zonefs: convert zonefs to use the new mount api
[sfrench/cifs-2.6.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/ctlreg.h>
41 #include <asm/pfault.h>
42 #include <asm/diag.h>
43 #include <asm/switch_to.h>
44 #include <asm/facility.h>
45 #include <asm/ipl.h>
46 #include <asm/setup.h>
47 #include <asm/irq.h>
48 #include <asm/tlbflush.h>
49 #include <asm/vtimer.h>
50 #include <asm/abs_lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/debug.h>
53 #include <asm/os_info.h>
54 #include <asm/sigp.h>
55 #include <asm/idle.h>
56 #include <asm/nmi.h>
57 #include <asm/stacktrace.h>
58 #include <asm/topology.h>
59 #include <asm/vdso.h>
60 #include <asm/maccess.h>
61 #include "entry.h"
62
63 enum {
64         ec_schedule = 0,
65         ec_call_function_single,
66         ec_stop_cpu,
67         ec_mcck_pending,
68         ec_irq_work,
69 };
70
71 enum {
72         CPU_STATE_STANDBY,
73         CPU_STATE_CONFIGURED,
74 };
75
76 static DEFINE_PER_CPU(struct cpu *, cpu_device);
77
78 struct pcpu {
79         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
80         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
81         signed char state;              /* physical cpu state */
82         signed char polarization;       /* physical polarization */
83         u16 address;                    /* physical cpu address */
84 };
85
86 static u8 boot_core_type;
87 static struct pcpu pcpu_devices[NR_CPUS];
88
89 unsigned int smp_cpu_mt_shift;
90 EXPORT_SYMBOL(smp_cpu_mt_shift);
91
92 unsigned int smp_cpu_mtid;
93 EXPORT_SYMBOL(smp_cpu_mtid);
94
95 #ifdef CONFIG_CRASH_DUMP
96 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
97 #endif
98
99 static unsigned int smp_max_threads __initdata = -1U;
100 cpumask_t cpu_setup_mask;
101
102 static int __init early_nosmt(char *s)
103 {
104         smp_max_threads = 1;
105         return 0;
106 }
107 early_param("nosmt", early_nosmt);
108
109 static int __init early_smt(char *s)
110 {
111         get_option(&s, &smp_max_threads);
112         return 0;
113 }
114 early_param("smt", early_smt);
115
116 /*
117  * The smp_cpu_state_mutex must be held when changing the state or polarization
118  * member of a pcpu data structure within the pcpu_devices array.
119  */
120 DEFINE_MUTEX(smp_cpu_state_mutex);
121
122 /*
123  * Signal processor helper functions.
124  */
125 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
126 {
127         int cc;
128
129         while (1) {
130                 cc = __pcpu_sigp(addr, order, parm, NULL);
131                 if (cc != SIGP_CC_BUSY)
132                         return cc;
133                 cpu_relax();
134         }
135 }
136
137 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
138 {
139         int cc, retry;
140
141         for (retry = 0; ; retry++) {
142                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
143                 if (cc != SIGP_CC_BUSY)
144                         break;
145                 if (retry >= 3)
146                         udelay(10);
147         }
148         return cc;
149 }
150
151 static inline int pcpu_stopped(struct pcpu *pcpu)
152 {
153         u32 status;
154
155         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
156                         0, &status) != SIGP_CC_STATUS_STORED)
157                 return 0;
158         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
159 }
160
161 static inline int pcpu_running(struct pcpu *pcpu)
162 {
163         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
164                         0, NULL) != SIGP_CC_STATUS_STORED)
165                 return 1;
166         /* Status stored condition code is equivalent to cpu not running. */
167         return 0;
168 }
169
170 /*
171  * Find struct pcpu by cpu address.
172  */
173 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
174 {
175         int cpu;
176
177         for_each_cpu(cpu, mask)
178                 if (pcpu_devices[cpu].address == address)
179                         return pcpu_devices + cpu;
180         return NULL;
181 }
182
183 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
184 {
185         int order;
186
187         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
188                 return;
189         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
190         pcpu->ec_clk = get_tod_clock_fast();
191         pcpu_sigp_retry(pcpu, order, 0);
192 }
193
194 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
195 {
196         unsigned long async_stack, nodat_stack, mcck_stack;
197         struct lowcore *lc;
198
199         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
201         async_stack = stack_alloc();
202         mcck_stack = stack_alloc();
203         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
204                 goto out;
205         memcpy(lc, &S390_lowcore, 512);
206         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
207         lc->async_stack = async_stack + STACK_INIT_OFFSET;
208         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
209         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
210         lc->cpu_nr = cpu;
211         lc->spinlock_lockval = arch_spin_lockval(cpu);
212         lc->spinlock_index = 0;
213         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
214         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
215         lc->preempt_count = PREEMPT_DISABLED;
216         if (nmi_alloc_mcesa(&lc->mcesad))
217                 goto out;
218         if (abs_lowcore_map(cpu, lc, true))
219                 goto out_mcesa;
220         lowcore_ptr[cpu] = lc;
221         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
222         return 0;
223
224 out_mcesa:
225         nmi_free_mcesa(&lc->mcesad);
226 out:
227         stack_free(mcck_stack);
228         stack_free(async_stack);
229         free_pages(nodat_stack, THREAD_SIZE_ORDER);
230         free_pages((unsigned long) lc, LC_ORDER);
231         return -ENOMEM;
232 }
233
234 static void pcpu_free_lowcore(struct pcpu *pcpu)
235 {
236         unsigned long async_stack, nodat_stack, mcck_stack;
237         struct lowcore *lc;
238         int cpu;
239
240         cpu = pcpu - pcpu_devices;
241         lc = lowcore_ptr[cpu];
242         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
243         async_stack = lc->async_stack - STACK_INIT_OFFSET;
244         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
245         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
246         lowcore_ptr[cpu] = NULL;
247         abs_lowcore_unmap(cpu);
248         nmi_free_mcesa(&lc->mcesad);
249         stack_free(async_stack);
250         stack_free(mcck_stack);
251         free_pages(nodat_stack, THREAD_SIZE_ORDER);
252         free_pages((unsigned long) lc, LC_ORDER);
253 }
254
255 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
256 {
257         struct lowcore *lc, *abs_lc;
258
259         lc = lowcore_ptr[cpu];
260         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
261         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
262         lc->cpu_nr = cpu;
263         lc->restart_flags = RESTART_FLAG_CTLREGS;
264         lc->spinlock_lockval = arch_spin_lockval(cpu);
265         lc->spinlock_index = 0;
266         lc->percpu_offset = __per_cpu_offset[cpu];
267         lc->kernel_asce = S390_lowcore.kernel_asce;
268         lc->user_asce = s390_invalid_asce;
269         lc->machine_flags = S390_lowcore.machine_flags;
270         lc->user_timer = lc->system_timer =
271                 lc->steal_timer = lc->avg_steal_timer = 0;
272         abs_lc = get_abs_lowcore();
273         memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
274         put_abs_lowcore(abs_lc);
275         lc->cregs_save_area[1] = lc->kernel_asce;
276         lc->cregs_save_area[7] = lc->user_asce;
277         save_access_regs((unsigned int *) lc->access_regs_save_area);
278         arch_spin_lock_setup(cpu);
279 }
280
281 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
282 {
283         struct lowcore *lc;
284         int cpu;
285
286         cpu = pcpu - pcpu_devices;
287         lc = lowcore_ptr[cpu];
288         lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
289         lc->current_task = (unsigned long)tsk;
290         lc->lpp = LPP_MAGIC;
291         lc->current_pid = tsk->pid;
292         lc->user_timer = tsk->thread.user_timer;
293         lc->guest_timer = tsk->thread.guest_timer;
294         lc->system_timer = tsk->thread.system_timer;
295         lc->hardirq_timer = tsk->thread.hardirq_timer;
296         lc->softirq_timer = tsk->thread.softirq_timer;
297         lc->steal_timer = 0;
298 }
299
300 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
301 {
302         struct lowcore *lc;
303         int cpu;
304
305         cpu = pcpu - pcpu_devices;
306         lc = lowcore_ptr[cpu];
307         lc->restart_stack = lc->kernel_stack;
308         lc->restart_fn = (unsigned long) func;
309         lc->restart_data = (unsigned long) data;
310         lc->restart_source = -1U;
311         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
312 }
313
314 typedef void (pcpu_delegate_fn)(void *);
315
316 /*
317  * Call function via PSW restart on pcpu and stop the current cpu.
318  */
319 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
320 {
321         func(data);     /* should not return */
322 }
323
324 static void pcpu_delegate(struct pcpu *pcpu,
325                           pcpu_delegate_fn *func,
326                           void *data, unsigned long stack)
327 {
328         struct lowcore *lc, *abs_lc;
329         unsigned int source_cpu;
330
331         lc = lowcore_ptr[pcpu - pcpu_devices];
332         source_cpu = stap();
333
334         if (pcpu->address == source_cpu) {
335                 call_on_stack(2, stack, void, __pcpu_delegate,
336                               pcpu_delegate_fn *, func, void *, data);
337         }
338         /* Stop target cpu (if func returns this stops the current cpu). */
339         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
340         pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
341         /* Restart func on the target cpu and stop the current cpu. */
342         if (lc) {
343                 lc->restart_stack = stack;
344                 lc->restart_fn = (unsigned long)func;
345                 lc->restart_data = (unsigned long)data;
346                 lc->restart_source = source_cpu;
347         } else {
348                 abs_lc = get_abs_lowcore();
349                 abs_lc->restart_stack = stack;
350                 abs_lc->restart_fn = (unsigned long)func;
351                 abs_lc->restart_data = (unsigned long)data;
352                 abs_lc->restart_source = source_cpu;
353                 put_abs_lowcore(abs_lc);
354         }
355         asm volatile(
356                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
357                 "       brc     2,0b    # busy, try again\n"
358                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
359                 "       brc     2,1b    # busy, try again\n"
360                 : : "d" (pcpu->address), "d" (source_cpu),
361                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
362                 : "0", "1", "cc");
363         for (;;) ;
364 }
365
366 /*
367  * Enable additional logical cpus for multi-threading.
368  */
369 static int pcpu_set_smt(unsigned int mtid)
370 {
371         int cc;
372
373         if (smp_cpu_mtid == mtid)
374                 return 0;
375         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
376         if (cc == 0) {
377                 smp_cpu_mtid = mtid;
378                 smp_cpu_mt_shift = 0;
379                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
380                         smp_cpu_mt_shift++;
381                 pcpu_devices[0].address = stap();
382         }
383         return cc;
384 }
385
386 /*
387  * Call function on an online CPU.
388  */
389 void smp_call_online_cpu(void (*func)(void *), void *data)
390 {
391         struct pcpu *pcpu;
392
393         /* Use the current cpu if it is online. */
394         pcpu = pcpu_find_address(cpu_online_mask, stap());
395         if (!pcpu)
396                 /* Use the first online cpu. */
397                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
398         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
399 }
400
401 /*
402  * Call function on the ipl CPU.
403  */
404 void smp_call_ipl_cpu(void (*func)(void *), void *data)
405 {
406         struct lowcore *lc = lowcore_ptr[0];
407
408         if (pcpu_devices[0].address == stap())
409                 lc = &S390_lowcore;
410
411         pcpu_delegate(&pcpu_devices[0], func, data,
412                       lc->nodat_stack);
413 }
414
415 int smp_find_processor_id(u16 address)
416 {
417         int cpu;
418
419         for_each_present_cpu(cpu)
420                 if (pcpu_devices[cpu].address == address)
421                         return cpu;
422         return -1;
423 }
424
425 void schedule_mcck_handler(void)
426 {
427         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
428 }
429
430 bool notrace arch_vcpu_is_preempted(int cpu)
431 {
432         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
433                 return false;
434         if (pcpu_running(pcpu_devices + cpu))
435                 return false;
436         return true;
437 }
438 EXPORT_SYMBOL(arch_vcpu_is_preempted);
439
440 void notrace smp_yield_cpu(int cpu)
441 {
442         if (!MACHINE_HAS_DIAG9C)
443                 return;
444         diag_stat_inc_norecursion(DIAG_STAT_X09C);
445         asm volatile("diag %0,0,0x9c"
446                      : : "d" (pcpu_devices[cpu].address));
447 }
448 EXPORT_SYMBOL_GPL(smp_yield_cpu);
449
450 /*
451  * Send cpus emergency shutdown signal. This gives the cpus the
452  * opportunity to complete outstanding interrupts.
453  */
454 void notrace smp_emergency_stop(void)
455 {
456         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
457         static cpumask_t cpumask;
458         u64 end;
459         int cpu;
460
461         arch_spin_lock(&lock);
462         cpumask_copy(&cpumask, cpu_online_mask);
463         cpumask_clear_cpu(smp_processor_id(), &cpumask);
464
465         end = get_tod_clock() + (1000000UL << 12);
466         for_each_cpu(cpu, &cpumask) {
467                 struct pcpu *pcpu = pcpu_devices + cpu;
468                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
469                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
470                                    0, NULL) == SIGP_CC_BUSY &&
471                        get_tod_clock() < end)
472                         cpu_relax();
473         }
474         while (get_tod_clock() < end) {
475                 for_each_cpu(cpu, &cpumask)
476                         if (pcpu_stopped(pcpu_devices + cpu))
477                                 cpumask_clear_cpu(cpu, &cpumask);
478                 if (cpumask_empty(&cpumask))
479                         break;
480                 cpu_relax();
481         }
482         arch_spin_unlock(&lock);
483 }
484 NOKPROBE_SYMBOL(smp_emergency_stop);
485
486 /*
487  * Stop all cpus but the current one.
488  */
489 void smp_send_stop(void)
490 {
491         int cpu;
492
493         /* Disable all interrupts/machine checks */
494         __load_psw_mask(PSW_KERNEL_BITS);
495         trace_hardirqs_off();
496
497         debug_set_critical();
498
499         if (oops_in_progress)
500                 smp_emergency_stop();
501
502         /* stop all processors */
503         for_each_online_cpu(cpu) {
504                 if (cpu == smp_processor_id())
505                         continue;
506                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
507                 while (!pcpu_stopped(pcpu_devices + cpu))
508                         cpu_relax();
509         }
510 }
511
512 /*
513  * This is the main routine where commands issued by other
514  * cpus are handled.
515  */
516 static void smp_handle_ext_call(void)
517 {
518         unsigned long bits;
519
520         /* handle bit signal external calls */
521         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
522         if (test_bit(ec_stop_cpu, &bits))
523                 smp_stop_cpu();
524         if (test_bit(ec_schedule, &bits))
525                 scheduler_ipi();
526         if (test_bit(ec_call_function_single, &bits))
527                 generic_smp_call_function_single_interrupt();
528         if (test_bit(ec_mcck_pending, &bits))
529                 s390_handle_mcck();
530         if (test_bit(ec_irq_work, &bits))
531                 irq_work_run();
532 }
533
534 static void do_ext_call_interrupt(struct ext_code ext_code,
535                                   unsigned int param32, unsigned long param64)
536 {
537         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
538         smp_handle_ext_call();
539 }
540
541 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
542 {
543         int cpu;
544
545         for_each_cpu(cpu, mask)
546                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
547 }
548
549 void arch_send_call_function_single_ipi(int cpu)
550 {
551         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
552 }
553
554 /*
555  * this function sends a 'reschedule' IPI to another CPU.
556  * it goes straight through and wastes no time serializing
557  * anything. Worst case is that we lose a reschedule ...
558  */
559 void arch_smp_send_reschedule(int cpu)
560 {
561         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
562 }
563
564 #ifdef CONFIG_IRQ_WORK
565 void arch_irq_work_raise(void)
566 {
567         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
568 }
569 #endif
570
571 #ifdef CONFIG_CRASH_DUMP
572
573 int smp_store_status(int cpu)
574 {
575         struct lowcore *lc;
576         struct pcpu *pcpu;
577         unsigned long pa;
578
579         pcpu = pcpu_devices + cpu;
580         lc = lowcore_ptr[cpu];
581         pa = __pa(&lc->floating_pt_save_area);
582         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
583                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
584                 return -EIO;
585         if (!cpu_has_vx() && !MACHINE_HAS_GS)
586                 return 0;
587         pa = lc->mcesad & MCESA_ORIGIN_MASK;
588         if (MACHINE_HAS_GS)
589                 pa |= lc->mcesad & MCESA_LC_MASK;
590         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
591                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
592                 return -EIO;
593         return 0;
594 }
595
596 /*
597  * Collect CPU state of the previous, crashed system.
598  * There are four cases:
599  * 1) standard zfcp/nvme dump
600  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
601  *    The state for all CPUs except the boot CPU needs to be collected
602  *    with sigp stop-and-store-status. The boot CPU state is located in
603  *    the absolute lowcore of the memory stored in the HSA. The zcore code
604  *    will copy the boot CPU state from the HSA.
605  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
606  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
607  *    The state for all CPUs except the boot CPU needs to be collected
608  *    with sigp stop-and-store-status. The firmware or the boot-loader
609  *    stored the registers of the boot CPU in the absolute lowcore in the
610  *    memory of the old system.
611  * 3) kdump and the old kernel did not store the CPU state,
612  *    or stand-alone kdump for DASD
613  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
614  *    The state for all CPUs except the boot CPU needs to be collected
615  *    with sigp stop-and-store-status. The kexec code or the boot-loader
616  *    stored the registers of the boot CPU in the memory of the old system.
617  * 4) kdump and the old kernel stored the CPU state
618  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
619  *    This case does not exist for s390 anymore, setup_arch explicitly
620  *    deactivates the elfcorehdr= kernel parameter
621  */
622 static bool dump_available(void)
623 {
624         return oldmem_data.start || is_ipl_type_dump();
625 }
626
627 void __init smp_save_dump_ipl_cpu(void)
628 {
629         struct save_area *sa;
630         void *regs;
631
632         if (!dump_available())
633                 return;
634         sa = save_area_alloc(true);
635         regs = memblock_alloc(512, 8);
636         if (!sa || !regs)
637                 panic("could not allocate memory for boot CPU save area\n");
638         copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
639         save_area_add_regs(sa, regs);
640         memblock_free(regs, 512);
641         if (cpu_has_vx())
642                 save_area_add_vxrs(sa, boot_cpu_vector_save_area);
643 }
644
645 void __init smp_save_dump_secondary_cpus(void)
646 {
647         int addr, boot_cpu_addr, max_cpu_addr;
648         struct save_area *sa;
649         void *page;
650
651         if (!dump_available())
652                 return;
653         /* Allocate a page as dumping area for the store status sigps */
654         page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
655         if (!page)
656                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
657                       PAGE_SIZE, 1UL << 31);
658
659         /* Set multi-threading state to the previous system. */
660         pcpu_set_smt(sclp.mtid_prev);
661         boot_cpu_addr = stap();
662         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
663         for (addr = 0; addr <= max_cpu_addr; addr++) {
664                 if (addr == boot_cpu_addr)
665                         continue;
666                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
667                     SIGP_CC_NOT_OPERATIONAL)
668                         continue;
669                 sa = save_area_alloc(false);
670                 if (!sa)
671                         panic("could not allocate memory for save area\n");
672                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
673                 save_area_add_regs(sa, page);
674                 if (cpu_has_vx()) {
675                         __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
676                         save_area_add_vxrs(sa, page);
677                 }
678         }
679         memblock_free(page, PAGE_SIZE);
680         diag_amode31_ops.diag308_reset();
681         pcpu_set_smt(0);
682 }
683 #endif /* CONFIG_CRASH_DUMP */
684
685 void smp_cpu_set_polarization(int cpu, int val)
686 {
687         pcpu_devices[cpu].polarization = val;
688 }
689
690 int smp_cpu_get_polarization(int cpu)
691 {
692         return pcpu_devices[cpu].polarization;
693 }
694
695 int smp_cpu_get_cpu_address(int cpu)
696 {
697         return pcpu_devices[cpu].address;
698 }
699
700 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
701 {
702         static int use_sigp_detection;
703         int address;
704
705         if (use_sigp_detection || sclp_get_core_info(info, early)) {
706                 use_sigp_detection = 1;
707                 for (address = 0;
708                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
709                      address += (1U << smp_cpu_mt_shift)) {
710                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
711                             SIGP_CC_NOT_OPERATIONAL)
712                                 continue;
713                         info->core[info->configured].core_id =
714                                 address >> smp_cpu_mt_shift;
715                         info->configured++;
716                 }
717                 info->combined = info->configured;
718         }
719 }
720
721 static int smp_add_present_cpu(int cpu);
722
723 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
724                         bool configured, bool early)
725 {
726         struct pcpu *pcpu;
727         int cpu, nr, i;
728         u16 address;
729
730         nr = 0;
731         if (sclp.has_core_type && core->type != boot_core_type)
732                 return nr;
733         cpu = cpumask_first(avail);
734         address = core->core_id << smp_cpu_mt_shift;
735         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
736                 if (pcpu_find_address(cpu_present_mask, address + i))
737                         continue;
738                 pcpu = pcpu_devices + cpu;
739                 pcpu->address = address + i;
740                 if (configured)
741                         pcpu->state = CPU_STATE_CONFIGURED;
742                 else
743                         pcpu->state = CPU_STATE_STANDBY;
744                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
745                 set_cpu_present(cpu, true);
746                 if (!early && smp_add_present_cpu(cpu) != 0)
747                         set_cpu_present(cpu, false);
748                 else
749                         nr++;
750                 cpumask_clear_cpu(cpu, avail);
751                 cpu = cpumask_next(cpu, avail);
752         }
753         return nr;
754 }
755
756 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
757 {
758         struct sclp_core_entry *core;
759         static cpumask_t avail;
760         bool configured;
761         u16 core_id;
762         int nr, i;
763
764         cpus_read_lock();
765         mutex_lock(&smp_cpu_state_mutex);
766         nr = 0;
767         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
768         /*
769          * Add IPL core first (which got logical CPU number 0) to make sure
770          * that all SMT threads get subsequent logical CPU numbers.
771          */
772         if (early) {
773                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
774                 for (i = 0; i < info->configured; i++) {
775                         core = &info->core[i];
776                         if (core->core_id == core_id) {
777                                 nr += smp_add_core(core, &avail, true, early);
778                                 break;
779                         }
780                 }
781         }
782         for (i = 0; i < info->combined; i++) {
783                 configured = i < info->configured;
784                 nr += smp_add_core(&info->core[i], &avail, configured, early);
785         }
786         mutex_unlock(&smp_cpu_state_mutex);
787         cpus_read_unlock();
788         return nr;
789 }
790
791 void __init smp_detect_cpus(void)
792 {
793         unsigned int cpu, mtid, c_cpus, s_cpus;
794         struct sclp_core_info *info;
795         u16 address;
796
797         /* Get CPU information */
798         info = memblock_alloc(sizeof(*info), 8);
799         if (!info)
800                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
801                       __func__, sizeof(*info), 8);
802         smp_get_core_info(info, 1);
803         /* Find boot CPU type */
804         if (sclp.has_core_type) {
805                 address = stap();
806                 for (cpu = 0; cpu < info->combined; cpu++)
807                         if (info->core[cpu].core_id == address) {
808                                 /* The boot cpu dictates the cpu type. */
809                                 boot_core_type = info->core[cpu].type;
810                                 break;
811                         }
812                 if (cpu >= info->combined)
813                         panic("Could not find boot CPU type");
814         }
815
816         /* Set multi-threading state for the current system */
817         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
818         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
819         pcpu_set_smt(mtid);
820
821         /* Print number of CPUs */
822         c_cpus = s_cpus = 0;
823         for (cpu = 0; cpu < info->combined; cpu++) {
824                 if (sclp.has_core_type &&
825                     info->core[cpu].type != boot_core_type)
826                         continue;
827                 if (cpu < info->configured)
828                         c_cpus += smp_cpu_mtid + 1;
829                 else
830                         s_cpus += smp_cpu_mtid + 1;
831         }
832         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
833
834         /* Add CPUs present at boot */
835         __smp_rescan_cpus(info, true);
836         memblock_free(info, sizeof(*info));
837 }
838
839 /*
840  *      Activate a secondary processor.
841  */
842 static void smp_start_secondary(void *cpuvoid)
843 {
844         int cpu = raw_smp_processor_id();
845
846         S390_lowcore.last_update_clock = get_tod_clock();
847         S390_lowcore.restart_stack = (unsigned long)restart_stack;
848         S390_lowcore.restart_fn = (unsigned long)do_restart;
849         S390_lowcore.restart_data = 0;
850         S390_lowcore.restart_source = -1U;
851         S390_lowcore.restart_flags = 0;
852         restore_access_regs(S390_lowcore.access_regs_save_area);
853         cpu_init();
854         rcutree_report_cpu_starting(cpu);
855         init_cpu_timer();
856         vtime_init();
857         vdso_getcpu_init();
858         pfault_init();
859         cpumask_set_cpu(cpu, &cpu_setup_mask);
860         update_cpu_masks();
861         notify_cpu_starting(cpu);
862         if (topology_cpu_dedicated(cpu))
863                 set_cpu_flag(CIF_DEDICATED_CPU);
864         else
865                 clear_cpu_flag(CIF_DEDICATED_CPU);
866         set_cpu_online(cpu, true);
867         inc_irq_stat(CPU_RST);
868         local_irq_enable();
869         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
870 }
871
872 /* Upping and downing of CPUs */
873 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
874 {
875         struct pcpu *pcpu = pcpu_devices + cpu;
876         int rc;
877
878         if (pcpu->state != CPU_STATE_CONFIGURED)
879                 return -EIO;
880         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
881             SIGP_CC_ORDER_CODE_ACCEPTED)
882                 return -EIO;
883
884         rc = pcpu_alloc_lowcore(pcpu, cpu);
885         if (rc)
886                 return rc;
887         /*
888          * Make sure global control register contents do not change
889          * until new CPU has initialized control registers.
890          */
891         system_ctlreg_lock();
892         pcpu_prepare_secondary(pcpu, cpu);
893         pcpu_attach_task(pcpu, tidle);
894         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
895         /* Wait until cpu puts itself in the online & active maps */
896         while (!cpu_online(cpu))
897                 cpu_relax();
898         system_ctlreg_unlock();
899         return 0;
900 }
901
902 static unsigned int setup_possible_cpus __initdata;
903
904 static int __init _setup_possible_cpus(char *s)
905 {
906         get_option(&s, &setup_possible_cpus);
907         return 0;
908 }
909 early_param("possible_cpus", _setup_possible_cpus);
910
911 int __cpu_disable(void)
912 {
913         struct ctlreg cregs[16];
914         int cpu;
915
916         /* Handle possible pending IPIs */
917         smp_handle_ext_call();
918         cpu = smp_processor_id();
919         set_cpu_online(cpu, false);
920         cpumask_clear_cpu(cpu, &cpu_setup_mask);
921         update_cpu_masks();
922         /* Disable pseudo page faults on this cpu. */
923         pfault_fini();
924         /* Disable interrupt sources via control register. */
925         __local_ctl_store(0, 15, cregs);
926         cregs[0].val  &= ~0x0000ee70UL; /* disable all external interrupts */
927         cregs[6].val  &= ~0xff000000UL; /* disable all I/O interrupts */
928         cregs[14].val &= ~0x1f000000UL; /* disable most machine checks */
929         __local_ctl_load(0, 15, cregs);
930         clear_cpu_flag(CIF_NOHZ_DELAY);
931         return 0;
932 }
933
934 void __cpu_die(unsigned int cpu)
935 {
936         struct pcpu *pcpu;
937
938         /* Wait until target cpu is down */
939         pcpu = pcpu_devices + cpu;
940         while (!pcpu_stopped(pcpu))
941                 cpu_relax();
942         pcpu_free_lowcore(pcpu);
943         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
944         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
945 }
946
947 void __noreturn cpu_die(void)
948 {
949         idle_task_exit();
950         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
951         for (;;) ;
952 }
953
954 void __init smp_fill_possible_mask(void)
955 {
956         unsigned int possible, sclp_max, cpu;
957
958         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
959         sclp_max = min(smp_max_threads, sclp_max);
960         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
961         possible = setup_possible_cpus ?: nr_cpu_ids;
962         possible = min(possible, sclp_max);
963         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
964                 set_cpu_possible(cpu, true);
965 }
966
967 void __init smp_prepare_cpus(unsigned int max_cpus)
968 {
969         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
970                 panic("Couldn't request external interrupt 0x1201");
971         system_ctl_set_bit(0, 14);
972         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
973                 panic("Couldn't request external interrupt 0x1202");
974         system_ctl_set_bit(0, 13);
975 }
976
977 void __init smp_prepare_boot_cpu(void)
978 {
979         struct pcpu *pcpu = pcpu_devices;
980
981         WARN_ON(!cpu_present(0) || !cpu_online(0));
982         pcpu->state = CPU_STATE_CONFIGURED;
983         S390_lowcore.percpu_offset = __per_cpu_offset[0];
984         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
985 }
986
987 void __init smp_setup_processor_id(void)
988 {
989         pcpu_devices[0].address = stap();
990         S390_lowcore.cpu_nr = 0;
991         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
992         S390_lowcore.spinlock_index = 0;
993 }
994
995 /*
996  * the frequency of the profiling timer can be changed
997  * by writing a multiplier value into /proc/profile.
998  *
999  * usually you want to run this on all CPUs ;)
1000  */
1001 int setup_profiling_timer(unsigned int multiplier)
1002 {
1003         return 0;
1004 }
1005
1006 static ssize_t cpu_configure_show(struct device *dev,
1007                                   struct device_attribute *attr, char *buf)
1008 {
1009         ssize_t count;
1010
1011         mutex_lock(&smp_cpu_state_mutex);
1012         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1013         mutex_unlock(&smp_cpu_state_mutex);
1014         return count;
1015 }
1016
1017 static ssize_t cpu_configure_store(struct device *dev,
1018                                    struct device_attribute *attr,
1019                                    const char *buf, size_t count)
1020 {
1021         struct pcpu *pcpu;
1022         int cpu, val, rc, i;
1023         char delim;
1024
1025         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1026                 return -EINVAL;
1027         if (val != 0 && val != 1)
1028                 return -EINVAL;
1029         cpus_read_lock();
1030         mutex_lock(&smp_cpu_state_mutex);
1031         rc = -EBUSY;
1032         /* disallow configuration changes of online cpus */
1033         cpu = dev->id;
1034         cpu = smp_get_base_cpu(cpu);
1035         for (i = 0; i <= smp_cpu_mtid; i++)
1036                 if (cpu_online(cpu + i))
1037                         goto out;
1038         pcpu = pcpu_devices + cpu;
1039         rc = 0;
1040         switch (val) {
1041         case 0:
1042                 if (pcpu->state != CPU_STATE_CONFIGURED)
1043                         break;
1044                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1045                 if (rc)
1046                         break;
1047                 for (i = 0; i <= smp_cpu_mtid; i++) {
1048                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1049                                 continue;
1050                         pcpu[i].state = CPU_STATE_STANDBY;
1051                         smp_cpu_set_polarization(cpu + i,
1052                                                  POLARIZATION_UNKNOWN);
1053                 }
1054                 topology_expect_change();
1055                 break;
1056         case 1:
1057                 if (pcpu->state != CPU_STATE_STANDBY)
1058                         break;
1059                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1060                 if (rc)
1061                         break;
1062                 for (i = 0; i <= smp_cpu_mtid; i++) {
1063                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1064                                 continue;
1065                         pcpu[i].state = CPU_STATE_CONFIGURED;
1066                         smp_cpu_set_polarization(cpu + i,
1067                                                  POLARIZATION_UNKNOWN);
1068                 }
1069                 topology_expect_change();
1070                 break;
1071         default:
1072                 break;
1073         }
1074 out:
1075         mutex_unlock(&smp_cpu_state_mutex);
1076         cpus_read_unlock();
1077         return rc ? rc : count;
1078 }
1079 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1080
1081 static ssize_t show_cpu_address(struct device *dev,
1082                                 struct device_attribute *attr, char *buf)
1083 {
1084         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1085 }
1086 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1087
1088 static struct attribute *cpu_common_attrs[] = {
1089         &dev_attr_configure.attr,
1090         &dev_attr_address.attr,
1091         NULL,
1092 };
1093
1094 static struct attribute_group cpu_common_attr_group = {
1095         .attrs = cpu_common_attrs,
1096 };
1097
1098 static struct attribute *cpu_online_attrs[] = {
1099         &dev_attr_idle_count.attr,
1100         &dev_attr_idle_time_us.attr,
1101         NULL,
1102 };
1103
1104 static struct attribute_group cpu_online_attr_group = {
1105         .attrs = cpu_online_attrs,
1106 };
1107
1108 static int smp_cpu_online(unsigned int cpu)
1109 {
1110         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1111
1112         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1113 }
1114
1115 static int smp_cpu_pre_down(unsigned int cpu)
1116 {
1117         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1118
1119         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1120         return 0;
1121 }
1122
1123 static int smp_add_present_cpu(int cpu)
1124 {
1125         struct device *s;
1126         struct cpu *c;
1127         int rc;
1128
1129         c = kzalloc(sizeof(*c), GFP_KERNEL);
1130         if (!c)
1131                 return -ENOMEM;
1132         per_cpu(cpu_device, cpu) = c;
1133         s = &c->dev;
1134         c->hotpluggable = !!cpu;
1135         rc = register_cpu(c, cpu);
1136         if (rc)
1137                 goto out;
1138         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1139         if (rc)
1140                 goto out_cpu;
1141         rc = topology_cpu_init(c);
1142         if (rc)
1143                 goto out_topology;
1144         return 0;
1145
1146 out_topology:
1147         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1148 out_cpu:
1149         unregister_cpu(c);
1150 out:
1151         return rc;
1152 }
1153
1154 int __ref smp_rescan_cpus(void)
1155 {
1156         struct sclp_core_info *info;
1157         int nr;
1158
1159         info = kzalloc(sizeof(*info), GFP_KERNEL);
1160         if (!info)
1161                 return -ENOMEM;
1162         smp_get_core_info(info, 0);
1163         nr = __smp_rescan_cpus(info, false);
1164         kfree(info);
1165         if (nr)
1166                 topology_schedule_update();
1167         return 0;
1168 }
1169
1170 static ssize_t __ref rescan_store(struct device *dev,
1171                                   struct device_attribute *attr,
1172                                   const char *buf,
1173                                   size_t count)
1174 {
1175         int rc;
1176
1177         rc = lock_device_hotplug_sysfs();
1178         if (rc)
1179                 return rc;
1180         rc = smp_rescan_cpus();
1181         unlock_device_hotplug();
1182         return rc ? rc : count;
1183 }
1184 static DEVICE_ATTR_WO(rescan);
1185
1186 static int __init s390_smp_init(void)
1187 {
1188         struct device *dev_root;
1189         int cpu, rc = 0;
1190
1191         dev_root = bus_get_dev_root(&cpu_subsys);
1192         if (dev_root) {
1193                 rc = device_create_file(dev_root, &dev_attr_rescan);
1194                 put_device(dev_root);
1195                 if (rc)
1196                         return rc;
1197         }
1198
1199         for_each_present_cpu(cpu) {
1200                 rc = smp_add_present_cpu(cpu);
1201                 if (rc)
1202                         goto out;
1203         }
1204
1205         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1206                                smp_cpu_online, smp_cpu_pre_down);
1207         rc = rc <= 0 ? rc : 0;
1208 out:
1209         return rc;
1210 }
1211 subsys_initcall(s390_smp_init);