Merge tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / s390 / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9
10 #define pr_fmt(fmt) "kprobes: " fmt
11
12 #include <linux/moduleloader.h>
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/preempt.h>
16 #include <linux/stop_machine.h>
17 #include <linux/kdebug.h>
18 #include <linux/uaccess.h>
19 #include <linux/extable.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/hardirq.h>
23 #include <linux/ftrace.h>
24 #include <asm/set_memory.h>
25 #include <asm/sections.h>
26 #include <asm/dis.h>
27 #include "entry.h"
28
29 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
30 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
31
32 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
33
34 DEFINE_INSN_CACHE_OPS(s390_insn);
35
36 static int insn_page_in_use;
37
38 void *alloc_insn_page(void)
39 {
40         void *page;
41
42         page = module_alloc(PAGE_SIZE);
43         if (!page)
44                 return NULL;
45         __set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
46         return page;
47 }
48
49 static void *alloc_s390_insn_page(void)
50 {
51         if (xchg(&insn_page_in_use, 1) == 1)
52                 return NULL;
53         return &kprobes_insn_page;
54 }
55
56 static void free_s390_insn_page(void *page)
57 {
58         xchg(&insn_page_in_use, 0);
59 }
60
61 struct kprobe_insn_cache kprobe_s390_insn_slots = {
62         .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
63         .alloc = alloc_s390_insn_page,
64         .free = free_s390_insn_page,
65         .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
66         .insn_size = MAX_INSN_SIZE,
67 };
68
69 static void copy_instruction(struct kprobe *p)
70 {
71         kprobe_opcode_t insn[MAX_INSN_SIZE];
72         s64 disp, new_disp;
73         u64 addr, new_addr;
74         unsigned int len;
75
76         len = insn_length(*p->addr >> 8);
77         memcpy(&insn, p->addr, len);
78         p->opcode = insn[0];
79         if (probe_is_insn_relative_long(&insn[0])) {
80                 /*
81                  * For pc-relative instructions in RIL-b or RIL-c format patch
82                  * the RI2 displacement field. We have already made sure that
83                  * the insn slot for the patched instruction is within the same
84                  * 2GB area as the original instruction (either kernel image or
85                  * module area). Therefore the new displacement will always fit.
86                  */
87                 disp = *(s32 *)&insn[1];
88                 addr = (u64)(unsigned long)p->addr;
89                 new_addr = (u64)(unsigned long)p->ainsn.insn;
90                 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
91                 *(s32 *)&insn[1] = new_disp;
92         }
93         s390_kernel_write(p->ainsn.insn, &insn, len);
94 }
95 NOKPROBE_SYMBOL(copy_instruction);
96
97 static int s390_get_insn_slot(struct kprobe *p)
98 {
99         /*
100          * Get an insn slot that is within the same 2GB area like the original
101          * instruction. That way instructions with a 32bit signed displacement
102          * field can be patched and executed within the insn slot.
103          */
104         p->ainsn.insn = NULL;
105         if (is_kernel((unsigned long)p->addr))
106                 p->ainsn.insn = get_s390_insn_slot();
107         else if (is_module_addr(p->addr))
108                 p->ainsn.insn = get_insn_slot();
109         return p->ainsn.insn ? 0 : -ENOMEM;
110 }
111 NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113 static void s390_free_insn_slot(struct kprobe *p)
114 {
115         if (!p->ainsn.insn)
116                 return;
117         if (is_kernel((unsigned long)p->addr))
118                 free_s390_insn_slot(p->ainsn.insn, 0);
119         else
120                 free_insn_slot(p->ainsn.insn, 0);
121         p->ainsn.insn = NULL;
122 }
123 NOKPROBE_SYMBOL(s390_free_insn_slot);
124
125 int arch_prepare_kprobe(struct kprobe *p)
126 {
127         if ((unsigned long) p->addr & 0x01)
128                 return -EINVAL;
129         /* Make sure the probe isn't going on a difficult instruction */
130         if (probe_is_prohibited_opcode(p->addr))
131                 return -EINVAL;
132         if (s390_get_insn_slot(p))
133                 return -ENOMEM;
134         copy_instruction(p);
135         return 0;
136 }
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139 struct swap_insn_args {
140         struct kprobe *p;
141         unsigned int arm_kprobe : 1;
142 };
143
144 static int swap_instruction(void *data)
145 {
146         struct swap_insn_args *args = data;
147         struct kprobe *p = args->p;
148         u16 opc;
149
150         opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
151         s390_kernel_write(p->addr, &opc, sizeof(opc));
152         return 0;
153 }
154 NOKPROBE_SYMBOL(swap_instruction);
155
156 void arch_arm_kprobe(struct kprobe *p)
157 {
158         struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
159
160         stop_machine_cpuslocked(swap_instruction, &args, NULL);
161 }
162 NOKPROBE_SYMBOL(arch_arm_kprobe);
163
164 void arch_disarm_kprobe(struct kprobe *p)
165 {
166         struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
167
168         stop_machine_cpuslocked(swap_instruction, &args, NULL);
169 }
170 NOKPROBE_SYMBOL(arch_disarm_kprobe);
171
172 void arch_remove_kprobe(struct kprobe *p)
173 {
174         s390_free_insn_slot(p);
175 }
176 NOKPROBE_SYMBOL(arch_remove_kprobe);
177
178 static void enable_singlestep(struct kprobe_ctlblk *kcb,
179                               struct pt_regs *regs,
180                               unsigned long ip)
181 {
182         struct per_regs per_kprobe;
183
184         /* Set up the PER control registers %cr9-%cr11 */
185         per_kprobe.control = PER_EVENT_IFETCH;
186         per_kprobe.start = ip;
187         per_kprobe.end = ip;
188
189         /* Save control regs and psw mask */
190         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
191         kcb->kprobe_saved_imask = regs->psw.mask &
192                 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
193
194         /* Set PER control regs, turns on single step for the given address */
195         __ctl_load(per_kprobe, 9, 11);
196         regs->psw.mask |= PSW_MASK_PER;
197         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
198         regs->psw.addr = ip;
199 }
200 NOKPROBE_SYMBOL(enable_singlestep);
201
202 static void disable_singlestep(struct kprobe_ctlblk *kcb,
203                                struct pt_regs *regs,
204                                unsigned long ip)
205 {
206         /* Restore control regs and psw mask, set new psw address */
207         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
208         regs->psw.mask &= ~PSW_MASK_PER;
209         regs->psw.mask |= kcb->kprobe_saved_imask;
210         regs->psw.addr = ip;
211 }
212 NOKPROBE_SYMBOL(disable_singlestep);
213
214 /*
215  * Activate a kprobe by storing its pointer to current_kprobe. The
216  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
217  * two kprobes can be active, see KPROBE_REENTER.
218  */
219 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
220 {
221         kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
222         kcb->prev_kprobe.status = kcb->kprobe_status;
223         __this_cpu_write(current_kprobe, p);
224 }
225 NOKPROBE_SYMBOL(push_kprobe);
226
227 /*
228  * Deactivate a kprobe by backing up to the previous state. If the
229  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
230  * for any other state prev_kprobe.kp will be NULL.
231  */
232 static void pop_kprobe(struct kprobe_ctlblk *kcb)
233 {
234         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
235         kcb->kprobe_status = kcb->prev_kprobe.status;
236 }
237 NOKPROBE_SYMBOL(pop_kprobe);
238
239 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
240 {
241         ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
242         ri->fp = NULL;
243
244         /* Replace the return addr with trampoline addr */
245         regs->gprs[14] = (unsigned long) &__kretprobe_trampoline;
246 }
247 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
248
249 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
250 {
251         switch (kcb->kprobe_status) {
252         case KPROBE_HIT_SSDONE:
253         case KPROBE_HIT_ACTIVE:
254                 kprobes_inc_nmissed_count(p);
255                 break;
256         case KPROBE_HIT_SS:
257         case KPROBE_REENTER:
258         default:
259                 /*
260                  * A kprobe on the code path to single step an instruction
261                  * is a BUG. The code path resides in the .kprobes.text
262                  * section and is executed with interrupts disabled.
263                  */
264                 pr_err("Failed to recover from reentered kprobes.\n");
265                 dump_kprobe(p);
266                 BUG();
267         }
268 }
269 NOKPROBE_SYMBOL(kprobe_reenter_check);
270
271 static int kprobe_handler(struct pt_regs *regs)
272 {
273         struct kprobe_ctlblk *kcb;
274         struct kprobe *p;
275
276         /*
277          * We want to disable preemption for the entire duration of kprobe
278          * processing. That includes the calls to the pre/post handlers
279          * and single stepping the kprobe instruction.
280          */
281         preempt_disable();
282         kcb = get_kprobe_ctlblk();
283         p = get_kprobe((void *)(regs->psw.addr - 2));
284
285         if (p) {
286                 if (kprobe_running()) {
287                         /*
288                          * We have hit a kprobe while another is still
289                          * active. This can happen in the pre and post
290                          * handler. Single step the instruction of the
291                          * new probe but do not call any handler function
292                          * of this secondary kprobe.
293                          * push_kprobe and pop_kprobe saves and restores
294                          * the currently active kprobe.
295                          */
296                         kprobe_reenter_check(kcb, p);
297                         push_kprobe(kcb, p);
298                         kcb->kprobe_status = KPROBE_REENTER;
299                 } else {
300                         /*
301                          * If we have no pre-handler or it returned 0, we
302                          * continue with single stepping. If we have a
303                          * pre-handler and it returned non-zero, it prepped
304                          * for changing execution path, so get out doing
305                          * nothing more here.
306                          */
307                         push_kprobe(kcb, p);
308                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
309                         if (p->pre_handler && p->pre_handler(p, regs)) {
310                                 pop_kprobe(kcb);
311                                 preempt_enable_no_resched();
312                                 return 1;
313                         }
314                         kcb->kprobe_status = KPROBE_HIT_SS;
315                 }
316                 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
317                 return 1;
318         } /* else:
319            * No kprobe at this address and no active kprobe. The trap has
320            * not been caused by a kprobe breakpoint. The race of breakpoint
321            * vs. kprobe remove does not exist because on s390 as we use
322            * stop_machine to arm/disarm the breakpoints.
323            */
324         preempt_enable_no_resched();
325         return 0;
326 }
327 NOKPROBE_SYMBOL(kprobe_handler);
328
329 /*
330  * Function return probe trampoline:
331  *      - init_kprobes() establishes a probepoint here
332  *      - When the probed function returns, this probe
333  *              causes the handlers to fire
334  */
335 static void __used kretprobe_trampoline_holder(void)
336 {
337         asm volatile(".global __kretprobe_trampoline\n"
338                      "__kretprobe_trampoline: bcr 0,0\n");
339 }
340
341 /*
342  * Called when the probe at kretprobe trampoline is hit
343  */
344 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
345 {
346         regs->psw.addr = __kretprobe_trampoline_handler(regs, NULL);
347         /*
348          * By returning a non-zero value, we are telling
349          * kprobe_handler() that we don't want the post_handler
350          * to run (and have re-enabled preemption)
351          */
352         return 1;
353 }
354 NOKPROBE_SYMBOL(trampoline_probe_handler);
355
356 /*
357  * Called after single-stepping.  p->addr is the address of the
358  * instruction whose first byte has been replaced by the "breakpoint"
359  * instruction.  To avoid the SMP problems that can occur when we
360  * temporarily put back the original opcode to single-step, we
361  * single-stepped a copy of the instruction.  The address of this
362  * copy is p->ainsn.insn.
363  */
364 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
365 {
366         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
367         unsigned long ip = regs->psw.addr;
368         int fixup = probe_get_fixup_type(p->ainsn.insn);
369
370         if (fixup & FIXUP_PSW_NORMAL)
371                 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
372
373         if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
374                 int ilen = insn_length(p->ainsn.insn[0] >> 8);
375                 if (ip - (unsigned long) p->ainsn.insn == ilen)
376                         ip = (unsigned long) p->addr + ilen;
377         }
378
379         if (fixup & FIXUP_RETURN_REGISTER) {
380                 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
381                 regs->gprs[reg] += (unsigned long) p->addr -
382                                    (unsigned long) p->ainsn.insn;
383         }
384
385         disable_singlestep(kcb, regs, ip);
386 }
387 NOKPROBE_SYMBOL(resume_execution);
388
389 static int post_kprobe_handler(struct pt_regs *regs)
390 {
391         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
392         struct kprobe *p = kprobe_running();
393
394         if (!p)
395                 return 0;
396
397         if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
398                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
399                 p->post_handler(p, regs, 0);
400         }
401
402         resume_execution(p, regs);
403         pop_kprobe(kcb);
404         preempt_enable_no_resched();
405
406         /*
407          * if somebody else is singlestepping across a probe point, psw mask
408          * will have PER set, in which case, continue the remaining processing
409          * of do_single_step, as if this is not a probe hit.
410          */
411         if (regs->psw.mask & PSW_MASK_PER)
412                 return 0;
413
414         return 1;
415 }
416 NOKPROBE_SYMBOL(post_kprobe_handler);
417
418 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
419 {
420         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
421         struct kprobe *p = kprobe_running();
422         const struct exception_table_entry *entry;
423
424         switch(kcb->kprobe_status) {
425         case KPROBE_HIT_SS:
426         case KPROBE_REENTER:
427                 /*
428                  * We are here because the instruction being single
429                  * stepped caused a page fault. We reset the current
430                  * kprobe and the nip points back to the probe address
431                  * and allow the page fault handler to continue as a
432                  * normal page fault.
433                  */
434                 disable_singlestep(kcb, regs, (unsigned long) p->addr);
435                 pop_kprobe(kcb);
436                 preempt_enable_no_resched();
437                 break;
438         case KPROBE_HIT_ACTIVE:
439         case KPROBE_HIT_SSDONE:
440                 /*
441                  * In case the user-specified fault handler returned
442                  * zero, try to fix up.
443                  */
444                 entry = s390_search_extables(regs->psw.addr);
445                 if (entry && ex_handle(entry, regs))
446                         return 1;
447
448                 /*
449                  * fixup_exception() could not handle it,
450                  * Let do_page_fault() fix it.
451                  */
452                 break;
453         default:
454                 break;
455         }
456         return 0;
457 }
458 NOKPROBE_SYMBOL(kprobe_trap_handler);
459
460 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
461 {
462         int ret;
463
464         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
465                 local_irq_disable();
466         ret = kprobe_trap_handler(regs, trapnr);
467         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
468                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
469         return ret;
470 }
471 NOKPROBE_SYMBOL(kprobe_fault_handler);
472
473 /*
474  * Wrapper routine to for handling exceptions.
475  */
476 int kprobe_exceptions_notify(struct notifier_block *self,
477                              unsigned long val, void *data)
478 {
479         struct die_args *args = (struct die_args *) data;
480         struct pt_regs *regs = args->regs;
481         int ret = NOTIFY_DONE;
482
483         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
484                 local_irq_disable();
485
486         switch (val) {
487         case DIE_BPT:
488                 if (kprobe_handler(regs))
489                         ret = NOTIFY_STOP;
490                 break;
491         case DIE_SSTEP:
492                 if (post_kprobe_handler(regs))
493                         ret = NOTIFY_STOP;
494                 break;
495         case DIE_TRAP:
496                 if (!preemptible() && kprobe_running() &&
497                     kprobe_trap_handler(regs, args->trapnr))
498                         ret = NOTIFY_STOP;
499                 break;
500         default:
501                 break;
502         }
503
504         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
505                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
506
507         return ret;
508 }
509 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
510
511 static struct kprobe trampoline = {
512         .addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
513         .pre_handler = trampoline_probe_handler
514 };
515
516 int __init arch_init_kprobes(void)
517 {
518         return register_kprobe(&trampoline);
519 }
520
521 int arch_trampoline_kprobe(struct kprobe *p)
522 {
523         return p->addr == (kprobe_opcode_t *) &__kretprobe_trampoline;
524 }
525 NOKPROBE_SYMBOL(arch_trampoline_kprobe);