu\n",
2041                         hweight64((((1ULL << num_counters_fixed) - 1)
2042                                         << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2043         pr_info("... event mask:             %016Lx\n", intel_ctrl);
2044 }
2045
2046 /*
2047  * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2048  * of the first registered PMU is unconditionally assigned to
2049  * each possible cpuctx->ctx.pmu.
2050  * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2051  */
2052 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2053 {
2054         struct perf_cpu_context *cpuctx;
2055
2056         if (!pmu->pmu_cpu_context)
2057                 return;
2058
2059         cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2060         cpuctx->ctx.pmu = pmu;
2061 }
2062
2063 static int __init init_hw_perf_events(void)
2064 {
2065         struct x86_pmu_quirk *quirk;
2066         int err;
2067
2068         pr_info("Performance Events: ");
2069
2070         switch (boot_cpu_data.x86_vendor) {
2071         case X86_VENDOR_INTEL:
2072                 err = intel_pmu_init();
2073                 break;
2074         case X86_VENDOR_AMD:
2075                 err = amd_pmu_init();
2076                 break;
2077         case X86_VENDOR_HYGON:
2078                 err = amd_pmu_init();
2079                 x86_pmu.name = "HYGON";
2080                 break;
2081         case X86_VENDOR_ZHAOXIN:
2082         case X86_VENDOR_CENTAUR:
2083                 err = zhaoxin_pmu_init();
2084                 break;
2085         default:
2086                 err = -ENOTSUPP;
2087         }
2088         if (err != 0) {
2089                 pr_cont("no PMU driver, software events only.\n");
2090                 return 0;
2091         }
2092
2093         pmu_check_apic();
2094
2095         /* sanity check that the hardware exists or is emulated */
2096         if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2097                 return 0;
2098
2099         pr_cont("%s PMU driver.\n", x86_pmu.name);
2100
2101         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2102
2103         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2104                 quirk->func();
2105
2106         if (!x86_pmu.intel_ctrl)
2107                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2108
2109         perf_events_lapic_init();
2110         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2111
2112         unconstrained = (struct event_constraint)
2113                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2114                                    0, x86_pmu.num_counters, 0, 0);
2115
2116         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2117
2118         if (!x86_pmu.events_sysfs_show)
2119                 x86_pmu_events_group.attrs = &empty_attrs;
2120
2121         pmu.attr_update = x86_pmu.attr_update;
2122
2123         if (!is_hybrid()) {
2124                 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2125                                      x86_pmu.num_counters_fixed,
2126                                      x86_pmu.intel_ctrl);
2127         }
2128
2129         if (!x86_pmu.read)
2130                 x86_pmu.read = _x86_pmu_read;
2131
2132         if (!x86_pmu.guest_get_msrs)
2133                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2134
2135         x86_pmu_static_call_update();
2136
2137         /*
2138          * Install callbacks. Core will call them for each online
2139          * cpu.
2140          */
2141         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2142                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2143         if (err)
2144                 return err;
2145
2146         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2147                                 "perf/x86:starting", x86_pmu_starting_cpu,
2148                                 x86_pmu_dying_cpu);
2149         if (err)
2150                 goto out;
2151
2152         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2153                                 x86_pmu_online_cpu, NULL);
2154         if (err)
2155                 goto out1;
2156
2157         if (!is_hybrid()) {
2158                 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2159                 if (err)
2160                         goto out2;
2161         } else {
2162                 u8 cpu_type = get_this_hybrid_cpu_type();
2163                 struct x86_hybrid_pmu *hybrid_pmu;
2164                 int i, j;
2165
2166                 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2167                         cpu_type = x86_pmu.get_hybrid_cpu_type();
2168
2169                 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2170                         hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2171
2172                         hybrid_pmu->pmu = pmu;
2173                         hybrid_pmu->pmu.type = -1;
2174                         hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2175                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2176                         hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2177
2178                         err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2179                                                 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2180                         if (err)
2181                                 break;
2182
2183                         if (cpu_type == hybrid_pmu->cpu_type)
2184                                 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2185                 }
2186
2187                 if (i < x86_pmu.num_hybrid_pmus) {
2188                         for (j = 0; j < i; j++)
2189                                 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2190                         pr_warn("Failed to register hybrid PMUs\n");
2191                         kfree(x86_pmu.hybrid_pmu);
2192                         x86_pmu.hybrid_pmu = NULL;
2193                         x86_pmu.num_hybrid_pmus = 0;
2194                         goto out2;
2195                 }
2196         }
2197
2198         return 0;
2199
2200 out2:
2201         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2202 out1:
2203         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2204 out:
2205         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2206         return err;
2207 }
2208 early_initcall(init_hw_perf_events);
2209
2210 static void x86_pmu_read(struct perf_event *event)
2211 {
2212         static_call(x86_pmu_read)(event);
2213 }
2214
2215 /*
2216  * Start group events scheduling transaction
2217  * Set the flag to make pmu::enable() not perform the
2218  * schedulability test, it will be performed at commit time
2219  *
2220  * We only support PERF_PMU_TXN_ADD transactions. Save the
2221  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2222  * transactions.
2223  */
2224 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2225 {
2226         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2227
2228         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2229
2230         cpuc->txn_flags = txn_flags;
2231         if (txn_flags & ~PERF_PMU_TXN_ADD)
2232                 return;
2233
2234         perf_pmu_disable(pmu);
2235         __this_cpu_write(cpu_hw_events.n_txn, 0);
2236         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2237         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2238 }
2239
2240 /*
2241  * Stop group events scheduling transaction
2242  * Clear the flag and pmu::enable() will perform the
2243  * schedulability test.
2244  */
2245 static void x86_pmu_cancel_txn(struct pmu *pmu)
2246 {
2247         unsigned int txn_flags;
2248         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2249
2250         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2251
2252         txn_flags = cpuc->txn_flags;
2253         cpuc->txn_flags = 0;
2254         if (txn_flags & ~PERF_PMU_TXN_ADD)
2255                 return;
2256
2257         /*
2258          * Truncate collected array by the number of events added in this
2259          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2260          */
2261         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2262         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2263         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2264         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2265         perf_pmu_enable(pmu);
2266 }
2267
2268 /*
2269  * Commit group events scheduling transaction
2270  * Perform the group schedulability test as a whole
2271  * Return 0 if success
2272  *
2273  * Does not cancel the transaction on failure; expects the caller to do this.
2274  */
2275 static int x86_pmu_commit_txn(struct pmu *pmu)
2276 {
2277         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2278         int assign[X86_PMC_IDX_MAX];
2279         int n, ret;
2280
2281         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2282
2283         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2284                 cpuc->txn_flags = 0;
2285                 return 0;
2286         }
2287
2288         n = cpuc->n_events;
2289
2290         if (!x86_pmu_initialized())
2291                 return -EAGAIN;
2292
2293         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2294         if (ret)
2295                 return ret;
2296
2297         /*
2298          * copy new assignment, now we know it is possible
2299          * will be used by hw_perf_enable()
2300          */
2301         memcpy(cpuc->assign, assign, n*sizeof(int));
2302
2303         cpuc->txn_flags = 0;
2304         perf_pmu_enable(pmu);
2305         return 0;
2306 }
2307 /*
2308  * a fake_cpuc is used to validate event groups. Due to
2309  * the extra reg logic, we need to also allocate a fake
2310  * per_core and per_cpu structure. Otherwise, group events
2311  * using extra reg may conflict without the kernel being
2312  * able to catch this when the last event gets added to
2313  * the group.
2314  */
2315 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2316 {
2317         intel_cpuc_finish(cpuc);
2318         kfree(cpuc);
2319 }
2320
2321 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2322 {
2323         struct cpu_hw_events *cpuc;
2324         int cpu;
2325
2326         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2327         if (!cpuc)
2328                 return ERR_PTR(-ENOMEM);
2329         cpuc->is_fake = 1;
2330
2331         if (is_hybrid()) {
2332                 struct x86_hybrid_pmu *h_pmu;
2333
2334                 h_pmu = hybrid_pmu(event_pmu);
2335                 if (cpumask_empty(&h_pmu->supported_cpus))
2336                         goto error;
2337                 cpu = cpumask_first(&h_pmu->supported_cpus);
2338         } else
2339                 cpu = raw_smp_processor_id();
2340         cpuc->pmu = event_pmu;
2341
2342         if (intel_cpuc_prepare(cpuc, cpu))
2343                 goto error;
2344
2345         return cpuc;
2346 error:
2347         free_fake_cpuc(cpuc);
2348         return ERR_PTR(-ENOMEM);
2349 }
2350
2351 /*
2352  * validate that we can schedule this event
2353  */
2354 static int validate_event(struct perf_event *event)
2355 {
2356         struct cpu_hw_events *fake_cpuc;
2357         struct event_constraint *c;
2358         int ret = 0;
2359
2360         fake_cpuc = allocate_fake_cpuc(event->pmu);
2361         if (IS_ERR(fake_cpuc))
2362                 return PTR_ERR(fake_cpuc);
2363
2364         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2365
2366         if (!c || !c->weight)
2367                 ret = -EINVAL;
2368
2369         if (x86_pmu.put_event_constraints)
2370                 x86_pmu.put_event_constraints(fake_cpuc, event);
2371
2372         free_fake_cpuc(fake_cpuc);
2373
2374         return ret;
2375 }
2376
2377 /*
2378  * validate a single event group
2379  *
2380  * validation include:
2381  *      - check events are compatible which each other
2382  *      - events do not compete for the same counter
2383  *      - number of events <= number of counters
2384  *
2385  * validation ensures the group can be loaded onto the
2386  * PMU if it was the only group available.
2387  */
2388 static int validate_group(struct perf_event *event)
2389 {
2390         struct perf_event *leader = event->group_leader;
2391         struct cpu_hw_events *fake_cpuc;
2392         int ret = -EINVAL, n;
2393
2394         /*
2395          * Reject events from different hybrid PMUs.
2396          */
2397         if (is_hybrid()) {
2398                 struct perf_event *sibling;
2399                 struct pmu *pmu = NULL;
2400
2401                 if (is_x86_event(leader))
2402                         pmu = leader->pmu;
2403
2404                 for_each_sibling_event(sibling, leader) {
2405                         if (!is_x86_event(sibling))
2406                                 continue;
2407                         if (!pmu)
2408                                 pmu = sibling->pmu;
2409                         else if (pmu != sibling->pmu)
2410                                 return ret;
2411                 }
2412         }
2413
2414         fake_cpuc = allocate_fake_cpuc(event->pmu);
2415         if (IS_ERR(fake_cpuc))
2416                 return PTR_ERR(fake_cpuc);
2417         /*
2418          * the event is not yet connected with its
2419          * siblings therefore we must first collect
2420          * existing siblings, then add the new event
2421          * before we can simulate the scheduling
2422          */
2423         n = collect_events(fake_cpuc, leader, true);
2424         if (n < 0)
2425                 goto out;
2426
2427         fake_cpuc->n_events = n;
2428         n = collect_events(fake_cpuc, event, false);
2429         if (n < 0)
2430                 goto out;
2431
2432         fake_cpuc->n_events = 0;
2433         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2434
2435 out:
2436         free_fake_cpuc(fake_cpuc);
2437         return ret;
2438 }
2439
2440 static int x86_pmu_event_init(struct perf_event *event)
2441 {
2442         struct x86_hybrid_pmu *pmu = NULL;
2443         int err;
2444
2445         if ((event->attr.type != event->pmu->type) &&
2446             (event->attr.type != PERF_TYPE_HARDWARE) &&
2447             (event->attr.type != PERF_TYPE_HW_CACHE))
2448                 return -ENOENT;
2449
2450         if (is_hybrid() && (event->cpu != -1)) {
2451                 pmu = hybrid_pmu(event->pmu);
2452                 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2453                         return -ENOENT;
2454         }
2455
2456         err = __x86_pmu_event_init(event);
2457         if (!err) {
2458                 if (event->group_leader != event)
2459                         err = validate_group(event);
2460                 else
2461                         err = validate_event(event);
2462         }
2463         if (err) {
2464                 if (event->destroy)
2465                         event->destroy(event);
2466         }
2467
2468         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2469             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2470                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2471
2472         return err;
2473 }
2474
2475 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2476 {
2477         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2478                 return;
2479
2480         /*
2481          * This function relies on not being called concurrently in two
2482          * tasks in the same mm.  Otherwise one task could observe
2483          * perf_rdpmc_allowed > 1 and return all the way back to
2484          * userspace with CR4.PCE clear while another task is still
2485          * doing on_each_cpu_mask() to propagate CR4.PCE.
2486          *
2487          * For now, this can't happen because all callers hold mmap_lock
2488          * for write.  If this changes, we'll need a different solution.
2489          */
2490         mmap_assert_write_locked(mm);
2491
2492         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2493                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2494 }
2495
2496 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2497 {
2498
2499         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2500                 return;
2501
2502         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2503                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2504 }
2505
2506 static int x86_pmu_event_idx(struct perf_event *event)
2507 {
2508         struct hw_perf_event *hwc = &event->hw;
2509
2510         if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2511                 return 0;
2512
2513         if (is_metric_idx(hwc->idx))
2514                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2515         else
2516                 return hwc->event_base_rdpmc + 1;
2517 }
2518
2519 static ssize_t get_attr_rdpmc(struct device *cdev,
2520                               struct device_attribute *attr,
2521                               char *buf)
2522 {
2523         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2524 }
2525
2526 static ssize_t set_attr_rdpmc(struct device *cdev,
2527                               struct device_attribute *attr,
2528                               const char *buf, size_t count)
2529 {
2530         unsigned long val;
2531         ssize_t ret;
2532
2533         ret = kstrtoul(buf, 0, &val);
2534         if (ret)
2535                 return ret;
2536
2537         if (val > 2)
2538                 return -EINVAL;
2539
2540         if (x86_pmu.attr_rdpmc_broken)
2541                 return -ENOTSUPP;
2542
2543         if (val != x86_pmu.attr_rdpmc) {
2544                 /*
2545                  * Changing into or out of never available or always available,
2546                  * aka perf-event-bypassing mode. This path is extremely slow,
2547                  * but only root can trigger it, so it's okay.
2548                  */
2549                 if (val == 0)
2550                         static_branch_inc(&rdpmc_never_available_key);
2551                 else if (x86_pmu.attr_rdpmc == 0)
2552                         static_branch_dec(&rdpmc_never_available_key);
2553
2554                 if (val == 2)
2555                         static_branch_inc(&rdpmc_always_available_key);
2556                 else if (x86_pmu.attr_rdpmc == 2)
2557                         static_branch_dec(&rdpmc_always_available_key);
2558
2559                 on_each_cpu(cr4_update_pce, NULL, 1);
2560                 x86_pmu.attr_rdpmc = val;
2561         }
2562
2563         return count;
2564 }
2565
2566 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2567
2568 static struct attribute *x86_pmu_attrs[] = {
2569         &dev_attr_rdpmc.attr,
2570         NULL,
2571 };
2572
2573 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2574         .attrs = x86_pmu_attrs,
2575 };
2576
2577 static ssize_t max_precise_show(struct device *cdev,
2578                                   struct device_attribute *attr,
2579                                   char *buf)
2580 {
2581         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2582 }
2583
2584 static DEVICE_ATTR_RO(max_precise);
2585
2586 static struct attribute *x86_pmu_caps_attrs[] = {
2587         &dev_attr_max_precise.attr,
2588         NULL
2589 };
2590
2591 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2592         .name = "caps",
2593         .attrs = x86_pmu_caps_attrs,
2594 };
2595
2596 static const struct attribute_group *x86_pmu_attr_groups[] = {
2597         &x86_pmu_attr_group,
2598         &x86_pmu_format_group,
2599         &x86_pmu_events_group,
2600         &x86_pmu_caps_group,
2601         NULL,
2602 };
2603
2604 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2605 {
2606         static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2607 }
2608
2609 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2610                                   struct perf_event_context *next)
2611 {
2612         static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2613 }
2614
2615 void perf_check_microcode(void)
2616 {
2617         if (x86_pmu.check_microcode)
2618                 x86_pmu.check_microcode();
2619 }
2620
2621 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2622 {
2623         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2624                 return -EINVAL;
2625
2626         if (value && x86_pmu.limit_period) {
2627                 if (x86_pmu.limit_period(event, value) > value)
2628                         return -EINVAL;
2629         }
2630
2631         return 0;
2632 }
2633
2634 static int x86_pmu_aux_output_match(struct perf_event *event)
2635 {
2636         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2637                 return 0;
2638
2639         if (x86_pmu.aux_output_match)
2640                 return x86_pmu.aux_output_match(event);
2641
2642         return 0;
2643 }
2644
2645 static int x86_pmu_filter_match(struct perf_event *event)
2646 {
2647         if (x86_pmu.filter_match)
2648                 return x86_pmu.filter_match(event);
2649
2650         return 1;
2651 }
2652
2653 static struct pmu pmu = {
2654         .pmu_enable             = x86_pmu_enable,
2655         .pmu_disable            = x86_pmu_disable,
2656
2657         .attr_groups            = x86_pmu_attr_groups,
2658
2659         .event_init             = x86_pmu_event_init,
2660
2661         .event_mapped           = x86_pmu_event_mapped,
2662         .event_unmapped         = x86_pmu_event_unmapped,
2663
2664         .add                    = x86_pmu_add,
2665         .del                    = x86_pmu_del,
2666         .start                  = x86_pmu_start,
2667         .stop                   = x86_pmu_stop,
2668         .read                   = x86_pmu_read,
2669
2670         .start_txn              = x86_pmu_start_txn,
2671         .cancel_txn             = x86_pmu_cancel_txn,
2672         .commit_txn             = x86_pmu_commit_txn,
2673
2674         .event_idx              = x86_pmu_event_idx,
2675         .sched_task             = x86_pmu_sched_task,
2676         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2677         .check_period           = x86_pmu_check_period,
2678
2679         .aux_output_match       = x86_pmu_aux_output_match,
2680
2681         .filter_match           = x86_pmu_filter_match,
2682 };
2683
2684 void arch_perf_update_userpage(struct perf_event *event,
2685                                struct perf_event_mmap_page *userpg, u64 now)
2686 {
2687         struct cyc2ns_data data;
2688         u64 offset;
2689
2690         userpg->cap_user_time = 0;
2691         userpg->cap_user_time_zero = 0;
2692         userpg->cap_user_rdpmc =
2693                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2694         userpg->pmc_width = x86_pmu.cntval_bits;
2695
2696         if (!using_native_sched_clock() || !sched_clock_stable())
2697                 return;
2698
2699         cyc2ns_read_begin(&data);
2700
2701         offset = data.cyc2ns_offset + __sched_clock_offset;
2702
2703         /*
2704          * Internal timekeeping for enabled/running/stopped times
2705          * is always in the local_clock domain.
2706          */
2707         userpg->cap_user_time = 1;
2708         userpg->time_mult = data.cyc2ns_mul;
2709         userpg->time_shift = data.cyc2ns_shift;
2710         userpg->time_offset = offset - now;
2711
2712         /*
2713          * cap_user_time_zero doesn't make sense when we're using a different
2714          * time base for the records.
2715          */
2716         if (!event->attr.use_clockid) {
2717                 userpg->cap_user_time_zero = 1;
2718                 userpg->time_zero = offset;
2719         }
2720
2721         cyc2ns_read_end();
2722 }
2723
2724 /*
2725  * Determine whether the regs were taken from an irq/exception handler rather
2726  * than from perf_arch_fetch_caller_regs().
2727  */
2728 static bool perf_hw_regs(struct pt_regs *regs)
2729 {
2730         return regs->flags & X86_EFLAGS_FIXED;
2731 }
2732
2733 void
2734 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2735 {
2736         struct unwind_state state;
2737         unsigned long addr;
2738
2739         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2740                 /* TODO: We don't support guest os callchain now */
2741                 return;
2742         }
2743
2744         if (perf_callchain_store(entry, regs->ip))
2745                 return;
2746
2747         if (perf_hw_regs(regs))
2748                 unwind_start(&state, current, regs, NULL);
2749         else
2750                 unwind_start(&state, current, NULL, (void *)regs->sp);
2751
2752         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2753                 addr = unwind_get_return_address(&state);
2754                 if (!addr || perf_callchain_store(entry, addr))
2755                         return;
2756         }
2757 }
2758
2759 static inline int
2760 valid_user_frame(const void __user *fp, unsigned long size)
2761 {
2762         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2763 }
2764
2765 static unsigned long get_segment_base(unsigned int segment)
2766 {
2767         struct desc_struct *desc;
2768         unsigned int idx = segment >> 3;
2769
2770         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2771 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2772                 struct ldt_struct *ldt;
2773
2774                 /* IRQs are off, so this synchronizes with smp_store_release */
2775                 ldt = READ_ONCE(current->active_mm->context.ldt);
2776                 if (!ldt || idx >= ldt->nr_entries)
2777                         return 0;
2778
2779                 desc = &ldt->entries[idx];
2780 #else
2781                 return 0;
2782 #endif
2783         } else {
2784                 if (idx >= GDT_ENTRIES)
2785                         return 0;
2786
2787                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2788         }
2789
2790         return get_desc_base(desc);
2791 }
2792
2793 #ifdef CONFIG_IA32_EMULATION
2794
2795 #include <linux/compat.h>
2796
2797 static inline int
2798 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2799 {
2800         /* 32-bit process in 64-bit kernel. */
2801         unsigned long ss_base, cs_base;
2802         struct stack_frame_ia32 frame;
2803         const struct stack_frame_ia32 __user *fp;
2804
2805         if (user_64bit_mode(regs))
2806                 return 0;
2807
2808         cs_base = get_segment_base(regs->cs);
2809         ss_base = get_segment_base(regs->ss);
2810
2811         fp = compat_ptr(ss_base + regs->bp);
2812         pagefault_disable();
2813         while (entry->nr < entry->max_stack) {
2814                 if (!valid_user_frame(fp, sizeof(frame)))
2815                         break;
2816
2817                 if (__get_user(frame.next_frame, &fp->next_frame))
2818                         break;
2819                 if (__get_user(frame.return_address, &fp->return_address))
2820                         break;
2821
2822                 perf_callchain_store(entry, cs_base + frame.return_address);
2823                 fp = compat_ptr(ss_base + frame.next_frame);
2824         }
2825         pagefault_enable();
2826         return 1;
2827 }
2828 #else
2829 static inline int
2830 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2831 {
2832     return 0;
2833 }
2834 #endif
2835
2836 void
2837 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2838 {
2839         struct stack_frame frame;
2840         const struct stack_frame __user *fp;
2841
2842         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2843                 /* TODO: We don't support guest os callchain now */
2844                 return;
2845         }
2846
2847         /*
2848          * We don't know what to do with VM86 stacks.. ignore them for now.
2849          */
2850         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2851                 return;
2852
2853         fp = (void __user *)regs->bp;
2854
2855         perf_callchain_store(entry, regs->ip);
2856
2857         if (!nmi_uaccess_okay())
2858                 return;
2859
2860         if (perf_callchain_user32(regs, entry))
2861                 return;
2862
2863         pagefault_disable();
2864         while (entry->nr < entry->max_stack) {
2865                 if (!valid_user_frame(fp, sizeof(frame)))
2866                         break;
2867
2868                 if (__get_user(frame.next_frame, &fp->next_frame))
2869                         break;
2870                 if (__get_user(frame.return_address, &fp->return_address))
2871                         break;
2872
2873                 perf_callchain_store(entry, frame.return_address);
2874                 fp = (void __user *)frame.next_frame;
2875         }
2876         pagefault_enable();
2877 }
2878
2879 /*
2880  * Deal with code segment offsets for the various execution modes:
2881  *
2882  *   VM86 - the good olde 16 bit days, where the linear address is
2883  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2884  *
2885  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2886  *          to figure out what the 32bit base address is.
2887  *
2888  *    X32 - has TIF_X32 set, but is running in x86_64
2889  *
2890  * X86_64 - CS,DS,SS,ES are all zero based.
2891  */
2892 static unsigned long code_segment_base(struct pt_regs *regs)
2893 {
2894         /*
2895          * For IA32 we look at the GDT/LDT segment base to convert the
2896          * effective IP to a linear address.
2897          */
2898
2899 #ifdef CONFIG_X86_32
2900         /*
2901          * If we are in VM86 mode, add the segment offset to convert to a
2902          * linear address.
2903          */
2904         if (regs->flags & X86_VM_MASK)
2905                 return 0x10 * regs->cs;
2906
2907         if (user_mode(regs) && regs->cs != __USER_CS)
2908                 return get_segment_base(regs->cs);
2909 #else
2910         if (user_mode(regs) && !user_64bit_mode(regs) &&
2911             regs->cs != __USER32_CS)
2912                 return get_segment_base(regs->cs);
2913 #endif
2914         return 0;
2915 }
2916
2917 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2918 {
2919         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2920                 return perf_guest_cbs->get_guest_ip();
2921
2922         return regs->ip + code_segment_base(regs);
2923 }
2924
2925 unsigned long perf_misc_flags(struct pt_regs *regs)
2926 {
2927         int misc = 0;
2928
2929         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2930                 if (perf_guest_cbs->is_user_mode())
2931                         misc |= PERF_RECORD_MISC_GUEST_USER;
2932                 else
2933                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2934         } else {
2935                 if (user_mode(regs))
2936                         misc |= PERF_RECORD_MISC_USER;
2937                 else
2938                         misc |= PERF_RECORD_MISC_KERNEL;
2939         }
2940
2941         if (regs->flags & PERF_EFLAGS_EXACT)
2942                 misc |= PERF_RECORD_MISC_EXACT_IP;
2943
2944         return misc;
2945 }
2946
2947 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2948 {
2949         cap->version            = x86_pmu.version;
2950         /*
2951          * KVM doesn't support the hybrid PMU yet.
2952          * Return the common value in global x86_pmu,
2953          * which available for all cores.
2954          */
2955         cap->num_counters_gp    = x86_pmu.num_counters;
2956         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2957         cap->bit_width_gp       = x86_pmu.cntval_bits;
2958         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2959         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2960         cap->events_mask_len    = x86_pmu.events_mask_len;
2961 }
2962 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);