Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[sfrench/cifs-2.6.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/debug.h>
51 #include <asm/os_info.h>
52 #include <asm/sigp.h>
53 #include <asm/idle.h>
54 #include <asm/nmi.h>
55 #include <asm/stacktrace.h>
56 #include <asm/topology.h>
57 #include <asm/vdso.h>
58 #include "entry.h"
59
60 enum {
61         ec_schedule = 0,
62         ec_call_function_single,
63         ec_stop_cpu,
64         ec_mcck_pending,
65         ec_irq_work,
66 };
67
68 enum {
69         CPU_STATE_STANDBY,
70         CPU_STATE_CONFIGURED,
71 };
72
73 static DEFINE_PER_CPU(struct cpu *, cpu_device);
74
75 struct pcpu {
76         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
77         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
78         signed char state;              /* physical cpu state */
79         signed char polarization;       /* physical polarization */
80         u16 address;                    /* physical cpu address */
81 };
82
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
85
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
88
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
91
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
95
96 static unsigned int smp_max_threads __initdata = -1U;
97 cpumask_t cpu_setup_mask;
98
99 static int __init early_nosmt(char *s)
100 {
101         smp_max_threads = 1;
102         return 0;
103 }
104 early_param("nosmt", early_nosmt);
105
106 static int __init early_smt(char *s)
107 {
108         get_option(&s, &smp_max_threads);
109         return 0;
110 }
111 early_param("smt", early_smt);
112
113 /*
114  * The smp_cpu_state_mutex must be held when changing the state or polarization
115  * member of a pcpu data structure within the pcpu_devices arreay.
116  */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118
119 /*
120  * Signal processor helper functions.
121  */
122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124         int cc;
125
126         while (1) {
127                 cc = __pcpu_sigp(addr, order, parm, NULL);
128                 if (cc != SIGP_CC_BUSY)
129                         return cc;
130                 cpu_relax();
131         }
132 }
133
134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136         int cc, retry;
137
138         for (retry = 0; ; retry++) {
139                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140                 if (cc != SIGP_CC_BUSY)
141                         break;
142                 if (retry >= 3)
143                         udelay(10);
144         }
145         return cc;
146 }
147
148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150         u32 status;
151
152         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153                         0, &status) != SIGP_CC_STATUS_STORED)
154                 return 0;
155         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157
158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161                         0, NULL) != SIGP_CC_STATUS_STORED)
162                 return 1;
163         /* Status stored condition code is equivalent to cpu not running. */
164         return 0;
165 }
166
167 /*
168  * Find struct pcpu by cpu address.
169  */
170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172         int cpu;
173
174         for_each_cpu(cpu, mask)
175                 if (pcpu_devices[cpu].address == address)
176                         return pcpu_devices + cpu;
177         return NULL;
178 }
179
180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182         int order;
183
184         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185                 return;
186         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187         pcpu->ec_clk = get_tod_clock_fast();
188         pcpu_sigp_retry(pcpu, order, 0);
189 }
190
191 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
192 {
193         unsigned long async_stack, nodat_stack, mcck_stack;
194         struct lowcore *lc;
195
196         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198         async_stack = stack_alloc();
199         mcck_stack = stack_alloc();
200         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
201                 goto out;
202         memcpy(lc, &S390_lowcore, 512);
203         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204         lc->async_stack = async_stack + STACK_INIT_OFFSET;
205         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
206         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
207         lc->cpu_nr = cpu;
208         lc->spinlock_lockval = arch_spin_lockval(cpu);
209         lc->spinlock_index = 0;
210         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
211         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
212         lc->preempt_count = PREEMPT_DISABLED;
213         if (nmi_alloc_mcesa(&lc->mcesad))
214                 goto out;
215         lowcore_ptr[cpu] = lc;
216         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
217         return 0;
218
219 out:
220         stack_free(mcck_stack);
221         stack_free(async_stack);
222         free_pages(nodat_stack, THREAD_SIZE_ORDER);
223         free_pages((unsigned long) lc, LC_ORDER);
224         return -ENOMEM;
225 }
226
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
228 {
229         unsigned long async_stack, nodat_stack, mcck_stack;
230         struct lowcore *lc;
231         int cpu;
232
233         cpu = pcpu - pcpu_devices;
234         lc = lowcore_ptr[cpu];
235         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
236         async_stack = lc->async_stack - STACK_INIT_OFFSET;
237         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
238         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
239         lowcore_ptr[cpu] = NULL;
240         nmi_free_mcesa(&lc->mcesad);
241         stack_free(async_stack);
242         stack_free(mcck_stack);
243         free_pages(nodat_stack, THREAD_SIZE_ORDER);
244         free_pages((unsigned long) lc, LC_ORDER);
245 }
246
247 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
248 {
249         struct lowcore *lc = lowcore_ptr[cpu];
250
251         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
252         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
253         lc->cpu_nr = cpu;
254         lc->restart_flags = RESTART_FLAG_CTLREGS;
255         lc->spinlock_lockval = arch_spin_lockval(cpu);
256         lc->spinlock_index = 0;
257         lc->percpu_offset = __per_cpu_offset[cpu];
258         lc->kernel_asce = S390_lowcore.kernel_asce;
259         lc->user_asce = s390_invalid_asce;
260         lc->machine_flags = S390_lowcore.machine_flags;
261         lc->user_timer = lc->system_timer =
262                 lc->steal_timer = lc->avg_steal_timer = 0;
263         __ctl_store(lc->cregs_save_area, 0, 15);
264         lc->cregs_save_area[1] = lc->kernel_asce;
265         lc->cregs_save_area[7] = lc->user_asce;
266         save_access_regs((unsigned int *) lc->access_regs_save_area);
267         arch_spin_lock_setup(cpu);
268 }
269
270 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271 {
272         struct lowcore *lc;
273         int cpu;
274
275         cpu = pcpu - pcpu_devices;
276         lc = lowcore_ptr[cpu];
277         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
278                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
279         lc->current_task = (unsigned long) tsk;
280         lc->lpp = LPP_MAGIC;
281         lc->current_pid = tsk->pid;
282         lc->user_timer = tsk->thread.user_timer;
283         lc->guest_timer = tsk->thread.guest_timer;
284         lc->system_timer = tsk->thread.system_timer;
285         lc->hardirq_timer = tsk->thread.hardirq_timer;
286         lc->softirq_timer = tsk->thread.softirq_timer;
287         lc->steal_timer = 0;
288 }
289
290 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
291 {
292         struct lowcore *lc;
293         int cpu;
294
295         cpu = pcpu - pcpu_devices;
296         lc = lowcore_ptr[cpu];
297         lc->restart_stack = lc->kernel_stack;
298         lc->restart_fn = (unsigned long) func;
299         lc->restart_data = (unsigned long) data;
300         lc->restart_source = -1U;
301         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
302 }
303
304 typedef void (pcpu_delegate_fn)(void *);
305
306 /*
307  * Call function via PSW restart on pcpu and stop the current cpu.
308  */
309 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
310 {
311         func(data);     /* should not return */
312 }
313
314 static void pcpu_delegate(struct pcpu *pcpu,
315                           pcpu_delegate_fn *func,
316                           void *data, unsigned long stack)
317 {
318         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
319         unsigned int source_cpu = stap();
320
321         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
322         if (pcpu->address == source_cpu) {
323                 call_on_stack(2, stack, void, __pcpu_delegate,
324                               pcpu_delegate_fn *, func, void *, data);
325         }
326         /* Stop target cpu (if func returns this stops the current cpu). */
327         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
328         /* Restart func on the target cpu and stop the current cpu. */
329         if (lc) {
330                 lc->restart_stack = stack;
331                 lc->restart_fn = (unsigned long)func;
332                 lc->restart_data = (unsigned long)data;
333                 lc->restart_source = source_cpu;
334         } else {
335                 put_abs_lowcore(restart_stack, stack);
336                 put_abs_lowcore(restart_fn, (unsigned long)func);
337                 put_abs_lowcore(restart_data, (unsigned long)data);
338                 put_abs_lowcore(restart_source, source_cpu);
339         }
340         __bpon();
341         asm volatile(
342                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
343                 "       brc     2,0b    # busy, try again\n"
344                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
345                 "       brc     2,1b    # busy, try again\n"
346                 : : "d" (pcpu->address), "d" (source_cpu),
347                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
348                 : "0", "1", "cc");
349         for (;;) ;
350 }
351
352 /*
353  * Enable additional logical cpus for multi-threading.
354  */
355 static int pcpu_set_smt(unsigned int mtid)
356 {
357         int cc;
358
359         if (smp_cpu_mtid == mtid)
360                 return 0;
361         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
362         if (cc == 0) {
363                 smp_cpu_mtid = mtid;
364                 smp_cpu_mt_shift = 0;
365                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
366                         smp_cpu_mt_shift++;
367                 pcpu_devices[0].address = stap();
368         }
369         return cc;
370 }
371
372 /*
373  * Call function on an online CPU.
374  */
375 void smp_call_online_cpu(void (*func)(void *), void *data)
376 {
377         struct pcpu *pcpu;
378
379         /* Use the current cpu if it is online. */
380         pcpu = pcpu_find_address(cpu_online_mask, stap());
381         if (!pcpu)
382                 /* Use the first online cpu. */
383                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
384         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
385 }
386
387 /*
388  * Call function on the ipl CPU.
389  */
390 void smp_call_ipl_cpu(void (*func)(void *), void *data)
391 {
392         struct lowcore *lc = lowcore_ptr[0];
393
394         if (pcpu_devices[0].address == stap())
395                 lc = &S390_lowcore;
396
397         pcpu_delegate(&pcpu_devices[0], func, data,
398                       lc->nodat_stack);
399 }
400
401 int smp_find_processor_id(u16 address)
402 {
403         int cpu;
404
405         for_each_present_cpu(cpu)
406                 if (pcpu_devices[cpu].address == address)
407                         return cpu;
408         return -1;
409 }
410
411 void schedule_mcck_handler(void)
412 {
413         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
414 }
415
416 bool notrace arch_vcpu_is_preempted(int cpu)
417 {
418         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
419                 return false;
420         if (pcpu_running(pcpu_devices + cpu))
421                 return false;
422         return true;
423 }
424 EXPORT_SYMBOL(arch_vcpu_is_preempted);
425
426 void notrace smp_yield_cpu(int cpu)
427 {
428         if (!MACHINE_HAS_DIAG9C)
429                 return;
430         diag_stat_inc_norecursion(DIAG_STAT_X09C);
431         asm volatile("diag %0,0,0x9c"
432                      : : "d" (pcpu_devices[cpu].address));
433 }
434 EXPORT_SYMBOL_GPL(smp_yield_cpu);
435
436 /*
437  * Send cpus emergency shutdown signal. This gives the cpus the
438  * opportunity to complete outstanding interrupts.
439  */
440 void notrace smp_emergency_stop(void)
441 {
442         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
443         static cpumask_t cpumask;
444         u64 end;
445         int cpu;
446
447         arch_spin_lock(&lock);
448         cpumask_copy(&cpumask, cpu_online_mask);
449         cpumask_clear_cpu(smp_processor_id(), &cpumask);
450
451         end = get_tod_clock() + (1000000UL << 12);
452         for_each_cpu(cpu, &cpumask) {
453                 struct pcpu *pcpu = pcpu_devices + cpu;
454                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
455                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
456                                    0, NULL) == SIGP_CC_BUSY &&
457                        get_tod_clock() < end)
458                         cpu_relax();
459         }
460         while (get_tod_clock() < end) {
461                 for_each_cpu(cpu, &cpumask)
462                         if (pcpu_stopped(pcpu_devices + cpu))
463                                 cpumask_clear_cpu(cpu, &cpumask);
464                 if (cpumask_empty(&cpumask))
465                         break;
466                 cpu_relax();
467         }
468         arch_spin_unlock(&lock);
469 }
470 NOKPROBE_SYMBOL(smp_emergency_stop);
471
472 /*
473  * Stop all cpus but the current one.
474  */
475 void smp_send_stop(void)
476 {
477         int cpu;
478
479         /* Disable all interrupts/machine checks */
480         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
481         trace_hardirqs_off();
482
483         debug_set_critical();
484
485         if (oops_in_progress)
486                 smp_emergency_stop();
487
488         /* stop all processors */
489         for_each_online_cpu(cpu) {
490                 if (cpu == smp_processor_id())
491                         continue;
492                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
493                 while (!pcpu_stopped(pcpu_devices + cpu))
494                         cpu_relax();
495         }
496 }
497
498 /*
499  * This is the main routine where commands issued by other
500  * cpus are handled.
501  */
502 static void smp_handle_ext_call(void)
503 {
504         unsigned long bits;
505
506         /* handle bit signal external calls */
507         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
508         if (test_bit(ec_stop_cpu, &bits))
509                 smp_stop_cpu();
510         if (test_bit(ec_schedule, &bits))
511                 scheduler_ipi();
512         if (test_bit(ec_call_function_single, &bits))
513                 generic_smp_call_function_single_interrupt();
514         if (test_bit(ec_mcck_pending, &bits))
515                 __s390_handle_mcck();
516         if (test_bit(ec_irq_work, &bits))
517                 irq_work_run();
518 }
519
520 static void do_ext_call_interrupt(struct ext_code ext_code,
521                                   unsigned int param32, unsigned long param64)
522 {
523         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
524         smp_handle_ext_call();
525 }
526
527 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
528 {
529         int cpu;
530
531         for_each_cpu(cpu, mask)
532                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
533 }
534
535 void arch_send_call_function_single_ipi(int cpu)
536 {
537         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
538 }
539
540 /*
541  * this function sends a 'reschedule' IPI to another CPU.
542  * it goes straight through and wastes no time serializing
543  * anything. Worst case is that we lose a reschedule ...
544  */
545 void smp_send_reschedule(int cpu)
546 {
547         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
548 }
549
550 #ifdef CONFIG_IRQ_WORK
551 void arch_irq_work_raise(void)
552 {
553         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
554 }
555 #endif
556
557 /*
558  * parameter area for the set/clear control bit callbacks
559  */
560 struct ec_creg_mask_parms {
561         unsigned long orval;
562         unsigned long andval;
563         int cr;
564 };
565
566 /*
567  * callback for setting/clearing control bits
568  */
569 static void smp_ctl_bit_callback(void *info)
570 {
571         struct ec_creg_mask_parms *pp = info;
572         unsigned long cregs[16];
573
574         __ctl_store(cregs, 0, 15);
575         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
576         __ctl_load(cregs, 0, 15);
577 }
578
579 static DEFINE_SPINLOCK(ctl_lock);
580
581 void smp_ctl_set_clear_bit(int cr, int bit, bool set)
582 {
583         struct ec_creg_mask_parms parms = { .cr = cr, };
584         u64 ctlreg;
585
586         if (set) {
587                 parms.orval = 1UL << bit;
588                 parms.andval = -1UL;
589         } else {
590                 parms.orval = 0;
591                 parms.andval = ~(1UL << bit);
592         }
593         spin_lock(&ctl_lock);
594         get_abs_lowcore(ctlreg, cregs_save_area[cr]);
595         ctlreg = (ctlreg & parms.andval) | parms.orval;
596         put_abs_lowcore(cregs_save_area[cr], ctlreg);
597         spin_unlock(&ctl_lock);
598         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
599 }
600 EXPORT_SYMBOL(smp_ctl_set_clear_bit);
601
602 #ifdef CONFIG_CRASH_DUMP
603
604 int smp_store_status(int cpu)
605 {
606         struct lowcore *lc;
607         struct pcpu *pcpu;
608         unsigned long pa;
609
610         pcpu = pcpu_devices + cpu;
611         lc = lowcore_ptr[cpu];
612         pa = __pa(&lc->floating_pt_save_area);
613         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
614                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
615                 return -EIO;
616         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
617                 return 0;
618         pa = lc->mcesad & MCESA_ORIGIN_MASK;
619         if (MACHINE_HAS_GS)
620                 pa |= lc->mcesad & MCESA_LC_MASK;
621         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
622                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
623                 return -EIO;
624         return 0;
625 }
626
627 /*
628  * Collect CPU state of the previous, crashed system.
629  * There are four cases:
630  * 1) standard zfcp/nvme dump
631  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
632  *    The state for all CPUs except the boot CPU needs to be collected
633  *    with sigp stop-and-store-status. The boot CPU state is located in
634  *    the absolute lowcore of the memory stored in the HSA. The zcore code
635  *    will copy the boot CPU state from the HSA.
636  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
637  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
638  *    The state for all CPUs except the boot CPU needs to be collected
639  *    with sigp stop-and-store-status. The firmware or the boot-loader
640  *    stored the registers of the boot CPU in the absolute lowcore in the
641  *    memory of the old system.
642  * 3) kdump and the old kernel did not store the CPU state,
643  *    or stand-alone kdump for DASD
644  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
645  *    The state for all CPUs except the boot CPU needs to be collected
646  *    with sigp stop-and-store-status. The kexec code or the boot-loader
647  *    stored the registers of the boot CPU in the memory of the old system.
648  * 4) kdump and the old kernel stored the CPU state
649  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
650  *    This case does not exist for s390 anymore, setup_arch explicitly
651  *    deactivates the elfcorehdr= kernel parameter
652  */
653 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
654                                      bool is_boot_cpu, __vector128 *vxrs)
655 {
656         if (is_boot_cpu)
657                 vxrs = boot_cpu_vector_save_area;
658         else
659                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(vxrs));
660         save_area_add_vxrs(sa, vxrs);
661 }
662
663 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
664                                      bool is_boot_cpu, void *regs)
665 {
666         if (is_boot_cpu)
667                 copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
668         else
669                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(regs));
670         save_area_add_regs(sa, regs);
671 }
672
673 void __init smp_save_dump_cpus(void)
674 {
675         int addr, boot_cpu_addr, max_cpu_addr;
676         struct save_area *sa;
677         bool is_boot_cpu;
678         void *page;
679
680         if (!(oldmem_data.start || is_ipl_type_dump()))
681                 /* No previous system present, normal boot. */
682                 return;
683         /* Allocate a page as dumping area for the store status sigps */
684         page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
685         if (!page)
686                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
687                       PAGE_SIZE, 1UL << 31);
688
689         /* Set multi-threading state to the previous system. */
690         pcpu_set_smt(sclp.mtid_prev);
691         boot_cpu_addr = stap();
692         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
693         for (addr = 0; addr <= max_cpu_addr; addr++) {
694                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
695                     SIGP_CC_NOT_OPERATIONAL)
696                         continue;
697                 is_boot_cpu = (addr == boot_cpu_addr);
698                 /* Allocate save area */
699                 sa = save_area_alloc(is_boot_cpu);
700                 if (!sa)
701                         panic("could not allocate memory for save area\n");
702                 if (MACHINE_HAS_VX)
703                         /* Get the vector registers */
704                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
705                 /*
706                  * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
707                  * of the boot CPU are stored in the HSA. To retrieve
708                  * these registers an SCLP request is required which is
709                  * done by drivers/s390/char/zcore.c:init_cpu_info()
710                  */
711                 if (!is_boot_cpu || oldmem_data.start)
712                         /* Get the CPU registers */
713                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
714         }
715         memblock_free(page, PAGE_SIZE);
716         diag_amode31_ops.diag308_reset();
717         pcpu_set_smt(0);
718 }
719 #endif /* CONFIG_CRASH_DUMP */
720
721 void smp_cpu_set_polarization(int cpu, int val)
722 {
723         pcpu_devices[cpu].polarization = val;
724 }
725
726 int smp_cpu_get_polarization(int cpu)
727 {
728         return pcpu_devices[cpu].polarization;
729 }
730
731 int smp_cpu_get_cpu_address(int cpu)
732 {
733         return pcpu_devices[cpu].address;
734 }
735
736 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
737 {
738         static int use_sigp_detection;
739         int address;
740
741         if (use_sigp_detection || sclp_get_core_info(info, early)) {
742                 use_sigp_detection = 1;
743                 for (address = 0;
744                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
745                      address += (1U << smp_cpu_mt_shift)) {
746                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
747                             SIGP_CC_NOT_OPERATIONAL)
748                                 continue;
749                         info->core[info->configured].core_id =
750                                 address >> smp_cpu_mt_shift;
751                         info->configured++;
752                 }
753                 info->combined = info->configured;
754         }
755 }
756
757 static int smp_add_present_cpu(int cpu);
758
759 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
760                         bool configured, bool early)
761 {
762         struct pcpu *pcpu;
763         int cpu, nr, i;
764         u16 address;
765
766         nr = 0;
767         if (sclp.has_core_type && core->type != boot_core_type)
768                 return nr;
769         cpu = cpumask_first(avail);
770         address = core->core_id << smp_cpu_mt_shift;
771         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
772                 if (pcpu_find_address(cpu_present_mask, address + i))
773                         continue;
774                 pcpu = pcpu_devices + cpu;
775                 pcpu->address = address + i;
776                 if (configured)
777                         pcpu->state = CPU_STATE_CONFIGURED;
778                 else
779                         pcpu->state = CPU_STATE_STANDBY;
780                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
781                 set_cpu_present(cpu, true);
782                 if (!early && smp_add_present_cpu(cpu) != 0)
783                         set_cpu_present(cpu, false);
784                 else
785                         nr++;
786                 cpumask_clear_cpu(cpu, avail);
787                 cpu = cpumask_next(cpu, avail);
788         }
789         return nr;
790 }
791
792 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
793 {
794         struct sclp_core_entry *core;
795         static cpumask_t avail;
796         bool configured;
797         u16 core_id;
798         int nr, i;
799
800         cpus_read_lock();
801         mutex_lock(&smp_cpu_state_mutex);
802         nr = 0;
803         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
804         /*
805          * Add IPL core first (which got logical CPU number 0) to make sure
806          * that all SMT threads get subsequent logical CPU numbers.
807          */
808         if (early) {
809                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
810                 for (i = 0; i < info->configured; i++) {
811                         core = &info->core[i];
812                         if (core->core_id == core_id) {
813                                 nr += smp_add_core(core, &avail, true, early);
814                                 break;
815                         }
816                 }
817         }
818         for (i = 0; i < info->combined; i++) {
819                 configured = i < info->configured;
820                 nr += smp_add_core(&info->core[i], &avail, configured, early);
821         }
822         mutex_unlock(&smp_cpu_state_mutex);
823         cpus_read_unlock();
824         return nr;
825 }
826
827 void __init smp_detect_cpus(void)
828 {
829         unsigned int cpu, mtid, c_cpus, s_cpus;
830         struct sclp_core_info *info;
831         u16 address;
832
833         /* Get CPU information */
834         info = memblock_alloc(sizeof(*info), 8);
835         if (!info)
836                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
837                       __func__, sizeof(*info), 8);
838         smp_get_core_info(info, 1);
839         /* Find boot CPU type */
840         if (sclp.has_core_type) {
841                 address = stap();
842                 for (cpu = 0; cpu < info->combined; cpu++)
843                         if (info->core[cpu].core_id == address) {
844                                 /* The boot cpu dictates the cpu type. */
845                                 boot_core_type = info->core[cpu].type;
846                                 break;
847                         }
848                 if (cpu >= info->combined)
849                         panic("Could not find boot CPU type");
850         }
851
852         /* Set multi-threading state for the current system */
853         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
854         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
855         pcpu_set_smt(mtid);
856
857         /* Print number of CPUs */
858         c_cpus = s_cpus = 0;
859         for (cpu = 0; cpu < info->combined; cpu++) {
860                 if (sclp.has_core_type &&
861                     info->core[cpu].type != boot_core_type)
862                         continue;
863                 if (cpu < info->configured)
864                         c_cpus += smp_cpu_mtid + 1;
865                 else
866                         s_cpus += smp_cpu_mtid + 1;
867         }
868         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
869
870         /* Add CPUs present at boot */
871         __smp_rescan_cpus(info, true);
872         memblock_free(info, sizeof(*info));
873 }
874
875 /*
876  *      Activate a secondary processor.
877  */
878 static void smp_start_secondary(void *cpuvoid)
879 {
880         int cpu = raw_smp_processor_id();
881
882         S390_lowcore.last_update_clock = get_tod_clock();
883         S390_lowcore.restart_stack = (unsigned long)restart_stack;
884         S390_lowcore.restart_fn = (unsigned long)do_restart;
885         S390_lowcore.restart_data = 0;
886         S390_lowcore.restart_source = -1U;
887         S390_lowcore.restart_flags = 0;
888         restore_access_regs(S390_lowcore.access_regs_save_area);
889         cpu_init();
890         rcu_cpu_starting(cpu);
891         init_cpu_timer();
892         vtime_init();
893         vdso_getcpu_init();
894         pfault_init();
895         cpumask_set_cpu(cpu, &cpu_setup_mask);
896         update_cpu_masks();
897         notify_cpu_starting(cpu);
898         if (topology_cpu_dedicated(cpu))
899                 set_cpu_flag(CIF_DEDICATED_CPU);
900         else
901                 clear_cpu_flag(CIF_DEDICATED_CPU);
902         set_cpu_online(cpu, true);
903         inc_irq_stat(CPU_RST);
904         local_irq_enable();
905         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
906 }
907
908 /* Upping and downing of CPUs */
909 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
910 {
911         struct pcpu *pcpu = pcpu_devices + cpu;
912         int rc;
913
914         if (pcpu->state != CPU_STATE_CONFIGURED)
915                 return -EIO;
916         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
917             SIGP_CC_ORDER_CODE_ACCEPTED)
918                 return -EIO;
919
920         rc = pcpu_alloc_lowcore(pcpu, cpu);
921         if (rc)
922                 return rc;
923         pcpu_prepare_secondary(pcpu, cpu);
924         pcpu_attach_task(pcpu, tidle);
925         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
926         /* Wait until cpu puts itself in the online & active maps */
927         while (!cpu_online(cpu))
928                 cpu_relax();
929         return 0;
930 }
931
932 static unsigned int setup_possible_cpus __initdata;
933
934 static int __init _setup_possible_cpus(char *s)
935 {
936         get_option(&s, &setup_possible_cpus);
937         return 0;
938 }
939 early_param("possible_cpus", _setup_possible_cpus);
940
941 int __cpu_disable(void)
942 {
943         unsigned long cregs[16];
944         int cpu;
945
946         /* Handle possible pending IPIs */
947         smp_handle_ext_call();
948         cpu = smp_processor_id();
949         set_cpu_online(cpu, false);
950         cpumask_clear_cpu(cpu, &cpu_setup_mask);
951         update_cpu_masks();
952         /* Disable pseudo page faults on this cpu. */
953         pfault_fini();
954         /* Disable interrupt sources via control register. */
955         __ctl_store(cregs, 0, 15);
956         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
957         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
958         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
959         __ctl_load(cregs, 0, 15);
960         clear_cpu_flag(CIF_NOHZ_DELAY);
961         return 0;
962 }
963
964 void __cpu_die(unsigned int cpu)
965 {
966         struct pcpu *pcpu;
967
968         /* Wait until target cpu is down */
969         pcpu = pcpu_devices + cpu;
970         while (!pcpu_stopped(pcpu))
971                 cpu_relax();
972         pcpu_free_lowcore(pcpu);
973         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
974         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
975 }
976
977 void __noreturn cpu_die(void)
978 {
979         idle_task_exit();
980         __bpon();
981         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
982         for (;;) ;
983 }
984
985 void __init smp_fill_possible_mask(void)
986 {
987         unsigned int possible, sclp_max, cpu;
988
989         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
990         sclp_max = min(smp_max_threads, sclp_max);
991         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
992         possible = setup_possible_cpus ?: nr_cpu_ids;
993         possible = min(possible, sclp_max);
994         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
995                 set_cpu_possible(cpu, true);
996 }
997
998 void __init smp_prepare_cpus(unsigned int max_cpus)
999 {
1000         /* request the 0x1201 emergency signal external interrupt */
1001         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1002                 panic("Couldn't request external interrupt 0x1201");
1003         /* request the 0x1202 external call external interrupt */
1004         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1005                 panic("Couldn't request external interrupt 0x1202");
1006 }
1007
1008 void __init smp_prepare_boot_cpu(void)
1009 {
1010         struct pcpu *pcpu = pcpu_devices;
1011
1012         WARN_ON(!cpu_present(0) || !cpu_online(0));
1013         pcpu->state = CPU_STATE_CONFIGURED;
1014         S390_lowcore.percpu_offset = __per_cpu_offset[0];
1015         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1016 }
1017
1018 void __init smp_setup_processor_id(void)
1019 {
1020         pcpu_devices[0].address = stap();
1021         S390_lowcore.cpu_nr = 0;
1022         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1023         S390_lowcore.spinlock_index = 0;
1024 }
1025
1026 /*
1027  * the frequency of the profiling timer can be changed
1028  * by writing a multiplier value into /proc/profile.
1029  *
1030  * usually you want to run this on all CPUs ;)
1031  */
1032 int setup_profiling_timer(unsigned int multiplier)
1033 {
1034         return 0;
1035 }
1036
1037 static ssize_t cpu_configure_show(struct device *dev,
1038                                   struct device_attribute *attr, char *buf)
1039 {
1040         ssize_t count;
1041
1042         mutex_lock(&smp_cpu_state_mutex);
1043         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1044         mutex_unlock(&smp_cpu_state_mutex);
1045         return count;
1046 }
1047
1048 static ssize_t cpu_configure_store(struct device *dev,
1049                                    struct device_attribute *attr,
1050                                    const char *buf, size_t count)
1051 {
1052         struct pcpu *pcpu;
1053         int cpu, val, rc, i;
1054         char delim;
1055
1056         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1057                 return -EINVAL;
1058         if (val != 0 && val != 1)
1059                 return -EINVAL;
1060         cpus_read_lock();
1061         mutex_lock(&smp_cpu_state_mutex);
1062         rc = -EBUSY;
1063         /* disallow configuration changes of online cpus and cpu 0 */
1064         cpu = dev->id;
1065         cpu = smp_get_base_cpu(cpu);
1066         if (cpu == 0)
1067                 goto out;
1068         for (i = 0; i <= smp_cpu_mtid; i++)
1069                 if (cpu_online(cpu + i))
1070                         goto out;
1071         pcpu = pcpu_devices + cpu;
1072         rc = 0;
1073         switch (val) {
1074         case 0:
1075                 if (pcpu->state != CPU_STATE_CONFIGURED)
1076                         break;
1077                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1078                 if (rc)
1079                         break;
1080                 for (i = 0; i <= smp_cpu_mtid; i++) {
1081                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1082                                 continue;
1083                         pcpu[i].state = CPU_STATE_STANDBY;
1084                         smp_cpu_set_polarization(cpu + i,
1085                                                  POLARIZATION_UNKNOWN);
1086                 }
1087                 topology_expect_change();
1088                 break;
1089         case 1:
1090                 if (pcpu->state != CPU_STATE_STANDBY)
1091                         break;
1092                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1093                 if (rc)
1094                         break;
1095                 for (i = 0; i <= smp_cpu_mtid; i++) {
1096                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1097                                 continue;
1098                         pcpu[i].state = CPU_STATE_CONFIGURED;
1099                         smp_cpu_set_polarization(cpu + i,
1100                                                  POLARIZATION_UNKNOWN);
1101                 }
1102                 topology_expect_change();
1103                 break;
1104         default:
1105                 break;
1106         }
1107 out:
1108         mutex_unlock(&smp_cpu_state_mutex);
1109         cpus_read_unlock();
1110         return rc ? rc : count;
1111 }
1112 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1113
1114 static ssize_t show_cpu_address(struct device *dev,
1115                                 struct device_attribute *attr, char *buf)
1116 {
1117         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1118 }
1119 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1120
1121 static struct attribute *cpu_common_attrs[] = {
1122         &dev_attr_configure.attr,
1123         &dev_attr_address.attr,
1124         NULL,
1125 };
1126
1127 static struct attribute_group cpu_common_attr_group = {
1128         .attrs = cpu_common_attrs,
1129 };
1130
1131 static struct attribute *cpu_online_attrs[] = {
1132         &dev_attr_idle_count.attr,
1133         &dev_attr_idle_time_us.attr,
1134         NULL,
1135 };
1136
1137 static struct attribute_group cpu_online_attr_group = {
1138         .attrs = cpu_online_attrs,
1139 };
1140
1141 static int smp_cpu_online(unsigned int cpu)
1142 {
1143         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1144
1145         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1146 }
1147
1148 static int smp_cpu_pre_down(unsigned int cpu)
1149 {
1150         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1151
1152         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1153         return 0;
1154 }
1155
1156 static int smp_add_present_cpu(int cpu)
1157 {
1158         struct device *s;
1159         struct cpu *c;
1160         int rc;
1161
1162         c = kzalloc(sizeof(*c), GFP_KERNEL);
1163         if (!c)
1164                 return -ENOMEM;
1165         per_cpu(cpu_device, cpu) = c;
1166         s = &c->dev;
1167         c->hotpluggable = 1;
1168         rc = register_cpu(c, cpu);
1169         if (rc)
1170                 goto out;
1171         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1172         if (rc)
1173                 goto out_cpu;
1174         rc = topology_cpu_init(c);
1175         if (rc)
1176                 goto out_topology;
1177         return 0;
1178
1179 out_topology:
1180         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1181 out_cpu:
1182         unregister_cpu(c);
1183 out:
1184         return rc;
1185 }
1186
1187 int __ref smp_rescan_cpus(void)
1188 {
1189         struct sclp_core_info *info;
1190         int nr;
1191
1192         info = kzalloc(sizeof(*info), GFP_KERNEL);
1193         if (!info)
1194                 return -ENOMEM;
1195         smp_get_core_info(info, 0);
1196         nr = __smp_rescan_cpus(info, false);
1197         kfree(info);
1198         if (nr)
1199                 topology_schedule_update();
1200         return 0;
1201 }
1202
1203 static ssize_t __ref rescan_store(struct device *dev,
1204                                   struct device_attribute *attr,
1205                                   const char *buf,
1206                                   size_t count)
1207 {
1208         int rc;
1209
1210         rc = lock_device_hotplug_sysfs();
1211         if (rc)
1212                 return rc;
1213         rc = smp_rescan_cpus();
1214         unlock_device_hotplug();
1215         return rc ? rc : count;
1216 }
1217 static DEVICE_ATTR_WO(rescan);
1218
1219 static int __init s390_smp_init(void)
1220 {
1221         int cpu, rc = 0;
1222
1223         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1224         if (rc)
1225                 return rc;
1226         for_each_present_cpu(cpu) {
1227                 rc = smp_add_present_cpu(cpu);
1228                 if (rc)
1229                         goto out;
1230         }
1231
1232         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1233                                smp_cpu_online, smp_cpu_pre_down);
1234         rc = rc <= 0 ? rc : 0;
1235 out:
1236         return rc;
1237 }
1238 subsys_initcall(s390_smp_init);
1239
1240 static __always_inline void set_new_lowcore(struct lowcore *lc)
1241 {
1242         union register_pair dst, src;
1243         u32 pfx;
1244
1245         src.even = (unsigned long) &S390_lowcore;
1246         src.odd  = sizeof(S390_lowcore);
1247         dst.even = (unsigned long) lc;
1248         dst.odd  = sizeof(*lc);
1249         pfx = __pa(lc);
1250
1251         asm volatile(
1252                 "       mvcl    %[dst],%[src]\n"
1253                 "       spx     %[pfx]\n"
1254                 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1255                 : [pfx] "Q" (pfx)
1256                 : "memory", "cc");
1257 }
1258
1259 static int __init smp_reinit_ipl_cpu(void)
1260 {
1261         unsigned long async_stack, nodat_stack, mcck_stack;
1262         struct lowcore *lc, *lc_ipl;
1263         unsigned long flags, cr0;
1264         u64 mcesad;
1265
1266         lc_ipl = lowcore_ptr[0];
1267         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1268         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1269         async_stack = stack_alloc();
1270         mcck_stack = stack_alloc();
1271         if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1272                 panic("Couldn't allocate memory");
1273
1274         local_irq_save(flags);
1275         local_mcck_disable();
1276         set_new_lowcore(lc);
1277         S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1278         S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1279         S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1280         __ctl_store(cr0, 0, 0);
1281         __ctl_clear_bit(0, 28); /* disable lowcore protection */
1282         S390_lowcore.mcesad = mcesad;
1283         __ctl_load(cr0, 0, 0);
1284         lowcore_ptr[0] = lc;
1285         local_mcck_enable();
1286         local_irq_restore(flags);
1287
1288         free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1289         memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1290         memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1291
1292         return 0;
1293 }
1294 early_initcall(smp_reinit_ipl_cpu);