spnego: add missing OID to oid registry
[sfrench/cifs-2.6.git] / arch / riscv / include / asm / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11
12 #include <asm/pgtable-bits.h>
13
14 #ifndef CONFIG_MMU
15 #define KERNEL_LINK_ADDR        PAGE_OFFSET
16 #define KERN_VIRT_SIZE          (UL(-1))
17 #else
18
19 #define ADDRESS_SPACE_END       (UL(-1))
20
21 #ifdef CONFIG_64BIT
22 /* Leave 2GB for kernel and BPF at the end of the address space */
23 #define KERNEL_LINK_ADDR        (ADDRESS_SPACE_END - SZ_2G + 1)
24 #else
25 #define KERNEL_LINK_ADDR        PAGE_OFFSET
26 #endif
27
28 /* Number of entries in the page global directory */
29 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
30 /* Number of entries in the page table */
31 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
32
33 /*
34  * Half of the kernel address space (1/4 of the entries of the page global
35  * directory) is for the direct mapping.
36  */
37 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38
39 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
40 #define VMALLOC_END      PAGE_OFFSET
41 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
42
43 #define BPF_JIT_REGION_SIZE     (SZ_128M)
44 #ifdef CONFIG_64BIT
45 #define BPF_JIT_REGION_START    (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46 #define BPF_JIT_REGION_END      (MODULES_END)
47 #else
48 #define BPF_JIT_REGION_START    (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49 #define BPF_JIT_REGION_END      (VMALLOC_END)
50 #endif
51
52 /* Modules always live before the kernel */
53 #ifdef CONFIG_64BIT
54 /* This is used to define the end of the KASAN shadow region */
55 #define MODULES_LOWEST_VADDR    (KERNEL_LINK_ADDR - SZ_2G)
56 #define MODULES_VADDR           (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57 #define MODULES_END             (PFN_ALIGN((unsigned long)&_start))
58 #endif
59
60 /*
61  * Roughly size the vmemmap space to be large enough to fit enough
62  * struct pages to map half the virtual address space. Then
63  * position vmemmap directly below the VMALLOC region.
64  */
65 #ifdef CONFIG_64BIT
66 #define VA_BITS         (pgtable_l5_enabled ? \
67                                 57 : (pgtable_l4_enabled ? 48 : 39))
68 #else
69 #define VA_BITS         32
70 #endif
71
72 #define VMEMMAP_SHIFT \
73         (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
74 #define VMEMMAP_SIZE    BIT(VMEMMAP_SHIFT)
75 #define VMEMMAP_END     VMALLOC_START
76 #define VMEMMAP_START   (VMALLOC_START - VMEMMAP_SIZE)
77
78 /*
79  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
80  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
81  */
82 #define vmemmap         ((struct page *)VMEMMAP_START)
83
84 #define PCI_IO_SIZE      SZ_16M
85 #define PCI_IO_END       VMEMMAP_START
86 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
87
88 #define FIXADDR_TOP      PCI_IO_START
89 #ifdef CONFIG_64BIT
90 #define MAX_FDT_SIZE     PMD_SIZE
91 #define FIX_FDT_SIZE     (MAX_FDT_SIZE + SZ_2M)
92 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
93 #else
94 #define MAX_FDT_SIZE     PGDIR_SIZE
95 #define FIX_FDT_SIZE     MAX_FDT_SIZE
96 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
97 #endif
98 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
99
100 #endif
101
102 #ifdef CONFIG_XIP_KERNEL
103 #define XIP_OFFSET              SZ_32M
104 #define XIP_OFFSET_MASK         (SZ_32M - 1)
105 #else
106 #define XIP_OFFSET              0
107 #endif
108
109 #ifndef __ASSEMBLY__
110
111 #include <asm/page.h>
112 #include <asm/tlbflush.h>
113 #include <linux/mm_types.h>
114
115 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
116
117 #ifdef CONFIG_64BIT
118 #include <asm/pgtable-64.h>
119 #else
120 #include <asm/pgtable-32.h>
121 #endif /* CONFIG_64BIT */
122
123 #include <linux/page_table_check.h>
124
125 #ifdef CONFIG_XIP_KERNEL
126 #define XIP_FIXUP(addr) ({                                                      \
127         uintptr_t __a = (uintptr_t)(addr);                                      \
128         (__a >= CONFIG_XIP_PHYS_ADDR && \
129          __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
130                 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
131                 __a;                                                            \
132         })
133 #else
134 #define XIP_FIXUP(addr)         (addr)
135 #endif /* CONFIG_XIP_KERNEL */
136
137 struct pt_alloc_ops {
138         pte_t *(*get_pte_virt)(phys_addr_t pa);
139         phys_addr_t (*alloc_pte)(uintptr_t va);
140 #ifndef __PAGETABLE_PMD_FOLDED
141         pmd_t *(*get_pmd_virt)(phys_addr_t pa);
142         phys_addr_t (*alloc_pmd)(uintptr_t va);
143         pud_t *(*get_pud_virt)(phys_addr_t pa);
144         phys_addr_t (*alloc_pud)(uintptr_t va);
145         p4d_t *(*get_p4d_virt)(phys_addr_t pa);
146         phys_addr_t (*alloc_p4d)(uintptr_t va);
147 #endif
148 };
149
150 extern struct pt_alloc_ops pt_ops __initdata;
151
152 #ifdef CONFIG_MMU
153 /* Number of PGD entries that a user-mode program can use */
154 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
155
156 /* Page protection bits */
157 #define _PAGE_BASE      (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
158
159 #define PAGE_NONE               __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
160 #define PAGE_READ               __pgprot(_PAGE_BASE | _PAGE_READ)
161 #define PAGE_WRITE              __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
162 #define PAGE_EXEC               __pgprot(_PAGE_BASE | _PAGE_EXEC)
163 #define PAGE_READ_EXEC          __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
164 #define PAGE_WRITE_EXEC         __pgprot(_PAGE_BASE | _PAGE_READ |      \
165                                          _PAGE_EXEC | _PAGE_WRITE)
166
167 #define PAGE_COPY               PAGE_READ
168 #define PAGE_COPY_EXEC          PAGE_READ_EXEC
169 #define PAGE_SHARED             PAGE_WRITE
170 #define PAGE_SHARED_EXEC        PAGE_WRITE_EXEC
171
172 #define _PAGE_KERNEL            (_PAGE_READ \
173                                 | _PAGE_WRITE \
174                                 | _PAGE_PRESENT \
175                                 | _PAGE_ACCESSED \
176                                 | _PAGE_DIRTY \
177                                 | _PAGE_GLOBAL)
178
179 #define PAGE_KERNEL             __pgprot(_PAGE_KERNEL)
180 #define PAGE_KERNEL_READ        __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
181 #define PAGE_KERNEL_EXEC        __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
182 #define PAGE_KERNEL_READ_EXEC   __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
183                                          | _PAGE_EXEC)
184
185 #define PAGE_TABLE              __pgprot(_PAGE_TABLE)
186
187 #define _PAGE_IOREMAP   ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
188 #define PAGE_KERNEL_IO          __pgprot(_PAGE_IOREMAP)
189
190 extern pgd_t swapper_pg_dir[];
191 extern pgd_t trampoline_pg_dir[];
192 extern pgd_t early_pg_dir[];
193
194 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
195 static inline int pmd_present(pmd_t pmd)
196 {
197         /*
198          * Checking for _PAGE_LEAF is needed too because:
199          * When splitting a THP, split_huge_page() will temporarily clear
200          * the present bit, in this situation, pmd_present() and
201          * pmd_trans_huge() still needs to return true.
202          */
203         return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
204 }
205 #else
206 static inline int pmd_present(pmd_t pmd)
207 {
208         return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
209 }
210 #endif
211
212 static inline int pmd_none(pmd_t pmd)
213 {
214         return (pmd_val(pmd) == 0);
215 }
216
217 static inline int pmd_bad(pmd_t pmd)
218 {
219         return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
220 }
221
222 #define pmd_leaf        pmd_leaf
223 static inline int pmd_leaf(pmd_t pmd)
224 {
225         return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
226 }
227
228 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
229 {
230         *pmdp = pmd;
231 }
232
233 static inline void pmd_clear(pmd_t *pmdp)
234 {
235         set_pmd(pmdp, __pmd(0));
236 }
237
238 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
239 {
240         unsigned long prot_val = pgprot_val(prot);
241
242         ALT_THEAD_PMA(prot_val);
243
244         return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
245 }
246
247 static inline unsigned long _pgd_pfn(pgd_t pgd)
248 {
249         return __page_val_to_pfn(pgd_val(pgd));
250 }
251
252 static inline struct page *pmd_page(pmd_t pmd)
253 {
254         return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
255 }
256
257 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
258 {
259         return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
260 }
261
262 static inline pte_t pmd_pte(pmd_t pmd)
263 {
264         return __pte(pmd_val(pmd));
265 }
266
267 static inline pte_t pud_pte(pud_t pud)
268 {
269         return __pte(pud_val(pud));
270 }
271
272 #ifdef CONFIG_RISCV_ISA_SVNAPOT
273
274 static __always_inline bool has_svnapot(void)
275 {
276         return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
277 }
278
279 static inline unsigned long pte_napot(pte_t pte)
280 {
281         return pte_val(pte) & _PAGE_NAPOT;
282 }
283
284 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
285 {
286         int pos = order - 1 + _PAGE_PFN_SHIFT;
287         unsigned long napot_bit = BIT(pos);
288         unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
289
290         return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
291 }
292
293 #else
294
295 static __always_inline bool has_svnapot(void) { return false; }
296
297 static inline unsigned long pte_napot(pte_t pte)
298 {
299         return 0;
300 }
301
302 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
303
304 /* Yields the page frame number (PFN) of a page table entry */
305 static inline unsigned long pte_pfn(pte_t pte)
306 {
307         unsigned long res  = __page_val_to_pfn(pte_val(pte));
308
309         if (has_svnapot() && pte_napot(pte))
310                 res = res & (res - 1UL);
311
312         return res;
313 }
314
315 #define pte_page(x)     pfn_to_page(pte_pfn(x))
316
317 /* Constructs a page table entry */
318 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
319 {
320         unsigned long prot_val = pgprot_val(prot);
321
322         ALT_THEAD_PMA(prot_val);
323
324         return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
325 }
326
327 #define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
328
329 static inline int pte_present(pte_t pte)
330 {
331         return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
332 }
333
334 static inline int pte_none(pte_t pte)
335 {
336         return (pte_val(pte) == 0);
337 }
338
339 static inline int pte_write(pte_t pte)
340 {
341         return pte_val(pte) & _PAGE_WRITE;
342 }
343
344 static inline int pte_exec(pte_t pte)
345 {
346         return pte_val(pte) & _PAGE_EXEC;
347 }
348
349 static inline int pte_user(pte_t pte)
350 {
351         return pte_val(pte) & _PAGE_USER;
352 }
353
354 static inline int pte_huge(pte_t pte)
355 {
356         return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
357 }
358
359 static inline int pte_dirty(pte_t pte)
360 {
361         return pte_val(pte) & _PAGE_DIRTY;
362 }
363
364 static inline int pte_young(pte_t pte)
365 {
366         return pte_val(pte) & _PAGE_ACCESSED;
367 }
368
369 static inline int pte_special(pte_t pte)
370 {
371         return pte_val(pte) & _PAGE_SPECIAL;
372 }
373
374 /* static inline pte_t pte_rdprotect(pte_t pte) */
375
376 static inline pte_t pte_wrprotect(pte_t pte)
377 {
378         return __pte(pte_val(pte) & ~(_PAGE_WRITE));
379 }
380
381 /* static inline pte_t pte_mkread(pte_t pte) */
382
383 static inline pte_t pte_mkwrite(pte_t pte)
384 {
385         return __pte(pte_val(pte) | _PAGE_WRITE);
386 }
387
388 /* static inline pte_t pte_mkexec(pte_t pte) */
389
390 static inline pte_t pte_mkdirty(pte_t pte)
391 {
392         return __pte(pte_val(pte) | _PAGE_DIRTY);
393 }
394
395 static inline pte_t pte_mkclean(pte_t pte)
396 {
397         return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
398 }
399
400 static inline pte_t pte_mkyoung(pte_t pte)
401 {
402         return __pte(pte_val(pte) | _PAGE_ACCESSED);
403 }
404
405 static inline pte_t pte_mkold(pte_t pte)
406 {
407         return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
408 }
409
410 static inline pte_t pte_mkspecial(pte_t pte)
411 {
412         return __pte(pte_val(pte) | _PAGE_SPECIAL);
413 }
414
415 static inline pte_t pte_mkhuge(pte_t pte)
416 {
417         return pte;
418 }
419
420 #ifdef CONFIG_NUMA_BALANCING
421 /*
422  * See the comment in include/asm-generic/pgtable.h
423  */
424 static inline int pte_protnone(pte_t pte)
425 {
426         return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
427 }
428
429 static inline int pmd_protnone(pmd_t pmd)
430 {
431         return pte_protnone(pmd_pte(pmd));
432 }
433 #endif
434
435 /* Modify page protection bits */
436 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
437 {
438         unsigned long newprot_val = pgprot_val(newprot);
439
440         ALT_THEAD_PMA(newprot_val);
441
442         return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
443 }
444
445 #define pgd_ERROR(e) \
446         pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
447
448
449 /* Commit new configuration to MMU hardware */
450 static inline void update_mmu_cache_range(struct vm_fault *vmf,
451                 struct vm_area_struct *vma, unsigned long address,
452                 pte_t *ptep, unsigned int nr)
453 {
454         /*
455          * The kernel assumes that TLBs don't cache invalid entries, but
456          * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
457          * cache flush; it is necessary even after writing invalid entries.
458          * Relying on flush_tlb_fix_spurious_fault would suffice, but
459          * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
460          */
461         while (nr--)
462                 local_flush_tlb_page(address + nr * PAGE_SIZE);
463 }
464 #define update_mmu_cache(vma, addr, ptep) \
465         update_mmu_cache_range(NULL, vma, addr, ptep, 1)
466
467 #define __HAVE_ARCH_UPDATE_MMU_TLB
468 #define update_mmu_tlb update_mmu_cache
469
470 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
471                 unsigned long address, pmd_t *pmdp)
472 {
473         pte_t *ptep = (pte_t *)pmdp;
474
475         update_mmu_cache(vma, address, ptep);
476 }
477
478 #define __HAVE_ARCH_PTE_SAME
479 static inline int pte_same(pte_t pte_a, pte_t pte_b)
480 {
481         return pte_val(pte_a) == pte_val(pte_b);
482 }
483
484 /*
485  * Certain architectures need to do special things when PTEs within
486  * a page table are directly modified.  Thus, the following hook is
487  * made available.
488  */
489 static inline void set_pte(pte_t *ptep, pte_t pteval)
490 {
491         *ptep = pteval;
492 }
493
494 void flush_icache_pte(pte_t pte);
495
496 static inline void __set_pte_at(pte_t *ptep, pte_t pteval)
497 {
498         if (pte_present(pteval) && pte_exec(pteval))
499                 flush_icache_pte(pteval);
500
501         set_pte(ptep, pteval);
502 }
503
504 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
505                 pte_t *ptep, pte_t pteval, unsigned int nr)
506 {
507         page_table_check_ptes_set(mm, ptep, pteval, nr);
508
509         for (;;) {
510                 __set_pte_at(ptep, pteval);
511                 if (--nr == 0)
512                         break;
513                 ptep++;
514                 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
515         }
516 }
517 #define set_ptes set_ptes
518
519 static inline void pte_clear(struct mm_struct *mm,
520         unsigned long addr, pte_t *ptep)
521 {
522         __set_pte_at(ptep, __pte(0));
523 }
524
525 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
526 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
527                                         unsigned long address, pte_t *ptep,
528                                         pte_t entry, int dirty)
529 {
530         if (!pte_same(*ptep, entry))
531                 __set_pte_at(ptep, entry);
532         /*
533          * update_mmu_cache will unconditionally execute, handling both
534          * the case that the PTE changed and the spurious fault case.
535          */
536         return true;
537 }
538
539 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
540 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
541                                        unsigned long address, pte_t *ptep)
542 {
543         pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
544
545         page_table_check_pte_clear(mm, pte);
546
547         return pte;
548 }
549
550 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
551 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
552                                             unsigned long address,
553                                             pte_t *ptep)
554 {
555         if (!pte_young(*ptep))
556                 return 0;
557         return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
558 }
559
560 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
561 static inline void ptep_set_wrprotect(struct mm_struct *mm,
562                                       unsigned long address, pte_t *ptep)
563 {
564         atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
565 }
566
567 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
568 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
569                                          unsigned long address, pte_t *ptep)
570 {
571         /*
572          * This comment is borrowed from x86, but applies equally to RISC-V:
573          *
574          * Clearing the accessed bit without a TLB flush
575          * doesn't cause data corruption. [ It could cause incorrect
576          * page aging and the (mistaken) reclaim of hot pages, but the
577          * chance of that should be relatively low. ]
578          *
579          * So as a performance optimization don't flush the TLB when
580          * clearing the accessed bit, it will eventually be flushed by
581          * a context switch or a VM operation anyway. [ In the rare
582          * event of it not getting flushed for a long time the delay
583          * shouldn't really matter because there's no real memory
584          * pressure for swapout to react to. ]
585          */
586         return ptep_test_and_clear_young(vma, address, ptep);
587 }
588
589 #define pgprot_noncached pgprot_noncached
590 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
591 {
592         unsigned long prot = pgprot_val(_prot);
593
594         prot &= ~_PAGE_MTMASK;
595         prot |= _PAGE_IO;
596
597         return __pgprot(prot);
598 }
599
600 #define pgprot_writecombine pgprot_writecombine
601 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
602 {
603         unsigned long prot = pgprot_val(_prot);
604
605         prot &= ~_PAGE_MTMASK;
606         prot |= _PAGE_NOCACHE;
607
608         return __pgprot(prot);
609 }
610
611 /*
612  * THP functions
613  */
614 static inline pmd_t pte_pmd(pte_t pte)
615 {
616         return __pmd(pte_val(pte));
617 }
618
619 static inline pmd_t pmd_mkhuge(pmd_t pmd)
620 {
621         return pmd;
622 }
623
624 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
625 {
626         return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
627 }
628
629 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
630
631 static inline unsigned long pmd_pfn(pmd_t pmd)
632 {
633         return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
634 }
635
636 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
637
638 static inline unsigned long pud_pfn(pud_t pud)
639 {
640         return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
641 }
642
643 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
644 {
645         return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
646 }
647
648 #define pmd_write pmd_write
649 static inline int pmd_write(pmd_t pmd)
650 {
651         return pte_write(pmd_pte(pmd));
652 }
653
654 static inline int pmd_dirty(pmd_t pmd)
655 {
656         return pte_dirty(pmd_pte(pmd));
657 }
658
659 #define pmd_young pmd_young
660 static inline int pmd_young(pmd_t pmd)
661 {
662         return pte_young(pmd_pte(pmd));
663 }
664
665 static inline int pmd_user(pmd_t pmd)
666 {
667         return pte_user(pmd_pte(pmd));
668 }
669
670 static inline pmd_t pmd_mkold(pmd_t pmd)
671 {
672         return pte_pmd(pte_mkold(pmd_pte(pmd)));
673 }
674
675 static inline pmd_t pmd_mkyoung(pmd_t pmd)
676 {
677         return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
678 }
679
680 static inline pmd_t pmd_mkwrite(pmd_t pmd)
681 {
682         return pte_pmd(pte_mkwrite(pmd_pte(pmd)));
683 }
684
685 static inline pmd_t pmd_wrprotect(pmd_t pmd)
686 {
687         return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
688 }
689
690 static inline pmd_t pmd_mkclean(pmd_t pmd)
691 {
692         return pte_pmd(pte_mkclean(pmd_pte(pmd)));
693 }
694
695 static inline pmd_t pmd_mkdirty(pmd_t pmd)
696 {
697         return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
698 }
699
700 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
701                                 pmd_t *pmdp, pmd_t pmd)
702 {
703         page_table_check_pmd_set(mm, pmdp, pmd);
704         return __set_pte_at((pte_t *)pmdp, pmd_pte(pmd));
705 }
706
707 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
708                                 pud_t *pudp, pud_t pud)
709 {
710         page_table_check_pud_set(mm, pudp, pud);
711         return __set_pte_at((pte_t *)pudp, pud_pte(pud));
712 }
713
714 #ifdef CONFIG_PAGE_TABLE_CHECK
715 static inline bool pte_user_accessible_page(pte_t pte)
716 {
717         return pte_present(pte) && pte_user(pte);
718 }
719
720 static inline bool pmd_user_accessible_page(pmd_t pmd)
721 {
722         return pmd_leaf(pmd) && pmd_user(pmd);
723 }
724
725 static inline bool pud_user_accessible_page(pud_t pud)
726 {
727         return pud_leaf(pud) && pud_user(pud);
728 }
729 #endif
730
731 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
732 static inline int pmd_trans_huge(pmd_t pmd)
733 {
734         return pmd_leaf(pmd);
735 }
736
737 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
738 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
739                                         unsigned long address, pmd_t *pmdp,
740                                         pmd_t entry, int dirty)
741 {
742         return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
743 }
744
745 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
746 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
747                                         unsigned long address, pmd_t *pmdp)
748 {
749         return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
750 }
751
752 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
753 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
754                                         unsigned long address, pmd_t *pmdp)
755 {
756         pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
757
758         page_table_check_pmd_clear(mm, pmd);
759
760         return pmd;
761 }
762
763 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
764 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
765                                         unsigned long address, pmd_t *pmdp)
766 {
767         ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
768 }
769
770 #define pmdp_establish pmdp_establish
771 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
772                                 unsigned long address, pmd_t *pmdp, pmd_t pmd)
773 {
774         page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
775         return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
776 }
777
778 #define pmdp_collapse_flush pmdp_collapse_flush
779 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
780                                  unsigned long address, pmd_t *pmdp);
781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
782
783 /*
784  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
785  * are !pte_none() && !pte_present().
786  *
787  * Format of swap PTE:
788  *      bit            0:       _PAGE_PRESENT (zero)
789  *      bit       1 to 3:       _PAGE_LEAF (zero)
790  *      bit            5:       _PAGE_PROT_NONE (zero)
791  *      bit            6:       exclusive marker
792  *      bits      7 to 11:      swap type
793  *      bits 11 to XLEN-1:      swap offset
794  */
795 #define __SWP_TYPE_SHIFT        7
796 #define __SWP_TYPE_BITS         5
797 #define __SWP_TYPE_MASK         ((1UL << __SWP_TYPE_BITS) - 1)
798 #define __SWP_OFFSET_SHIFT      (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
799
800 #define MAX_SWAPFILES_CHECK()   \
801         BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
802
803 #define __swp_type(x)   (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
804 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
805 #define __swp_entry(type, offset) ((swp_entry_t) \
806         { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
807           ((offset) << __SWP_OFFSET_SHIFT) })
808
809 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
810 #define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
811
812 static inline int pte_swp_exclusive(pte_t pte)
813 {
814         return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
815 }
816
817 static inline pte_t pte_swp_mkexclusive(pte_t pte)
818 {
819         return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
820 }
821
822 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
823 {
824         return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
825 }
826
827 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
828 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
829 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
830 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
831
832 /*
833  * In the RV64 Linux scheme, we give the user half of the virtual-address space
834  * and give the kernel the other (upper) half.
835  */
836 #ifdef CONFIG_64BIT
837 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
838 #else
839 #define KERN_VIRT_START FIXADDR_START
840 #endif
841
842 /*
843  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
844  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
845  * Task size is:
846  * -     0x9fc00000 (~2.5GB) for RV32.
847  * -   0x4000000000 ( 256GB) for RV64 using SV39 mmu
848  * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
849  *
850  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
851  * Instruction Set Manual Volume II: Privileged Architecture" states that
852  * "load and store effective addresses, which are 64bits, must have bits
853  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
854  */
855 #ifdef CONFIG_64BIT
856 #define TASK_SIZE_64    (PGDIR_SIZE * PTRS_PER_PGD / 2)
857 #define TASK_SIZE_MIN   (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
858
859 #ifdef CONFIG_COMPAT
860 #define TASK_SIZE_32    (_AC(0x80000000, UL) - PAGE_SIZE)
861 #define TASK_SIZE       (test_thread_flag(TIF_32BIT) ? \
862                          TASK_SIZE_32 : TASK_SIZE_64)
863 #else
864 #define TASK_SIZE       TASK_SIZE_64
865 #endif
866
867 #else
868 #define TASK_SIZE       FIXADDR_START
869 #define TASK_SIZE_MIN   TASK_SIZE
870 #endif
871
872 #else /* CONFIG_MMU */
873
874 #define PAGE_SHARED             __pgprot(0)
875 #define PAGE_KERNEL             __pgprot(0)
876 #define swapper_pg_dir          NULL
877 #define TASK_SIZE               0xffffffffUL
878 #define VMALLOC_START           0
879 #define VMALLOC_END             TASK_SIZE
880
881 #endif /* !CONFIG_MMU */
882
883 extern char _start[];
884 extern void *_dtb_early_va;
885 extern uintptr_t _dtb_early_pa;
886 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
887 #define dtb_early_va    (*(void **)XIP_FIXUP(&_dtb_early_va))
888 #define dtb_early_pa    (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
889 #else
890 #define dtb_early_va    _dtb_early_va
891 #define dtb_early_pa    _dtb_early_pa
892 #endif /* CONFIG_XIP_KERNEL */
893 extern u64 satp_mode;
894 extern bool pgtable_l4_enabled;
895
896 void paging_init(void);
897 void misc_mem_init(void);
898
899 /*
900  * ZERO_PAGE is a global shared page that is always zero,
901  * used for zero-mapped memory areas, etc.
902  */
903 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
904 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
905
906 #endif /* !__ASSEMBLY__ */
907
908 #endif /* _ASM_RISCV_PGTABLE_H */