Merge tag 'pull-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / riscv / kernel / elf_kexec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Load ELF vmlinux file for the kexec_file_load syscall.
4  *
5  * Copyright (C) 2021 Huawei Technologies Co, Ltd.
6  *
7  * Author: Liao Chang (liaochang1@huawei.com)
8  *
9  * Based on kexec-tools' kexec-elf-riscv.c, heavily modified
10  * for kernel.
11  */
12
13 #define pr_fmt(fmt)     "kexec_image: " fmt
14
15 #include <linux/elf.h>
16 #include <linux/kexec.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/libfdt.h>
20 #include <linux/types.h>
21 #include <linux/memblock.h>
22 #include <asm/setup.h>
23
24 static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
25                                 struct kexec_elf_info *elf_info, unsigned long old_pbase,
26                                 unsigned long new_pbase)
27 {
28         int i;
29         int ret = 0;
30         size_t size;
31         struct kexec_buf kbuf;
32         const struct elf_phdr *phdr;
33
34         kbuf.image = image;
35
36         for (i = 0; i < ehdr->e_phnum; i++) {
37                 phdr = &elf_info->proghdrs[i];
38                 if (phdr->p_type != PT_LOAD)
39                         continue;
40
41                 size = phdr->p_filesz;
42                 if (size > phdr->p_memsz)
43                         size = phdr->p_memsz;
44
45                 kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
46                 kbuf.bufsz = size;
47                 kbuf.buf_align = phdr->p_align;
48                 kbuf.mem = phdr->p_paddr - old_pbase + new_pbase;
49                 kbuf.memsz = phdr->p_memsz;
50                 kbuf.top_down = false;
51                 ret = kexec_add_buffer(&kbuf);
52                 if (ret)
53                         break;
54         }
55
56         return ret;
57 }
58
59 /*
60  * Go through the available phsyical memory regions and find one that hold
61  * an image of the specified size.
62  */
63 static int elf_find_pbase(struct kimage *image, unsigned long kernel_len,
64                           struct elfhdr *ehdr, struct kexec_elf_info *elf_info,
65                           unsigned long *old_pbase, unsigned long *new_pbase)
66 {
67         int i;
68         int ret;
69         struct kexec_buf kbuf;
70         const struct elf_phdr *phdr;
71         unsigned long lowest_paddr = ULONG_MAX;
72         unsigned long lowest_vaddr = ULONG_MAX;
73
74         for (i = 0; i < ehdr->e_phnum; i++) {
75                 phdr = &elf_info->proghdrs[i];
76                 if (phdr->p_type != PT_LOAD)
77                         continue;
78
79                 if (lowest_paddr > phdr->p_paddr)
80                         lowest_paddr = phdr->p_paddr;
81
82                 if (lowest_vaddr > phdr->p_vaddr)
83                         lowest_vaddr = phdr->p_vaddr;
84         }
85
86         kbuf.image = image;
87         kbuf.buf_min = lowest_paddr;
88         kbuf.buf_max = ULONG_MAX;
89         kbuf.buf_align = PAGE_SIZE;
90         kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
91         kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE);
92         kbuf.top_down = false;
93         ret = arch_kexec_locate_mem_hole(&kbuf);
94         if (!ret) {
95                 *old_pbase = lowest_paddr;
96                 *new_pbase = kbuf.mem;
97                 image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem;
98         }
99         return ret;
100 }
101
102 static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
103 {
104         unsigned int *nr_ranges = arg;
105
106         (*nr_ranges)++;
107         return 0;
108 }
109
110 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
111 {
112         struct crash_mem *cmem = arg;
113
114         cmem->ranges[cmem->nr_ranges].start = res->start;
115         cmem->ranges[cmem->nr_ranges].end = res->end;
116         cmem->nr_ranges++;
117
118         return 0;
119 }
120
121 static int prepare_elf_headers(void **addr, unsigned long *sz)
122 {
123         struct crash_mem *cmem;
124         unsigned int nr_ranges;
125         int ret;
126
127         nr_ranges = 1; /* For exclusion of crashkernel region */
128         walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
129
130         cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL);
131         if (!cmem)
132                 return -ENOMEM;
133
134         cmem->max_nr_ranges = nr_ranges;
135         cmem->nr_ranges = 0;
136         ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
137         if (ret)
138                 goto out;
139
140         /* Exclude crashkernel region */
141         ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
142         if (!ret)
143                 ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
144
145 out:
146         kfree(cmem);
147         return ret;
148 }
149
150 static char *setup_kdump_cmdline(struct kimage *image, char *cmdline,
151                                  unsigned long cmdline_len)
152 {
153         int elfcorehdr_strlen;
154         char *cmdline_ptr;
155
156         cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL);
157         if (!cmdline_ptr)
158                 return NULL;
159
160         elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ",
161                 image->elf_load_addr);
162
163         if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) {
164                 pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n");
165                 kfree(cmdline_ptr);
166                 return NULL;
167         }
168
169         memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len);
170         /* Ensure it's nul terminated */
171         cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0';
172         return cmdline_ptr;
173 }
174
175 static void *elf_kexec_load(struct kimage *image, char *kernel_buf,
176                             unsigned long kernel_len, char *initrd,
177                             unsigned long initrd_len, char *cmdline,
178                             unsigned long cmdline_len)
179 {
180         int ret;
181         unsigned long old_kernel_pbase = ULONG_MAX;
182         unsigned long new_kernel_pbase = 0UL;
183         unsigned long initrd_pbase = 0UL;
184         unsigned long headers_sz;
185         unsigned long kernel_start;
186         void *fdt, *headers;
187         struct elfhdr ehdr;
188         struct kexec_buf kbuf;
189         struct kexec_elf_info elf_info;
190         char *modified_cmdline = NULL;
191
192         ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info);
193         if (ret)
194                 return ERR_PTR(ret);
195
196         ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info,
197                              &old_kernel_pbase, &new_kernel_pbase);
198         if (ret)
199                 goto out;
200         kernel_start = image->start;
201         pr_notice("The entry point of kernel at 0x%lx\n", image->start);
202
203         /* Add the kernel binary to the image */
204         ret = riscv_kexec_elf_load(image, &ehdr, &elf_info,
205                                    old_kernel_pbase, new_kernel_pbase);
206         if (ret)
207                 goto out;
208
209         kbuf.image = image;
210         kbuf.buf_min = new_kernel_pbase + kernel_len;
211         kbuf.buf_max = ULONG_MAX;
212
213         /* Add elfcorehdr */
214         if (image->type == KEXEC_TYPE_CRASH) {
215                 ret = prepare_elf_headers(&headers, &headers_sz);
216                 if (ret) {
217                         pr_err("Preparing elf core header failed\n");
218                         goto out;
219                 }
220
221                 kbuf.buffer = headers;
222                 kbuf.bufsz = headers_sz;
223                 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
224                 kbuf.memsz = headers_sz;
225                 kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
226                 kbuf.top_down = true;
227
228                 ret = kexec_add_buffer(&kbuf);
229                 if (ret) {
230                         vfree(headers);
231                         goto out;
232                 }
233                 image->elf_headers = headers;
234                 image->elf_load_addr = kbuf.mem;
235                 image->elf_headers_sz = headers_sz;
236
237                 pr_debug("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
238                          image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
239
240                 /* Setup cmdline for kdump kernel case */
241                 modified_cmdline = setup_kdump_cmdline(image, cmdline,
242                                                        cmdline_len);
243                 if (!modified_cmdline) {
244                         pr_err("Setting up cmdline for kdump kernel failed\n");
245                         ret = -EINVAL;
246                         goto out;
247                 }
248                 cmdline = modified_cmdline;
249         }
250
251 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
252         /* Add purgatory to the image */
253         kbuf.top_down = true;
254         kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
255         ret = kexec_load_purgatory(image, &kbuf);
256         if (ret) {
257                 pr_err("Error loading purgatory ret=%d\n", ret);
258                 goto out;
259         }
260         ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry",
261                                              &kernel_start,
262                                              sizeof(kernel_start), 0);
263         if (ret)
264                 pr_err("Error update purgatory ret=%d\n", ret);
265 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
266
267         /* Add the initrd to the image */
268         if (initrd != NULL) {
269                 kbuf.buffer = initrd;
270                 kbuf.bufsz = kbuf.memsz = initrd_len;
271                 kbuf.buf_align = PAGE_SIZE;
272                 kbuf.top_down = false;
273                 kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
274                 ret = kexec_add_buffer(&kbuf);
275                 if (ret)
276                         goto out;
277                 initrd_pbase = kbuf.mem;
278                 pr_notice("Loaded initrd at 0x%lx\n", initrd_pbase);
279         }
280
281         /* Add the DTB to the image */
282         fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase,
283                                            initrd_len, cmdline, 0);
284         if (!fdt) {
285                 pr_err("Error setting up the new device tree.\n");
286                 ret = -EINVAL;
287                 goto out;
288         }
289
290         fdt_pack(fdt);
291         kbuf.buffer = fdt;
292         kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt);
293         kbuf.buf_align = PAGE_SIZE;
294         kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
295         kbuf.top_down = true;
296         ret = kexec_add_buffer(&kbuf);
297         if (ret) {
298                 pr_err("Error add DTB kbuf ret=%d\n", ret);
299                 goto out_free_fdt;
300         }
301         pr_notice("Loaded device tree at 0x%lx\n", kbuf.mem);
302         goto out;
303
304 out_free_fdt:
305         kvfree(fdt);
306 out:
307         kfree(modified_cmdline);
308         kexec_free_elf_info(&elf_info);
309         return ret ? ERR_PTR(ret) : NULL;
310 }
311
312 #define RV_X(x, s, n)  (((x) >> (s)) & ((1 << (n)) - 1))
313 #define RISCV_IMM_BITS 12
314 #define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS)
315 #define RISCV_CONST_HIGH_PART(x) \
316         (((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1))
317 #define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x))
318
319 #define ENCODE_ITYPE_IMM(x) \
320         (RV_X(x, 0, 12) << 20)
321 #define ENCODE_BTYPE_IMM(x) \
322         ((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \
323         (RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
324 #define ENCODE_UTYPE_IMM(x) \
325         (RV_X(x, 12, 20) << 12)
326 #define ENCODE_JTYPE_IMM(x) \
327         ((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \
328         (RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))
329 #define ENCODE_CBTYPE_IMM(x) \
330         ((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \
331         (RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12))
332 #define ENCODE_CJTYPE_IMM(x) \
333         ((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \
334         (RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \
335         (RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12))
336 #define ENCODE_UJTYPE_IMM(x) \
337         (ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \
338         (ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32))
339 #define ENCODE_UITYPE_IMM(x) \
340         (ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32))
341
342 #define CLEAN_IMM(type, x) \
343         ((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x))
344
345 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
346                                      Elf_Shdr *section,
347                                      const Elf_Shdr *relsec,
348                                      const Elf_Shdr *symtab)
349 {
350         const char *strtab, *name, *shstrtab;
351         const Elf_Shdr *sechdrs;
352         Elf64_Rela *relas;
353         int i, r_type;
354
355         /* String & section header string table */
356         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
357         strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset;
358         shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
359
360         relas = (void *)pi->ehdr + relsec->sh_offset;
361
362         for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) {
363                 const Elf_Sym *sym;     /* symbol to relocate */
364                 unsigned long addr;     /* final location after relocation */
365                 unsigned long val;      /* relocated symbol value */
366                 unsigned long sec_base; /* relocated symbol value */
367                 void *loc;              /* tmp location to modify */
368
369                 sym = (void *)pi->ehdr + symtab->sh_offset;
370                 sym += ELF64_R_SYM(relas[i].r_info);
371
372                 if (sym->st_name)
373                         name = strtab + sym->st_name;
374                 else
375                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
376
377                 loc = pi->purgatory_buf;
378                 loc += section->sh_offset;
379                 loc += relas[i].r_offset;
380
381                 if (sym->st_shndx == SHN_ABS)
382                         sec_base = 0;
383                 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
384                         pr_err("Invalid section %d for symbol %s\n",
385                                sym->st_shndx, name);
386                         return -ENOEXEC;
387                 } else
388                         sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
389
390                 val = sym->st_value;
391                 val += sec_base;
392                 val += relas[i].r_addend;
393
394                 addr = section->sh_addr + relas[i].r_offset;
395
396                 r_type = ELF64_R_TYPE(relas[i].r_info);
397
398                 switch (r_type) {
399                 case R_RISCV_BRANCH:
400                         *(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) |
401                                  ENCODE_BTYPE_IMM(val - addr);
402                         break;
403                 case R_RISCV_JAL:
404                         *(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) |
405                                  ENCODE_JTYPE_IMM(val - addr);
406                         break;
407                 /*
408                  * With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I
409                  * sym is expected to be next to R_RISCV_PCREL_HI20
410                  * in purgatory relsec. Handle it like R_RISCV_CALL
411                  * sym, instead of searching the whole relsec.
412                  */
413                 case R_RISCV_PCREL_HI20:
414                 case R_RISCV_CALL:
415                         *(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) |
416                                  ENCODE_UJTYPE_IMM(val - addr);
417                         break;
418                 case R_RISCV_RVC_BRANCH:
419                         *(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) |
420                                  ENCODE_CBTYPE_IMM(val - addr);
421                         break;
422                 case R_RISCV_RVC_JUMP:
423                         *(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) |
424                                  ENCODE_CJTYPE_IMM(val - addr);
425                         break;
426                 case R_RISCV_ADD32:
427                         *(u32 *)loc += val;
428                         break;
429                 case R_RISCV_SUB32:
430                         *(u32 *)loc -= val;
431                         break;
432                 /* It has been applied by R_RISCV_PCREL_HI20 sym */
433                 case R_RISCV_PCREL_LO12_I:
434                 case R_RISCV_ALIGN:
435                 case R_RISCV_RELAX:
436                         break;
437                 default:
438                         pr_err("Unknown rela relocation: %d\n", r_type);
439                         return -ENOEXEC;
440                 }
441         }
442         return 0;
443 }
444
445 const struct kexec_file_ops elf_kexec_ops = {
446         .probe = kexec_elf_probe,
447         .load  = elf_kexec_load,
448 };