Merge tag 'reset-for-v5.3' of git://git.pengutronix.de/git/pza/linux into arm/drivers
[sfrench/cifs-2.6.git] / arch / powerpc / mm / book3s64 / pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <misc/cxl-base.h>
10
11 #include <asm/pgalloc.h>
12 #include <asm/tlb.h>
13 #include <asm/trace.h>
14 #include <asm/powernv.h>
15
16 #include <mm/mmu_decl.h>
17 #include <trace/events/thp.h>
18
19 unsigned long __pmd_frag_nr;
20 EXPORT_SYMBOL(__pmd_frag_nr);
21 unsigned long __pmd_frag_size_shift;
22 EXPORT_SYMBOL(__pmd_frag_size_shift);
23
24 int (*register_process_table)(unsigned long base, unsigned long page_size,
25                               unsigned long tbl_size);
26
27 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
28 /*
29  * This is called when relaxing access to a hugepage. It's also called in the page
30  * fault path when we don't hit any of the major fault cases, ie, a minor
31  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
32  * handled those two for us, we additionally deal with missing execute
33  * permission here on some processors
34  */
35 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
36                           pmd_t *pmdp, pmd_t entry, int dirty)
37 {
38         int changed;
39 #ifdef CONFIG_DEBUG_VM
40         WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
41         assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
42 #endif
43         changed = !pmd_same(*(pmdp), entry);
44         if (changed) {
45                 /*
46                  * We can use MMU_PAGE_2M here, because only radix
47                  * path look at the psize.
48                  */
49                 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
50                                         pmd_pte(entry), address, MMU_PAGE_2M);
51         }
52         return changed;
53 }
54
55 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56                               unsigned long address, pmd_t *pmdp)
57 {
58         return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
59 }
60 /*
61  * set a new huge pmd. We should not be called for updating
62  * an existing pmd entry. That should go via pmd_hugepage_update.
63  */
64 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
65                 pmd_t *pmdp, pmd_t pmd)
66 {
67 #ifdef CONFIG_DEBUG_VM
68         /*
69          * Make sure hardware valid bit is not set. We don't do
70          * tlb flush for this update.
71          */
72
73         WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
74         assert_spin_locked(pmd_lockptr(mm, pmdp));
75         WARN_ON(!(pmd_large(pmd) || pmd_devmap(pmd)));
76 #endif
77         trace_hugepage_set_pmd(addr, pmd_val(pmd));
78         return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
79 }
80
81 static void do_nothing(void *unused)
82 {
83
84 }
85 /*
86  * Serialize against find_current_mm_pte which does lock-less
87  * lookup in page tables with local interrupts disabled. For huge pages
88  * it casts pmd_t to pte_t. Since format of pte_t is different from
89  * pmd_t we want to prevent transit from pmd pointing to page table
90  * to pmd pointing to huge page (and back) while interrupts are disabled.
91  * We clear pmd to possibly replace it with page table pointer in
92  * different code paths. So make sure we wait for the parallel
93  * find_current_mm_pte to finish.
94  */
95 void serialize_against_pte_lookup(struct mm_struct *mm)
96 {
97         smp_mb();
98         smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
99 }
100
101 /*
102  * We use this to invalidate a pmdp entry before switching from a
103  * hugepte to regular pmd entry.
104  */
105 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
106                      pmd_t *pmdp)
107 {
108         unsigned long old_pmd;
109
110         old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
111         flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
112         /*
113          * This ensures that generic code that rely on IRQ disabling
114          * to prevent a parallel THP split work as expected.
115          *
116          * Marking the entry with _PAGE_INVALID && ~_PAGE_PRESENT requires
117          * a special case check in pmd_access_permitted.
118          */
119         serialize_against_pte_lookup(vma->vm_mm);
120         return __pmd(old_pmd);
121 }
122
123 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
124 {
125         return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
126 }
127
128 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
129 {
130         unsigned long pmdv;
131
132         pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
133         return pmd_set_protbits(__pmd(pmdv), pgprot);
134 }
135
136 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
137 {
138         return pfn_pmd(page_to_pfn(page), pgprot);
139 }
140
141 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
142 {
143         unsigned long pmdv;
144
145         pmdv = pmd_val(pmd);
146         pmdv &= _HPAGE_CHG_MASK;
147         return pmd_set_protbits(__pmd(pmdv), newprot);
148 }
149
150 /*
151  * This is called at the end of handling a user page fault, when the
152  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
153  * We use it to preload an HPTE into the hash table corresponding to
154  * the updated linux HUGE PMD entry.
155  */
156 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
157                           pmd_t *pmd)
158 {
159         if (radix_enabled())
160                 prefetch((void *)addr);
161 }
162 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
163
164 /* For use by kexec */
165 void mmu_cleanup_all(void)
166 {
167         if (radix_enabled())
168                 radix__mmu_cleanup_all();
169         else if (mmu_hash_ops.hpte_clear_all)
170                 mmu_hash_ops.hpte_clear_all();
171 }
172
173 #ifdef CONFIG_MEMORY_HOTPLUG
174 int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
175 {
176         if (radix_enabled())
177                 return radix__create_section_mapping(start, end, nid);
178
179         return hash__create_section_mapping(start, end, nid);
180 }
181
182 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
183 {
184         if (radix_enabled())
185                 return radix__remove_section_mapping(start, end);
186
187         return hash__remove_section_mapping(start, end);
188 }
189 #endif /* CONFIG_MEMORY_HOTPLUG */
190
191 void __init mmu_partition_table_init(void)
192 {
193         unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
194         unsigned long ptcr;
195
196         BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
197         /* Initialize the Partition Table with no entries */
198         partition_tb = memblock_alloc(patb_size, patb_size);
199         if (!partition_tb)
200                 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
201                       __func__, patb_size, patb_size);
202
203         /*
204          * update partition table control register,
205          * 64 K size.
206          */
207         ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
208         mtspr(SPRN_PTCR, ptcr);
209         powernv_set_nmmu_ptcr(ptcr);
210 }
211
212 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
213                                    unsigned long dw1)
214 {
215         unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
216
217         partition_tb[lpid].patb0 = cpu_to_be64(dw0);
218         partition_tb[lpid].patb1 = cpu_to_be64(dw1);
219
220         /*
221          * Global flush of TLBs and partition table caches for this lpid.
222          * The type of flush (hash or radix) depends on what the previous
223          * use of this partition ID was, not the new use.
224          */
225         asm volatile("ptesync" : : : "memory");
226         if (old & PATB_HR) {
227                 asm volatile(PPC_TLBIE_5(%0,%1,2,0,1) : :
228                              "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
229                 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
230                              "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
231                 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 1);
232         } else {
233                 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
234                              "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
235                 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
236         }
237         /* do we need fixup here ?*/
238         asm volatile("eieio; tlbsync; ptesync" : : : "memory");
239 }
240 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
241
242 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
243 {
244         void *pmd_frag, *ret;
245
246         if (PMD_FRAG_NR == 1)
247                 return NULL;
248
249         spin_lock(&mm->page_table_lock);
250         ret = mm->context.pmd_frag;
251         if (ret) {
252                 pmd_frag = ret + PMD_FRAG_SIZE;
253                 /*
254                  * If we have taken up all the fragments mark PTE page NULL
255                  */
256                 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
257                         pmd_frag = NULL;
258                 mm->context.pmd_frag = pmd_frag;
259         }
260         spin_unlock(&mm->page_table_lock);
261         return (pmd_t *)ret;
262 }
263
264 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
265 {
266         void *ret = NULL;
267         struct page *page;
268         gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
269
270         if (mm == &init_mm)
271                 gfp &= ~__GFP_ACCOUNT;
272         page = alloc_page(gfp);
273         if (!page)
274                 return NULL;
275         if (!pgtable_pmd_page_ctor(page)) {
276                 __free_pages(page, 0);
277                 return NULL;
278         }
279
280         atomic_set(&page->pt_frag_refcount, 1);
281
282         ret = page_address(page);
283         /*
284          * if we support only one fragment just return the
285          * allocated page.
286          */
287         if (PMD_FRAG_NR == 1)
288                 return ret;
289
290         spin_lock(&mm->page_table_lock);
291         /*
292          * If we find pgtable_page set, we return
293          * the allocated page with single fragement
294          * count.
295          */
296         if (likely(!mm->context.pmd_frag)) {
297                 atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
298                 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
299         }
300         spin_unlock(&mm->page_table_lock);
301
302         return (pmd_t *)ret;
303 }
304
305 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
306 {
307         pmd_t *pmd;
308
309         pmd = get_pmd_from_cache(mm);
310         if (pmd)
311                 return pmd;
312
313         return __alloc_for_pmdcache(mm);
314 }
315
316 void pmd_fragment_free(unsigned long *pmd)
317 {
318         struct page *page = virt_to_page(pmd);
319
320         BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
321         if (atomic_dec_and_test(&page->pt_frag_refcount)) {
322                 pgtable_pmd_page_dtor(page);
323                 __free_page(page);
324         }
325 }
326
327 static inline void pgtable_free(void *table, int index)
328 {
329         switch (index) {
330         case PTE_INDEX:
331                 pte_fragment_free(table, 0);
332                 break;
333         case PMD_INDEX:
334                 pmd_fragment_free(table);
335                 break;
336         case PUD_INDEX:
337                 kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
338                 break;
339 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
340                 /* 16M hugepd directory at pud level */
341         case HTLB_16M_INDEX:
342                 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
343                 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
344                 break;
345                 /* 16G hugepd directory at the pgd level */
346         case HTLB_16G_INDEX:
347                 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
348                 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
349                 break;
350 #endif
351                 /* We don't free pgd table via RCU callback */
352         default:
353                 BUG();
354         }
355 }
356
357 #ifdef CONFIG_SMP
358 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
359 {
360         unsigned long pgf = (unsigned long)table;
361
362         BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
363         pgf |= index;
364         tlb_remove_table(tlb, (void *)pgf);
365 }
366
367 void __tlb_remove_table(void *_table)
368 {
369         void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
370         unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
371
372         return pgtable_free(table, index);
373 }
374 #else
375 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
376 {
377         return pgtable_free(table, index);
378 }
379 #endif
380
381 #ifdef CONFIG_PROC_FS
382 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
383
384 void arch_report_meminfo(struct seq_file *m)
385 {
386         /*
387          * Hash maps the memory with one size mmu_linear_psize.
388          * So don't bother to print these on hash
389          */
390         if (!radix_enabled())
391                 return;
392         seq_printf(m, "DirectMap4k:    %8lu kB\n",
393                    atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
394         seq_printf(m, "DirectMap64k:    %8lu kB\n",
395                    atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
396         seq_printf(m, "DirectMap2M:    %8lu kB\n",
397                    atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
398         seq_printf(m, "DirectMap1G:    %8lu kB\n",
399                    atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
400 }
401 #endif /* CONFIG_PROC_FS */
402
403 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
404                              pte_t *ptep)
405 {
406         unsigned long pte_val;
407
408         /*
409          * Clear the _PAGE_PRESENT so that no hardware parallel update is
410          * possible. Also keep the pte_present true so that we don't take
411          * wrong fault.
412          */
413         pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
414
415         return __pte(pte_val);
416
417 }
418
419 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
420                              pte_t *ptep, pte_t old_pte, pte_t pte)
421 {
422         if (radix_enabled())
423                 return radix__ptep_modify_prot_commit(vma, addr,
424                                                       ptep, old_pte, pte);
425         set_pte_at(vma->vm_mm, addr, ptep, pte);
426 }
427
428 /*
429  * For hash translation mode, we use the deposited table to store hash slot
430  * information and they are stored at PTRS_PER_PMD offset from related pmd
431  * location. Hence a pmd move requires deposit and withdraw.
432  *
433  * For radix translation with split pmd ptl, we store the deposited table in the
434  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
435  * move.
436  *
437  * With hash we use deposited table always irrespective of anon or not.
438  * With radix we use deposited table only for anonymous mapping.
439  */
440 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
441                            struct spinlock *old_pmd_ptl,
442                            struct vm_area_struct *vma)
443 {
444         if (radix_enabled())
445                 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
446
447         return true;
448 }