tracing: Add __string_src() helper to help compilers not to get confused
[sfrench/cifs-2.6.git] / arch / sparc / mm / init_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8  
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 #include <linux/bootmem_info.h>
31
32 #include <asm/head.h>
33 #include <asm/page.h>
34 #include <asm/pgalloc.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *      0       ==>     4MB
66  *      1       ==>     256MB
67  *      2       ==>     2GB
68  *      3       ==>     16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS       1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164
165         *num_ents = ents;
166
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_folio_impl(struct folio *folio)
199 {
200         unsigned int i, nr = folio_nr_pages(folio);
201
202         BUG_ON(tlb_type == hypervisor);
203 #ifdef CONFIG_DEBUG_DCFLUSH
204         atomic_inc(&dcpage_flushes);
205 #endif
206
207 #ifdef DCACHE_ALIASING_POSSIBLE
208         for (i = 0; i < nr; i++)
209                 __flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
210                                     ((tlb_type == spitfire) &&
211                                      folio_flush_mapping(folio) != NULL));
212 #else
213         if (folio_flush_mapping(folio) != NULL &&
214             tlb_type == spitfire) {
215                 for (i = 0; i < nr; i++)
216                         __flush_icache_page((pfn + i) * PAGE_SIZE);
217         }
218 #endif
219 }
220
221 #define PG_dcache_dirty         PG_arch_1
222 #define PG_dcache_cpu_shift     32UL
223 #define PG_dcache_cpu_mask      \
224         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
225
226 #define dcache_dirty_cpu(folio) \
227         (((folio)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
228
229 static inline void set_dcache_dirty(struct folio *folio, int this_cpu)
230 {
231         unsigned long mask = this_cpu;
232         unsigned long non_cpu_bits;
233
234         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
235         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
236
237         __asm__ __volatile__("1:\n\t"
238                              "ldx       [%2], %%g7\n\t"
239                              "and       %%g7, %1, %%g1\n\t"
240                              "or        %%g1, %0, %%g1\n\t"
241                              "casx      [%2], %%g7, %%g1\n\t"
242                              "cmp       %%g7, %%g1\n\t"
243                              "bne,pn    %%xcc, 1b\n\t"
244                              " nop"
245                              : /* no outputs */
246                              : "r" (mask), "r" (non_cpu_bits), "r" (&folio->flags)
247                              : "g1", "g7");
248 }
249
250 static inline void clear_dcache_dirty_cpu(struct folio *folio, unsigned long cpu)
251 {
252         unsigned long mask = (1UL << PG_dcache_dirty);
253
254         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
255                              "1:\n\t"
256                              "ldx       [%2], %%g7\n\t"
257                              "srlx      %%g7, %4, %%g1\n\t"
258                              "and       %%g1, %3, %%g1\n\t"
259                              "cmp       %%g1, %0\n\t"
260                              "bne,pn    %%icc, 2f\n\t"
261                              " andn     %%g7, %1, %%g1\n\t"
262                              "casx      [%2], %%g7, %%g1\n\t"
263                              "cmp       %%g7, %%g1\n\t"
264                              "bne,pn    %%xcc, 1b\n\t"
265                              " nop\n"
266                              "2:"
267                              : /* no outputs */
268                              : "r" (cpu), "r" (mask), "r" (&folio->flags),
269                                "i" (PG_dcache_cpu_mask),
270                                "i" (PG_dcache_cpu_shift)
271                              : "g1", "g7");
272 }
273
274 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
275 {
276         unsigned long tsb_addr = (unsigned long) ent;
277
278         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
279                 tsb_addr = __pa(tsb_addr);
280
281         __tsb_insert(tsb_addr, tag, pte);
282 }
283
284 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
285
286 static void flush_dcache(unsigned long pfn)
287 {
288         struct page *page;
289
290         page = pfn_to_page(pfn);
291         if (page) {
292                 struct folio *folio = page_folio(page);
293                 unsigned long pg_flags;
294
295                 pg_flags = folio->flags;
296                 if (pg_flags & (1UL << PG_dcache_dirty)) {
297                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
298                                    PG_dcache_cpu_mask);
299                         int this_cpu = get_cpu();
300
301                         /* This is just to optimize away some function calls
302                          * in the SMP case.
303                          */
304                         if (cpu == this_cpu)
305                                 flush_dcache_folio_impl(folio);
306                         else
307                                 smp_flush_dcache_folio_impl(folio, cpu);
308
309                         clear_dcache_dirty_cpu(folio, cpu);
310
311                         put_cpu();
312                 }
313         }
314 }
315
316 /* mm->context.lock must be held */
317 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
318                                     unsigned long tsb_hash_shift, unsigned long address,
319                                     unsigned long tte)
320 {
321         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
322         unsigned long tag;
323
324         if (unlikely(!tsb))
325                 return;
326
327         tsb += ((address >> tsb_hash_shift) &
328                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329         tag = (address >> 22UL);
330         tsb_insert(tsb, tag, tte);
331 }
332
333 #ifdef CONFIG_HUGETLB_PAGE
334 static int __init hugetlbpage_init(void)
335 {
336         hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
337         hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
338         hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
339         hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
340
341         return 0;
342 }
343
344 arch_initcall(hugetlbpage_init);
345
346 static void __init pud_huge_patch(void)
347 {
348         struct pud_huge_patch_entry *p;
349         unsigned long addr;
350
351         p = &__pud_huge_patch;
352         addr = p->addr;
353         *(unsigned int *)addr = p->insn;
354
355         __asm__ __volatile__("flush %0" : : "r" (addr));
356 }
357
358 bool __init arch_hugetlb_valid_size(unsigned long size)
359 {
360         unsigned int hugepage_shift = ilog2(size);
361         unsigned short hv_pgsz_idx;
362         unsigned int hv_pgsz_mask;
363
364         switch (hugepage_shift) {
365         case HPAGE_16GB_SHIFT:
366                 hv_pgsz_mask = HV_PGSZ_MASK_16GB;
367                 hv_pgsz_idx = HV_PGSZ_IDX_16GB;
368                 pud_huge_patch();
369                 break;
370         case HPAGE_2GB_SHIFT:
371                 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
372                 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
373                 break;
374         case HPAGE_256MB_SHIFT:
375                 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
376                 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
377                 break;
378         case HPAGE_SHIFT:
379                 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
380                 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
381                 break;
382         case HPAGE_64K_SHIFT:
383                 hv_pgsz_mask = HV_PGSZ_MASK_64K;
384                 hv_pgsz_idx = HV_PGSZ_IDX_64K;
385                 break;
386         default:
387                 hv_pgsz_mask = 0;
388         }
389
390         if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
391                 return false;
392
393         return true;
394 }
395 #endif  /* CONFIG_HUGETLB_PAGE */
396
397 void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
398                 unsigned long address, pte_t *ptep, unsigned int nr)
399 {
400         struct mm_struct *mm;
401         unsigned long flags;
402         bool is_huge_tsb;
403         pte_t pte = *ptep;
404         unsigned int i;
405
406         if (tlb_type != hypervisor) {
407                 unsigned long pfn = pte_pfn(pte);
408
409                 if (pfn_valid(pfn))
410                         flush_dcache(pfn);
411         }
412
413         mm = vma->vm_mm;
414
415         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
416         if (!pte_accessible(mm, pte))
417                 return;
418
419         spin_lock_irqsave(&mm->context.lock, flags);
420
421         is_huge_tsb = false;
422 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
423         if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
424                 unsigned long hugepage_size = PAGE_SIZE;
425
426                 if (is_vm_hugetlb_page(vma))
427                         hugepage_size = huge_page_size(hstate_vma(vma));
428
429                 if (hugepage_size >= PUD_SIZE) {
430                         unsigned long mask = 0x1ffc00000UL;
431
432                         /* Transfer bits [32:22] from address to resolve
433                          * at 4M granularity.
434                          */
435                         pte_val(pte) &= ~mask;
436                         pte_val(pte) |= (address & mask);
437                 } else if (hugepage_size >= PMD_SIZE) {
438                         /* We are fabricating 8MB pages using 4MB
439                          * real hw pages.
440                          */
441                         pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
442                 }
443
444                 if (hugepage_size >= PMD_SIZE) {
445                         __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
446                                 REAL_HPAGE_SHIFT, address, pte_val(pte));
447                         is_huge_tsb = true;
448                 }
449         }
450 #endif
451         if (!is_huge_tsb) {
452                 for (i = 0; i < nr; i++) {
453                         __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
454                                                 address, pte_val(pte));
455                         address += PAGE_SIZE;
456                         pte_val(pte) += PAGE_SIZE;
457                 }
458         }
459
460         spin_unlock_irqrestore(&mm->context.lock, flags);
461 }
462
463 void flush_dcache_folio(struct folio *folio)
464 {
465         unsigned long pfn = folio_pfn(folio);
466         struct address_space *mapping;
467         int this_cpu;
468
469         if (tlb_type == hypervisor)
470                 return;
471
472         /* Do not bother with the expensive D-cache flush if it
473          * is merely the zero page.  The 'bigcore' testcase in GDB
474          * causes this case to run millions of times.
475          */
476         if (is_zero_pfn(pfn))
477                 return;
478
479         this_cpu = get_cpu();
480
481         mapping = folio_flush_mapping(folio);
482         if (mapping && !mapping_mapped(mapping)) {
483                 bool dirty = test_bit(PG_dcache_dirty, &folio->flags);
484                 if (dirty) {
485                         int dirty_cpu = dcache_dirty_cpu(folio);
486
487                         if (dirty_cpu == this_cpu)
488                                 goto out;
489                         smp_flush_dcache_folio_impl(folio, dirty_cpu);
490                 }
491                 set_dcache_dirty(folio, this_cpu);
492         } else {
493                 /* We could delay the flush for the !page_mapping
494                  * case too.  But that case is for exec env/arg
495                  * pages and those are %99 certainly going to get
496                  * faulted into the tlb (and thus flushed) anyways.
497                  */
498                 flush_dcache_folio_impl(folio);
499         }
500
501 out:
502         put_cpu();
503 }
504 EXPORT_SYMBOL(flush_dcache_folio);
505
506 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
507 {
508         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
509         if (tlb_type == spitfire) {
510                 unsigned long kaddr;
511
512                 /* This code only runs on Spitfire cpus so this is
513                  * why we can assume _PAGE_PADDR_4U.
514                  */
515                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
516                         unsigned long paddr, mask = _PAGE_PADDR_4U;
517
518                         if (kaddr >= PAGE_OFFSET)
519                                 paddr = kaddr & mask;
520                         else {
521                                 pte_t *ptep = virt_to_kpte(kaddr);
522
523                                 paddr = pte_val(*ptep) & mask;
524                         }
525                         __flush_icache_page(paddr);
526                 }
527         }
528 }
529 EXPORT_SYMBOL(flush_icache_range);
530
531 void mmu_info(struct seq_file *m)
532 {
533         static const char *pgsz_strings[] = {
534                 "8K", "64K", "512K", "4MB", "32MB",
535                 "256MB", "2GB", "16GB",
536         };
537         int i, printed;
538
539         if (tlb_type == cheetah)
540                 seq_printf(m, "MMU Type\t: Cheetah\n");
541         else if (tlb_type == cheetah_plus)
542                 seq_printf(m, "MMU Type\t: Cheetah+\n");
543         else if (tlb_type == spitfire)
544                 seq_printf(m, "MMU Type\t: Spitfire\n");
545         else if (tlb_type == hypervisor)
546                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
547         else
548                 seq_printf(m, "MMU Type\t: ???\n");
549
550         seq_printf(m, "MMU PGSZs\t: ");
551         printed = 0;
552         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
553                 if (cpu_pgsz_mask & (1UL << i)) {
554                         seq_printf(m, "%s%s",
555                                    printed ? "," : "", pgsz_strings[i]);
556                         printed++;
557                 }
558         }
559         seq_putc(m, '\n');
560
561 #ifdef CONFIG_DEBUG_DCFLUSH
562         seq_printf(m, "DCPageFlushes\t: %d\n",
563                    atomic_read(&dcpage_flushes));
564 #ifdef CONFIG_SMP
565         seq_printf(m, "DCPageFlushesXC\t: %d\n",
566                    atomic_read(&dcpage_flushes_xcall));
567 #endif /* CONFIG_SMP */
568 #endif /* CONFIG_DEBUG_DCFLUSH */
569 }
570
571 struct linux_prom_translation prom_trans[512] __read_mostly;
572 unsigned int prom_trans_ents __read_mostly;
573
574 unsigned long kern_locked_tte_data;
575
576 /* The obp translations are saved based on 8k pagesize, since obp can
577  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
578  * HI_OBP_ADDRESS range are handled in ktlb.S.
579  */
580 static inline int in_obp_range(unsigned long vaddr)
581 {
582         return (vaddr >= LOW_OBP_ADDRESS &&
583                 vaddr < HI_OBP_ADDRESS);
584 }
585
586 static int cmp_ptrans(const void *a, const void *b)
587 {
588         const struct linux_prom_translation *x = a, *y = b;
589
590         if (x->virt > y->virt)
591                 return 1;
592         if (x->virt < y->virt)
593                 return -1;
594         return 0;
595 }
596
597 /* Read OBP translations property into 'prom_trans[]'.  */
598 static void __init read_obp_translations(void)
599 {
600         int n, node, ents, first, last, i;
601
602         node = prom_finddevice("/virtual-memory");
603         n = prom_getproplen(node, "translations");
604         if (unlikely(n == 0 || n == -1)) {
605                 prom_printf("prom_mappings: Couldn't get size.\n");
606                 prom_halt();
607         }
608         if (unlikely(n > sizeof(prom_trans))) {
609                 prom_printf("prom_mappings: Size %d is too big.\n", n);
610                 prom_halt();
611         }
612
613         if ((n = prom_getproperty(node, "translations",
614                                   (char *)&prom_trans[0],
615                                   sizeof(prom_trans))) == -1) {
616                 prom_printf("prom_mappings: Couldn't get property.\n");
617                 prom_halt();
618         }
619
620         n = n / sizeof(struct linux_prom_translation);
621
622         ents = n;
623
624         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
625              cmp_ptrans, NULL);
626
627         /* Now kick out all the non-OBP entries.  */
628         for (i = 0; i < ents; i++) {
629                 if (in_obp_range(prom_trans[i].virt))
630                         break;
631         }
632         first = i;
633         for (; i < ents; i++) {
634                 if (!in_obp_range(prom_trans[i].virt))
635                         break;
636         }
637         last = i;
638
639         for (i = 0; i < (last - first); i++) {
640                 struct linux_prom_translation *src = &prom_trans[i + first];
641                 struct linux_prom_translation *dest = &prom_trans[i];
642
643                 *dest = *src;
644         }
645         for (; i < ents; i++) {
646                 struct linux_prom_translation *dest = &prom_trans[i];
647                 dest->virt = dest->size = dest->data = 0x0UL;
648         }
649
650         prom_trans_ents = last - first;
651
652         if (tlb_type == spitfire) {
653                 /* Clear diag TTE bits. */
654                 for (i = 0; i < prom_trans_ents; i++)
655                         prom_trans[i].data &= ~0x0003fe0000000000UL;
656         }
657
658         /* Force execute bit on.  */
659         for (i = 0; i < prom_trans_ents; i++)
660                 prom_trans[i].data |= (tlb_type == hypervisor ?
661                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
662 }
663
664 static void __init hypervisor_tlb_lock(unsigned long vaddr,
665                                        unsigned long pte,
666                                        unsigned long mmu)
667 {
668         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
669
670         if (ret != 0) {
671                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
672                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
673                 prom_halt();
674         }
675 }
676
677 static unsigned long kern_large_tte(unsigned long paddr);
678
679 static void __init remap_kernel(void)
680 {
681         unsigned long phys_page, tte_vaddr, tte_data;
682         int i, tlb_ent = sparc64_highest_locked_tlbent();
683
684         tte_vaddr = (unsigned long) KERNBASE;
685         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
686         tte_data = kern_large_tte(phys_page);
687
688         kern_locked_tte_data = tte_data;
689
690         /* Now lock us into the TLBs via Hypervisor or OBP. */
691         if (tlb_type == hypervisor) {
692                 for (i = 0; i < num_kernel_image_mappings; i++) {
693                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
694                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
695                         tte_vaddr += 0x400000;
696                         tte_data += 0x400000;
697                 }
698         } else {
699                 for (i = 0; i < num_kernel_image_mappings; i++) {
700                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
701                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
702                         tte_vaddr += 0x400000;
703                         tte_data += 0x400000;
704                 }
705                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
706         }
707         if (tlb_type == cheetah_plus) {
708                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
709                                             CTX_CHEETAH_PLUS_NUC);
710                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
711                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
712         }
713 }
714
715
716 static void __init inherit_prom_mappings(void)
717 {
718         /* Now fixup OBP's idea about where we really are mapped. */
719         printk("Remapping the kernel... ");
720         remap_kernel();
721         printk("done.\n");
722 }
723
724 void prom_world(int enter)
725 {
726         /*
727          * No need to change the address space any more, just flush
728          * the register windows
729          */
730         __asm__ __volatile__("flushw");
731 }
732
733 void __flush_dcache_range(unsigned long start, unsigned long end)
734 {
735         unsigned long va;
736
737         if (tlb_type == spitfire) {
738                 int n = 0;
739
740                 for (va = start; va < end; va += 32) {
741                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
742                         if (++n >= 512)
743                                 break;
744                 }
745         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
746                 start = __pa(start);
747                 end = __pa(end);
748                 for (va = start; va < end; va += 32)
749                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
750                                              "membar #Sync"
751                                              : /* no outputs */
752                                              : "r" (va),
753                                                "i" (ASI_DCACHE_INVALIDATE));
754         }
755 }
756 EXPORT_SYMBOL(__flush_dcache_range);
757
758 /* get_new_mmu_context() uses "cache + 1".  */
759 DEFINE_SPINLOCK(ctx_alloc_lock);
760 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
761 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
762 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
763 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
764 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
765
766 static void mmu_context_wrap(void)
767 {
768         unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
769         unsigned long new_ver, new_ctx, old_ctx;
770         struct mm_struct *mm;
771         int cpu;
772
773         bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
774
775         /* Reserve kernel context */
776         set_bit(0, mmu_context_bmap);
777
778         new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
779         if (unlikely(new_ver == 0))
780                 new_ver = CTX_FIRST_VERSION;
781         tlb_context_cache = new_ver;
782
783         /*
784          * Make sure that any new mm that are added into per_cpu_secondary_mm,
785          * are going to go through get_new_mmu_context() path.
786          */
787         mb();
788
789         /*
790          * Updated versions to current on those CPUs that had valid secondary
791          * contexts
792          */
793         for_each_online_cpu(cpu) {
794                 /*
795                  * If a new mm is stored after we took this mm from the array,
796                  * it will go into get_new_mmu_context() path, because we
797                  * already bumped the version in tlb_context_cache.
798                  */
799                 mm = per_cpu(per_cpu_secondary_mm, cpu);
800
801                 if (unlikely(!mm || mm == &init_mm))
802                         continue;
803
804                 old_ctx = mm->context.sparc64_ctx_val;
805                 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
806                         new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
807                         set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
808                         mm->context.sparc64_ctx_val = new_ctx;
809                 }
810         }
811 }
812
813 /* Caller does TLB context flushing on local CPU if necessary.
814  * The caller also ensures that CTX_VALID(mm->context) is false.
815  *
816  * We must be careful about boundary cases so that we never
817  * let the user have CTX 0 (nucleus) or we ever use a CTX
818  * version of zero (and thus NO_CONTEXT would not be caught
819  * by version mis-match tests in mmu_context.h).
820  *
821  * Always invoked with interrupts disabled.
822  */
823 void get_new_mmu_context(struct mm_struct *mm)
824 {
825         unsigned long ctx, new_ctx;
826         unsigned long orig_pgsz_bits;
827
828         spin_lock(&ctx_alloc_lock);
829 retry:
830         /* wrap might have happened, test again if our context became valid */
831         if (unlikely(CTX_VALID(mm->context)))
832                 goto out;
833         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
834         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
835         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
836         if (new_ctx >= (1 << CTX_NR_BITS)) {
837                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
838                 if (new_ctx >= ctx) {
839                         mmu_context_wrap();
840                         goto retry;
841                 }
842         }
843         if (mm->context.sparc64_ctx_val)
844                 cpumask_clear(mm_cpumask(mm));
845         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
846         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
847         tlb_context_cache = new_ctx;
848         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
849 out:
850         spin_unlock(&ctx_alloc_lock);
851 }
852
853 static int numa_enabled = 1;
854 static int numa_debug;
855
856 static int __init early_numa(char *p)
857 {
858         if (!p)
859                 return 0;
860
861         if (strstr(p, "off"))
862                 numa_enabled = 0;
863
864         if (strstr(p, "debug"))
865                 numa_debug = 1;
866
867         return 0;
868 }
869 early_param("numa", early_numa);
870
871 #define numadbg(f, a...) \
872 do {    if (numa_debug) \
873                 printk(KERN_INFO f, ## a); \
874 } while (0)
875
876 static void __init find_ramdisk(unsigned long phys_base)
877 {
878 #ifdef CONFIG_BLK_DEV_INITRD
879         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
880                 unsigned long ramdisk_image;
881
882                 /* Older versions of the bootloader only supported a
883                  * 32-bit physical address for the ramdisk image
884                  * location, stored at sparc_ramdisk_image.  Newer
885                  * SILO versions set sparc_ramdisk_image to zero and
886                  * provide a full 64-bit physical address at
887                  * sparc_ramdisk_image64.
888                  */
889                 ramdisk_image = sparc_ramdisk_image;
890                 if (!ramdisk_image)
891                         ramdisk_image = sparc_ramdisk_image64;
892
893                 /* Another bootloader quirk.  The bootloader normalizes
894                  * the physical address to KERNBASE, so we have to
895                  * factor that back out and add in the lowest valid
896                  * physical page address to get the true physical address.
897                  */
898                 ramdisk_image -= KERNBASE;
899                 ramdisk_image += phys_base;
900
901                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
902                         ramdisk_image, sparc_ramdisk_size);
903
904                 initrd_start = ramdisk_image;
905                 initrd_end = ramdisk_image + sparc_ramdisk_size;
906
907                 memblock_reserve(initrd_start, sparc_ramdisk_size);
908
909                 initrd_start += PAGE_OFFSET;
910                 initrd_end += PAGE_OFFSET;
911         }
912 #endif
913 }
914
915 struct node_mem_mask {
916         unsigned long mask;
917         unsigned long match;
918 };
919 static struct node_mem_mask node_masks[MAX_NUMNODES];
920 static int num_node_masks;
921
922 #ifdef CONFIG_NUMA
923
924 struct mdesc_mlgroup {
925         u64     node;
926         u64     latency;
927         u64     match;
928         u64     mask;
929 };
930
931 static struct mdesc_mlgroup *mlgroups;
932 static int num_mlgroups;
933
934 int numa_cpu_lookup_table[NR_CPUS];
935 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
936
937 struct mdesc_mblock {
938         u64     base;
939         u64     size;
940         u64     offset; /* RA-to-PA */
941 };
942 static struct mdesc_mblock *mblocks;
943 static int num_mblocks;
944
945 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
946 {
947         struct mdesc_mblock *m = NULL;
948         int i;
949
950         for (i = 0; i < num_mblocks; i++) {
951                 m = &mblocks[i];
952
953                 if (addr >= m->base &&
954                     addr < (m->base + m->size)) {
955                         break;
956                 }
957         }
958
959         return m;
960 }
961
962 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
963 {
964         int prev_nid, new_nid;
965
966         prev_nid = NUMA_NO_NODE;
967         for ( ; start < end; start += PAGE_SIZE) {
968                 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
969                         struct node_mem_mask *p = &node_masks[new_nid];
970
971                         if ((start & p->mask) == p->match) {
972                                 if (prev_nid == NUMA_NO_NODE)
973                                         prev_nid = new_nid;
974                                 break;
975                         }
976                 }
977
978                 if (new_nid == num_node_masks) {
979                         prev_nid = 0;
980                         WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
981                                   start);
982                         break;
983                 }
984
985                 if (prev_nid != new_nid)
986                         break;
987         }
988         *nid = prev_nid;
989
990         return start > end ? end : start;
991 }
992
993 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
994 {
995         u64 ret_end, pa_start, m_mask, m_match, m_end;
996         struct mdesc_mblock *mblock;
997         int _nid, i;
998
999         if (tlb_type != hypervisor)
1000                 return memblock_nid_range_sun4u(start, end, nid);
1001
1002         mblock = addr_to_mblock(start);
1003         if (!mblock) {
1004                 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1005                           start);
1006
1007                 _nid = 0;
1008                 ret_end = end;
1009                 goto done;
1010         }
1011
1012         pa_start = start + mblock->offset;
1013         m_match = 0;
1014         m_mask = 0;
1015
1016         for (_nid = 0; _nid < num_node_masks; _nid++) {
1017                 struct node_mem_mask *const m = &node_masks[_nid];
1018
1019                 if ((pa_start & m->mask) == m->match) {
1020                         m_match = m->match;
1021                         m_mask = m->mask;
1022                         break;
1023                 }
1024         }
1025
1026         if (num_node_masks == _nid) {
1027                 /* We could not find NUMA group, so default to 0, but lets
1028                  * search for latency group, so we could calculate the correct
1029                  * end address that we return
1030                  */
1031                 _nid = 0;
1032
1033                 for (i = 0; i < num_mlgroups; i++) {
1034                         struct mdesc_mlgroup *const m = &mlgroups[i];
1035
1036                         if ((pa_start & m->mask) == m->match) {
1037                                 m_match = m->match;
1038                                 m_mask = m->mask;
1039                                 break;
1040                         }
1041                 }
1042
1043                 if (i == num_mlgroups) {
1044                         WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1045                                   start);
1046
1047                         ret_end = end;
1048                         goto done;
1049                 }
1050         }
1051
1052         /*
1053          * Each latency group has match and mask, and each memory block has an
1054          * offset.  An address belongs to a latency group if its address matches
1055          * the following formula: ((addr + offset) & mask) == match
1056          * It is, however, slow to check every single page if it matches a
1057          * particular latency group. As optimization we calculate end value by
1058          * using bit arithmetics.
1059          */
1060         m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1061         m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1062         ret_end = m_end > end ? end : m_end;
1063
1064 done:
1065         *nid = _nid;
1066         return ret_end;
1067 }
1068 #endif
1069
1070 /* This must be invoked after performing all of the necessary
1071  * memblock_set_node() calls for 'nid'.  We need to be able to get
1072  * correct data from get_pfn_range_for_nid().
1073  */
1074 static void __init allocate_node_data(int nid)
1075 {
1076         struct pglist_data *p;
1077         unsigned long start_pfn, end_pfn;
1078 #ifdef CONFIG_NUMA
1079
1080         NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1081                                              SMP_CACHE_BYTES, nid);
1082         if (!NODE_DATA(nid)) {
1083                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1084                 prom_halt();
1085         }
1086
1087         NODE_DATA(nid)->node_id = nid;
1088 #endif
1089
1090         p = NODE_DATA(nid);
1091
1092         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1093         p->node_start_pfn = start_pfn;
1094         p->node_spanned_pages = end_pfn - start_pfn;
1095 }
1096
1097 static void init_node_masks_nonnuma(void)
1098 {
1099 #ifdef CONFIG_NUMA
1100         int i;
1101 #endif
1102
1103         numadbg("Initializing tables for non-numa.\n");
1104
1105         node_masks[0].mask = 0;
1106         node_masks[0].match = 0;
1107         num_node_masks = 1;
1108
1109 #ifdef CONFIG_NUMA
1110         for (i = 0; i < NR_CPUS; i++)
1111                 numa_cpu_lookup_table[i] = 0;
1112
1113         cpumask_setall(&numa_cpumask_lookup_table[0]);
1114 #endif
1115 }
1116
1117 #ifdef CONFIG_NUMA
1118 struct pglist_data *node_data[MAX_NUMNODES];
1119
1120 EXPORT_SYMBOL(numa_cpu_lookup_table);
1121 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1122 EXPORT_SYMBOL(node_data);
1123
1124 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1125                                    u32 cfg_handle)
1126 {
1127         u64 arc;
1128
1129         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1130                 u64 target = mdesc_arc_target(md, arc);
1131                 const u64 *val;
1132
1133                 val = mdesc_get_property(md, target,
1134                                          "cfg-handle", NULL);
1135                 if (val && *val == cfg_handle)
1136                         return 0;
1137         }
1138         return -ENODEV;
1139 }
1140
1141 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1142                                     u32 cfg_handle)
1143 {
1144         u64 arc, candidate, best_latency = ~(u64)0;
1145
1146         candidate = MDESC_NODE_NULL;
1147         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1148                 u64 target = mdesc_arc_target(md, arc);
1149                 const char *name = mdesc_node_name(md, target);
1150                 const u64 *val;
1151
1152                 if (strcmp(name, "pio-latency-group"))
1153                         continue;
1154
1155                 val = mdesc_get_property(md, target, "latency", NULL);
1156                 if (!val)
1157                         continue;
1158
1159                 if (*val < best_latency) {
1160                         candidate = target;
1161                         best_latency = *val;
1162                 }
1163         }
1164
1165         if (candidate == MDESC_NODE_NULL)
1166                 return -ENODEV;
1167
1168         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1169 }
1170
1171 int of_node_to_nid(struct device_node *dp)
1172 {
1173         const struct linux_prom64_registers *regs;
1174         struct mdesc_handle *md;
1175         u32 cfg_handle;
1176         int count, nid;
1177         u64 grp;
1178
1179         /* This is the right thing to do on currently supported
1180          * SUN4U NUMA platforms as well, as the PCI controller does
1181          * not sit behind any particular memory controller.
1182          */
1183         if (!mlgroups)
1184                 return -1;
1185
1186         regs = of_get_property(dp, "reg", NULL);
1187         if (!regs)
1188                 return -1;
1189
1190         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1191
1192         md = mdesc_grab();
1193
1194         count = 0;
1195         nid = NUMA_NO_NODE;
1196         mdesc_for_each_node_by_name(md, grp, "group") {
1197                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1198                         nid = count;
1199                         break;
1200                 }
1201                 count++;
1202         }
1203
1204         mdesc_release(md);
1205
1206         return nid;
1207 }
1208
1209 static void __init add_node_ranges(void)
1210 {
1211         phys_addr_t start, end;
1212         unsigned long prev_max;
1213         u64 i;
1214
1215 memblock_resized:
1216         prev_max = memblock.memory.max;
1217
1218         for_each_mem_range(i, &start, &end) {
1219                 while (start < end) {
1220                         unsigned long this_end;
1221                         int nid;
1222
1223                         this_end = memblock_nid_range(start, end, &nid);
1224
1225                         numadbg("Setting memblock NUMA node nid[%d] "
1226                                 "start[%llx] end[%lx]\n",
1227                                 nid, start, this_end);
1228
1229                         memblock_set_node(start, this_end - start,
1230                                           &memblock.memory, nid);
1231                         if (memblock.memory.max != prev_max)
1232                                 goto memblock_resized;
1233                         start = this_end;
1234                 }
1235         }
1236 }
1237
1238 static int __init grab_mlgroups(struct mdesc_handle *md)
1239 {
1240         unsigned long paddr;
1241         int count = 0;
1242         u64 node;
1243
1244         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1245                 count++;
1246         if (!count)
1247                 return -ENOENT;
1248
1249         paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1250                                     SMP_CACHE_BYTES);
1251         if (!paddr)
1252                 return -ENOMEM;
1253
1254         mlgroups = __va(paddr);
1255         num_mlgroups = count;
1256
1257         count = 0;
1258         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1259                 struct mdesc_mlgroup *m = &mlgroups[count++];
1260                 const u64 *val;
1261
1262                 m->node = node;
1263
1264                 val = mdesc_get_property(md, node, "latency", NULL);
1265                 m->latency = *val;
1266                 val = mdesc_get_property(md, node, "address-match", NULL);
1267                 m->match = *val;
1268                 val = mdesc_get_property(md, node, "address-mask", NULL);
1269                 m->mask = *val;
1270
1271                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1272                         "match[%llx] mask[%llx]\n",
1273                         count - 1, m->node, m->latency, m->match, m->mask);
1274         }
1275
1276         return 0;
1277 }
1278
1279 static int __init grab_mblocks(struct mdesc_handle *md)
1280 {
1281         unsigned long paddr;
1282         int count = 0;
1283         u64 node;
1284
1285         mdesc_for_each_node_by_name(md, node, "mblock")
1286                 count++;
1287         if (!count)
1288                 return -ENOENT;
1289
1290         paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1291                                     SMP_CACHE_BYTES);
1292         if (!paddr)
1293                 return -ENOMEM;
1294
1295         mblocks = __va(paddr);
1296         num_mblocks = count;
1297
1298         count = 0;
1299         mdesc_for_each_node_by_name(md, node, "mblock") {
1300                 struct mdesc_mblock *m = &mblocks[count++];
1301                 const u64 *val;
1302
1303                 val = mdesc_get_property(md, node, "base", NULL);
1304                 m->base = *val;
1305                 val = mdesc_get_property(md, node, "size", NULL);
1306                 m->size = *val;
1307                 val = mdesc_get_property(md, node,
1308                                          "address-congruence-offset", NULL);
1309
1310                 /* The address-congruence-offset property is optional.
1311                  * Explicity zero it be identifty this.
1312                  */
1313                 if (val)
1314                         m->offset = *val;
1315                 else
1316                         m->offset = 0UL;
1317
1318                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1319                         count - 1, m->base, m->size, m->offset);
1320         }
1321
1322         return 0;
1323 }
1324
1325 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1326                                                u64 grp, cpumask_t *mask)
1327 {
1328         u64 arc;
1329
1330         cpumask_clear(mask);
1331
1332         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1333                 u64 target = mdesc_arc_target(md, arc);
1334                 const char *name = mdesc_node_name(md, target);
1335                 const u64 *id;
1336
1337                 if (strcmp(name, "cpu"))
1338                         continue;
1339                 id = mdesc_get_property(md, target, "id", NULL);
1340                 if (*id < nr_cpu_ids)
1341                         cpumask_set_cpu(*id, mask);
1342         }
1343 }
1344
1345 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1346 {
1347         int i;
1348
1349         for (i = 0; i < num_mlgroups; i++) {
1350                 struct mdesc_mlgroup *m = &mlgroups[i];
1351                 if (m->node == node)
1352                         return m;
1353         }
1354         return NULL;
1355 }
1356
1357 int __node_distance(int from, int to)
1358 {
1359         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1360                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1361                         from, to);
1362                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1363         }
1364         return numa_latency[from][to];
1365 }
1366 EXPORT_SYMBOL(__node_distance);
1367
1368 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1369 {
1370         int i;
1371
1372         for (i = 0; i < MAX_NUMNODES; i++) {
1373                 struct node_mem_mask *n = &node_masks[i];
1374
1375                 if ((grp->mask == n->mask) && (grp->match == n->match))
1376                         break;
1377         }
1378         return i;
1379 }
1380
1381 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1382                                                  u64 grp, int index)
1383 {
1384         u64 arc;
1385
1386         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1387                 int tnode;
1388                 u64 target = mdesc_arc_target(md, arc);
1389                 struct mdesc_mlgroup *m = find_mlgroup(target);
1390
1391                 if (!m)
1392                         continue;
1393                 tnode = find_best_numa_node_for_mlgroup(m);
1394                 if (tnode == MAX_NUMNODES)
1395                         continue;
1396                 numa_latency[index][tnode] = m->latency;
1397         }
1398 }
1399
1400 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1401                                       int index)
1402 {
1403         struct mdesc_mlgroup *candidate = NULL;
1404         u64 arc, best_latency = ~(u64)0;
1405         struct node_mem_mask *n;
1406
1407         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1408                 u64 target = mdesc_arc_target(md, arc);
1409                 struct mdesc_mlgroup *m = find_mlgroup(target);
1410                 if (!m)
1411                         continue;
1412                 if (m->latency < best_latency) {
1413                         candidate = m;
1414                         best_latency = m->latency;
1415                 }
1416         }
1417         if (!candidate)
1418                 return -ENOENT;
1419
1420         if (num_node_masks != index) {
1421                 printk(KERN_ERR "Inconsistent NUMA state, "
1422                        "index[%d] != num_node_masks[%d]\n",
1423                        index, num_node_masks);
1424                 return -EINVAL;
1425         }
1426
1427         n = &node_masks[num_node_masks++];
1428
1429         n->mask = candidate->mask;
1430         n->match = candidate->match;
1431
1432         numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1433                 index, n->mask, n->match, candidate->latency);
1434
1435         return 0;
1436 }
1437
1438 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1439                                          int index)
1440 {
1441         cpumask_t mask;
1442         int cpu;
1443
1444         numa_parse_mdesc_group_cpus(md, grp, &mask);
1445
1446         for_each_cpu(cpu, &mask)
1447                 numa_cpu_lookup_table[cpu] = index;
1448         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1449
1450         if (numa_debug) {
1451                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1452                 for_each_cpu(cpu, &mask)
1453                         printk("%d ", cpu);
1454                 printk("]\n");
1455         }
1456
1457         return numa_attach_mlgroup(md, grp, index);
1458 }
1459
1460 static int __init numa_parse_mdesc(void)
1461 {
1462         struct mdesc_handle *md = mdesc_grab();
1463         int i, j, err, count;
1464         u64 node;
1465
1466         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1467         if (node == MDESC_NODE_NULL) {
1468                 mdesc_release(md);
1469                 return -ENOENT;
1470         }
1471
1472         err = grab_mblocks(md);
1473         if (err < 0)
1474                 goto out;
1475
1476         err = grab_mlgroups(md);
1477         if (err < 0)
1478                 goto out;
1479
1480         count = 0;
1481         mdesc_for_each_node_by_name(md, node, "group") {
1482                 err = numa_parse_mdesc_group(md, node, count);
1483                 if (err < 0)
1484                         break;
1485                 count++;
1486         }
1487
1488         count = 0;
1489         mdesc_for_each_node_by_name(md, node, "group") {
1490                 find_numa_latencies_for_group(md, node, count);
1491                 count++;
1492         }
1493
1494         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1495         for (i = 0; i < MAX_NUMNODES; i++) {
1496                 u64 self_latency = numa_latency[i][i];
1497
1498                 for (j = 0; j < MAX_NUMNODES; j++) {
1499                         numa_latency[i][j] =
1500                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1501                                 self_latency;
1502                 }
1503         }
1504
1505         add_node_ranges();
1506
1507         for (i = 0; i < num_node_masks; i++) {
1508                 allocate_node_data(i);
1509                 node_set_online(i);
1510         }
1511
1512         err = 0;
1513 out:
1514         mdesc_release(md);
1515         return err;
1516 }
1517
1518 static int __init numa_parse_jbus(void)
1519 {
1520         unsigned long cpu, index;
1521
1522         /* NUMA node id is encoded in bits 36 and higher, and there is
1523          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1524          */
1525         index = 0;
1526         for_each_present_cpu(cpu) {
1527                 numa_cpu_lookup_table[cpu] = index;
1528                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1529                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1530                 node_masks[index].match = cpu << 36UL;
1531
1532                 index++;
1533         }
1534         num_node_masks = index;
1535
1536         add_node_ranges();
1537
1538         for (index = 0; index < num_node_masks; index++) {
1539                 allocate_node_data(index);
1540                 node_set_online(index);
1541         }
1542
1543         return 0;
1544 }
1545
1546 static int __init numa_parse_sun4u(void)
1547 {
1548         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1549                 unsigned long ver;
1550
1551                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1552                 if ((ver >> 32UL) == __JALAPENO_ID ||
1553                     (ver >> 32UL) == __SERRANO_ID)
1554                         return numa_parse_jbus();
1555         }
1556         return -1;
1557 }
1558
1559 static int __init bootmem_init_numa(void)
1560 {
1561         int i, j;
1562         int err = -1;
1563
1564         numadbg("bootmem_init_numa()\n");
1565
1566         /* Some sane defaults for numa latency values */
1567         for (i = 0; i < MAX_NUMNODES; i++) {
1568                 for (j = 0; j < MAX_NUMNODES; j++)
1569                         numa_latency[i][j] = (i == j) ?
1570                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1571         }
1572
1573         if (numa_enabled) {
1574                 if (tlb_type == hypervisor)
1575                         err = numa_parse_mdesc();
1576                 else
1577                         err = numa_parse_sun4u();
1578         }
1579         return err;
1580 }
1581
1582 #else
1583
1584 static int bootmem_init_numa(void)
1585 {
1586         return -1;
1587 }
1588
1589 #endif
1590
1591 static void __init bootmem_init_nonnuma(void)
1592 {
1593         unsigned long top_of_ram = memblock_end_of_DRAM();
1594         unsigned long total_ram = memblock_phys_mem_size();
1595
1596         numadbg("bootmem_init_nonnuma()\n");
1597
1598         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1599                top_of_ram, total_ram);
1600         printk(KERN_INFO "Memory hole size: %ldMB\n",
1601                (top_of_ram - total_ram) >> 20);
1602
1603         init_node_masks_nonnuma();
1604         memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1605         allocate_node_data(0);
1606         node_set_online(0);
1607 }
1608
1609 static unsigned long __init bootmem_init(unsigned long phys_base)
1610 {
1611         unsigned long end_pfn;
1612
1613         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1614         max_pfn = max_low_pfn = end_pfn;
1615         min_low_pfn = (phys_base >> PAGE_SHIFT);
1616
1617         if (bootmem_init_numa() < 0)
1618                 bootmem_init_nonnuma();
1619
1620         /* Dump memblock with node info. */
1621         memblock_dump_all();
1622
1623         /* XXX cpu notifier XXX */
1624
1625         sparse_init();
1626
1627         return end_pfn;
1628 }
1629
1630 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1631 static int pall_ents __initdata;
1632
1633 static unsigned long max_phys_bits = 40;
1634
1635 bool kern_addr_valid(unsigned long addr)
1636 {
1637         pgd_t *pgd;
1638         p4d_t *p4d;
1639         pud_t *pud;
1640         pmd_t *pmd;
1641         pte_t *pte;
1642
1643         if ((long)addr < 0L) {
1644                 unsigned long pa = __pa(addr);
1645
1646                 if ((pa >> max_phys_bits) != 0UL)
1647                         return false;
1648
1649                 return pfn_valid(pa >> PAGE_SHIFT);
1650         }
1651
1652         if (addr >= (unsigned long) KERNBASE &&
1653             addr < (unsigned long)&_end)
1654                 return true;
1655
1656         pgd = pgd_offset_k(addr);
1657         if (pgd_none(*pgd))
1658                 return false;
1659
1660         p4d = p4d_offset(pgd, addr);
1661         if (p4d_none(*p4d))
1662                 return false;
1663
1664         pud = pud_offset(p4d, addr);
1665         if (pud_none(*pud))
1666                 return false;
1667
1668         if (pud_large(*pud))
1669                 return pfn_valid(pud_pfn(*pud));
1670
1671         pmd = pmd_offset(pud, addr);
1672         if (pmd_none(*pmd))
1673                 return false;
1674
1675         if (pmd_large(*pmd))
1676                 return pfn_valid(pmd_pfn(*pmd));
1677
1678         pte = pte_offset_kernel(pmd, addr);
1679         if (pte_none(*pte))
1680                 return false;
1681
1682         return pfn_valid(pte_pfn(*pte));
1683 }
1684
1685 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1686                                               unsigned long vend,
1687                                               pud_t *pud)
1688 {
1689         const unsigned long mask16gb = (1UL << 34) - 1UL;
1690         u64 pte_val = vstart;
1691
1692         /* Each PUD is 8GB */
1693         if ((vstart & mask16gb) ||
1694             (vend - vstart <= mask16gb)) {
1695                 pte_val ^= kern_linear_pte_xor[2];
1696                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1697
1698                 return vstart + PUD_SIZE;
1699         }
1700
1701         pte_val ^= kern_linear_pte_xor[3];
1702         pte_val |= _PAGE_PUD_HUGE;
1703
1704         vend = vstart + mask16gb + 1UL;
1705         while (vstart < vend) {
1706                 pud_val(*pud) = pte_val;
1707
1708                 pte_val += PUD_SIZE;
1709                 vstart += PUD_SIZE;
1710                 pud++;
1711         }
1712         return vstart;
1713 }
1714
1715 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1716                                    bool guard)
1717 {
1718         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1719                 return true;
1720
1721         return false;
1722 }
1723
1724 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1725                                               unsigned long vend,
1726                                               pmd_t *pmd)
1727 {
1728         const unsigned long mask256mb = (1UL << 28) - 1UL;
1729         const unsigned long mask2gb = (1UL << 31) - 1UL;
1730         u64 pte_val = vstart;
1731
1732         /* Each PMD is 8MB */
1733         if ((vstart & mask256mb) ||
1734             (vend - vstart <= mask256mb)) {
1735                 pte_val ^= kern_linear_pte_xor[0];
1736                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1737
1738                 return vstart + PMD_SIZE;
1739         }
1740
1741         if ((vstart & mask2gb) ||
1742             (vend - vstart <= mask2gb)) {
1743                 pte_val ^= kern_linear_pte_xor[1];
1744                 pte_val |= _PAGE_PMD_HUGE;
1745                 vend = vstart + mask256mb + 1UL;
1746         } else {
1747                 pte_val ^= kern_linear_pte_xor[2];
1748                 pte_val |= _PAGE_PMD_HUGE;
1749                 vend = vstart + mask2gb + 1UL;
1750         }
1751
1752         while (vstart < vend) {
1753                 pmd_val(*pmd) = pte_val;
1754
1755                 pte_val += PMD_SIZE;
1756                 vstart += PMD_SIZE;
1757                 pmd++;
1758         }
1759
1760         return vstart;
1761 }
1762
1763 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1764                                    bool guard)
1765 {
1766         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1767                 return true;
1768
1769         return false;
1770 }
1771
1772 static unsigned long __ref kernel_map_range(unsigned long pstart,
1773                                             unsigned long pend, pgprot_t prot,
1774                                             bool use_huge)
1775 {
1776         unsigned long vstart = PAGE_OFFSET + pstart;
1777         unsigned long vend = PAGE_OFFSET + pend;
1778         unsigned long alloc_bytes = 0UL;
1779
1780         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1781                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1782                             vstart, vend);
1783                 prom_halt();
1784         }
1785
1786         while (vstart < vend) {
1787                 unsigned long this_end, paddr = __pa(vstart);
1788                 pgd_t *pgd = pgd_offset_k(vstart);
1789                 p4d_t *p4d;
1790                 pud_t *pud;
1791                 pmd_t *pmd;
1792                 pte_t *pte;
1793
1794                 if (pgd_none(*pgd)) {
1795                         pud_t *new;
1796
1797                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1798                                                   PAGE_SIZE);
1799                         if (!new)
1800                                 goto err_alloc;
1801                         alloc_bytes += PAGE_SIZE;
1802                         pgd_populate(&init_mm, pgd, new);
1803                 }
1804
1805                 p4d = p4d_offset(pgd, vstart);
1806                 if (p4d_none(*p4d)) {
1807                         pud_t *new;
1808
1809                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1810                                                   PAGE_SIZE);
1811                         if (!new)
1812                                 goto err_alloc;
1813                         alloc_bytes += PAGE_SIZE;
1814                         p4d_populate(&init_mm, p4d, new);
1815                 }
1816
1817                 pud = pud_offset(p4d, vstart);
1818                 if (pud_none(*pud)) {
1819                         pmd_t *new;
1820
1821                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1822                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1823                                 continue;
1824                         }
1825                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1826                                                   PAGE_SIZE);
1827                         if (!new)
1828                                 goto err_alloc;
1829                         alloc_bytes += PAGE_SIZE;
1830                         pud_populate(&init_mm, pud, new);
1831                 }
1832
1833                 pmd = pmd_offset(pud, vstart);
1834                 if (pmd_none(*pmd)) {
1835                         pte_t *new;
1836
1837                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1838                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1839                                 continue;
1840                         }
1841                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1842                                                   PAGE_SIZE);
1843                         if (!new)
1844                                 goto err_alloc;
1845                         alloc_bytes += PAGE_SIZE;
1846                         pmd_populate_kernel(&init_mm, pmd, new);
1847                 }
1848
1849                 pte = pte_offset_kernel(pmd, vstart);
1850                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1851                 if (this_end > vend)
1852                         this_end = vend;
1853
1854                 while (vstart < this_end) {
1855                         pte_val(*pte) = (paddr | pgprot_val(prot));
1856
1857                         vstart += PAGE_SIZE;
1858                         paddr += PAGE_SIZE;
1859                         pte++;
1860                 }
1861         }
1862
1863         return alloc_bytes;
1864
1865 err_alloc:
1866         panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1867               __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1868         return -ENOMEM;
1869 }
1870
1871 static void __init flush_all_kernel_tsbs(void)
1872 {
1873         int i;
1874
1875         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1876                 struct tsb *ent = &swapper_tsb[i];
1877
1878                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1879         }
1880 #ifndef CONFIG_DEBUG_PAGEALLOC
1881         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1882                 struct tsb *ent = &swapper_4m_tsb[i];
1883
1884                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1885         }
1886 #endif
1887 }
1888
1889 extern unsigned int kvmap_linear_patch[1];
1890
1891 static void __init kernel_physical_mapping_init(void)
1892 {
1893         unsigned long i, mem_alloced = 0UL;
1894         bool use_huge = true;
1895
1896 #ifdef CONFIG_DEBUG_PAGEALLOC
1897         use_huge = false;
1898 #endif
1899         for (i = 0; i < pall_ents; i++) {
1900                 unsigned long phys_start, phys_end;
1901
1902                 phys_start = pall[i].phys_addr;
1903                 phys_end = phys_start + pall[i].reg_size;
1904
1905                 mem_alloced += kernel_map_range(phys_start, phys_end,
1906                                                 PAGE_KERNEL, use_huge);
1907         }
1908
1909         printk("Allocated %ld bytes for kernel page tables.\n",
1910                mem_alloced);
1911
1912         kvmap_linear_patch[0] = 0x01000000; /* nop */
1913         flushi(&kvmap_linear_patch[0]);
1914
1915         flush_all_kernel_tsbs();
1916
1917         __flush_tlb_all();
1918 }
1919
1920 #ifdef CONFIG_DEBUG_PAGEALLOC
1921 void __kernel_map_pages(struct page *page, int numpages, int enable)
1922 {
1923         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1924         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1925
1926         kernel_map_range(phys_start, phys_end,
1927                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1928
1929         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1930                                PAGE_OFFSET + phys_end);
1931
1932         /* we should perform an IPI and flush all tlbs,
1933          * but that can deadlock->flush only current cpu.
1934          */
1935         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1936                                  PAGE_OFFSET + phys_end);
1937 }
1938 #endif
1939
1940 unsigned long __init find_ecache_flush_span(unsigned long size)
1941 {
1942         int i;
1943
1944         for (i = 0; i < pavail_ents; i++) {
1945                 if (pavail[i].reg_size >= size)
1946                         return pavail[i].phys_addr;
1947         }
1948
1949         return ~0UL;
1950 }
1951
1952 unsigned long PAGE_OFFSET;
1953 EXPORT_SYMBOL(PAGE_OFFSET);
1954
1955 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1956 EXPORT_SYMBOL(VMALLOC_END);
1957
1958 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1959 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1960
1961 static void __init setup_page_offset(void)
1962 {
1963         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1964                 /* Cheetah/Panther support a full 64-bit virtual
1965                  * address, so we can use all that our page tables
1966                  * support.
1967                  */
1968                 sparc64_va_hole_top =    0xfff0000000000000UL;
1969                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1970
1971                 max_phys_bits = 42;
1972         } else if (tlb_type == hypervisor) {
1973                 switch (sun4v_chip_type) {
1974                 case SUN4V_CHIP_NIAGARA1:
1975                 case SUN4V_CHIP_NIAGARA2:
1976                         /* T1 and T2 support 48-bit virtual addresses.  */
1977                         sparc64_va_hole_top =    0xffff800000000000UL;
1978                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1979
1980                         max_phys_bits = 39;
1981                         break;
1982                 case SUN4V_CHIP_NIAGARA3:
1983                         /* T3 supports 48-bit virtual addresses.  */
1984                         sparc64_va_hole_top =    0xffff800000000000UL;
1985                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1986
1987                         max_phys_bits = 43;
1988                         break;
1989                 case SUN4V_CHIP_NIAGARA4:
1990                 case SUN4V_CHIP_NIAGARA5:
1991                 case SUN4V_CHIP_SPARC64X:
1992                 case SUN4V_CHIP_SPARC_M6:
1993                         /* T4 and later support 52-bit virtual addresses.  */
1994                         sparc64_va_hole_top =    0xfff8000000000000UL;
1995                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1996                         max_phys_bits = 47;
1997                         break;
1998                 case SUN4V_CHIP_SPARC_M7:
1999                 case SUN4V_CHIP_SPARC_SN:
2000                         /* M7 and later support 52-bit virtual addresses.  */
2001                         sparc64_va_hole_top =    0xfff8000000000000UL;
2002                         sparc64_va_hole_bottom = 0x0008000000000000UL;
2003                         max_phys_bits = 49;
2004                         break;
2005                 case SUN4V_CHIP_SPARC_M8:
2006                 default:
2007                         /* M8 and later support 54-bit virtual addresses.
2008                          * However, restricting M8 and above VA bits to 53
2009                          * as 4-level page table cannot support more than
2010                          * 53 VA bits.
2011                          */
2012                         sparc64_va_hole_top =    0xfff0000000000000UL;
2013                         sparc64_va_hole_bottom = 0x0010000000000000UL;
2014                         max_phys_bits = 51;
2015                         break;
2016                 }
2017         }
2018
2019         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2020                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2021                             max_phys_bits);
2022                 prom_halt();
2023         }
2024
2025         PAGE_OFFSET = sparc64_va_hole_top;
2026         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2027                        (sparc64_va_hole_bottom >> 2));
2028
2029         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2030                 PAGE_OFFSET, max_phys_bits);
2031         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2032                 VMALLOC_START, VMALLOC_END);
2033         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2034                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
2035 }
2036
2037 static void __init tsb_phys_patch(void)
2038 {
2039         struct tsb_ldquad_phys_patch_entry *pquad;
2040         struct tsb_phys_patch_entry *p;
2041
2042         pquad = &__tsb_ldquad_phys_patch;
2043         while (pquad < &__tsb_ldquad_phys_patch_end) {
2044                 unsigned long addr = pquad->addr;
2045
2046                 if (tlb_type == hypervisor)
2047                         *(unsigned int *) addr = pquad->sun4v_insn;
2048                 else
2049                         *(unsigned int *) addr = pquad->sun4u_insn;
2050                 wmb();
2051                 __asm__ __volatile__("flush     %0"
2052                                      : /* no outputs */
2053                                      : "r" (addr));
2054
2055                 pquad++;
2056         }
2057
2058         p = &__tsb_phys_patch;
2059         while (p < &__tsb_phys_patch_end) {
2060                 unsigned long addr = p->addr;
2061
2062                 *(unsigned int *) addr = p->insn;
2063                 wmb();
2064                 __asm__ __volatile__("flush     %0"
2065                                      : /* no outputs */
2066                                      : "r" (addr));
2067
2068                 p++;
2069         }
2070 }
2071
2072 /* Don't mark as init, we give this to the Hypervisor.  */
2073 #ifndef CONFIG_DEBUG_PAGEALLOC
2074 #define NUM_KTSB_DESCR  2
2075 #else
2076 #define NUM_KTSB_DESCR  1
2077 #endif
2078 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2079
2080 /* The swapper TSBs are loaded with a base sequence of:
2081  *
2082  *      sethi   %uhi(SYMBOL), REG1
2083  *      sethi   %hi(SYMBOL), REG2
2084  *      or      REG1, %ulo(SYMBOL), REG1
2085  *      or      REG2, %lo(SYMBOL), REG2
2086  *      sllx    REG1, 32, REG1
2087  *      or      REG1, REG2, REG1
2088  *
2089  * When we use physical addressing for the TSB accesses, we patch the
2090  * first four instructions in the above sequence.
2091  */
2092
2093 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2094 {
2095         unsigned long high_bits, low_bits;
2096
2097         high_bits = (pa >> 32) & 0xffffffff;
2098         low_bits = (pa >> 0) & 0xffffffff;
2099
2100         while (start < end) {
2101                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2102
2103                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2104                 __asm__ __volatile__("flush     %0" : : "r" (ia));
2105
2106                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2107                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
2108
2109                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2110                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
2111
2112                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2113                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
2114
2115                 start++;
2116         }
2117 }
2118
2119 static void ktsb_phys_patch(void)
2120 {
2121         extern unsigned int __swapper_tsb_phys_patch;
2122         extern unsigned int __swapper_tsb_phys_patch_end;
2123         unsigned long ktsb_pa;
2124
2125         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2126         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2127                             &__swapper_tsb_phys_patch_end, ktsb_pa);
2128 #ifndef CONFIG_DEBUG_PAGEALLOC
2129         {
2130         extern unsigned int __swapper_4m_tsb_phys_patch;
2131         extern unsigned int __swapper_4m_tsb_phys_patch_end;
2132         ktsb_pa = (kern_base +
2133                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2134         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2135                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2136         }
2137 #endif
2138 }
2139
2140 static void __init sun4v_ktsb_init(void)
2141 {
2142         unsigned long ktsb_pa;
2143
2144         /* First KTSB for PAGE_SIZE mappings.  */
2145         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2146
2147         switch (PAGE_SIZE) {
2148         case 8 * 1024:
2149         default:
2150                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2151                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2152                 break;
2153
2154         case 64 * 1024:
2155                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2156                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2157                 break;
2158
2159         case 512 * 1024:
2160                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2161                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2162                 break;
2163
2164         case 4 * 1024 * 1024:
2165                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2166                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2167                 break;
2168         }
2169
2170         ktsb_descr[0].assoc = 1;
2171         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2172         ktsb_descr[0].ctx_idx = 0;
2173         ktsb_descr[0].tsb_base = ktsb_pa;
2174         ktsb_descr[0].resv = 0;
2175
2176 #ifndef CONFIG_DEBUG_PAGEALLOC
2177         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2178         ktsb_pa = (kern_base +
2179                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2180
2181         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2182         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2183                                     HV_PGSZ_MASK_256MB |
2184                                     HV_PGSZ_MASK_2GB |
2185                                     HV_PGSZ_MASK_16GB) &
2186                                    cpu_pgsz_mask);
2187         ktsb_descr[1].assoc = 1;
2188         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2189         ktsb_descr[1].ctx_idx = 0;
2190         ktsb_descr[1].tsb_base = ktsb_pa;
2191         ktsb_descr[1].resv = 0;
2192 #endif
2193 }
2194
2195 void sun4v_ktsb_register(void)
2196 {
2197         unsigned long pa, ret;
2198
2199         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2200
2201         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2202         if (ret != 0) {
2203                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2204                             "errors with %lx\n", pa, ret);
2205                 prom_halt();
2206         }
2207 }
2208
2209 static void __init sun4u_linear_pte_xor_finalize(void)
2210 {
2211 #ifndef CONFIG_DEBUG_PAGEALLOC
2212         /* This is where we would add Panther support for
2213          * 32MB and 256MB pages.
2214          */
2215 #endif
2216 }
2217
2218 static void __init sun4v_linear_pte_xor_finalize(void)
2219 {
2220         unsigned long pagecv_flag;
2221
2222         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2223          * enables MCD error. Do not set bit 9 on M7 processor.
2224          */
2225         switch (sun4v_chip_type) {
2226         case SUN4V_CHIP_SPARC_M7:
2227         case SUN4V_CHIP_SPARC_M8:
2228         case SUN4V_CHIP_SPARC_SN:
2229                 pagecv_flag = 0x00;
2230                 break;
2231         default:
2232                 pagecv_flag = _PAGE_CV_4V;
2233                 break;
2234         }
2235 #ifndef CONFIG_DEBUG_PAGEALLOC
2236         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2237                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2238                         PAGE_OFFSET;
2239                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2240                                            _PAGE_P_4V | _PAGE_W_4V);
2241         } else {
2242                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2243         }
2244
2245         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2246                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2247                         PAGE_OFFSET;
2248                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2249                                            _PAGE_P_4V | _PAGE_W_4V);
2250         } else {
2251                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2252         }
2253
2254         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2255                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2256                         PAGE_OFFSET;
2257                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2258                                            _PAGE_P_4V | _PAGE_W_4V);
2259         } else {
2260                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2261         }
2262 #endif
2263 }
2264
2265 /* paging_init() sets up the page tables */
2266
2267 static unsigned long last_valid_pfn;
2268
2269 static void sun4u_pgprot_init(void);
2270 static void sun4v_pgprot_init(void);
2271
2272 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2273 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2274 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2275 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2276 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2277 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2278
2279 /* We need to exclude reserved regions. This exclusion will include
2280  * vmlinux and initrd. To be more precise the initrd size could be used to
2281  * compute a new lower limit because it is freed later during initialization.
2282  */
2283 static void __init reduce_memory(phys_addr_t limit_ram)
2284 {
2285         limit_ram += memblock_reserved_size();
2286         memblock_enforce_memory_limit(limit_ram);
2287 }
2288
2289 void __init paging_init(void)
2290 {
2291         unsigned long end_pfn, shift, phys_base;
2292         unsigned long real_end, i;
2293
2294         setup_page_offset();
2295
2296         /* These build time checkes make sure that the dcache_dirty_cpu()
2297          * folio->flags usage will work.
2298          *
2299          * When a page gets marked as dcache-dirty, we store the
2300          * cpu number starting at bit 32 in the folio->flags.  Also,
2301          * functions like clear_dcache_dirty_cpu use the cpu mask
2302          * in 13-bit signed-immediate instruction fields.
2303          */
2304
2305         /*
2306          * Page flags must not reach into upper 32 bits that are used
2307          * for the cpu number
2308          */
2309         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2310
2311         /*
2312          * The bit fields placed in the high range must not reach below
2313          * the 32 bit boundary. Otherwise we cannot place the cpu field
2314          * at the 32 bit boundary.
2315          */
2316         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2317                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2318
2319         BUILD_BUG_ON(NR_CPUS > 4096);
2320
2321         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2322         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2323
2324         /* Invalidate both kernel TSBs.  */
2325         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2326 #ifndef CONFIG_DEBUG_PAGEALLOC
2327         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2328 #endif
2329
2330         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2331          * bit on M7 processor. This is a conflicting usage of the same
2332          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2333          * Detection error on all pages and this will lead to problems
2334          * later. Kernel does not run with MCD enabled and hence rest
2335          * of the required steps to fully configure memory corruption
2336          * detection are not taken. We need to ensure TTE.mcde is not
2337          * set on M7 processor. Compute the value of cacheability
2338          * flag for use later taking this into consideration.
2339          */
2340         switch (sun4v_chip_type) {
2341         case SUN4V_CHIP_SPARC_M7:
2342         case SUN4V_CHIP_SPARC_M8:
2343         case SUN4V_CHIP_SPARC_SN:
2344                 page_cache4v_flag = _PAGE_CP_4V;
2345                 break;
2346         default:
2347                 page_cache4v_flag = _PAGE_CACHE_4V;
2348                 break;
2349         }
2350
2351         if (tlb_type == hypervisor)
2352                 sun4v_pgprot_init();
2353         else
2354                 sun4u_pgprot_init();
2355
2356         if (tlb_type == cheetah_plus ||
2357             tlb_type == hypervisor) {
2358                 tsb_phys_patch();
2359                 ktsb_phys_patch();
2360         }
2361
2362         if (tlb_type == hypervisor)
2363                 sun4v_patch_tlb_handlers();
2364
2365         /* Find available physical memory...
2366          *
2367          * Read it twice in order to work around a bug in openfirmware.
2368          * The call to grab this table itself can cause openfirmware to
2369          * allocate memory, which in turn can take away some space from
2370          * the list of available memory.  Reading it twice makes sure
2371          * we really do get the final value.
2372          */
2373         read_obp_translations();
2374         read_obp_memory("reg", &pall[0], &pall_ents);
2375         read_obp_memory("available", &pavail[0], &pavail_ents);
2376         read_obp_memory("available", &pavail[0], &pavail_ents);
2377
2378         phys_base = 0xffffffffffffffffUL;
2379         for (i = 0; i < pavail_ents; i++) {
2380                 phys_base = min(phys_base, pavail[i].phys_addr);
2381                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2382         }
2383
2384         memblock_reserve(kern_base, kern_size);
2385
2386         find_ramdisk(phys_base);
2387
2388         if (cmdline_memory_size)
2389                 reduce_memory(cmdline_memory_size);
2390
2391         memblock_allow_resize();
2392         memblock_dump_all();
2393
2394         set_bit(0, mmu_context_bmap);
2395
2396         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2397
2398         real_end = (unsigned long)_end;
2399         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2400         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2401                num_kernel_image_mappings);
2402
2403         /* Set kernel pgd to upper alias so physical page computations
2404          * work.
2405          */
2406         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2407         
2408         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2409
2410         inherit_prom_mappings();
2411         
2412         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2413         setup_tba();
2414
2415         __flush_tlb_all();
2416
2417         prom_build_devicetree();
2418         of_populate_present_mask();
2419 #ifndef CONFIG_SMP
2420         of_fill_in_cpu_data();
2421 #endif
2422
2423         if (tlb_type == hypervisor) {
2424                 sun4v_mdesc_init();
2425                 mdesc_populate_present_mask(cpu_all_mask);
2426 #ifndef CONFIG_SMP
2427                 mdesc_fill_in_cpu_data(cpu_all_mask);
2428 #endif
2429                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2430
2431                 sun4v_linear_pte_xor_finalize();
2432
2433                 sun4v_ktsb_init();
2434                 sun4v_ktsb_register();
2435         } else {
2436                 unsigned long impl, ver;
2437
2438                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2439                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2440
2441                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2442                 impl = ((ver >> 32) & 0xffff);
2443                 if (impl == PANTHER_IMPL)
2444                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2445                                           HV_PGSZ_MASK_256MB);
2446
2447                 sun4u_linear_pte_xor_finalize();
2448         }
2449
2450         /* Flush the TLBs and the 4M TSB so that the updated linear
2451          * pte XOR settings are realized for all mappings.
2452          */
2453         __flush_tlb_all();
2454 #ifndef CONFIG_DEBUG_PAGEALLOC
2455         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2456 #endif
2457         __flush_tlb_all();
2458
2459         /* Setup bootmem... */
2460         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2461
2462         kernel_physical_mapping_init();
2463
2464         {
2465                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2466
2467                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2468
2469                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2470
2471                 free_area_init(max_zone_pfns);
2472         }
2473
2474         printk("Booting Linux...\n");
2475 }
2476
2477 int page_in_phys_avail(unsigned long paddr)
2478 {
2479         int i;
2480
2481         paddr &= PAGE_MASK;
2482
2483         for (i = 0; i < pavail_ents; i++) {
2484                 unsigned long start, end;
2485
2486                 start = pavail[i].phys_addr;
2487                 end = start + pavail[i].reg_size;
2488
2489                 if (paddr >= start && paddr < end)
2490                         return 1;
2491         }
2492         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2493                 return 1;
2494 #ifdef CONFIG_BLK_DEV_INITRD
2495         if (paddr >= __pa(initrd_start) &&
2496             paddr < __pa(PAGE_ALIGN(initrd_end)))
2497                 return 1;
2498 #endif
2499
2500         return 0;
2501 }
2502
2503 static void __init register_page_bootmem_info(void)
2504 {
2505 #ifdef CONFIG_NUMA
2506         int i;
2507
2508         for_each_online_node(i)
2509                 if (NODE_DATA(i)->node_spanned_pages)
2510                         register_page_bootmem_info_node(NODE_DATA(i));
2511 #endif
2512 }
2513 void __init mem_init(void)
2514 {
2515         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2516
2517         memblock_free_all();
2518
2519         /*
2520          * Must be done after boot memory is put on freelist, because here we
2521          * might set fields in deferred struct pages that have not yet been
2522          * initialized, and memblock_free_all() initializes all the reserved
2523          * deferred pages for us.
2524          */
2525         register_page_bootmem_info();
2526
2527         /*
2528          * Set up the zero page, mark it reserved, so that page count
2529          * is not manipulated when freeing the page from user ptes.
2530          */
2531         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2532         if (mem_map_zero == NULL) {
2533                 prom_printf("paging_init: Cannot alloc zero page.\n");
2534                 prom_halt();
2535         }
2536         mark_page_reserved(mem_map_zero);
2537
2538
2539         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2540                 cheetah_ecache_flush_init();
2541 }
2542
2543 void free_initmem(void)
2544 {
2545         unsigned long addr, initend;
2546         int do_free = 1;
2547
2548         /* If the physical memory maps were trimmed by kernel command
2549          * line options, don't even try freeing this initmem stuff up.
2550          * The kernel image could have been in the trimmed out region
2551          * and if so the freeing below will free invalid page structs.
2552          */
2553         if (cmdline_memory_size)
2554                 do_free = 0;
2555
2556         /*
2557          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2558          */
2559         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2560         initend = (unsigned long)(__init_end) & PAGE_MASK;
2561         for (; addr < initend; addr += PAGE_SIZE) {
2562                 unsigned long page;
2563
2564                 page = (addr +
2565                         ((unsigned long) __va(kern_base)) -
2566                         ((unsigned long) KERNBASE));
2567                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2568
2569                 if (do_free)
2570                         free_reserved_page(virt_to_page(page));
2571         }
2572 }
2573
2574 pgprot_t PAGE_KERNEL __read_mostly;
2575 EXPORT_SYMBOL(PAGE_KERNEL);
2576
2577 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2578 pgprot_t PAGE_COPY __read_mostly;
2579
2580 pgprot_t PAGE_SHARED __read_mostly;
2581 EXPORT_SYMBOL(PAGE_SHARED);
2582
2583 unsigned long pg_iobits __read_mostly;
2584
2585 unsigned long _PAGE_IE __read_mostly;
2586 EXPORT_SYMBOL(_PAGE_IE);
2587
2588 unsigned long _PAGE_E __read_mostly;
2589 EXPORT_SYMBOL(_PAGE_E);
2590
2591 unsigned long _PAGE_CACHE __read_mostly;
2592 EXPORT_SYMBOL(_PAGE_CACHE);
2593
2594 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2595 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2596                                int node, struct vmem_altmap *altmap)
2597 {
2598         unsigned long pte_base;
2599
2600         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2601                     _PAGE_CP_4U | _PAGE_CV_4U |
2602                     _PAGE_P_4U | _PAGE_W_4U);
2603         if (tlb_type == hypervisor)
2604                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2605                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2606
2607         pte_base |= _PAGE_PMD_HUGE;
2608
2609         vstart = vstart & PMD_MASK;
2610         vend = ALIGN(vend, PMD_SIZE);
2611         for (; vstart < vend; vstart += PMD_SIZE) {
2612                 pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2613                 unsigned long pte;
2614                 p4d_t *p4d;
2615                 pud_t *pud;
2616                 pmd_t *pmd;
2617
2618                 if (!pgd)
2619                         return -ENOMEM;
2620
2621                 p4d = vmemmap_p4d_populate(pgd, vstart, node);
2622                 if (!p4d)
2623                         return -ENOMEM;
2624
2625                 pud = vmemmap_pud_populate(p4d, vstart, node);
2626                 if (!pud)
2627                         return -ENOMEM;
2628
2629                 pmd = pmd_offset(pud, vstart);
2630                 pte = pmd_val(*pmd);
2631                 if (!(pte & _PAGE_VALID)) {
2632                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2633
2634                         if (!block)
2635                                 return -ENOMEM;
2636
2637                         pmd_val(*pmd) = pte_base | __pa(block);
2638                 }
2639         }
2640
2641         return 0;
2642 }
2643
2644 void vmemmap_free(unsigned long start, unsigned long end,
2645                 struct vmem_altmap *altmap)
2646 {
2647 }
2648 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2649
2650 /* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
2651 static pgprot_t protection_map[16] __ro_after_init;
2652
2653 static void prot_init_common(unsigned long page_none,
2654                              unsigned long page_shared,
2655                              unsigned long page_copy,
2656                              unsigned long page_readonly,
2657                              unsigned long page_exec_bit)
2658 {
2659         PAGE_COPY = __pgprot(page_copy);
2660         PAGE_SHARED = __pgprot(page_shared);
2661
2662         protection_map[0x0] = __pgprot(page_none);
2663         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2664         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2665         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2666         protection_map[0x4] = __pgprot(page_readonly);
2667         protection_map[0x5] = __pgprot(page_readonly);
2668         protection_map[0x6] = __pgprot(page_copy);
2669         protection_map[0x7] = __pgprot(page_copy);
2670         protection_map[0x8] = __pgprot(page_none);
2671         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2672         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2673         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2674         protection_map[0xc] = __pgprot(page_readonly);
2675         protection_map[0xd] = __pgprot(page_readonly);
2676         protection_map[0xe] = __pgprot(page_shared);
2677         protection_map[0xf] = __pgprot(page_shared);
2678 }
2679
2680 static void __init sun4u_pgprot_init(void)
2681 {
2682         unsigned long page_none, page_shared, page_copy, page_readonly;
2683         unsigned long page_exec_bit;
2684         int i;
2685
2686         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2687                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2688                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2689                                 _PAGE_EXEC_4U);
2690         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2691                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2692                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2693                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2694
2695         _PAGE_IE = _PAGE_IE_4U;
2696         _PAGE_E = _PAGE_E_4U;
2697         _PAGE_CACHE = _PAGE_CACHE_4U;
2698
2699         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2700                      __ACCESS_BITS_4U | _PAGE_E_4U);
2701
2702 #ifdef CONFIG_DEBUG_PAGEALLOC
2703         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2704 #else
2705         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2706                 PAGE_OFFSET;
2707 #endif
2708         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2709                                    _PAGE_P_4U | _PAGE_W_4U);
2710
2711         for (i = 1; i < 4; i++)
2712                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2713
2714         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2715                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2716                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2717
2718
2719         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2720         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2721                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2722         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2723                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2724         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2725                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2726
2727         page_exec_bit = _PAGE_EXEC_4U;
2728
2729         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2730                          page_exec_bit);
2731 }
2732
2733 static void __init sun4v_pgprot_init(void)
2734 {
2735         unsigned long page_none, page_shared, page_copy, page_readonly;
2736         unsigned long page_exec_bit;
2737         int i;
2738
2739         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2740                                 page_cache4v_flag | _PAGE_P_4V |
2741                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2742                                 _PAGE_EXEC_4V);
2743         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2744
2745         _PAGE_IE = _PAGE_IE_4V;
2746         _PAGE_E = _PAGE_E_4V;
2747         _PAGE_CACHE = page_cache4v_flag;
2748
2749 #ifdef CONFIG_DEBUG_PAGEALLOC
2750         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2751 #else
2752         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2753                 PAGE_OFFSET;
2754 #endif
2755         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2756                                    _PAGE_W_4V);
2757
2758         for (i = 1; i < 4; i++)
2759                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2760
2761         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2762                      __ACCESS_BITS_4V | _PAGE_E_4V);
2763
2764         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2765                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2766                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2767                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2768
2769         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2770         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2771                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2772         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2773                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2774         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2775                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2776
2777         page_exec_bit = _PAGE_EXEC_4V;
2778
2779         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2780                          page_exec_bit);
2781 }
2782
2783 unsigned long pte_sz_bits(unsigned long sz)
2784 {
2785         if (tlb_type == hypervisor) {
2786                 switch (sz) {
2787                 case 8 * 1024:
2788                 default:
2789                         return _PAGE_SZ8K_4V;
2790                 case 64 * 1024:
2791                         return _PAGE_SZ64K_4V;
2792                 case 512 * 1024:
2793                         return _PAGE_SZ512K_4V;
2794                 case 4 * 1024 * 1024:
2795                         return _PAGE_SZ4MB_4V;
2796                 }
2797         } else {
2798                 switch (sz) {
2799                 case 8 * 1024:
2800                 default:
2801                         return _PAGE_SZ8K_4U;
2802                 case 64 * 1024:
2803                         return _PAGE_SZ64K_4U;
2804                 case 512 * 1024:
2805                         return _PAGE_SZ512K_4U;
2806                 case 4 * 1024 * 1024:
2807                         return _PAGE_SZ4MB_4U;
2808                 }
2809         }
2810 }
2811
2812 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2813 {
2814         pte_t pte;
2815
2816         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2817         pte_val(pte) |= (((unsigned long)space) << 32);
2818         pte_val(pte) |= pte_sz_bits(page_size);
2819
2820         return pte;
2821 }
2822
2823 static unsigned long kern_large_tte(unsigned long paddr)
2824 {
2825         unsigned long val;
2826
2827         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2828                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2829                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2830         if (tlb_type == hypervisor)
2831                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2832                        page_cache4v_flag | _PAGE_P_4V |
2833                        _PAGE_EXEC_4V | _PAGE_W_4V);
2834
2835         return val | paddr;
2836 }
2837
2838 /* If not locked, zap it. */
2839 void __flush_tlb_all(void)
2840 {
2841         unsigned long pstate;
2842         int i;
2843
2844         __asm__ __volatile__("flushw\n\t"
2845                              "rdpr      %%pstate, %0\n\t"
2846                              "wrpr      %0, %1, %%pstate"
2847                              : "=r" (pstate)
2848                              : "i" (PSTATE_IE));
2849         if (tlb_type == hypervisor) {
2850                 sun4v_mmu_demap_all();
2851         } else if (tlb_type == spitfire) {
2852                 for (i = 0; i < 64; i++) {
2853                         /* Spitfire Errata #32 workaround */
2854                         /* NOTE: Always runs on spitfire, so no
2855                          *       cheetah+ page size encodings.
2856                          */
2857                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2858                                              "flush     %%g6"
2859                                              : /* No outputs */
2860                                              : "r" (0),
2861                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2862
2863                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2864                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2865                                                      "membar #Sync"
2866                                                      : /* no outputs */
2867                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2868                                 spitfire_put_dtlb_data(i, 0x0UL);
2869                         }
2870
2871                         /* Spitfire Errata #32 workaround */
2872                         /* NOTE: Always runs on spitfire, so no
2873                          *       cheetah+ page size encodings.
2874                          */
2875                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2876                                              "flush     %%g6"
2877                                              : /* No outputs */
2878                                              : "r" (0),
2879                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2880
2881                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2882                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2883                                                      "membar #Sync"
2884                                                      : /* no outputs */
2885                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2886                                 spitfire_put_itlb_data(i, 0x0UL);
2887                         }
2888                 }
2889         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2890                 cheetah_flush_dtlb_all();
2891                 cheetah_flush_itlb_all();
2892         }
2893         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2894                              : : "r" (pstate));
2895 }
2896
2897 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2898 {
2899         struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2900         pte_t *pte = NULL;
2901
2902         if (page)
2903                 pte = (pte_t *) page_address(page);
2904
2905         return pte;
2906 }
2907
2908 pgtable_t pte_alloc_one(struct mm_struct *mm)
2909 {
2910         struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL | __GFP_ZERO, 0);
2911
2912         if (!ptdesc)
2913                 return NULL;
2914         if (!pagetable_pte_ctor(ptdesc)) {
2915                 pagetable_free(ptdesc);
2916                 return NULL;
2917         }
2918         return ptdesc_address(ptdesc);
2919 }
2920
2921 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2922 {
2923         free_page((unsigned long)pte);
2924 }
2925
2926 static void __pte_free(pgtable_t pte)
2927 {
2928         struct ptdesc *ptdesc = virt_to_ptdesc(pte);
2929
2930         pagetable_pte_dtor(ptdesc);
2931         pagetable_free(ptdesc);
2932 }
2933
2934 void pte_free(struct mm_struct *mm, pgtable_t pte)
2935 {
2936         __pte_free(pte);
2937 }
2938
2939 void pgtable_free(void *table, bool is_page)
2940 {
2941         if (is_page)
2942                 __pte_free(table);
2943         else
2944                 kmem_cache_free(pgtable_cache, table);
2945 }
2946
2947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2948 static void pte_free_now(struct rcu_head *head)
2949 {
2950         struct page *page;
2951
2952         page = container_of(head, struct page, rcu_head);
2953         __pte_free((pgtable_t)page_address(page));
2954 }
2955
2956 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
2957 {
2958         struct page *page;
2959
2960         page = virt_to_page(pgtable);
2961         call_rcu(&page->rcu_head, pte_free_now);
2962 }
2963
2964 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2965                           pmd_t *pmd)
2966 {
2967         unsigned long pte, flags;
2968         struct mm_struct *mm;
2969         pmd_t entry = *pmd;
2970
2971         if (!pmd_large(entry) || !pmd_young(entry))
2972                 return;
2973
2974         pte = pmd_val(entry);
2975
2976         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2977         if (!(pte & _PAGE_VALID))
2978                 return;
2979
2980         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2981         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2982
2983         mm = vma->vm_mm;
2984
2985         spin_lock_irqsave(&mm->context.lock, flags);
2986
2987         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2988                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2989                                         addr, pte);
2990
2991         spin_unlock_irqrestore(&mm->context.lock, flags);
2992 }
2993 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2994
2995 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2996 static void context_reload(void *__data)
2997 {
2998         struct mm_struct *mm = __data;
2999
3000         if (mm == current->mm)
3001                 load_secondary_context(mm);
3002 }
3003
3004 void hugetlb_setup(struct pt_regs *regs)
3005 {
3006         struct mm_struct *mm = current->mm;
3007         struct tsb_config *tp;
3008
3009         if (faulthandler_disabled() || !mm) {
3010                 const struct exception_table_entry *entry;
3011
3012                 entry = search_exception_tables(regs->tpc);
3013                 if (entry) {
3014                         regs->tpc = entry->fixup;
3015                         regs->tnpc = regs->tpc + 4;
3016                         return;
3017                 }
3018                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3019                 die_if_kernel("HugeTSB in atomic", regs);
3020         }
3021
3022         tp = &mm->context.tsb_block[MM_TSB_HUGE];
3023         if (likely(tp->tsb == NULL))
3024                 tsb_grow(mm, MM_TSB_HUGE, 0);
3025
3026         tsb_context_switch(mm);
3027         smp_tsb_sync(mm);
3028
3029         /* On UltraSPARC-III+ and later, configure the second half of
3030          * the Data-TLB for huge pages.
3031          */
3032         if (tlb_type == cheetah_plus) {
3033                 bool need_context_reload = false;
3034                 unsigned long ctx;
3035
3036                 spin_lock_irq(&ctx_alloc_lock);
3037                 ctx = mm->context.sparc64_ctx_val;
3038                 ctx &= ~CTX_PGSZ_MASK;
3039                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3040                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3041
3042                 if (ctx != mm->context.sparc64_ctx_val) {
3043                         /* When changing the page size fields, we
3044                          * must perform a context flush so that no
3045                          * stale entries match.  This flush must
3046                          * occur with the original context register
3047                          * settings.
3048                          */
3049                         do_flush_tlb_mm(mm);
3050
3051                         /* Reload the context register of all processors
3052                          * also executing in this address space.
3053                          */
3054                         mm->context.sparc64_ctx_val = ctx;
3055                         need_context_reload = true;
3056                 }
3057                 spin_unlock_irq(&ctx_alloc_lock);
3058
3059                 if (need_context_reload)
3060                         on_each_cpu(context_reload, mm, 0);
3061         }
3062 }
3063 #endif
3064
3065 static struct resource code_resource = {
3066         .name   = "Kernel code",
3067         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3068 };
3069
3070 static struct resource data_resource = {
3071         .name   = "Kernel data",
3072         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3073 };
3074
3075 static struct resource bss_resource = {
3076         .name   = "Kernel bss",
3077         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3078 };
3079
3080 static inline resource_size_t compute_kern_paddr(void *addr)
3081 {
3082         return (resource_size_t) (addr - KERNBASE + kern_base);
3083 }
3084
3085 static void __init kernel_lds_init(void)
3086 {
3087         code_resource.start = compute_kern_paddr(_text);
3088         code_resource.end   = compute_kern_paddr(_etext - 1);
3089         data_resource.start = compute_kern_paddr(_etext);
3090         data_resource.end   = compute_kern_paddr(_edata - 1);
3091         bss_resource.start  = compute_kern_paddr(__bss_start);
3092         bss_resource.end    = compute_kern_paddr(_end - 1);
3093 }
3094
3095 static int __init report_memory(void)
3096 {
3097         int i;
3098         struct resource *res;
3099
3100         kernel_lds_init();
3101
3102         for (i = 0; i < pavail_ents; i++) {
3103                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3104
3105                 if (!res) {
3106                         pr_warn("Failed to allocate source.\n");
3107                         break;
3108                 }
3109
3110                 res->name = "System RAM";
3111                 res->start = pavail[i].phys_addr;
3112                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3113                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3114
3115                 if (insert_resource(&iomem_resource, res) < 0) {
3116                         pr_warn("Resource insertion failed.\n");
3117                         break;
3118                 }
3119
3120                 insert_resource(res, &code_resource);
3121                 insert_resource(res, &data_resource);
3122                 insert_resource(res, &bss_resource);
3123         }
3124
3125         return 0;
3126 }
3127 arch_initcall(report_memory);
3128
3129 #ifdef CONFIG_SMP
3130 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
3131 #else
3132 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
3133 #endif
3134
3135 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3136 {
3137         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3138                 if (start < LOW_OBP_ADDRESS) {
3139                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3140                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3141                 }
3142                 if (end > HI_OBP_ADDRESS) {
3143                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3144                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3145                 }
3146         } else {
3147                 flush_tsb_kernel_range(start, end);
3148                 do_flush_tlb_kernel_range(start, end);
3149         }
3150 }
3151
3152 void copy_user_highpage(struct page *to, struct page *from,
3153         unsigned long vaddr, struct vm_area_struct *vma)
3154 {
3155         char *vfrom, *vto;
3156
3157         vfrom = kmap_atomic(from);
3158         vto = kmap_atomic(to);
3159         copy_user_page(vto, vfrom, vaddr, to);
3160         kunmap_atomic(vto);
3161         kunmap_atomic(vfrom);
3162
3163         /* If this page has ADI enabled, copy over any ADI tags
3164          * as well
3165          */
3166         if (vma->vm_flags & VM_SPARC_ADI) {
3167                 unsigned long pfrom, pto, i, adi_tag;
3168
3169                 pfrom = page_to_phys(from);
3170                 pto = page_to_phys(to);
3171
3172                 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3173                         asm volatile("ldxa [%1] %2, %0\n\t"
3174                                         : "=r" (adi_tag)
3175                                         :  "r" (i), "i" (ASI_MCD_REAL));
3176                         asm volatile("stxa %0, [%1] %2\n\t"
3177                                         :
3178                                         : "r" (adi_tag), "r" (pto),
3179                                           "i" (ASI_MCD_REAL));
3180                         pto += adi_blksize();
3181                 }
3182                 asm volatile("membar #Sync\n\t");
3183         }
3184 }
3185 EXPORT_SYMBOL(copy_user_highpage);
3186
3187 void copy_highpage(struct page *to, struct page *from)
3188 {
3189         char *vfrom, *vto;
3190
3191         vfrom = kmap_atomic(from);
3192         vto = kmap_atomic(to);
3193         copy_page(vto, vfrom);
3194         kunmap_atomic(vto);
3195         kunmap_atomic(vfrom);
3196
3197         /* If this platform is ADI enabled, copy any ADI tags
3198          * as well
3199          */
3200         if (adi_capable()) {
3201                 unsigned long pfrom, pto, i, adi_tag;
3202
3203                 pfrom = page_to_phys(from);
3204                 pto = page_to_phys(to);
3205
3206                 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3207                         asm volatile("ldxa [%1] %2, %0\n\t"
3208                                         : "=r" (adi_tag)
3209                                         :  "r" (i), "i" (ASI_MCD_REAL));
3210                         asm volatile("stxa %0, [%1] %2\n\t"
3211                                         :
3212                                         : "r" (adi_tag), "r" (pto),
3213                                           "i" (ASI_MCD_REAL));
3214                         pto += adi_blksize();
3215                 }
3216                 asm volatile("membar #Sync\n\t");
3217         }
3218 }
3219 EXPORT_SYMBOL(copy_highpage);
3220
3221 pgprot_t vm_get_page_prot(unsigned long vm_flags)
3222 {
3223         unsigned long prot = pgprot_val(protection_map[vm_flags &
3224                                         (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
3225
3226         if (vm_flags & VM_SPARC_ADI)
3227                 prot |= _PAGE_MCD_4V;
3228
3229         return __pgprot(prot);
3230 }
3231 EXPORT_SYMBOL(vm_get_page_prot);