Merge tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[sfrench/cifs-2.6.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50         .enabled = 1,
51 };
52
53 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
54 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
55
56 /*
57  * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
58  * from just a typename, as opposed to an actual function.
59  */
60 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
61 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
62 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
63 DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
65
66 DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
68 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
69
70 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
71 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
73
74 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
77
78 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
80
81 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
83
84 /*
85  * This one is magic, it will get called even when PMU init fails (because
86  * there is no PMU), in which case it should simply return NULL.
87  */
88 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
89
90 u64 __read_mostly hw_cache_event_ids
91                                 [PERF_COUNT_HW_CACHE_MAX]
92                                 [PERF_COUNT_HW_CACHE_OP_MAX]
93                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
94 u64 __read_mostly hw_cache_extra_regs
95                                 [PERF_COUNT_HW_CACHE_MAX]
96                                 [PERF_COUNT_HW_CACHE_OP_MAX]
97                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
98
99 /*
100  * Propagate event elapsed time into the generic event.
101  * Can only be executed on the CPU where the event is active.
102  * Returns the delta events processed.
103  */
104 u64 x86_perf_event_update(struct perf_event *event)
105 {
106         struct hw_perf_event *hwc = &event->hw;
107         int shift = 64 - x86_pmu.cntval_bits;
108         u64 prev_raw_count, new_raw_count;
109         u64 delta;
110
111         if (unlikely(!hwc->event_base))
112                 return 0;
113
114         if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
115                 return x86_pmu.update_topdown_event(event);
116
117         /*
118          * Careful: an NMI might modify the previous event value.
119          *
120          * Our tactic to handle this is to first atomically read and
121          * exchange a new raw count - then add that new-prev delta
122          * count to the generic event atomically:
123          */
124 again:
125         prev_raw_count = local64_read(&hwc->prev_count);
126         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
127
128         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
129                                         new_raw_count) != prev_raw_count)
130                 goto again;
131
132         /*
133          * Now we have the new raw value and have updated the prev
134          * timestamp already. We can now calculate the elapsed delta
135          * (event-)time and add that to the generic event.
136          *
137          * Careful, not all hw sign-extends above the physical width
138          * of the count.
139          */
140         delta = (new_raw_count << shift) - (prev_raw_count << shift);
141         delta >>= shift;
142
143         local64_add(delta, &event->count);
144         local64_sub(delta, &hwc->period_left);
145
146         return new_raw_count;
147 }
148
149 /*
150  * Find and validate any extra registers to set up.
151  */
152 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
153 {
154         struct hw_perf_event_extra *reg;
155         struct extra_reg *er;
156
157         reg = &event->hw.extra_reg;
158
159         if (!x86_pmu.extra_regs)
160                 return 0;
161
162         for (er = x86_pmu.extra_regs; er->msr; er++) {
163                 if (er->event != (config & er->config_mask))
164                         continue;
165                 if (event->attr.config1 & ~er->valid_mask)
166                         return -EINVAL;
167                 /* Check if the extra msrs can be safely accessed*/
168                 if (!er->extra_msr_access)
169                         return -ENXIO;
170
171                 reg->idx = er->idx;
172                 reg->config = event->attr.config1;
173                 reg->reg = er->msr;
174                 break;
175         }
176         return 0;
177 }
178
179 static atomic_t active_events;
180 static atomic_t pmc_refcount;
181 static DEFINE_MUTEX(pmc_reserve_mutex);
182
183 #ifdef CONFIG_X86_LOCAL_APIC
184
185 static bool reserve_pmc_hardware(void)
186 {
187         int i;
188
189         for (i = 0; i < x86_pmu.num_counters; i++) {
190                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
191                         goto perfctr_fail;
192         }
193
194         for (i = 0; i < x86_pmu.num_counters; i++) {
195                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
196                         goto eventsel_fail;
197         }
198
199         return true;
200
201 eventsel_fail:
202         for (i--; i >= 0; i--)
203                 release_evntsel_nmi(x86_pmu_config_addr(i));
204
205         i = x86_pmu.num_counters;
206
207 perfctr_fail:
208         for (i--; i >= 0; i--)
209                 release_perfctr_nmi(x86_pmu_event_addr(i));
210
211         return false;
212 }
213
214 static void release_pmc_hardware(void)
215 {
216         int i;
217
218         for (i = 0; i < x86_pmu.num_counters; i++) {
219                 release_perfctr_nmi(x86_pmu_event_addr(i));
220                 release_evntsel_nmi(x86_pmu_config_addr(i));
221         }
222 }
223
224 #else
225
226 static bool reserve_pmc_hardware(void) { return true; }
227 static void release_pmc_hardware(void) {}
228
229 #endif
230
231 static bool check_hw_exists(void)
232 {
233         u64 val, val_fail = -1, val_new= ~0;
234         int i, reg, reg_fail = -1, ret = 0;
235         int bios_fail = 0;
236         int reg_safe = -1;
237
238         /*
239          * Check to see if the BIOS enabled any of the counters, if so
240          * complain and bail.
241          */
242         for (i = 0; i < x86_pmu.num_counters; i++) {
243                 reg = x86_pmu_config_addr(i);
244                 ret = rdmsrl_safe(reg, &val);
245                 if (ret)
246                         goto msr_fail;
247                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
248                         bios_fail = 1;
249                         val_fail = val;
250                         reg_fail = reg;
251                 } else {
252                         reg_safe = i;
253                 }
254         }
255
256         if (x86_pmu.num_counters_fixed) {
257                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
258                 ret = rdmsrl_safe(reg, &val);
259                 if (ret)
260                         goto msr_fail;
261                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
262                         if (fixed_counter_disabled(i))
263                                 continue;
264                         if (val & (0x03 << i*4)) {
265                                 bios_fail = 1;
266                                 val_fail = val;
267                                 reg_fail = reg;
268                         }
269                 }
270         }
271
272         /*
273          * If all the counters are enabled, the below test will always
274          * fail.  The tools will also become useless in this scenario.
275          * Just fail and disable the hardware counters.
276          */
277
278         if (reg_safe == -1) {
279                 reg = reg_safe;
280                 goto msr_fail;
281         }
282
283         /*
284          * Read the current value, change it and read it back to see if it
285          * matches, this is needed to detect certain hardware emulators
286          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
287          */
288         reg = x86_pmu_event_addr(reg_safe);
289         if (rdmsrl_safe(reg, &val))
290                 goto msr_fail;
291         val ^= 0xffffUL;
292         ret = wrmsrl_safe(reg, val);
293         ret |= rdmsrl_safe(reg, &val_new);
294         if (ret || val != val_new)
295                 goto msr_fail;
296
297         /*
298          * We still allow the PMU driver to operate:
299          */
300         if (bios_fail) {
301                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
302                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
303                               reg_fail, val_fail);
304         }
305
306         return true;
307
308 msr_fail:
309         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
310                 pr_cont("PMU not available due to virtualization, using software events only.\n");
311         } else {
312                 pr_cont("Broken PMU hardware detected, using software events only.\n");
313                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
314                        reg, val_new);
315         }
316
317         return false;
318 }
319
320 static void hw_perf_event_destroy(struct perf_event *event)
321 {
322         x86_release_hardware();
323         atomic_dec(&active_events);
324 }
325
326 void hw_perf_lbr_event_destroy(struct perf_event *event)
327 {
328         hw_perf_event_destroy(event);
329
330         /* undo the lbr/bts event accounting */
331         x86_del_exclusive(x86_lbr_exclusive_lbr);
332 }
333
334 static inline int x86_pmu_initialized(void)
335 {
336         return x86_pmu.handle_irq != NULL;
337 }
338
339 static inline int
340 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
341 {
342         struct perf_event_attr *attr = &event->attr;
343         unsigned int cache_type, cache_op, cache_result;
344         u64 config, val;
345
346         config = attr->config;
347
348         cache_type = (config >> 0) & 0xff;
349         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
350                 return -EINVAL;
351         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
352
353         cache_op = (config >>  8) & 0xff;
354         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
355                 return -EINVAL;
356         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
357
358         cache_result = (config >> 16) & 0xff;
359         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
360                 return -EINVAL;
361         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
362
363         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
364
365         if (val == 0)
366                 return -ENOENT;
367
368         if (val == -1)
369                 return -EINVAL;
370
371         hwc->config |= val;
372         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
373         return x86_pmu_extra_regs(val, event);
374 }
375
376 int x86_reserve_hardware(void)
377 {
378         int err = 0;
379
380         if (!atomic_inc_not_zero(&pmc_refcount)) {
381                 mutex_lock(&pmc_reserve_mutex);
382                 if (atomic_read(&pmc_refcount) == 0) {
383                         if (!reserve_pmc_hardware())
384                                 err = -EBUSY;
385                         else
386                                 reserve_ds_buffers();
387                 }
388                 if (!err)
389                         atomic_inc(&pmc_refcount);
390                 mutex_unlock(&pmc_reserve_mutex);
391         }
392
393         return err;
394 }
395
396 void x86_release_hardware(void)
397 {
398         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
399                 release_pmc_hardware();
400                 release_ds_buffers();
401                 release_lbr_buffers();
402                 mutex_unlock(&pmc_reserve_mutex);
403         }
404 }
405
406 /*
407  * Check if we can create event of a certain type (that no conflicting events
408  * are present).
409  */
410 int x86_add_exclusive(unsigned int what)
411 {
412         int i;
413
414         /*
415          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
416          * LBR and BTS are still mutually exclusive.
417          */
418         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
419                 goto out;
420
421         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
422                 mutex_lock(&pmc_reserve_mutex);
423                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
424                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
425                                 goto fail_unlock;
426                 }
427                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
428                 mutex_unlock(&pmc_reserve_mutex);
429         }
430
431 out:
432         atomic_inc(&active_events);
433         return 0;
434
435 fail_unlock:
436         mutex_unlock(&pmc_reserve_mutex);
437         return -EBUSY;
438 }
439
440 void x86_del_exclusive(unsigned int what)
441 {
442         atomic_dec(&active_events);
443
444         /*
445          * See the comment in x86_add_exclusive().
446          */
447         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
448                 return;
449
450         atomic_dec(&x86_pmu.lbr_exclusive[what]);
451 }
452
453 int x86_setup_perfctr(struct perf_event *event)
454 {
455         struct perf_event_attr *attr = &event->attr;
456         struct hw_perf_event *hwc = &event->hw;
457         u64 config;
458
459         if (!is_sampling_event(event)) {
460                 hwc->sample_period = x86_pmu.max_period;
461                 hwc->last_period = hwc->sample_period;
462                 local64_set(&hwc->period_left, hwc->sample_period);
463         }
464
465         if (attr->type == PERF_TYPE_RAW)
466                 return x86_pmu_extra_regs(event->attr.config, event);
467
468         if (attr->type == PERF_TYPE_HW_CACHE)
469                 return set_ext_hw_attr(hwc, event);
470
471         if (attr->config >= x86_pmu.max_events)
472                 return -EINVAL;
473
474         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
475
476         /*
477          * The generic map:
478          */
479         config = x86_pmu.event_map(attr->config);
480
481         if (config == 0)
482                 return -ENOENT;
483
484         if (config == -1LL)
485                 return -EINVAL;
486
487         hwc->config |= config;
488
489         return 0;
490 }
491
492 /*
493  * check that branch_sample_type is compatible with
494  * settings needed for precise_ip > 1 which implies
495  * using the LBR to capture ALL taken branches at the
496  * priv levels of the measurement
497  */
498 static inline int precise_br_compat(struct perf_event *event)
499 {
500         u64 m = event->attr.branch_sample_type;
501         u64 b = 0;
502
503         /* must capture all branches */
504         if (!(m & PERF_SAMPLE_BRANCH_ANY))
505                 return 0;
506
507         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
508
509         if (!event->attr.exclude_user)
510                 b |= PERF_SAMPLE_BRANCH_USER;
511
512         if (!event->attr.exclude_kernel)
513                 b |= PERF_SAMPLE_BRANCH_KERNEL;
514
515         /*
516          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
517          */
518
519         return m == b;
520 }
521
522 int x86_pmu_max_precise(void)
523 {
524         int precise = 0;
525
526         /* Support for constant skid */
527         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
528                 precise++;
529
530                 /* Support for IP fixup */
531                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
532                         precise++;
533
534                 if (x86_pmu.pebs_prec_dist)
535                         precise++;
536         }
537         return precise;
538 }
539
540 int x86_pmu_hw_config(struct perf_event *event)
541 {
542         if (event->attr.precise_ip) {
543                 int precise = x86_pmu_max_precise();
544
545                 if (event->attr.precise_ip > precise)
546                         return -EOPNOTSUPP;
547
548                 /* There's no sense in having PEBS for non sampling events: */
549                 if (!is_sampling_event(event))
550                         return -EINVAL;
551         }
552         /*
553          * check that PEBS LBR correction does not conflict with
554          * whatever the user is asking with attr->branch_sample_type
555          */
556         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
557                 u64 *br_type = &event->attr.branch_sample_type;
558
559                 if (has_branch_stack(event)) {
560                         if (!precise_br_compat(event))
561                                 return -EOPNOTSUPP;
562
563                         /* branch_sample_type is compatible */
564
565                 } else {
566                         /*
567                          * user did not specify  branch_sample_type
568                          *
569                          * For PEBS fixups, we capture all
570                          * the branches at the priv level of the
571                          * event.
572                          */
573                         *br_type = PERF_SAMPLE_BRANCH_ANY;
574
575                         if (!event->attr.exclude_user)
576                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
577
578                         if (!event->attr.exclude_kernel)
579                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
580                 }
581         }
582
583         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
584                 event->attach_state |= PERF_ATTACH_TASK_DATA;
585
586         /*
587          * Generate PMC IRQs:
588          * (keep 'enabled' bit clear for now)
589          */
590         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
591
592         /*
593          * Count user and OS events unless requested not to
594          */
595         if (!event->attr.exclude_user)
596                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
597         if (!event->attr.exclude_kernel)
598                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
599
600         if (event->attr.type == PERF_TYPE_RAW)
601                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
602
603         if (event->attr.sample_period && x86_pmu.limit_period) {
604                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
605                                 event->attr.sample_period)
606                         return -EINVAL;
607         }
608
609         /* sample_regs_user never support XMM registers */
610         if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
611                 return -EINVAL;
612         /*
613          * Besides the general purpose registers, XMM registers may
614          * be collected in PEBS on some platforms, e.g. Icelake
615          */
616         if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
617                 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
618                         return -EINVAL;
619
620                 if (!event->attr.precise_ip)
621                         return -EINVAL;
622         }
623
624         return x86_setup_perfctr(event);
625 }
626
627 /*
628  * Setup the hardware configuration for a given attr_type
629  */
630 static int __x86_pmu_event_init(struct perf_event *event)
631 {
632         int err;
633
634         if (!x86_pmu_initialized())
635                 return -ENODEV;
636
637         err = x86_reserve_hardware();
638         if (err)
639                 return err;
640
641         atomic_inc(&active_events);
642         event->destroy = hw_perf_event_destroy;
643
644         event->hw.idx = -1;
645         event->hw.last_cpu = -1;
646         event->hw.last_tag = ~0ULL;
647
648         /* mark unused */
649         event->hw.extra_reg.idx = EXTRA_REG_NONE;
650         event->hw.branch_reg.idx = EXTRA_REG_NONE;
651
652         return x86_pmu.hw_config(event);
653 }
654
655 void x86_pmu_disable_all(void)
656 {
657         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
658         int idx;
659
660         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
661                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
662                 u64 val;
663
664                 if (!test_bit(idx, cpuc->active_mask))
665                         continue;
666                 rdmsrl(x86_pmu_config_addr(idx), val);
667                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
668                         continue;
669                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
670                 wrmsrl(x86_pmu_config_addr(idx), val);
671                 if (is_counter_pair(hwc))
672                         wrmsrl(x86_pmu_config_addr(idx + 1), 0);
673         }
674 }
675
676 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
677 {
678         return static_call(x86_pmu_guest_get_msrs)(nr);
679 }
680 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
681
682 /*
683  * There may be PMI landing after enabled=0. The PMI hitting could be before or
684  * after disable_all.
685  *
686  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
687  * It will not be re-enabled in the NMI handler again, because enabled=0. After
688  * handling the NMI, disable_all will be called, which will not change the
689  * state either. If PMI hits after disable_all, the PMU is already disabled
690  * before entering NMI handler. The NMI handler will not change the state
691  * either.
692  *
693  * So either situation is harmless.
694  */
695 static void x86_pmu_disable(struct pmu *pmu)
696 {
697         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
698
699         if (!x86_pmu_initialized())
700                 return;
701
702         if (!cpuc->enabled)
703                 return;
704
705         cpuc->n_added = 0;
706         cpuc->enabled = 0;
707         barrier();
708
709         static_call(x86_pmu_disable_all)();
710 }
711
712 void x86_pmu_enable_all(int added)
713 {
714         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
715         int idx;
716
717         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
718                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
719
720                 if (!test_bit(idx, cpuc->active_mask))
721                         continue;
722
723                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
724         }
725 }
726
727 static struct pmu pmu;
728
729 static inline int is_x86_event(struct perf_event *event)
730 {
731         return event->pmu == &pmu;
732 }
733
734 struct pmu *x86_get_pmu(void)
735 {
736         return &pmu;
737 }
738 /*
739  * Event scheduler state:
740  *
741  * Assign events iterating over all events and counters, beginning
742  * with events with least weights first. Keep the current iterator
743  * state in struct sched_state.
744  */
745 struct sched_state {
746         int     weight;
747         int     event;          /* event index */
748         int     counter;        /* counter index */
749         int     unassigned;     /* number of events to be assigned left */
750         int     nr_gp;          /* number of GP counters used */
751         u64     used;
752 };
753
754 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
755 #define SCHED_STATES_MAX        2
756
757 struct perf_sched {
758         int                     max_weight;
759         int                     max_events;
760         int                     max_gp;
761         int                     saved_states;
762         struct event_constraint **constraints;
763         struct sched_state      state;
764         struct sched_state      saved[SCHED_STATES_MAX];
765 };
766
767 /*
768  * Initialize iterator that runs through all events and counters.
769  */
770 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
771                             int num, int wmin, int wmax, int gpmax)
772 {
773         int idx;
774
775         memset(sched, 0, sizeof(*sched));
776         sched->max_events       = num;
777         sched->max_weight       = wmax;
778         sched->max_gp           = gpmax;
779         sched->constraints      = constraints;
780
781         for (idx = 0; idx < num; idx++) {
782                 if (constraints[idx]->weight == wmin)
783                         break;
784         }
785
786         sched->state.event      = idx;          /* start with min weight */
787         sched->state.weight     = wmin;
788         sched->state.unassigned = num;
789 }
790
791 static void perf_sched_save_state(struct perf_sched *sched)
792 {
793         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
794                 return;
795
796         sched->saved[sched->saved_states] = sched->state;
797         sched->saved_states++;
798 }
799
800 static bool perf_sched_restore_state(struct perf_sched *sched)
801 {
802         if (!sched->saved_states)
803                 return false;
804
805         sched->saved_states--;
806         sched->state = sched->saved[sched->saved_states];
807
808         /* this assignment didn't work out */
809         /* XXX broken vs EVENT_PAIR */
810         sched->state.used &= ~BIT_ULL(sched->state.counter);
811
812         /* try the next one */
813         sched->state.counter++;
814
815         return true;
816 }
817
818 /*
819  * Select a counter for the current event to schedule. Return true on
820  * success.
821  */
822 static bool __perf_sched_find_counter(struct perf_sched *sched)
823 {
824         struct event_constraint *c;
825         int idx;
826
827         if (!sched->state.unassigned)
828                 return false;
829
830         if (sched->state.event >= sched->max_events)
831                 return false;
832
833         c = sched->constraints[sched->state.event];
834         /* Prefer fixed purpose counters */
835         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
836                 idx = INTEL_PMC_IDX_FIXED;
837                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
838                         u64 mask = BIT_ULL(idx);
839
840                         if (sched->state.used & mask)
841                                 continue;
842
843                         sched->state.used |= mask;
844                         goto done;
845                 }
846         }
847
848         /* Grab the first unused counter starting with idx */
849         idx = sched->state.counter;
850         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
851                 u64 mask = BIT_ULL(idx);
852
853                 if (c->flags & PERF_X86_EVENT_PAIR)
854                         mask |= mask << 1;
855
856                 if (sched->state.used & mask)
857                         continue;
858
859                 if (sched->state.nr_gp++ >= sched->max_gp)
860                         return false;
861
862                 sched->state.used |= mask;
863                 goto done;
864         }
865
866         return false;
867
868 done:
869         sched->state.counter = idx;
870
871         if (c->overlap)
872                 perf_sched_save_state(sched);
873
874         return true;
875 }
876
877 static bool perf_sched_find_counter(struct perf_sched *sched)
878 {
879         while (!__perf_sched_find_counter(sched)) {
880                 if (!perf_sched_restore_state(sched))
881                         return false;
882         }
883
884         return true;
885 }
886
887 /*
888  * Go through all unassigned events and find the next one to schedule.
889  * Take events with the least weight first. Return true on success.
890  */
891 static bool perf_sched_next_event(struct perf_sched *sched)
892 {
893         struct event_constraint *c;
894
895         if (!sched->state.unassigned || !--sched->state.unassigned)
896                 return false;
897
898         do {
899                 /* next event */
900                 sched->state.event++;
901                 if (sched->state.event >= sched->max_events) {
902                         /* next weight */
903                         sched->state.event = 0;
904                         sched->state.weight++;
905                         if (sched->state.weight > sched->max_weight)
906                                 return false;
907                 }
908                 c = sched->constraints[sched->state.event];
909         } while (c->weight != sched->state.weight);
910
911         sched->state.counter = 0;       /* start with first counter */
912
913         return true;
914 }
915
916 /*
917  * Assign a counter for each event.
918  */
919 int perf_assign_events(struct event_constraint **constraints, int n,
920                         int wmin, int wmax, int gpmax, int *assign)
921 {
922         struct perf_sched sched;
923
924         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
925
926         do {
927                 if (!perf_sched_find_counter(&sched))
928                         break;  /* failed */
929                 if (assign)
930                         assign[sched.state.event] = sched.state.counter;
931         } while (perf_sched_next_event(&sched));
932
933         return sched.state.unassigned;
934 }
935 EXPORT_SYMBOL_GPL(perf_assign_events);
936
937 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
938 {
939         struct event_constraint *c;
940         struct perf_event *e;
941         int n0, i, wmin, wmax, unsched = 0;
942         struct hw_perf_event *hwc;
943         u64 used_mask = 0;
944
945         /*
946          * Compute the number of events already present; see x86_pmu_add(),
947          * validate_group() and x86_pmu_commit_txn(). For the former two
948          * cpuc->n_events hasn't been updated yet, while for the latter
949          * cpuc->n_txn contains the number of events added in the current
950          * transaction.
951          */
952         n0 = cpuc->n_events;
953         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
954                 n0 -= cpuc->n_txn;
955
956         static_call_cond(x86_pmu_start_scheduling)(cpuc);
957
958         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
959                 c = cpuc->event_constraint[i];
960
961                 /*
962                  * Previously scheduled events should have a cached constraint,
963                  * while new events should not have one.
964                  */
965                 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
966
967                 /*
968                  * Request constraints for new events; or for those events that
969                  * have a dynamic constraint -- for those the constraint can
970                  * change due to external factors (sibling state, allow_tfa).
971                  */
972                 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
973                         c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
974                         cpuc->event_constraint[i] = c;
975                 }
976
977                 wmin = min(wmin, c->weight);
978                 wmax = max(wmax, c->weight);
979         }
980
981         /*
982          * fastpath, try to reuse previous register
983          */
984         for (i = 0; i < n; i++) {
985                 u64 mask;
986
987                 hwc = &cpuc->event_list[i]->hw;
988                 c = cpuc->event_constraint[i];
989
990                 /* never assigned */
991                 if (hwc->idx == -1)
992                         break;
993
994                 /* constraint still honored */
995                 if (!test_bit(hwc->idx, c->idxmsk))
996                         break;
997
998                 mask = BIT_ULL(hwc->idx);
999                 if (is_counter_pair(hwc))
1000                         mask |= mask << 1;
1001
1002                 /* not already used */
1003                 if (used_mask & mask)
1004                         break;
1005
1006                 used_mask |= mask;
1007
1008                 if (assign)
1009                         assign[i] = hwc->idx;
1010         }
1011
1012         /* slow path */
1013         if (i != n) {
1014                 int gpmax = x86_pmu.num_counters;
1015
1016                 /*
1017                  * Do not allow scheduling of more than half the available
1018                  * generic counters.
1019                  *
1020                  * This helps avoid counter starvation of sibling thread by
1021                  * ensuring at most half the counters cannot be in exclusive
1022                  * mode. There is no designated counters for the limits. Any
1023                  * N/2 counters can be used. This helps with events with
1024                  * specific counter constraints.
1025                  */
1026                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1027                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1028                         gpmax /= 2;
1029
1030                 /*
1031                  * Reduce the amount of available counters to allow fitting
1032                  * the extra Merge events needed by large increment events.
1033                  */
1034                 if (x86_pmu.flags & PMU_FL_PAIR) {
1035                         gpmax = x86_pmu.num_counters - cpuc->n_pair;
1036                         WARN_ON(gpmax <= 0);
1037                 }
1038
1039                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1040                                              wmax, gpmax, assign);
1041         }
1042
1043         /*
1044          * In case of success (unsched = 0), mark events as committed,
1045          * so we do not put_constraint() in case new events are added
1046          * and fail to be scheduled
1047          *
1048          * We invoke the lower level commit callback to lock the resource
1049          *
1050          * We do not need to do all of this in case we are called to
1051          * validate an event group (assign == NULL)
1052          */
1053         if (!unsched && assign) {
1054                 for (i = 0; i < n; i++) {
1055                         e = cpuc->event_list[i];
1056                         static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1057                 }
1058         } else {
1059                 for (i = n0; i < n; i++) {
1060                         e = cpuc->event_list[i];
1061
1062                         /*
1063                          * release events that failed scheduling
1064                          */
1065                         static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1066
1067                         cpuc->event_constraint[i] = NULL;
1068                 }
1069         }
1070
1071         static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1072
1073         return unsched ? -EINVAL : 0;
1074 }
1075
1076 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1077                                struct perf_event *event)
1078 {
1079         if (is_metric_event(event)) {
1080                 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1081                         return -EINVAL;
1082                 cpuc->n_metric++;
1083                 cpuc->n_txn_metric++;
1084         }
1085
1086         return 0;
1087 }
1088
1089 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1090                                 struct perf_event *event)
1091 {
1092         if (is_metric_event(event))
1093                 cpuc->n_metric--;
1094 }
1095
1096 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1097                          int max_count, int n)
1098 {
1099
1100         if (x86_pmu.intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1101                 return -EINVAL;
1102
1103         if (n >= max_count + cpuc->n_metric)
1104                 return -EINVAL;
1105
1106         cpuc->event_list[n] = event;
1107         if (is_counter_pair(&event->hw)) {
1108                 cpuc->n_pair++;
1109                 cpuc->n_txn_pair++;
1110         }
1111
1112         return 0;
1113 }
1114
1115 /*
1116  * dogrp: true if must collect siblings events (group)
1117  * returns total number of events and error code
1118  */
1119 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1120 {
1121         struct perf_event *event;
1122         int n, max_count;
1123
1124         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1125
1126         /* current number of events already accepted */
1127         n = cpuc->n_events;
1128         if (!cpuc->n_events)
1129                 cpuc->pebs_output = 0;
1130
1131         if (!cpuc->is_fake && leader->attr.precise_ip) {
1132                 /*
1133                  * For PEBS->PT, if !aux_event, the group leader (PT) went
1134                  * away, the group was broken down and this singleton event
1135                  * can't schedule any more.
1136                  */
1137                 if (is_pebs_pt(leader) && !leader->aux_event)
1138                         return -EINVAL;
1139
1140                 /*
1141                  * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1142                  */
1143                 if (cpuc->pebs_output &&
1144                     cpuc->pebs_output != is_pebs_pt(leader) + 1)
1145                         return -EINVAL;
1146
1147                 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1148         }
1149
1150         if (is_x86_event(leader)) {
1151                 if (collect_event(cpuc, leader, max_count, n))
1152                         return -EINVAL;
1153                 n++;
1154         }
1155
1156         if (!dogrp)
1157                 return n;
1158
1159         for_each_sibling_event(event, leader) {
1160                 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1161                         continue;
1162
1163                 if (collect_event(cpuc, event, max_count, n))
1164                         return -EINVAL;
1165
1166                 n++;
1167         }
1168         return n;
1169 }
1170
1171 static inline void x86_assign_hw_event(struct perf_event *event,
1172                                 struct cpu_hw_events *cpuc, int i)
1173 {
1174         struct hw_perf_event *hwc = &event->hw;
1175         int idx;
1176
1177         idx = hwc->idx = cpuc->assign[i];
1178         hwc->last_cpu = smp_processor_id();
1179         hwc->last_tag = ++cpuc->tags[i];
1180
1181         switch (hwc->idx) {
1182         case INTEL_PMC_IDX_FIXED_BTS:
1183         case INTEL_PMC_IDX_FIXED_VLBR:
1184                 hwc->config_base = 0;
1185                 hwc->event_base = 0;
1186                 break;
1187
1188         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1189                 /* All the metric events are mapped onto the fixed counter 3. */
1190                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1191                 fallthrough;
1192         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1193                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1194                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1195                                 (idx - INTEL_PMC_IDX_FIXED);
1196                 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1197                                         INTEL_PMC_FIXED_RDPMC_BASE;
1198                 break;
1199
1200         default:
1201                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1202                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1203                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1204                 break;
1205         }
1206 }
1207
1208 /**
1209  * x86_perf_rdpmc_index - Return PMC counter used for event
1210  * @event: the perf_event to which the PMC counter was assigned
1211  *
1212  * The counter assigned to this performance event may change if interrupts
1213  * are enabled. This counter should thus never be used while interrupts are
1214  * enabled. Before this function is used to obtain the assigned counter the
1215  * event should be checked for validity using, for example,
1216  * perf_event_read_local(), within the same interrupt disabled section in
1217  * which this counter is planned to be used.
1218  *
1219  * Return: The index of the performance monitoring counter assigned to
1220  * @perf_event.
1221  */
1222 int x86_perf_rdpmc_index(struct perf_event *event)
1223 {
1224         lockdep_assert_irqs_disabled();
1225
1226         return event->hw.event_base_rdpmc;
1227 }
1228
1229 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1230                                         struct cpu_hw_events *cpuc,
1231                                         int i)
1232 {
1233         return hwc->idx == cpuc->assign[i] &&
1234                 hwc->last_cpu == smp_processor_id() &&
1235                 hwc->last_tag == cpuc->tags[i];
1236 }
1237
1238 static void x86_pmu_start(struct perf_event *event, int flags);
1239
1240 static void x86_pmu_enable(struct pmu *pmu)
1241 {
1242         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1243         struct perf_event *event;
1244         struct hw_perf_event *hwc;
1245         int i, added = cpuc->n_added;
1246
1247         if (!x86_pmu_initialized())
1248                 return;
1249
1250         if (cpuc->enabled)
1251                 return;
1252
1253         if (cpuc->n_added) {
1254                 int n_running = cpuc->n_events - cpuc->n_added;
1255                 /*
1256                  * apply assignment obtained either from
1257                  * hw_perf_group_sched_in() or x86_pmu_enable()
1258                  *
1259                  * step1: save events moving to new counters
1260                  */
1261                 for (i = 0; i < n_running; i++) {
1262                         event = cpuc->event_list[i];
1263                         hwc = &event->hw;
1264
1265                         /*
1266                          * we can avoid reprogramming counter if:
1267                          * - assigned same counter as last time
1268                          * - running on same CPU as last time
1269                          * - no other event has used the counter since
1270                          */
1271                         if (hwc->idx == -1 ||
1272                             match_prev_assignment(hwc, cpuc, i))
1273                                 continue;
1274
1275                         /*
1276                          * Ensure we don't accidentally enable a stopped
1277                          * counter simply because we rescheduled.
1278                          */
1279                         if (hwc->state & PERF_HES_STOPPED)
1280                                 hwc->state |= PERF_HES_ARCH;
1281
1282                         x86_pmu_stop(event, PERF_EF_UPDATE);
1283                 }
1284
1285                 /*
1286                  * step2: reprogram moved events into new counters
1287                  */
1288                 for (i = 0; i < cpuc->n_events; i++) {
1289                         event = cpuc->event_list[i];
1290                         hwc = &event->hw;
1291
1292                         if (!match_prev_assignment(hwc, cpuc, i))
1293                                 x86_assign_hw_event(event, cpuc, i);
1294                         else if (i < n_running)
1295                                 continue;
1296
1297                         if (hwc->state & PERF_HES_ARCH)
1298                                 continue;
1299
1300                         x86_pmu_start(event, PERF_EF_RELOAD);
1301                 }
1302                 cpuc->n_added = 0;
1303                 perf_events_lapic_init();
1304         }
1305
1306         cpuc->enabled = 1;
1307         barrier();
1308
1309         static_call(x86_pmu_enable_all)(added);
1310 }
1311
1312 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1313
1314 /*
1315  * Set the next IRQ period, based on the hwc->period_left value.
1316  * To be called with the event disabled in hw:
1317  */
1318 int x86_perf_event_set_period(struct perf_event *event)
1319 {
1320         struct hw_perf_event *hwc = &event->hw;
1321         s64 left = local64_read(&hwc->period_left);
1322         s64 period = hwc->sample_period;
1323         int ret = 0, idx = hwc->idx;
1324
1325         if (unlikely(!hwc->event_base))
1326                 return 0;
1327
1328         if (unlikely(is_topdown_count(event)) &&
1329             x86_pmu.set_topdown_event_period)
1330                 return x86_pmu.set_topdown_event_period(event);
1331
1332         /*
1333          * If we are way outside a reasonable range then just skip forward:
1334          */
1335         if (unlikely(left <= -period)) {
1336                 left = period;
1337                 local64_set(&hwc->period_left, left);
1338                 hwc->last_period = period;
1339                 ret = 1;
1340         }
1341
1342         if (unlikely(left <= 0)) {
1343                 left += period;
1344                 local64_set(&hwc->period_left, left);
1345                 hwc->last_period = period;
1346                 ret = 1;
1347         }
1348         /*
1349          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1350          */
1351         if (unlikely(left < 2))
1352                 left = 2;
1353
1354         if (left > x86_pmu.max_period)
1355                 left = x86_pmu.max_period;
1356
1357         if (x86_pmu.limit_period)
1358                 left = x86_pmu.limit_period(event, left);
1359
1360         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1361
1362         /*
1363          * The hw event starts counting from this event offset,
1364          * mark it to be able to extra future deltas:
1365          */
1366         local64_set(&hwc->prev_count, (u64)-left);
1367
1368         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1369
1370         /*
1371          * Sign extend the Merge event counter's upper 16 bits since
1372          * we currently declare a 48-bit counter width
1373          */
1374         if (is_counter_pair(hwc))
1375                 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1376
1377         /*
1378          * Due to erratum on certan cpu we need
1379          * a second write to be sure the register
1380          * is updated properly
1381          */
1382         if (x86_pmu.perfctr_second_write) {
1383                 wrmsrl(hwc->event_base,
1384                         (u64)(-left) & x86_pmu.cntval_mask);
1385         }
1386
1387         perf_event_update_userpage(event);
1388
1389         return ret;
1390 }
1391
1392 void x86_pmu_enable_event(struct perf_event *event)
1393 {
1394         if (__this_cpu_read(cpu_hw_events.enabled))
1395                 __x86_pmu_enable_event(&event->hw,
1396                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1397 }
1398
1399 /*
1400  * Add a single event to the PMU.
1401  *
1402  * The event is added to the group of enabled events
1403  * but only if it can be scheduled with existing events.
1404  */
1405 static int x86_pmu_add(struct perf_event *event, int flags)
1406 {
1407         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1408         struct hw_perf_event *hwc;
1409         int assign[X86_PMC_IDX_MAX];
1410         int n, n0, ret;
1411
1412         hwc = &event->hw;
1413
1414         n0 = cpuc->n_events;
1415         ret = n = collect_events(cpuc, event, false);
1416         if (ret < 0)
1417                 goto out;
1418
1419         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1420         if (!(flags & PERF_EF_START))
1421                 hwc->state |= PERF_HES_ARCH;
1422
1423         /*
1424          * If group events scheduling transaction was started,
1425          * skip the schedulability test here, it will be performed
1426          * at commit time (->commit_txn) as a whole.
1427          *
1428          * If commit fails, we'll call ->del() on all events
1429          * for which ->add() was called.
1430          */
1431         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1432                 goto done_collect;
1433
1434         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1435         if (ret)
1436                 goto out;
1437         /*
1438          * copy new assignment, now we know it is possible
1439          * will be used by hw_perf_enable()
1440          */
1441         memcpy(cpuc->assign, assign, n*sizeof(int));
1442
1443 done_collect:
1444         /*
1445          * Commit the collect_events() state. See x86_pmu_del() and
1446          * x86_pmu_*_txn().
1447          */
1448         cpuc->n_events = n;
1449         cpuc->n_added += n - n0;
1450         cpuc->n_txn += n - n0;
1451
1452         /*
1453          * This is before x86_pmu_enable() will call x86_pmu_start(),
1454          * so we enable LBRs before an event needs them etc..
1455          */
1456         static_call_cond(x86_pmu_add)(event);
1457
1458         ret = 0;
1459 out:
1460         return ret;
1461 }
1462
1463 static void x86_pmu_start(struct perf_event *event, int flags)
1464 {
1465         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1466         int idx = event->hw.idx;
1467
1468         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1469                 return;
1470
1471         if (WARN_ON_ONCE(idx == -1))
1472                 return;
1473
1474         if (flags & PERF_EF_RELOAD) {
1475                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1476                 x86_perf_event_set_period(event);
1477         }
1478
1479         event->hw.state = 0;
1480
1481         cpuc->events[idx] = event;
1482         __set_bit(idx, cpuc->active_mask);
1483         __set_bit(idx, cpuc->running);
1484         static_call(x86_pmu_enable)(event);
1485         perf_event_update_userpage(event);
1486 }
1487
1488 void perf_event_print_debug(void)
1489 {
1490         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1491         u64 pebs, debugctl;
1492         struct cpu_hw_events *cpuc;
1493         unsigned long flags;
1494         int cpu, idx;
1495
1496         if (!x86_pmu.num_counters)
1497                 return;
1498
1499         local_irq_save(flags);
1500
1501         cpu = smp_processor_id();
1502         cpuc = &per_cpu(cpu_hw_events, cpu);
1503
1504         if (x86_pmu.version >= 2) {
1505                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1506                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1507                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1508                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1509
1510                 pr_info("\n");
1511                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1512                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1513                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1514                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1515                 if (x86_pmu.pebs_constraints) {
1516                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1517                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1518                 }
1519                 if (x86_pmu.lbr_nr) {
1520                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1521                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1522                 }
1523         }
1524         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1525
1526         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1527                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1528                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1529
1530                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1531
1532                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1533                         cpu, idx, pmc_ctrl);
1534                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1535                         cpu, idx, pmc_count);
1536                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1537                         cpu, idx, prev_left);
1538         }
1539         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1540                 if (fixed_counter_disabled(idx))
1541                         continue;
1542                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1543
1544                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1545                         cpu, idx, pmc_count);
1546         }
1547         local_irq_restore(flags);
1548 }
1549
1550 void x86_pmu_stop(struct perf_event *event, int flags)
1551 {
1552         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1553         struct hw_perf_event *hwc = &event->hw;
1554
1555         if (test_bit(hwc->idx, cpuc->active_mask)) {
1556                 static_call(x86_pmu_disable)(event);
1557                 __clear_bit(hwc->idx, cpuc->active_mask);
1558                 cpuc->events[hwc->idx] = NULL;
1559                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1560                 hwc->state |= PERF_HES_STOPPED;
1561         }
1562
1563         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1564                 /*
1565                  * Drain the remaining delta count out of a event
1566                  * that we are disabling:
1567                  */
1568                 x86_perf_event_update(event);
1569                 hwc->state |= PERF_HES_UPTODATE;
1570         }
1571 }
1572
1573 static void x86_pmu_del(struct perf_event *event, int flags)
1574 {
1575         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1576         int i;
1577
1578         /*
1579          * If we're called during a txn, we only need to undo x86_pmu.add.
1580          * The events never got scheduled and ->cancel_txn will truncate
1581          * the event_list.
1582          *
1583          * XXX assumes any ->del() called during a TXN will only be on
1584          * an event added during that same TXN.
1585          */
1586         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1587                 goto do_del;
1588
1589         /*
1590          * Not a TXN, therefore cleanup properly.
1591          */
1592         x86_pmu_stop(event, PERF_EF_UPDATE);
1593
1594         for (i = 0; i < cpuc->n_events; i++) {
1595                 if (event == cpuc->event_list[i])
1596                         break;
1597         }
1598
1599         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1600                 return;
1601
1602         /* If we have a newly added event; make sure to decrease n_added. */
1603         if (i >= cpuc->n_events - cpuc->n_added)
1604                 --cpuc->n_added;
1605
1606         static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1607
1608         /* Delete the array entry. */
1609         while (++i < cpuc->n_events) {
1610                 cpuc->event_list[i-1] = cpuc->event_list[i];
1611                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1612         }
1613         cpuc->event_constraint[i-1] = NULL;
1614         --cpuc->n_events;
1615         if (x86_pmu.intel_cap.perf_metrics)
1616                 del_nr_metric_event(cpuc, event);
1617
1618         perf_event_update_userpage(event);
1619
1620 do_del:
1621
1622         /*
1623          * This is after x86_pmu_stop(); so we disable LBRs after any
1624          * event can need them etc..
1625          */
1626         static_call_cond(x86_pmu_del)(event);
1627 }
1628
1629 int x86_pmu_handle_irq(struct pt_regs *regs)
1630 {
1631         struct perf_sample_data data;
1632         struct cpu_hw_events *cpuc;
1633         struct perf_event *event;
1634         int idx, handled = 0;
1635         u64 val;
1636
1637         cpuc = this_cpu_ptr(&cpu_hw_events);
1638
1639         /*
1640          * Some chipsets need to unmask the LVTPC in a particular spot
1641          * inside the nmi handler.  As a result, the unmasking was pushed
1642          * into all the nmi handlers.
1643          *
1644          * This generic handler doesn't seem to have any issues where the
1645          * unmasking occurs so it was left at the top.
1646          */
1647         apic_write(APIC_LVTPC, APIC_DM_NMI);
1648
1649         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1650                 if (!test_bit(idx, cpuc->active_mask))
1651                         continue;
1652
1653                 event = cpuc->events[idx];
1654
1655                 val = x86_perf_event_update(event);
1656                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1657                         continue;
1658
1659                 /*
1660                  * event overflow
1661                  */
1662                 handled++;
1663                 perf_sample_data_init(&data, 0, event->hw.last_period);
1664
1665                 if (!x86_perf_event_set_period(event))
1666                         continue;
1667
1668                 if (perf_event_overflow(event, &data, regs))
1669                         x86_pmu_stop(event, 0);
1670         }
1671
1672         if (handled)
1673                 inc_irq_stat(apic_perf_irqs);
1674
1675         return handled;
1676 }
1677
1678 void perf_events_lapic_init(void)
1679 {
1680         if (!x86_pmu.apic || !x86_pmu_initialized())
1681                 return;
1682
1683         /*
1684          * Always use NMI for PMU
1685          */
1686         apic_write(APIC_LVTPC, APIC_DM_NMI);
1687 }
1688
1689 static int
1690 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1691 {
1692         u64 start_clock;
1693         u64 finish_clock;
1694         int ret;
1695
1696         /*
1697          * All PMUs/events that share this PMI handler should make sure to
1698          * increment active_events for their events.
1699          */
1700         if (!atomic_read(&active_events))
1701                 return NMI_DONE;
1702
1703         start_clock = sched_clock();
1704         ret = static_call(x86_pmu_handle_irq)(regs);
1705         finish_clock = sched_clock();
1706
1707         perf_sample_event_took(finish_clock - start_clock);
1708
1709         return ret;
1710 }
1711 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1712
1713 struct event_constraint emptyconstraint;
1714 struct event_constraint unconstrained;
1715
1716 static int x86_pmu_prepare_cpu(unsigned int cpu)
1717 {
1718         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1719         int i;
1720
1721         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1722                 cpuc->kfree_on_online[i] = NULL;
1723         if (x86_pmu.cpu_prepare)
1724                 return x86_pmu.cpu_prepare(cpu);
1725         return 0;
1726 }
1727
1728 static int x86_pmu_dead_cpu(unsigned int cpu)
1729 {
1730         if (x86_pmu.cpu_dead)
1731                 x86_pmu.cpu_dead(cpu);
1732         return 0;
1733 }
1734
1735 static int x86_pmu_online_cpu(unsigned int cpu)
1736 {
1737         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1738         int i;
1739
1740         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1741                 kfree(cpuc->kfree_on_online[i]);
1742                 cpuc->kfree_on_online[i] = NULL;
1743         }
1744         return 0;
1745 }
1746
1747 static int x86_pmu_starting_cpu(unsigned int cpu)
1748 {
1749         if (x86_pmu.cpu_starting)
1750                 x86_pmu.cpu_starting(cpu);
1751         return 0;
1752 }
1753
1754 static int x86_pmu_dying_cpu(unsigned int cpu)
1755 {
1756         if (x86_pmu.cpu_dying)
1757                 x86_pmu.cpu_dying(cpu);
1758         return 0;
1759 }
1760
1761 static void __init pmu_check_apic(void)
1762 {
1763         if (boot_cpu_has(X86_FEATURE_APIC))
1764                 return;
1765
1766         x86_pmu.apic = 0;
1767         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1768         pr_info("no hardware sampling interrupt available.\n");
1769
1770         /*
1771          * If we have a PMU initialized but no APIC
1772          * interrupts, we cannot sample hardware
1773          * events (user-space has to fall back and
1774          * sample via a hrtimer based software event):
1775          */
1776         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1777
1778 }
1779
1780 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1781         .name = "format",
1782         .attrs = NULL,
1783 };
1784
1785 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1786 {
1787         struct perf_pmu_events_attr *pmu_attr =
1788                 container_of(attr, struct perf_pmu_events_attr, attr);
1789         u64 config = 0;
1790
1791         if (pmu_attr->id < x86_pmu.max_events)
1792                 config = x86_pmu.event_map(pmu_attr->id);
1793
1794         /* string trumps id */
1795         if (pmu_attr->event_str)
1796                 return sprintf(page, "%s", pmu_attr->event_str);
1797
1798         return x86_pmu.events_sysfs_show(page, config);
1799 }
1800 EXPORT_SYMBOL_GPL(events_sysfs_show);
1801
1802 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1803                           char *page)
1804 {
1805         struct perf_pmu_events_ht_attr *pmu_attr =
1806                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1807
1808         /*
1809          * Report conditional events depending on Hyper-Threading.
1810          *
1811          * This is overly conservative as usually the HT special
1812          * handling is not needed if the other CPU thread is idle.
1813          *
1814          * Note this does not (and cannot) handle the case when thread
1815          * siblings are invisible, for example with virtualization
1816          * if they are owned by some other guest.  The user tool
1817          * has to re-read when a thread sibling gets onlined later.
1818          */
1819         return sprintf(page, "%s",
1820                         topology_max_smt_threads() > 1 ?
1821                         pmu_attr->event_str_ht :
1822                         pmu_attr->event_str_noht);
1823 }
1824
1825 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1826 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1827 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1828 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1829 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1830 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1831 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1832 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1833 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1834 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1835
1836 static struct attribute *empty_attrs;
1837
1838 static struct attribute *events_attr[] = {
1839         EVENT_PTR(CPU_CYCLES),
1840         EVENT_PTR(INSTRUCTIONS),
1841         EVENT_PTR(CACHE_REFERENCES),
1842         EVENT_PTR(CACHE_MISSES),
1843         EVENT_PTR(BRANCH_INSTRUCTIONS),
1844         EVENT_PTR(BRANCH_MISSES),
1845         EVENT_PTR(BUS_CYCLES),
1846         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1847         EVENT_PTR(STALLED_CYCLES_BACKEND),
1848         EVENT_PTR(REF_CPU_CYCLES),
1849         NULL,
1850 };
1851
1852 /*
1853  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1854  * out of events_attr attributes.
1855  */
1856 static umode_t
1857 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1858 {
1859         struct perf_pmu_events_attr *pmu_attr;
1860
1861         if (idx >= x86_pmu.max_events)
1862                 return 0;
1863
1864         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1865         /* str trumps id */
1866         return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1867 }
1868
1869 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1870         .name = "events",
1871         .attrs = events_attr,
1872         .is_visible = is_visible,
1873 };
1874
1875 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1876 {
1877         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1878         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1879         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1880         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1881         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1882         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1883         ssize_t ret;
1884
1885         /*
1886         * We have whole page size to spend and just little data
1887         * to write, so we can safely use sprintf.
1888         */
1889         ret = sprintf(page, "event=0x%02llx", event);
1890
1891         if (umask)
1892                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1893
1894         if (edge)
1895                 ret += sprintf(page + ret, ",edge");
1896
1897         if (pc)
1898                 ret += sprintf(page + ret, ",pc");
1899
1900         if (any)
1901                 ret += sprintf(page + ret, ",any");
1902
1903         if (inv)
1904                 ret += sprintf(page + ret, ",inv");
1905
1906         if (cmask)
1907                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1908
1909         ret += sprintf(page + ret, "\n");
1910
1911         return ret;
1912 }
1913
1914 static struct attribute_group x86_pmu_attr_group;
1915 static struct attribute_group x86_pmu_caps_group;
1916
1917 static void x86_pmu_static_call_update(void)
1918 {
1919         static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
1920         static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
1921         static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
1922         static_call_update(x86_pmu_enable, x86_pmu.enable);
1923         static_call_update(x86_pmu_disable, x86_pmu.disable);
1924
1925         static_call_update(x86_pmu_add, x86_pmu.add);
1926         static_call_update(x86_pmu_del, x86_pmu.del);
1927         static_call_update(x86_pmu_read, x86_pmu.read);
1928
1929         static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
1930         static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
1931         static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
1932
1933         static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
1934         static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
1935         static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
1936
1937         static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
1938         static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
1939
1940         static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
1941         static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
1942
1943         static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
1944 }
1945
1946 static void _x86_pmu_read(struct perf_event *event)
1947 {
1948         x86_perf_event_update(event);
1949 }
1950
1951 static int __init init_hw_perf_events(void)
1952 {
1953         struct x86_pmu_quirk *quirk;
1954         int err;
1955
1956         pr_info("Performance Events: ");
1957
1958         switch (boot_cpu_data.x86_vendor) {
1959         case X86_VENDOR_INTEL:
1960                 err = intel_pmu_init();
1961                 break;
1962         case X86_VENDOR_AMD:
1963                 err = amd_pmu_init();
1964                 break;
1965         case X86_VENDOR_HYGON:
1966                 err = amd_pmu_init();
1967                 x86_pmu.name = "HYGON";
1968                 break;
1969         case X86_VENDOR_ZHAOXIN:
1970         case X86_VENDOR_CENTAUR:
1971                 err = zhaoxin_pmu_init();
1972                 break;
1973         default:
1974                 err = -ENOTSUPP;
1975         }
1976         if (err != 0) {
1977                 pr_cont("no PMU driver, software events only.\n");
1978                 return 0;
1979         }
1980
1981         pmu_check_apic();
1982
1983         /* sanity check that the hardware exists or is emulated */
1984         if (!check_hw_exists())
1985                 return 0;
1986
1987         pr_cont("%s PMU driver.\n", x86_pmu.name);
1988
1989         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1990
1991         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1992                 quirk->func();
1993
1994         if (!x86_pmu.intel_ctrl)
1995                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1996
1997         perf_events_lapic_init();
1998         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1999
2000         unconstrained = (struct event_constraint)
2001                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2002                                    0, x86_pmu.num_counters, 0, 0);
2003
2004         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2005
2006         if (!x86_pmu.events_sysfs_show)
2007                 x86_pmu_events_group.attrs = &empty_attrs;
2008
2009         pmu.attr_update = x86_pmu.attr_update;
2010
2011         pr_info("... version:                %d\n",     x86_pmu.version);
2012         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2013         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
2014         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2015         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2016         pr_info("... fixed-purpose events:   %lu\n",
2017                         hweight64((((1ULL << x86_pmu.num_counters_fixed) - 1)
2018                                         << INTEL_PMC_IDX_FIXED) & x86_pmu.intel_ctrl));
2019         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
2020
2021         if (!x86_pmu.read)
2022                 x86_pmu.read = _x86_pmu_read;
2023
2024         if (!x86_pmu.guest_get_msrs)
2025                 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2026
2027         x86_pmu_static_call_update();
2028
2029         /*
2030          * Install callbacks. Core will call them for each online
2031          * cpu.
2032          */
2033         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2034                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2035         if (err)
2036                 return err;
2037
2038         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2039                                 "perf/x86:starting", x86_pmu_starting_cpu,
2040                                 x86_pmu_dying_cpu);
2041         if (err)
2042                 goto out;
2043
2044         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2045                                 x86_pmu_online_cpu, NULL);
2046         if (err)
2047                 goto out1;
2048
2049         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2050         if (err)
2051                 goto out2;
2052
2053         return 0;
2054
2055 out2:
2056         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2057 out1:
2058         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2059 out:
2060         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2061         return err;
2062 }
2063 early_initcall(init_hw_perf_events);
2064
2065 static void x86_pmu_read(struct perf_event *event)
2066 {
2067         static_call(x86_pmu_read)(event);
2068 }
2069
2070 /*
2071  * Start group events scheduling transaction
2072  * Set the flag to make pmu::enable() not perform the
2073  * schedulability test, it will be performed at commit time
2074  *
2075  * We only support PERF_PMU_TXN_ADD transactions. Save the
2076  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2077  * transactions.
2078  */
2079 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2080 {
2081         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2082
2083         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2084
2085         cpuc->txn_flags = txn_flags;
2086         if (txn_flags & ~PERF_PMU_TXN_ADD)
2087                 return;
2088
2089         perf_pmu_disable(pmu);
2090         __this_cpu_write(cpu_hw_events.n_txn, 0);
2091         __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2092         __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2093 }
2094
2095 /*
2096  * Stop group events scheduling transaction
2097  * Clear the flag and pmu::enable() will perform the
2098  * schedulability test.
2099  */
2100 static void x86_pmu_cancel_txn(struct pmu *pmu)
2101 {
2102         unsigned int txn_flags;
2103         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2104
2105         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2106
2107         txn_flags = cpuc->txn_flags;
2108         cpuc->txn_flags = 0;
2109         if (txn_flags & ~PERF_PMU_TXN_ADD)
2110                 return;
2111
2112         /*
2113          * Truncate collected array by the number of events added in this
2114          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2115          */
2116         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2117         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2118         __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2119         __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2120         perf_pmu_enable(pmu);
2121 }
2122
2123 /*
2124  * Commit group events scheduling transaction
2125  * Perform the group schedulability test as a whole
2126  * Return 0 if success
2127  *
2128  * Does not cancel the transaction on failure; expects the caller to do this.
2129  */
2130 static int x86_pmu_commit_txn(struct pmu *pmu)
2131 {
2132         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2133         int assign[X86_PMC_IDX_MAX];
2134         int n, ret;
2135
2136         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2137
2138         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2139                 cpuc->txn_flags = 0;
2140                 return 0;
2141         }
2142
2143         n = cpuc->n_events;
2144
2145         if (!x86_pmu_initialized())
2146                 return -EAGAIN;
2147
2148         ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2149         if (ret)
2150                 return ret;
2151
2152         /*
2153          * copy new assignment, now we know it is possible
2154          * will be used by hw_perf_enable()
2155          */
2156         memcpy(cpuc->assign, assign, n*sizeof(int));
2157
2158         cpuc->txn_flags = 0;
2159         perf_pmu_enable(pmu);
2160         return 0;
2161 }
2162 /*
2163  * a fake_cpuc is used to validate event groups. Due to
2164  * the extra reg logic, we need to also allocate a fake
2165  * per_core and per_cpu structure. Otherwise, group events
2166  * using extra reg may conflict without the kernel being
2167  * able to catch this when the last event gets added to
2168  * the group.
2169  */
2170 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2171 {
2172         intel_cpuc_finish(cpuc);
2173         kfree(cpuc);
2174 }
2175
2176 static struct cpu_hw_events *allocate_fake_cpuc(void)
2177 {
2178         struct cpu_hw_events *cpuc;
2179         int cpu = raw_smp_processor_id();
2180
2181         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2182         if (!cpuc)
2183                 return ERR_PTR(-ENOMEM);
2184         cpuc->is_fake = 1;
2185
2186         if (intel_cpuc_prepare(cpuc, cpu))
2187                 goto error;
2188
2189         return cpuc;
2190 error:
2191         free_fake_cpuc(cpuc);
2192         return ERR_PTR(-ENOMEM);
2193 }
2194
2195 /*
2196  * validate that we can schedule this event
2197  */
2198 static int validate_event(struct perf_event *event)
2199 {
2200         struct cpu_hw_events *fake_cpuc;
2201         struct event_constraint *c;
2202         int ret = 0;
2203
2204         fake_cpuc = allocate_fake_cpuc();
2205         if (IS_ERR(fake_cpuc))
2206                 return PTR_ERR(fake_cpuc);
2207
2208         c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2209
2210         if (!c || !c->weight)
2211                 ret = -EINVAL;
2212
2213         if (x86_pmu.put_event_constraints)
2214                 x86_pmu.put_event_constraints(fake_cpuc, event);
2215
2216         free_fake_cpuc(fake_cpuc);
2217
2218         return ret;
2219 }
2220
2221 /*
2222  * validate a single event group
2223  *
2224  * validation include:
2225  *      - check events are compatible which each other
2226  *      - events do not compete for the same counter
2227  *      - number of events <= number of counters
2228  *
2229  * validation ensures the group can be loaded onto the
2230  * PMU if it was the only group available.
2231  */
2232 static int validate_group(struct perf_event *event)
2233 {
2234         struct perf_event *leader = event->group_leader;
2235         struct cpu_hw_events *fake_cpuc;
2236         int ret = -EINVAL, n;
2237
2238         fake_cpuc = allocate_fake_cpuc();
2239         if (IS_ERR(fake_cpuc))
2240                 return PTR_ERR(fake_cpuc);
2241         /*
2242          * the event is not yet connected with its
2243          * siblings therefore we must first collect
2244          * existing siblings, then add the new event
2245          * before we can simulate the scheduling
2246          */
2247         n = collect_events(fake_cpuc, leader, true);
2248         if (n < 0)
2249                 goto out;
2250
2251         fake_cpuc->n_events = n;
2252         n = collect_events(fake_cpuc, event, false);
2253         if (n < 0)
2254                 goto out;
2255
2256         fake_cpuc->n_events = 0;
2257         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2258
2259 out:
2260         free_fake_cpuc(fake_cpuc);
2261         return ret;
2262 }
2263
2264 static int x86_pmu_event_init(struct perf_event *event)
2265 {
2266         struct pmu *tmp;
2267         int err;
2268
2269         switch (event->attr.type) {
2270         case PERF_TYPE_RAW:
2271         case PERF_TYPE_HARDWARE:
2272         case PERF_TYPE_HW_CACHE:
2273                 break;
2274
2275         default:
2276                 return -ENOENT;
2277         }
2278
2279         err = __x86_pmu_event_init(event);
2280         if (!err) {
2281                 /*
2282                  * we temporarily connect event to its pmu
2283                  * such that validate_group() can classify
2284                  * it as an x86 event using is_x86_event()
2285                  */
2286                 tmp = event->pmu;
2287                 event->pmu = &pmu;
2288
2289                 if (event->group_leader != event)
2290                         err = validate_group(event);
2291                 else
2292                         err = validate_event(event);
2293
2294                 event->pmu = tmp;
2295         }
2296         if (err) {
2297                 if (event->destroy)
2298                         event->destroy(event);
2299         }
2300
2301         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2302             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2303                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2304
2305         return err;
2306 }
2307
2308 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2309 {
2310         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2311                 return;
2312
2313         /*
2314          * This function relies on not being called concurrently in two
2315          * tasks in the same mm.  Otherwise one task could observe
2316          * perf_rdpmc_allowed > 1 and return all the way back to
2317          * userspace with CR4.PCE clear while another task is still
2318          * doing on_each_cpu_mask() to propagate CR4.PCE.
2319          *
2320          * For now, this can't happen because all callers hold mmap_lock
2321          * for write.  If this changes, we'll need a different solution.
2322          */
2323         mmap_assert_write_locked(mm);
2324
2325         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2326                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2327 }
2328
2329 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2330 {
2331
2332         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2333                 return;
2334
2335         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2336                 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2337 }
2338
2339 static int x86_pmu_event_idx(struct perf_event *event)
2340 {
2341         struct hw_perf_event *hwc = &event->hw;
2342
2343         if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2344                 return 0;
2345
2346         if (is_metric_idx(hwc->idx))
2347                 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2348         else
2349                 return hwc->event_base_rdpmc + 1;
2350 }
2351
2352 static ssize_t get_attr_rdpmc(struct device *cdev,
2353                               struct device_attribute *attr,
2354                               char *buf)
2355 {
2356         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2357 }
2358
2359 static ssize_t set_attr_rdpmc(struct device *cdev,
2360                               struct device_attribute *attr,
2361                               const char *buf, size_t count)
2362 {
2363         unsigned long val;
2364         ssize_t ret;
2365
2366         ret = kstrtoul(buf, 0, &val);
2367         if (ret)
2368                 return ret;
2369
2370         if (val > 2)
2371                 return -EINVAL;
2372
2373         if (x86_pmu.attr_rdpmc_broken)
2374                 return -ENOTSUPP;
2375
2376         if (val != x86_pmu.attr_rdpmc) {
2377                 /*
2378                  * Changing into or out of never available or always available,
2379                  * aka perf-event-bypassing mode. This path is extremely slow,
2380                  * but only root can trigger it, so it's okay.
2381                  */
2382                 if (val == 0)
2383                         static_branch_inc(&rdpmc_never_available_key);
2384                 else if (x86_pmu.attr_rdpmc == 0)
2385                         static_branch_dec(&rdpmc_never_available_key);
2386
2387                 if (val == 2)
2388                         static_branch_inc(&rdpmc_always_available_key);
2389                 else if (x86_pmu.attr_rdpmc == 2)
2390                         static_branch_dec(&rdpmc_always_available_key);
2391
2392                 on_each_cpu(cr4_update_pce, NULL, 1);
2393                 x86_pmu.attr_rdpmc = val;
2394         }
2395
2396         return count;
2397 }
2398
2399 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2400
2401 static struct attribute *x86_pmu_attrs[] = {
2402         &dev_attr_rdpmc.attr,
2403         NULL,
2404 };
2405
2406 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2407         .attrs = x86_pmu_attrs,
2408 };
2409
2410 static ssize_t max_precise_show(struct device *cdev,
2411                                   struct device_attribute *attr,
2412                                   char *buf)
2413 {
2414         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2415 }
2416
2417 static DEVICE_ATTR_RO(max_precise);
2418
2419 static struct attribute *x86_pmu_caps_attrs[] = {
2420         &dev_attr_max_precise.attr,
2421         NULL
2422 };
2423
2424 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2425         .name = "caps",
2426         .attrs = x86_pmu_caps_attrs,
2427 };
2428
2429 static const struct attribute_group *x86_pmu_attr_groups[] = {
2430         &x86_pmu_attr_group,
2431         &x86_pmu_format_group,
2432         &x86_pmu_events_group,
2433         &x86_pmu_caps_group,
2434         NULL,
2435 };
2436
2437 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2438 {
2439         static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2440 }
2441
2442 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2443                                   struct perf_event_context *next)
2444 {
2445         static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2446 }
2447
2448 void perf_check_microcode(void)
2449 {
2450         if (x86_pmu.check_microcode)
2451                 x86_pmu.check_microcode();
2452 }
2453
2454 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2455 {
2456         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2457                 return -EINVAL;
2458
2459         if (value && x86_pmu.limit_period) {
2460                 if (x86_pmu.limit_period(event, value) > value)
2461                         return -EINVAL;
2462         }
2463
2464         return 0;
2465 }
2466
2467 static int x86_pmu_aux_output_match(struct perf_event *event)
2468 {
2469         if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2470                 return 0;
2471
2472         if (x86_pmu.aux_output_match)
2473                 return x86_pmu.aux_output_match(event);
2474
2475         return 0;
2476 }
2477
2478 static struct pmu pmu = {
2479         .pmu_enable             = x86_pmu_enable,
2480         .pmu_disable            = x86_pmu_disable,
2481
2482         .attr_groups            = x86_pmu_attr_groups,
2483
2484         .event_init             = x86_pmu_event_init,
2485
2486         .event_mapped           = x86_pmu_event_mapped,
2487         .event_unmapped         = x86_pmu_event_unmapped,
2488
2489         .add                    = x86_pmu_add,
2490         .del                    = x86_pmu_del,
2491         .start                  = x86_pmu_start,
2492         .stop                   = x86_pmu_stop,
2493         .read                   = x86_pmu_read,
2494
2495         .start_txn              = x86_pmu_start_txn,
2496         .cancel_txn             = x86_pmu_cancel_txn,
2497         .commit_txn             = x86_pmu_commit_txn,
2498
2499         .event_idx              = x86_pmu_event_idx,
2500         .sched_task             = x86_pmu_sched_task,
2501         .swap_task_ctx          = x86_pmu_swap_task_ctx,
2502         .check_period           = x86_pmu_check_period,
2503
2504         .aux_output_match       = x86_pmu_aux_output_match,
2505 };
2506
2507 void arch_perf_update_userpage(struct perf_event *event,
2508                                struct perf_event_mmap_page *userpg, u64 now)
2509 {
2510         struct cyc2ns_data data;
2511         u64 offset;
2512
2513         userpg->cap_user_time = 0;
2514         userpg->cap_user_time_zero = 0;
2515         userpg->cap_user_rdpmc =
2516                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2517         userpg->pmc_width = x86_pmu.cntval_bits;
2518
2519         if (!using_native_sched_clock() || !sched_clock_stable())
2520                 return;
2521
2522         cyc2ns_read_begin(&data);
2523
2524         offset = data.cyc2ns_offset + __sched_clock_offset;
2525
2526         /*
2527          * Internal timekeeping for enabled/running/stopped times
2528          * is always in the local_clock domain.
2529          */
2530         userpg->cap_user_time = 1;
2531         userpg->time_mult = data.cyc2ns_mul;
2532         userpg->time_shift = data.cyc2ns_shift;
2533         userpg->time_offset = offset - now;
2534
2535         /*
2536          * cap_user_time_zero doesn't make sense when we're using a different
2537          * time base for the records.
2538          */
2539         if (!event->attr.use_clockid) {
2540                 userpg->cap_user_time_zero = 1;
2541                 userpg->time_zero = offset;
2542         }
2543
2544         cyc2ns_read_end();
2545 }
2546
2547 /*
2548  * Determine whether the regs were taken from an irq/exception handler rather
2549  * than from perf_arch_fetch_caller_regs().
2550  */
2551 static bool perf_hw_regs(struct pt_regs *regs)
2552 {
2553         return regs->flags & X86_EFLAGS_FIXED;
2554 }
2555
2556 void
2557 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2558 {
2559         struct unwind_state state;
2560         unsigned long addr;
2561
2562         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2563                 /* TODO: We don't support guest os callchain now */
2564                 return;
2565         }
2566
2567         if (perf_callchain_store(entry, regs->ip))
2568                 return;
2569
2570         if (perf_hw_regs(regs))
2571                 unwind_start(&state, current, regs, NULL);
2572         else
2573                 unwind_start(&state, current, NULL, (void *)regs->sp);
2574
2575         for (; !unwind_done(&state); unwind_next_frame(&state)) {
2576                 addr = unwind_get_return_address(&state);
2577                 if (!addr || perf_callchain_store(entry, addr))
2578                         return;
2579         }
2580 }
2581
2582 static inline int
2583 valid_user_frame(const void __user *fp, unsigned long size)
2584 {
2585         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2586 }
2587
2588 static unsigned long get_segment_base(unsigned int segment)
2589 {
2590         struct desc_struct *desc;
2591         unsigned int idx = segment >> 3;
2592
2593         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2594 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2595                 struct ldt_struct *ldt;
2596
2597                 /* IRQs are off, so this synchronizes with smp_store_release */
2598                 ldt = READ_ONCE(current->active_mm->context.ldt);
2599                 if (!ldt || idx >= ldt->nr_entries)
2600                         return 0;
2601
2602                 desc = &ldt->entries[idx];
2603 #else
2604                 return 0;
2605 #endif
2606         } else {
2607                 if (idx >= GDT_ENTRIES)
2608                         return 0;
2609
2610                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2611         }
2612
2613         return get_desc_base(desc);
2614 }
2615
2616 #ifdef CONFIG_IA32_EMULATION
2617
2618 #include <linux/compat.h>
2619
2620 static inline int
2621 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2622 {
2623         /* 32-bit process in 64-bit kernel. */
2624         unsigned long ss_base, cs_base;
2625         struct stack_frame_ia32 frame;
2626         const struct stack_frame_ia32 __user *fp;
2627
2628         if (user_64bit_mode(regs))
2629                 return 0;
2630
2631         cs_base = get_segment_base(regs->cs);
2632         ss_base = get_segment_base(regs->ss);
2633
2634         fp = compat_ptr(ss_base + regs->bp);
2635         pagefault_disable();
2636         while (entry->nr < entry->max_stack) {
2637                 if (!valid_user_frame(fp, sizeof(frame)))
2638                         break;
2639
2640                 if (__get_user(frame.next_frame, &fp->next_frame))
2641                         break;
2642                 if (__get_user(frame.return_address, &fp->return_address))
2643                         break;
2644
2645                 perf_callchain_store(entry, cs_base + frame.return_address);
2646                 fp = compat_ptr(ss_base + frame.next_frame);
2647         }
2648         pagefault_enable();
2649         return 1;
2650 }
2651 #else
2652 static inline int
2653 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2654 {
2655     return 0;
2656 }
2657 #endif
2658
2659 void
2660 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2661 {
2662         struct stack_frame frame;
2663         const struct stack_frame __user *fp;
2664
2665         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2666                 /* TODO: We don't support guest os callchain now */
2667                 return;
2668         }
2669
2670         /*
2671          * We don't know what to do with VM86 stacks.. ignore them for now.
2672          */
2673         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2674                 return;
2675
2676         fp = (void __user *)regs->bp;
2677
2678         perf_callchain_store(entry, regs->ip);
2679
2680         if (!nmi_uaccess_okay())
2681                 return;
2682
2683         if (perf_callchain_user32(regs, entry))
2684                 return;
2685
2686         pagefault_disable();
2687         while (entry->nr < entry->max_stack) {
2688                 if (!valid_user_frame(fp, sizeof(frame)))
2689                         break;
2690
2691                 if (__get_user(frame.next_frame, &fp->next_frame))
2692                         break;
2693                 if (__get_user(frame.return_address, &fp->return_address))
2694                         break;
2695
2696                 perf_callchain_store(entry, frame.return_address);
2697                 fp = (void __user *)frame.next_frame;
2698         }
2699         pagefault_enable();
2700 }
2701
2702 /*
2703  * Deal with code segment offsets for the various execution modes:
2704  *
2705  *   VM86 - the good olde 16 bit days, where the linear address is
2706  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2707  *
2708  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2709  *          to figure out what the 32bit base address is.
2710  *
2711  *    X32 - has TIF_X32 set, but is running in x86_64
2712  *
2713  * X86_64 - CS,DS,SS,ES are all zero based.
2714  */
2715 static unsigned long code_segment_base(struct pt_regs *regs)
2716 {
2717         /*
2718          * For IA32 we look at the GDT/LDT segment base to convert the
2719          * effective IP to a linear address.
2720          */
2721
2722 #ifdef CONFIG_X86_32
2723         /*
2724          * If we are in VM86 mode, add the segment offset to convert to a
2725          * linear address.
2726          */
2727         if (regs->flags & X86_VM_MASK)
2728                 return 0x10 * regs->cs;
2729
2730         if (user_mode(regs) && regs->cs != __USER_CS)
2731                 return get_segment_base(regs->cs);
2732 #else
2733         if (user_mode(regs) && !user_64bit_mode(regs) &&
2734             regs->cs != __USER32_CS)
2735                 return get_segment_base(regs->cs);
2736 #endif
2737         return 0;
2738 }
2739
2740 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2741 {
2742         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2743                 return perf_guest_cbs->get_guest_ip();
2744
2745         return regs->ip + code_segment_base(regs);
2746 }
2747
2748 unsigned long perf_misc_flags(struct pt_regs *regs)
2749 {
2750         int misc = 0;
2751
2752         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2753                 if (perf_guest_cbs->is_user_mode())
2754                         misc |= PERF_RECORD_MISC_GUEST_USER;
2755                 else
2756                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2757         } else {
2758                 if (user_mode(regs))
2759                         misc |= PERF_RECORD_MISC_USER;
2760                 else
2761                         misc |= PERF_RECORD_MISC_KERNEL;
2762         }
2763
2764         if (regs->flags & PERF_EFLAGS_EXACT)
2765                 misc |= PERF_RECORD_MISC_EXACT_IP;
2766
2767         return misc;
2768 }
2769
2770 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2771 {
2772         cap->version            = x86_pmu.version;
2773         cap->num_counters_gp    = x86_pmu.num_counters;
2774         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2775         cap->bit_width_gp       = x86_pmu.cntval_bits;
2776         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2777         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2778         cap->events_mask_len    = x86_pmu.events_mask_len;
2779 }
2780 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);