treewide: Remove uninitialized_var() usage
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53
54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56         return kvm_arch_vcpu_runnable(vcpu);
57 }
58
59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61         return false;
62 }
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66         return 1;
67 }
68
69 /*
70  * Common checks before entering the guest world.  Call with interrupts
71  * disabled.
72  *
73  * returns:
74  *
75  * == 1 if we're ready to go into guest state
76  * <= 0 if we need to go back to the host with return value
77  */
78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80         int r;
81
82         WARN_ON(irqs_disabled());
83         hard_irq_disable();
84
85         while (true) {
86                 if (need_resched()) {
87                         local_irq_enable();
88                         cond_resched();
89                         hard_irq_disable();
90                         continue;
91                 }
92
93                 if (signal_pending(current)) {
94                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95                         vcpu->run->exit_reason = KVM_EXIT_INTR;
96                         r = -EINTR;
97                         break;
98                 }
99
100                 vcpu->mode = IN_GUEST_MODE;
101
102                 /*
103                  * Reading vcpu->requests must happen after setting vcpu->mode,
104                  * so we don't miss a request because the requester sees
105                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106                  * before next entering the guest (and thus doesn't IPI).
107                  * This also orders the write to mode from any reads
108                  * to the page tables done while the VCPU is running.
109                  * Please see the comment in kvm_flush_remote_tlbs.
110                  */
111                 smp_mb();
112
113                 if (kvm_request_pending(vcpu)) {
114                         /* Make sure we process requests preemptable */
115                         local_irq_enable();
116                         trace_kvm_check_requests(vcpu);
117                         r = kvmppc_core_check_requests(vcpu);
118                         hard_irq_disable();
119                         if (r > 0)
120                                 continue;
121                         break;
122                 }
123
124                 if (kvmppc_core_prepare_to_enter(vcpu)) {
125                         /* interrupts got enabled in between, so we
126                            are back at square 1 */
127                         continue;
128                 }
129
130                 guest_enter_irqoff();
131                 return 1;
132         }
133
134         /* return to host */
135         local_irq_enable();
136         return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144         int i;
145
146         shared->sprg0 = swab64(shared->sprg0);
147         shared->sprg1 = swab64(shared->sprg1);
148         shared->sprg2 = swab64(shared->sprg2);
149         shared->sprg3 = swab64(shared->sprg3);
150         shared->srr0 = swab64(shared->srr0);
151         shared->srr1 = swab64(shared->srr1);
152         shared->dar = swab64(shared->dar);
153         shared->msr = swab64(shared->msr);
154         shared->dsisr = swab32(shared->dsisr);
155         shared->int_pending = swab32(shared->int_pending);
156         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157                 shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160
161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163         int nr = kvmppc_get_gpr(vcpu, 11);
164         int r;
165         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169         unsigned long r2 = 0;
170
171         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172                 /* 32 bit mode */
173                 param1 &= 0xffffffff;
174                 param2 &= 0xffffffff;
175                 param3 &= 0xffffffff;
176                 param4 &= 0xffffffff;
177         }
178
179         switch (nr) {
180         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181         {
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183                 /* Book3S can be little endian, find it out here */
184                 int shared_big_endian = true;
185                 if (vcpu->arch.intr_msr & MSR_LE)
186                         shared_big_endian = false;
187                 if (shared_big_endian != vcpu->arch.shared_big_endian)
188                         kvmppc_swab_shared(vcpu);
189                 vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191
192                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193                         /*
194                          * Older versions of the Linux magic page code had
195                          * a bug where they would map their trampoline code
196                          * NX. If that's the case, remove !PR NX capability.
197                          */
198                         vcpu->arch.disable_kernel_nx = true;
199                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200                 }
201
202                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204
205 #ifdef CONFIG_PPC_64K_PAGES
206                 /*
207                  * Make sure our 4k magic page is in the same window of a 64k
208                  * page within the guest and within the host's page.
209                  */
210                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
211                     ((ulong)vcpu->arch.shared & 0xf000)) {
212                         void *old_shared = vcpu->arch.shared;
213                         ulong shared = (ulong)vcpu->arch.shared;
214                         void *new_shared;
215
216                         shared &= PAGE_MASK;
217                         shared |= vcpu->arch.magic_page_pa & 0xf000;
218                         new_shared = (void*)shared;
219                         memcpy(new_shared, old_shared, 0x1000);
220                         vcpu->arch.shared = new_shared;
221                 }
222 #endif
223
224                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225
226                 r = EV_SUCCESS;
227                 break;
228         }
229         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230                 r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234
235                 /* Second return value is in r4 */
236                 break;
237         case EV_HCALL_TOKEN(EV_IDLE):
238                 r = EV_SUCCESS;
239                 kvm_vcpu_block(vcpu);
240                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241                 break;
242         default:
243                 r = EV_UNIMPLEMENTED;
244                 break;
245         }
246
247         kvmppc_set_gpr(vcpu, 4, r2);
248
249         return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255         int r = false;
256
257         /* We have to know what CPU to virtualize */
258         if (!vcpu->arch.pvr)
259                 goto out;
260
261         /* PAPR only works with book3s_64 */
262         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263                 goto out;
264
265         /* HV KVM can only do PAPR mode for now */
266         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267                 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270         if (!cpu_has_feature(CPU_FTR_EMB_HV))
271                 goto out;
272 #endif
273
274         r = true;
275
276 out:
277         vcpu->arch.sane = r;
278         return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
282 int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
283 {
284         enum emulation_result er;
285         int r;
286
287         er = kvmppc_emulate_loadstore(vcpu);
288         switch (er) {
289         case EMULATE_DONE:
290                 /* Future optimization: only reload non-volatiles if they were
291                  * actually modified. */
292                 r = RESUME_GUEST_NV;
293                 break;
294         case EMULATE_AGAIN:
295                 r = RESUME_GUEST;
296                 break;
297         case EMULATE_DO_MMIO:
298                 vcpu->run->exit_reason = KVM_EXIT_MMIO;
299                 /* We must reload nonvolatiles because "update" load/store
300                  * instructions modify register state. */
301                 /* Future optimization: only reload non-volatiles if they were
302                  * actually modified. */
303                 r = RESUME_HOST_NV;
304                 break;
305         case EMULATE_FAIL:
306         {
307                 u32 last_inst;
308
309                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310                 /* XXX Deliver Program interrupt to guest. */
311                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
312                 r = RESUME_HOST;
313                 break;
314         }
315         default:
316                 WARN_ON(1);
317                 r = RESUME_GUEST;
318         }
319
320         return r;
321 }
322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
323
324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
325               bool data)
326 {
327         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
328         struct kvmppc_pte pte;
329         int r = -EINVAL;
330
331         vcpu->stat.st++;
332
333         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
334                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
335                                                             size);
336
337         if ((!r) || (r == -EAGAIN))
338                 return r;
339
340         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341                          XLATE_WRITE, &pte);
342         if (r < 0)
343                 return r;
344
345         *eaddr = pte.raddr;
346
347         if (!pte.may_write)
348                 return -EPERM;
349
350         /* Magic page override */
351         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354                 void *magic = vcpu->arch.shared;
355                 magic += pte.eaddr & 0xfff;
356                 memcpy(magic, ptr, size);
357                 return EMULATE_DONE;
358         }
359
360         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361                 return EMULATE_DO_MMIO;
362
363         return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366
367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368                       bool data)
369 {
370         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371         struct kvmppc_pte pte;
372         int rc = -EINVAL;
373
374         vcpu->stat.ld++;
375
376         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
377                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
378                                                               size);
379
380         if ((!rc) || (rc == -EAGAIN))
381                 return rc;
382
383         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
384                           XLATE_READ, &pte);
385         if (rc)
386                 return rc;
387
388         *eaddr = pte.raddr;
389
390         if (!pte.may_read)
391                 return -EPERM;
392
393         if (!data && !pte.may_execute)
394                 return -ENOEXEC;
395
396         /* Magic page override */
397         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
398             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
399             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
400                 void *magic = vcpu->arch.shared;
401                 magic += pte.eaddr & 0xfff;
402                 memcpy(ptr, magic, size);
403                 return EMULATE_DONE;
404         }
405
406         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
407                 return EMULATE_DO_MMIO;
408
409         return EMULATE_DONE;
410 }
411 EXPORT_SYMBOL_GPL(kvmppc_ld);
412
413 int kvm_arch_hardware_enable(void)
414 {
415         return 0;
416 }
417
418 int kvm_arch_hardware_setup(void *opaque)
419 {
420         return 0;
421 }
422
423 int kvm_arch_check_processor_compat(void *opaque)
424 {
425         return kvmppc_core_check_processor_compat();
426 }
427
428 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
429 {
430         struct kvmppc_ops *kvm_ops = NULL;
431         /*
432          * if we have both HV and PR enabled, default is HV
433          */
434         if (type == 0) {
435                 if (kvmppc_hv_ops)
436                         kvm_ops = kvmppc_hv_ops;
437                 else
438                         kvm_ops = kvmppc_pr_ops;
439                 if (!kvm_ops)
440                         goto err_out;
441         } else  if (type == KVM_VM_PPC_HV) {
442                 if (!kvmppc_hv_ops)
443                         goto err_out;
444                 kvm_ops = kvmppc_hv_ops;
445         } else if (type == KVM_VM_PPC_PR) {
446                 if (!kvmppc_pr_ops)
447                         goto err_out;
448                 kvm_ops = kvmppc_pr_ops;
449         } else
450                 goto err_out;
451
452         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
453                 return -ENOENT;
454
455         kvm->arch.kvm_ops = kvm_ops;
456         return kvmppc_core_init_vm(kvm);
457 err_out:
458         return -EINVAL;
459 }
460
461 void kvm_arch_destroy_vm(struct kvm *kvm)
462 {
463         unsigned int i;
464         struct kvm_vcpu *vcpu;
465
466 #ifdef CONFIG_KVM_XICS
467         /*
468          * We call kick_all_cpus_sync() to ensure that all
469          * CPUs have executed any pending IPIs before we
470          * continue and free VCPUs structures below.
471          */
472         if (is_kvmppc_hv_enabled(kvm))
473                 kick_all_cpus_sync();
474 #endif
475
476         kvm_for_each_vcpu(i, vcpu, kvm)
477                 kvm_vcpu_destroy(vcpu);
478
479         mutex_lock(&kvm->lock);
480         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
481                 kvm->vcpus[i] = NULL;
482
483         atomic_set(&kvm->online_vcpus, 0);
484
485         kvmppc_core_destroy_vm(kvm);
486
487         mutex_unlock(&kvm->lock);
488
489         /* drop the module reference */
490         module_put(kvm->arch.kvm_ops->owner);
491 }
492
493 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
494 {
495         int r;
496         /* Assume we're using HV mode when the HV module is loaded */
497         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
498
499         if (kvm) {
500                 /*
501                  * Hooray - we know which VM type we're running on. Depend on
502                  * that rather than the guess above.
503                  */
504                 hv_enabled = is_kvmppc_hv_enabled(kvm);
505         }
506
507         switch (ext) {
508 #ifdef CONFIG_BOOKE
509         case KVM_CAP_PPC_BOOKE_SREGS:
510         case KVM_CAP_PPC_BOOKE_WATCHDOG:
511         case KVM_CAP_PPC_EPR:
512 #else
513         case KVM_CAP_PPC_SEGSTATE:
514         case KVM_CAP_PPC_HIOR:
515         case KVM_CAP_PPC_PAPR:
516 #endif
517         case KVM_CAP_PPC_UNSET_IRQ:
518         case KVM_CAP_PPC_IRQ_LEVEL:
519         case KVM_CAP_ENABLE_CAP:
520         case KVM_CAP_ONE_REG:
521         case KVM_CAP_IOEVENTFD:
522         case KVM_CAP_DEVICE_CTRL:
523         case KVM_CAP_IMMEDIATE_EXIT:
524         case KVM_CAP_SET_GUEST_DEBUG:
525                 r = 1;
526                 break;
527         case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
528         case KVM_CAP_PPC_PAIRED_SINGLES:
529         case KVM_CAP_PPC_OSI:
530         case KVM_CAP_PPC_GET_PVINFO:
531 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
532         case KVM_CAP_SW_TLB:
533 #endif
534                 /* We support this only for PR */
535                 r = !hv_enabled;
536                 break;
537 #ifdef CONFIG_KVM_MPIC
538         case KVM_CAP_IRQ_MPIC:
539                 r = 1;
540                 break;
541 #endif
542
543 #ifdef CONFIG_PPC_BOOK3S_64
544         case KVM_CAP_SPAPR_TCE:
545         case KVM_CAP_SPAPR_TCE_64:
546                 r = 1;
547                 break;
548         case KVM_CAP_SPAPR_TCE_VFIO:
549                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
550                 break;
551         case KVM_CAP_PPC_RTAS:
552         case KVM_CAP_PPC_FIXUP_HCALL:
553         case KVM_CAP_PPC_ENABLE_HCALL:
554 #ifdef CONFIG_KVM_XICS
555         case KVM_CAP_IRQ_XICS:
556 #endif
557         case KVM_CAP_PPC_GET_CPU_CHAR:
558                 r = 1;
559                 break;
560 #ifdef CONFIG_KVM_XIVE
561         case KVM_CAP_PPC_IRQ_XIVE:
562                 /*
563                  * We need XIVE to be enabled on the platform (implies
564                  * a POWER9 processor) and the PowerNV platform, as
565                  * nested is not yet supported.
566                  */
567                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
568                         kvmppc_xive_native_supported();
569                 break;
570 #endif
571
572         case KVM_CAP_PPC_ALLOC_HTAB:
573                 r = hv_enabled;
574                 break;
575 #endif /* CONFIG_PPC_BOOK3S_64 */
576 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
577         case KVM_CAP_PPC_SMT:
578                 r = 0;
579                 if (kvm) {
580                         if (kvm->arch.emul_smt_mode > 1)
581                                 r = kvm->arch.emul_smt_mode;
582                         else
583                                 r = kvm->arch.smt_mode;
584                 } else if (hv_enabled) {
585                         if (cpu_has_feature(CPU_FTR_ARCH_300))
586                                 r = 1;
587                         else
588                                 r = threads_per_subcore;
589                 }
590                 break;
591         case KVM_CAP_PPC_SMT_POSSIBLE:
592                 r = 1;
593                 if (hv_enabled) {
594                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
595                                 r = ((threads_per_subcore << 1) - 1);
596                         else
597                                 /* P9 can emulate dbells, so allow any mode */
598                                 r = 8 | 4 | 2 | 1;
599                 }
600                 break;
601         case KVM_CAP_PPC_RMA:
602                 r = 0;
603                 break;
604         case KVM_CAP_PPC_HWRNG:
605                 r = kvmppc_hwrng_present();
606                 break;
607         case KVM_CAP_PPC_MMU_RADIX:
608                 r = !!(hv_enabled && radix_enabled());
609                 break;
610         case KVM_CAP_PPC_MMU_HASH_V3:
611                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
612                        cpu_has_feature(CPU_FTR_HVMODE));
613                 break;
614         case KVM_CAP_PPC_NESTED_HV:
615                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
616                        !kvmppc_hv_ops->enable_nested(NULL));
617                 break;
618 #endif
619         case KVM_CAP_SYNC_MMU:
620 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
621                 r = hv_enabled;
622 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
623                 r = 1;
624 #else
625                 r = 0;
626 #endif
627                 break;
628 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
629         case KVM_CAP_PPC_HTAB_FD:
630                 r = hv_enabled;
631                 break;
632 #endif
633         case KVM_CAP_NR_VCPUS:
634                 /*
635                  * Recommending a number of CPUs is somewhat arbitrary; we
636                  * return the number of present CPUs for -HV (since a host
637                  * will have secondary threads "offline"), and for other KVM
638                  * implementations just count online CPUs.
639                  */
640                 if (hv_enabled)
641                         r = num_present_cpus();
642                 else
643                         r = num_online_cpus();
644                 break;
645         case KVM_CAP_MAX_VCPUS:
646                 r = KVM_MAX_VCPUS;
647                 break;
648         case KVM_CAP_MAX_VCPU_ID:
649                 r = KVM_MAX_VCPU_ID;
650                 break;
651 #ifdef CONFIG_PPC_BOOK3S_64
652         case KVM_CAP_PPC_GET_SMMU_INFO:
653                 r = 1;
654                 break;
655         case KVM_CAP_SPAPR_MULTITCE:
656                 r = 1;
657                 break;
658         case KVM_CAP_SPAPR_RESIZE_HPT:
659                 r = !!hv_enabled;
660                 break;
661 #endif
662 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
663         case KVM_CAP_PPC_FWNMI:
664                 r = hv_enabled;
665                 break;
666 #endif
667 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
668         case KVM_CAP_PPC_HTM:
669                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
670                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
671                 break;
672 #endif
673 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
674         case KVM_CAP_PPC_SECURE_GUEST:
675                 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
676                         !kvmppc_hv_ops->enable_svm(NULL);
677                 break;
678 #endif
679         default:
680                 r = 0;
681                 break;
682         }
683         return r;
684
685 }
686
687 long kvm_arch_dev_ioctl(struct file *filp,
688                         unsigned int ioctl, unsigned long arg)
689 {
690         return -EINVAL;
691 }
692
693 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
694 {
695         kvmppc_core_free_memslot(kvm, slot);
696 }
697
698 int kvm_arch_prepare_memory_region(struct kvm *kvm,
699                                    struct kvm_memory_slot *memslot,
700                                    const struct kvm_userspace_memory_region *mem,
701                                    enum kvm_mr_change change)
702 {
703         return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change);
704 }
705
706 void kvm_arch_commit_memory_region(struct kvm *kvm,
707                                    const struct kvm_userspace_memory_region *mem,
708                                    struct kvm_memory_slot *old,
709                                    const struct kvm_memory_slot *new,
710                                    enum kvm_mr_change change)
711 {
712         kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
713 }
714
715 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
716                                    struct kvm_memory_slot *slot)
717 {
718         kvmppc_core_flush_memslot(kvm, slot);
719 }
720
721 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
722 {
723         return 0;
724 }
725
726 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
727 {
728         struct kvm_vcpu *vcpu;
729
730         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
731         kvmppc_decrementer_func(vcpu);
732
733         return HRTIMER_NORESTART;
734 }
735
736 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
737 {
738         int err;
739
740         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
741         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
742         vcpu->arch.dec_expires = get_tb();
743
744 #ifdef CONFIG_KVM_EXIT_TIMING
745         mutex_init(&vcpu->arch.exit_timing_lock);
746 #endif
747         err = kvmppc_subarch_vcpu_init(vcpu);
748         if (err)
749                 return err;
750
751         err = kvmppc_core_vcpu_create(vcpu);
752         if (err)
753                 goto out_vcpu_uninit;
754
755         vcpu->arch.waitp = &vcpu->wait;
756         kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
757         return 0;
758
759 out_vcpu_uninit:
760         kvmppc_subarch_vcpu_uninit(vcpu);
761         return err;
762 }
763
764 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
765 {
766 }
767
768 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
769 {
770         /* Make sure we're not using the vcpu anymore */
771         hrtimer_cancel(&vcpu->arch.dec_timer);
772
773         kvmppc_remove_vcpu_debugfs(vcpu);
774
775         switch (vcpu->arch.irq_type) {
776         case KVMPPC_IRQ_MPIC:
777                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
778                 break;
779         case KVMPPC_IRQ_XICS:
780                 if (xics_on_xive())
781                         kvmppc_xive_cleanup_vcpu(vcpu);
782                 else
783                         kvmppc_xics_free_icp(vcpu);
784                 break;
785         case KVMPPC_IRQ_XIVE:
786                 kvmppc_xive_native_cleanup_vcpu(vcpu);
787                 break;
788         }
789
790         kvmppc_core_vcpu_free(vcpu);
791
792         kvmppc_subarch_vcpu_uninit(vcpu);
793 }
794
795 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
796 {
797         return kvmppc_core_pending_dec(vcpu);
798 }
799
800 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
801 {
802 #ifdef CONFIG_BOOKE
803         /*
804          * vrsave (formerly usprg0) isn't used by Linux, but may
805          * be used by the guest.
806          *
807          * On non-booke this is associated with Altivec and
808          * is handled by code in book3s.c.
809          */
810         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
811 #endif
812         kvmppc_core_vcpu_load(vcpu, cpu);
813 }
814
815 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
816 {
817         kvmppc_core_vcpu_put(vcpu);
818 #ifdef CONFIG_BOOKE
819         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
820 #endif
821 }
822
823 /*
824  * irq_bypass_add_producer and irq_bypass_del_producer are only
825  * useful if the architecture supports PCI passthrough.
826  * irq_bypass_stop and irq_bypass_start are not needed and so
827  * kvm_ops are not defined for them.
828  */
829 bool kvm_arch_has_irq_bypass(void)
830 {
831         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
832                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
833 }
834
835 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
836                                      struct irq_bypass_producer *prod)
837 {
838         struct kvm_kernel_irqfd *irqfd =
839                 container_of(cons, struct kvm_kernel_irqfd, consumer);
840         struct kvm *kvm = irqfd->kvm;
841
842         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
843                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
844
845         return 0;
846 }
847
848 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
849                                       struct irq_bypass_producer *prod)
850 {
851         struct kvm_kernel_irqfd *irqfd =
852                 container_of(cons, struct kvm_kernel_irqfd, consumer);
853         struct kvm *kvm = irqfd->kvm;
854
855         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
856                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
857 }
858
859 #ifdef CONFIG_VSX
860 static inline int kvmppc_get_vsr_dword_offset(int index)
861 {
862         int offset;
863
864         if ((index != 0) && (index != 1))
865                 return -1;
866
867 #ifdef __BIG_ENDIAN
868         offset =  index;
869 #else
870         offset = 1 - index;
871 #endif
872
873         return offset;
874 }
875
876 static inline int kvmppc_get_vsr_word_offset(int index)
877 {
878         int offset;
879
880         if ((index > 3) || (index < 0))
881                 return -1;
882
883 #ifdef __BIG_ENDIAN
884         offset = index;
885 #else
886         offset = 3 - index;
887 #endif
888         return offset;
889 }
890
891 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
892         u64 gpr)
893 {
894         union kvmppc_one_reg val;
895         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
896         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
897
898         if (offset == -1)
899                 return;
900
901         if (index >= 32) {
902                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
903                 val.vsxval[offset] = gpr;
904                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
905         } else {
906                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
907         }
908 }
909
910 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
911         u64 gpr)
912 {
913         union kvmppc_one_reg val;
914         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
915
916         if (index >= 32) {
917                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
918                 val.vsxval[0] = gpr;
919                 val.vsxval[1] = gpr;
920                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
921         } else {
922                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
923                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
924         }
925 }
926
927 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
928         u32 gpr)
929 {
930         union kvmppc_one_reg val;
931         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
932
933         if (index >= 32) {
934                 val.vsx32val[0] = gpr;
935                 val.vsx32val[1] = gpr;
936                 val.vsx32val[2] = gpr;
937                 val.vsx32val[3] = gpr;
938                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
939         } else {
940                 val.vsx32val[0] = gpr;
941                 val.vsx32val[1] = gpr;
942                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
943                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
944         }
945 }
946
947 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
948         u32 gpr32)
949 {
950         union kvmppc_one_reg val;
951         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
952         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
953         int dword_offset, word_offset;
954
955         if (offset == -1)
956                 return;
957
958         if (index >= 32) {
959                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
960                 val.vsx32val[offset] = gpr32;
961                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
962         } else {
963                 dword_offset = offset / 2;
964                 word_offset = offset % 2;
965                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
966                 val.vsx32val[word_offset] = gpr32;
967                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
968         }
969 }
970 #endif /* CONFIG_VSX */
971
972 #ifdef CONFIG_ALTIVEC
973 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
974                 int index, int element_size)
975 {
976         int offset;
977         int elts = sizeof(vector128)/element_size;
978
979         if ((index < 0) || (index >= elts))
980                 return -1;
981
982         if (kvmppc_need_byteswap(vcpu))
983                 offset = elts - index - 1;
984         else
985                 offset = index;
986
987         return offset;
988 }
989
990 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
991                 int index)
992 {
993         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
994 }
995
996 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
997                 int index)
998 {
999         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1000 }
1001
1002 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1003                 int index)
1004 {
1005         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1006 }
1007
1008 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1009                 int index)
1010 {
1011         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1012 }
1013
1014
1015 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1016         u64 gpr)
1017 {
1018         union kvmppc_one_reg val;
1019         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1020                         vcpu->arch.mmio_vmx_offset);
1021         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1022
1023         if (offset == -1)
1024                 return;
1025
1026         val.vval = VCPU_VSX_VR(vcpu, index);
1027         val.vsxval[offset] = gpr;
1028         VCPU_VSX_VR(vcpu, index) = val.vval;
1029 }
1030
1031 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1032         u32 gpr32)
1033 {
1034         union kvmppc_one_reg val;
1035         int offset = kvmppc_get_vmx_word_offset(vcpu,
1036                         vcpu->arch.mmio_vmx_offset);
1037         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1038
1039         if (offset == -1)
1040                 return;
1041
1042         val.vval = VCPU_VSX_VR(vcpu, index);
1043         val.vsx32val[offset] = gpr32;
1044         VCPU_VSX_VR(vcpu, index) = val.vval;
1045 }
1046
1047 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1048         u16 gpr16)
1049 {
1050         union kvmppc_one_reg val;
1051         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1052                         vcpu->arch.mmio_vmx_offset);
1053         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1054
1055         if (offset == -1)
1056                 return;
1057
1058         val.vval = VCPU_VSX_VR(vcpu, index);
1059         val.vsx16val[offset] = gpr16;
1060         VCPU_VSX_VR(vcpu, index) = val.vval;
1061 }
1062
1063 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1064         u8 gpr8)
1065 {
1066         union kvmppc_one_reg val;
1067         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1068                         vcpu->arch.mmio_vmx_offset);
1069         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1070
1071         if (offset == -1)
1072                 return;
1073
1074         val.vval = VCPU_VSX_VR(vcpu, index);
1075         val.vsx8val[offset] = gpr8;
1076         VCPU_VSX_VR(vcpu, index) = val.vval;
1077 }
1078 #endif /* CONFIG_ALTIVEC */
1079
1080 #ifdef CONFIG_PPC_FPU
1081 static inline u64 sp_to_dp(u32 fprs)
1082 {
1083         u64 fprd;
1084
1085         preempt_disable();
1086         enable_kernel_fp();
1087         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1088              : "fr0");
1089         preempt_enable();
1090         return fprd;
1091 }
1092
1093 static inline u32 dp_to_sp(u64 fprd)
1094 {
1095         u32 fprs;
1096
1097         preempt_disable();
1098         enable_kernel_fp();
1099         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1100              : "fr0");
1101         preempt_enable();
1102         return fprs;
1103 }
1104
1105 #else
1106 #define sp_to_dp(x)     (x)
1107 #define dp_to_sp(x)     (x)
1108 #endif /* CONFIG_PPC_FPU */
1109
1110 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
1111 {
1112         struct kvm_run *run = vcpu->run;
1113         u64 gpr;
1114
1115         if (run->mmio.len > sizeof(gpr)) {
1116                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1117                 return;
1118         }
1119
1120         if (!vcpu->arch.mmio_host_swabbed) {
1121                 switch (run->mmio.len) {
1122                 case 8: gpr = *(u64 *)run->mmio.data; break;
1123                 case 4: gpr = *(u32 *)run->mmio.data; break;
1124                 case 2: gpr = *(u16 *)run->mmio.data; break;
1125                 case 1: gpr = *(u8 *)run->mmio.data; break;
1126                 }
1127         } else {
1128                 switch (run->mmio.len) {
1129                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1130                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1131                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1132                 case 1: gpr = *(u8 *)run->mmio.data; break;
1133                 }
1134         }
1135
1136         /* conversion between single and double precision */
1137         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1138                 gpr = sp_to_dp(gpr);
1139
1140         if (vcpu->arch.mmio_sign_extend) {
1141                 switch (run->mmio.len) {
1142 #ifdef CONFIG_PPC64
1143                 case 4:
1144                         gpr = (s64)(s32)gpr;
1145                         break;
1146 #endif
1147                 case 2:
1148                         gpr = (s64)(s16)gpr;
1149                         break;
1150                 case 1:
1151                         gpr = (s64)(s8)gpr;
1152                         break;
1153                 }
1154         }
1155
1156         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1157         case KVM_MMIO_REG_GPR:
1158                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1159                 break;
1160         case KVM_MMIO_REG_FPR:
1161                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1162                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1163
1164                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1165                 break;
1166 #ifdef CONFIG_PPC_BOOK3S
1167         case KVM_MMIO_REG_QPR:
1168                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1169                 break;
1170         case KVM_MMIO_REG_FQPR:
1171                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1172                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1173                 break;
1174 #endif
1175 #ifdef CONFIG_VSX
1176         case KVM_MMIO_REG_VSX:
1177                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1178                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1179
1180                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1181                         kvmppc_set_vsr_dword(vcpu, gpr);
1182                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1183                         kvmppc_set_vsr_word(vcpu, gpr);
1184                 else if (vcpu->arch.mmio_copy_type ==
1185                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1186                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1187                 else if (vcpu->arch.mmio_copy_type ==
1188                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1189                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1190                 break;
1191 #endif
1192 #ifdef CONFIG_ALTIVEC
1193         case KVM_MMIO_REG_VMX:
1194                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1195                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1196
1197                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1198                         kvmppc_set_vmx_dword(vcpu, gpr);
1199                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1200                         kvmppc_set_vmx_word(vcpu, gpr);
1201                 else if (vcpu->arch.mmio_copy_type ==
1202                                 KVMPPC_VMX_COPY_HWORD)
1203                         kvmppc_set_vmx_hword(vcpu, gpr);
1204                 else if (vcpu->arch.mmio_copy_type ==
1205                                 KVMPPC_VMX_COPY_BYTE)
1206                         kvmppc_set_vmx_byte(vcpu, gpr);
1207                 break;
1208 #endif
1209 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1210         case KVM_MMIO_REG_NESTED_GPR:
1211                 if (kvmppc_need_byteswap(vcpu))
1212                         gpr = swab64(gpr);
1213                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1214                                      sizeof(gpr));
1215                 break;
1216 #endif
1217         default:
1218                 BUG();
1219         }
1220 }
1221
1222 static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
1223                                 unsigned int rt, unsigned int bytes,
1224                                 int is_default_endian, int sign_extend)
1225 {
1226         struct kvm_run *run = vcpu->run;
1227         int idx, ret;
1228         bool host_swabbed;
1229
1230         /* Pity C doesn't have a logical XOR operator */
1231         if (kvmppc_need_byteswap(vcpu)) {
1232                 host_swabbed = is_default_endian;
1233         } else {
1234                 host_swabbed = !is_default_endian;
1235         }
1236
1237         if (bytes > sizeof(run->mmio.data)) {
1238                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1239                        run->mmio.len);
1240         }
1241
1242         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1243         run->mmio.len = bytes;
1244         run->mmio.is_write = 0;
1245
1246         vcpu->arch.io_gpr = rt;
1247         vcpu->arch.mmio_host_swabbed = host_swabbed;
1248         vcpu->mmio_needed = 1;
1249         vcpu->mmio_is_write = 0;
1250         vcpu->arch.mmio_sign_extend = sign_extend;
1251
1252         idx = srcu_read_lock(&vcpu->kvm->srcu);
1253
1254         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1255                               bytes, &run->mmio.data);
1256
1257         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1258
1259         if (!ret) {
1260                 kvmppc_complete_mmio_load(vcpu);
1261                 vcpu->mmio_needed = 0;
1262                 return EMULATE_DONE;
1263         }
1264
1265         return EMULATE_DO_MMIO;
1266 }
1267
1268 int kvmppc_handle_load(struct kvm_vcpu *vcpu,
1269                        unsigned int rt, unsigned int bytes,
1270                        int is_default_endian)
1271 {
1272         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
1273 }
1274 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1275
1276 /* Same as above, but sign extends */
1277 int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
1278                         unsigned int rt, unsigned int bytes,
1279                         int is_default_endian)
1280 {
1281         return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
1282 }
1283
1284 #ifdef CONFIG_VSX
1285 int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
1286                         unsigned int rt, unsigned int bytes,
1287                         int is_default_endian, int mmio_sign_extend)
1288 {
1289         enum emulation_result emulated = EMULATE_DONE;
1290
1291         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1292         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1293                 return EMULATE_FAIL;
1294
1295         while (vcpu->arch.mmio_vsx_copy_nums) {
1296                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1297                         is_default_endian, mmio_sign_extend);
1298
1299                 if (emulated != EMULATE_DONE)
1300                         break;
1301
1302                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1303
1304                 vcpu->arch.mmio_vsx_copy_nums--;
1305                 vcpu->arch.mmio_vsx_offset++;
1306         }
1307         return emulated;
1308 }
1309 #endif /* CONFIG_VSX */
1310
1311 int kvmppc_handle_store(struct kvm_vcpu *vcpu,
1312                         u64 val, unsigned int bytes, int is_default_endian)
1313 {
1314         struct kvm_run *run = vcpu->run;
1315         void *data = run->mmio.data;
1316         int idx, ret;
1317         bool host_swabbed;
1318
1319         /* Pity C doesn't have a logical XOR operator */
1320         if (kvmppc_need_byteswap(vcpu)) {
1321                 host_swabbed = is_default_endian;
1322         } else {
1323                 host_swabbed = !is_default_endian;
1324         }
1325
1326         if (bytes > sizeof(run->mmio.data)) {
1327                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1328                        run->mmio.len);
1329         }
1330
1331         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1332         run->mmio.len = bytes;
1333         run->mmio.is_write = 1;
1334         vcpu->mmio_needed = 1;
1335         vcpu->mmio_is_write = 1;
1336
1337         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1338                 val = dp_to_sp(val);
1339
1340         /* Store the value at the lowest bytes in 'data'. */
1341         if (!host_swabbed) {
1342                 switch (bytes) {
1343                 case 8: *(u64 *)data = val; break;
1344                 case 4: *(u32 *)data = val; break;
1345                 case 2: *(u16 *)data = val; break;
1346                 case 1: *(u8  *)data = val; break;
1347                 }
1348         } else {
1349                 switch (bytes) {
1350                 case 8: *(u64 *)data = swab64(val); break;
1351                 case 4: *(u32 *)data = swab32(val); break;
1352                 case 2: *(u16 *)data = swab16(val); break;
1353                 case 1: *(u8  *)data = val; break;
1354                 }
1355         }
1356
1357         idx = srcu_read_lock(&vcpu->kvm->srcu);
1358
1359         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1360                                bytes, &run->mmio.data);
1361
1362         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1363
1364         if (!ret) {
1365                 vcpu->mmio_needed = 0;
1366                 return EMULATE_DONE;
1367         }
1368
1369         return EMULATE_DO_MMIO;
1370 }
1371 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1372
1373 #ifdef CONFIG_VSX
1374 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1375 {
1376         u32 dword_offset, word_offset;
1377         union kvmppc_one_reg reg;
1378         int vsx_offset = 0;
1379         int copy_type = vcpu->arch.mmio_copy_type;
1380         int result = 0;
1381
1382         switch (copy_type) {
1383         case KVMPPC_VSX_COPY_DWORD:
1384                 vsx_offset =
1385                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1386
1387                 if (vsx_offset == -1) {
1388                         result = -1;
1389                         break;
1390                 }
1391
1392                 if (rs < 32) {
1393                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1394                 } else {
1395                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1396                         *val = reg.vsxval[vsx_offset];
1397                 }
1398                 break;
1399
1400         case KVMPPC_VSX_COPY_WORD:
1401                 vsx_offset =
1402                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1403
1404                 if (vsx_offset == -1) {
1405                         result = -1;
1406                         break;
1407                 }
1408
1409                 if (rs < 32) {
1410                         dword_offset = vsx_offset / 2;
1411                         word_offset = vsx_offset % 2;
1412                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1413                         *val = reg.vsx32val[word_offset];
1414                 } else {
1415                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1416                         *val = reg.vsx32val[vsx_offset];
1417                 }
1418                 break;
1419
1420         default:
1421                 result = -1;
1422                 break;
1423         }
1424
1425         return result;
1426 }
1427
1428 int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
1429                         int rs, unsigned int bytes, int is_default_endian)
1430 {
1431         u64 val;
1432         enum emulation_result emulated = EMULATE_DONE;
1433
1434         vcpu->arch.io_gpr = rs;
1435
1436         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1437         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1438                 return EMULATE_FAIL;
1439
1440         while (vcpu->arch.mmio_vsx_copy_nums) {
1441                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1442                         return EMULATE_FAIL;
1443
1444                 emulated = kvmppc_handle_store(vcpu,
1445                          val, bytes, is_default_endian);
1446
1447                 if (emulated != EMULATE_DONE)
1448                         break;
1449
1450                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1451
1452                 vcpu->arch.mmio_vsx_copy_nums--;
1453                 vcpu->arch.mmio_vsx_offset++;
1454         }
1455
1456         return emulated;
1457 }
1458
1459 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
1460 {
1461         struct kvm_run *run = vcpu->run;
1462         enum emulation_result emulated = EMULATE_FAIL;
1463         int r;
1464
1465         vcpu->arch.paddr_accessed += run->mmio.len;
1466
1467         if (!vcpu->mmio_is_write) {
1468                 emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
1469                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1470         } else {
1471                 emulated = kvmppc_handle_vsx_store(vcpu,
1472                          vcpu->arch.io_gpr, run->mmio.len, 1);
1473         }
1474
1475         switch (emulated) {
1476         case EMULATE_DO_MMIO:
1477                 run->exit_reason = KVM_EXIT_MMIO;
1478                 r = RESUME_HOST;
1479                 break;
1480         case EMULATE_FAIL:
1481                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1482                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1483                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1484                 r = RESUME_HOST;
1485                 break;
1486         default:
1487                 r = RESUME_GUEST;
1488                 break;
1489         }
1490         return r;
1491 }
1492 #endif /* CONFIG_VSX */
1493
1494 #ifdef CONFIG_ALTIVEC
1495 int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
1496                 unsigned int rt, unsigned int bytes, int is_default_endian)
1497 {
1498         enum emulation_result emulated = EMULATE_DONE;
1499
1500         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1501                 return EMULATE_FAIL;
1502
1503         while (vcpu->arch.mmio_vmx_copy_nums) {
1504                 emulated = __kvmppc_handle_load(vcpu, rt, bytes,
1505                                 is_default_endian, 0);
1506
1507                 if (emulated != EMULATE_DONE)
1508                         break;
1509
1510                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1511                 vcpu->arch.mmio_vmx_copy_nums--;
1512                 vcpu->arch.mmio_vmx_offset++;
1513         }
1514
1515         return emulated;
1516 }
1517
1518 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1519 {
1520         union kvmppc_one_reg reg;
1521         int vmx_offset = 0;
1522         int result = 0;
1523
1524         vmx_offset =
1525                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1526
1527         if (vmx_offset == -1)
1528                 return -1;
1529
1530         reg.vval = VCPU_VSX_VR(vcpu, index);
1531         *val = reg.vsxval[vmx_offset];
1532
1533         return result;
1534 }
1535
1536 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1537 {
1538         union kvmppc_one_reg reg;
1539         int vmx_offset = 0;
1540         int result = 0;
1541
1542         vmx_offset =
1543                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1544
1545         if (vmx_offset == -1)
1546                 return -1;
1547
1548         reg.vval = VCPU_VSX_VR(vcpu, index);
1549         *val = reg.vsx32val[vmx_offset];
1550
1551         return result;
1552 }
1553
1554 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1555 {
1556         union kvmppc_one_reg reg;
1557         int vmx_offset = 0;
1558         int result = 0;
1559
1560         vmx_offset =
1561                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1562
1563         if (vmx_offset == -1)
1564                 return -1;
1565
1566         reg.vval = VCPU_VSX_VR(vcpu, index);
1567         *val = reg.vsx16val[vmx_offset];
1568
1569         return result;
1570 }
1571
1572 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1573 {
1574         union kvmppc_one_reg reg;
1575         int vmx_offset = 0;
1576         int result = 0;
1577
1578         vmx_offset =
1579                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1580
1581         if (vmx_offset == -1)
1582                 return -1;
1583
1584         reg.vval = VCPU_VSX_VR(vcpu, index);
1585         *val = reg.vsx8val[vmx_offset];
1586
1587         return result;
1588 }
1589
1590 int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
1591                 unsigned int rs, unsigned int bytes, int is_default_endian)
1592 {
1593         u64 val = 0;
1594         unsigned int index = rs & KVM_MMIO_REG_MASK;
1595         enum emulation_result emulated = EMULATE_DONE;
1596
1597         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1598                 return EMULATE_FAIL;
1599
1600         vcpu->arch.io_gpr = rs;
1601
1602         while (vcpu->arch.mmio_vmx_copy_nums) {
1603                 switch (vcpu->arch.mmio_copy_type) {
1604                 case KVMPPC_VMX_COPY_DWORD:
1605                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1606                                 return EMULATE_FAIL;
1607
1608                         break;
1609                 case KVMPPC_VMX_COPY_WORD:
1610                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1611                                 return EMULATE_FAIL;
1612                         break;
1613                 case KVMPPC_VMX_COPY_HWORD:
1614                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1615                                 return EMULATE_FAIL;
1616                         break;
1617                 case KVMPPC_VMX_COPY_BYTE:
1618                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1619                                 return EMULATE_FAIL;
1620                         break;
1621                 default:
1622                         return EMULATE_FAIL;
1623                 }
1624
1625                 emulated = kvmppc_handle_store(vcpu, val, bytes,
1626                                 is_default_endian);
1627                 if (emulated != EMULATE_DONE)
1628                         break;
1629
1630                 vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
1631                 vcpu->arch.mmio_vmx_copy_nums--;
1632                 vcpu->arch.mmio_vmx_offset++;
1633         }
1634
1635         return emulated;
1636 }
1637
1638 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
1639 {
1640         struct kvm_run *run = vcpu->run;
1641         enum emulation_result emulated = EMULATE_FAIL;
1642         int r;
1643
1644         vcpu->arch.paddr_accessed += run->mmio.len;
1645
1646         if (!vcpu->mmio_is_write) {
1647                 emulated = kvmppc_handle_vmx_load(vcpu,
1648                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1649         } else {
1650                 emulated = kvmppc_handle_vmx_store(vcpu,
1651                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1652         }
1653
1654         switch (emulated) {
1655         case EMULATE_DO_MMIO:
1656                 run->exit_reason = KVM_EXIT_MMIO;
1657                 r = RESUME_HOST;
1658                 break;
1659         case EMULATE_FAIL:
1660                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1661                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1662                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1663                 r = RESUME_HOST;
1664                 break;
1665         default:
1666                 r = RESUME_GUEST;
1667                 break;
1668         }
1669         return r;
1670 }
1671 #endif /* CONFIG_ALTIVEC */
1672
1673 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1674 {
1675         int r = 0;
1676         union kvmppc_one_reg val;
1677         int size;
1678
1679         size = one_reg_size(reg->id);
1680         if (size > sizeof(val))
1681                 return -EINVAL;
1682
1683         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1684         if (r == -EINVAL) {
1685                 r = 0;
1686                 switch (reg->id) {
1687 #ifdef CONFIG_ALTIVEC
1688                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1689                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1690                                 r = -ENXIO;
1691                                 break;
1692                         }
1693                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1694                         break;
1695                 case KVM_REG_PPC_VSCR:
1696                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1697                                 r = -ENXIO;
1698                                 break;
1699                         }
1700                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1701                         break;
1702                 case KVM_REG_PPC_VRSAVE:
1703                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1704                         break;
1705 #endif /* CONFIG_ALTIVEC */
1706                 default:
1707                         r = -EINVAL;
1708                         break;
1709                 }
1710         }
1711
1712         if (r)
1713                 return r;
1714
1715         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1716                 r = -EFAULT;
1717
1718         return r;
1719 }
1720
1721 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1722 {
1723         int r;
1724         union kvmppc_one_reg val;
1725         int size;
1726
1727         size = one_reg_size(reg->id);
1728         if (size > sizeof(val))
1729                 return -EINVAL;
1730
1731         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1732                 return -EFAULT;
1733
1734         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1735         if (r == -EINVAL) {
1736                 r = 0;
1737                 switch (reg->id) {
1738 #ifdef CONFIG_ALTIVEC
1739                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1740                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1741                                 r = -ENXIO;
1742                                 break;
1743                         }
1744                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1745                         break;
1746                 case KVM_REG_PPC_VSCR:
1747                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1748                                 r = -ENXIO;
1749                                 break;
1750                         }
1751                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1752                         break;
1753                 case KVM_REG_PPC_VRSAVE:
1754                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1755                                 r = -ENXIO;
1756                                 break;
1757                         }
1758                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1759                         break;
1760 #endif /* CONFIG_ALTIVEC */
1761                 default:
1762                         r = -EINVAL;
1763                         break;
1764                 }
1765         }
1766
1767         return r;
1768 }
1769
1770 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1771 {
1772         struct kvm_run *run = vcpu->run;
1773         int r;
1774
1775         vcpu_load(vcpu);
1776
1777         if (vcpu->mmio_needed) {
1778                 vcpu->mmio_needed = 0;
1779                 if (!vcpu->mmio_is_write)
1780                         kvmppc_complete_mmio_load(vcpu);
1781 #ifdef CONFIG_VSX
1782                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1783                         vcpu->arch.mmio_vsx_copy_nums--;
1784                         vcpu->arch.mmio_vsx_offset++;
1785                 }
1786
1787                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1788                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
1789                         if (r == RESUME_HOST) {
1790                                 vcpu->mmio_needed = 1;
1791                                 goto out;
1792                         }
1793                 }
1794 #endif
1795 #ifdef CONFIG_ALTIVEC
1796                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1797                         vcpu->arch.mmio_vmx_copy_nums--;
1798                         vcpu->arch.mmio_vmx_offset++;
1799                 }
1800
1801                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1802                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
1803                         if (r == RESUME_HOST) {
1804                                 vcpu->mmio_needed = 1;
1805                                 goto out;
1806                         }
1807                 }
1808 #endif
1809         } else if (vcpu->arch.osi_needed) {
1810                 u64 *gprs = run->osi.gprs;
1811                 int i;
1812
1813                 for (i = 0; i < 32; i++)
1814                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1815                 vcpu->arch.osi_needed = 0;
1816         } else if (vcpu->arch.hcall_needed) {
1817                 int i;
1818
1819                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1820                 for (i = 0; i < 9; ++i)
1821                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1822                 vcpu->arch.hcall_needed = 0;
1823 #ifdef CONFIG_BOOKE
1824         } else if (vcpu->arch.epr_needed) {
1825                 kvmppc_set_epr(vcpu, run->epr.epr);
1826                 vcpu->arch.epr_needed = 0;
1827 #endif
1828         }
1829
1830         kvm_sigset_activate(vcpu);
1831
1832         if (run->immediate_exit)
1833                 r = -EINTR;
1834         else
1835                 r = kvmppc_vcpu_run(vcpu);
1836
1837         kvm_sigset_deactivate(vcpu);
1838
1839 #ifdef CONFIG_ALTIVEC
1840 out:
1841 #endif
1842         vcpu_put(vcpu);
1843         return r;
1844 }
1845
1846 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1847 {
1848         if (irq->irq == KVM_INTERRUPT_UNSET) {
1849                 kvmppc_core_dequeue_external(vcpu);
1850                 return 0;
1851         }
1852
1853         kvmppc_core_queue_external(vcpu, irq);
1854
1855         kvm_vcpu_kick(vcpu);
1856
1857         return 0;
1858 }
1859
1860 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1861                                      struct kvm_enable_cap *cap)
1862 {
1863         int r;
1864
1865         if (cap->flags)
1866                 return -EINVAL;
1867
1868         switch (cap->cap) {
1869         case KVM_CAP_PPC_OSI:
1870                 r = 0;
1871                 vcpu->arch.osi_enabled = true;
1872                 break;
1873         case KVM_CAP_PPC_PAPR:
1874                 r = 0;
1875                 vcpu->arch.papr_enabled = true;
1876                 break;
1877         case KVM_CAP_PPC_EPR:
1878                 r = 0;
1879                 if (cap->args[0])
1880                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1881                 else
1882                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1883                 break;
1884 #ifdef CONFIG_BOOKE
1885         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1886                 r = 0;
1887                 vcpu->arch.watchdog_enabled = true;
1888                 break;
1889 #endif
1890 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1891         case KVM_CAP_SW_TLB: {
1892                 struct kvm_config_tlb cfg;
1893                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1894
1895                 r = -EFAULT;
1896                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1897                         break;
1898
1899                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1900                 break;
1901         }
1902 #endif
1903 #ifdef CONFIG_KVM_MPIC
1904         case KVM_CAP_IRQ_MPIC: {
1905                 struct fd f;
1906                 struct kvm_device *dev;
1907
1908                 r = -EBADF;
1909                 f = fdget(cap->args[0]);
1910                 if (!f.file)
1911                         break;
1912
1913                 r = -EPERM;
1914                 dev = kvm_device_from_filp(f.file);
1915                 if (dev)
1916                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1917
1918                 fdput(f);
1919                 break;
1920         }
1921 #endif
1922 #ifdef CONFIG_KVM_XICS
1923         case KVM_CAP_IRQ_XICS: {
1924                 struct fd f;
1925                 struct kvm_device *dev;
1926
1927                 r = -EBADF;
1928                 f = fdget(cap->args[0]);
1929                 if (!f.file)
1930                         break;
1931
1932                 r = -EPERM;
1933                 dev = kvm_device_from_filp(f.file);
1934                 if (dev) {
1935                         if (xics_on_xive())
1936                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1937                         else
1938                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1939                 }
1940
1941                 fdput(f);
1942                 break;
1943         }
1944 #endif /* CONFIG_KVM_XICS */
1945 #ifdef CONFIG_KVM_XIVE
1946         case KVM_CAP_PPC_IRQ_XIVE: {
1947                 struct fd f;
1948                 struct kvm_device *dev;
1949
1950                 r = -EBADF;
1951                 f = fdget(cap->args[0]);
1952                 if (!f.file)
1953                         break;
1954
1955                 r = -ENXIO;
1956                 if (!xive_enabled())
1957                         break;
1958
1959                 r = -EPERM;
1960                 dev = kvm_device_from_filp(f.file);
1961                 if (dev)
1962                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1963                                                             cap->args[1]);
1964
1965                 fdput(f);
1966                 break;
1967         }
1968 #endif /* CONFIG_KVM_XIVE */
1969 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1970         case KVM_CAP_PPC_FWNMI:
1971                 r = -EINVAL;
1972                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1973                         break;
1974                 r = 0;
1975                 vcpu->kvm->arch.fwnmi_enabled = true;
1976                 break;
1977 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1978         default:
1979                 r = -EINVAL;
1980                 break;
1981         }
1982
1983         if (!r)
1984                 r = kvmppc_sanity_check(vcpu);
1985
1986         return r;
1987 }
1988
1989 bool kvm_arch_intc_initialized(struct kvm *kvm)
1990 {
1991 #ifdef CONFIG_KVM_MPIC
1992         if (kvm->arch.mpic)
1993                 return true;
1994 #endif
1995 #ifdef CONFIG_KVM_XICS
1996         if (kvm->arch.xics || kvm->arch.xive)
1997                 return true;
1998 #endif
1999         return false;
2000 }
2001
2002 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2003                                     struct kvm_mp_state *mp_state)
2004 {
2005         return -EINVAL;
2006 }
2007
2008 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2009                                     struct kvm_mp_state *mp_state)
2010 {
2011         return -EINVAL;
2012 }
2013
2014 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2015                                unsigned int ioctl, unsigned long arg)
2016 {
2017         struct kvm_vcpu *vcpu = filp->private_data;
2018         void __user *argp = (void __user *)arg;
2019
2020         if (ioctl == KVM_INTERRUPT) {
2021                 struct kvm_interrupt irq;
2022                 if (copy_from_user(&irq, argp, sizeof(irq)))
2023                         return -EFAULT;
2024                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2025         }
2026         return -ENOIOCTLCMD;
2027 }
2028
2029 long kvm_arch_vcpu_ioctl(struct file *filp,
2030                          unsigned int ioctl, unsigned long arg)
2031 {
2032         struct kvm_vcpu *vcpu = filp->private_data;
2033         void __user *argp = (void __user *)arg;
2034         long r;
2035
2036         switch (ioctl) {
2037         case KVM_ENABLE_CAP:
2038         {
2039                 struct kvm_enable_cap cap;
2040                 r = -EFAULT;
2041                 vcpu_load(vcpu);
2042                 if (copy_from_user(&cap, argp, sizeof(cap)))
2043                         goto out;
2044                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2045                 vcpu_put(vcpu);
2046                 break;
2047         }
2048
2049         case KVM_SET_ONE_REG:
2050         case KVM_GET_ONE_REG:
2051         {
2052                 struct kvm_one_reg reg;
2053                 r = -EFAULT;
2054                 if (copy_from_user(&reg, argp, sizeof(reg)))
2055                         goto out;
2056                 if (ioctl == KVM_SET_ONE_REG)
2057                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2058                 else
2059                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2060                 break;
2061         }
2062
2063 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2064         case KVM_DIRTY_TLB: {
2065                 struct kvm_dirty_tlb dirty;
2066                 r = -EFAULT;
2067                 vcpu_load(vcpu);
2068                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2069                         goto out;
2070                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2071                 vcpu_put(vcpu);
2072                 break;
2073         }
2074 #endif
2075         default:
2076                 r = -EINVAL;
2077         }
2078
2079 out:
2080         return r;
2081 }
2082
2083 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2084 {
2085         return VM_FAULT_SIGBUS;
2086 }
2087
2088 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2089 {
2090         u32 inst_nop = 0x60000000;
2091 #ifdef CONFIG_KVM_BOOKE_HV
2092         u32 inst_sc1 = 0x44000022;
2093         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2094         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2095         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2096         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2097 #else
2098         u32 inst_lis = 0x3c000000;
2099         u32 inst_ori = 0x60000000;
2100         u32 inst_sc = 0x44000002;
2101         u32 inst_imm_mask = 0xffff;
2102
2103         /*
2104          * The hypercall to get into KVM from within guest context is as
2105          * follows:
2106          *
2107          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2108          *    ori r0, KVM_SC_MAGIC_R0@l
2109          *    sc
2110          *    nop
2111          */
2112         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2113         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2114         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2115         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2116 #endif
2117
2118         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2119
2120         return 0;
2121 }
2122
2123 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2124                           bool line_status)
2125 {
2126         if (!irqchip_in_kernel(kvm))
2127                 return -ENXIO;
2128
2129         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2130                                         irq_event->irq, irq_event->level,
2131                                         line_status);
2132         return 0;
2133 }
2134
2135
2136 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2137                             struct kvm_enable_cap *cap)
2138 {
2139         int r;
2140
2141         if (cap->flags)
2142                 return -EINVAL;
2143
2144         switch (cap->cap) {
2145 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2146         case KVM_CAP_PPC_ENABLE_HCALL: {
2147                 unsigned long hcall = cap->args[0];
2148
2149                 r = -EINVAL;
2150                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2151                     cap->args[1] > 1)
2152                         break;
2153                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2154                         break;
2155                 if (cap->args[1])
2156                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2157                 else
2158                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2159                 r = 0;
2160                 break;
2161         }
2162         case KVM_CAP_PPC_SMT: {
2163                 unsigned long mode = cap->args[0];
2164                 unsigned long flags = cap->args[1];
2165
2166                 r = -EINVAL;
2167                 if (kvm->arch.kvm_ops->set_smt_mode)
2168                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2169                 break;
2170         }
2171
2172         case KVM_CAP_PPC_NESTED_HV:
2173                 r = -EINVAL;
2174                 if (!is_kvmppc_hv_enabled(kvm) ||
2175                     !kvm->arch.kvm_ops->enable_nested)
2176                         break;
2177                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2178                 break;
2179 #endif
2180 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2181         case KVM_CAP_PPC_SECURE_GUEST:
2182                 r = -EINVAL;
2183                 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2184                         break;
2185                 r = kvm->arch.kvm_ops->enable_svm(kvm);
2186                 break;
2187 #endif
2188         default:
2189                 r = -EINVAL;
2190                 break;
2191         }
2192
2193         return r;
2194 }
2195
2196 #ifdef CONFIG_PPC_BOOK3S_64
2197 /*
2198  * These functions check whether the underlying hardware is safe
2199  * against attacks based on observing the effects of speculatively
2200  * executed instructions, and whether it supplies instructions for
2201  * use in workarounds.  The information comes from firmware, either
2202  * via the device tree on powernv platforms or from an hcall on
2203  * pseries platforms.
2204  */
2205 #ifdef CONFIG_PPC_PSERIES
2206 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2207 {
2208         struct h_cpu_char_result c;
2209         unsigned long rc;
2210
2211         if (!machine_is(pseries))
2212                 return -ENOTTY;
2213
2214         rc = plpar_get_cpu_characteristics(&c);
2215         if (rc == H_SUCCESS) {
2216                 cp->character = c.character;
2217                 cp->behaviour = c.behaviour;
2218                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2219                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2220                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2221                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2222                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2223                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2224                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2225                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2226                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2227                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2228                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2229                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2230                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2231         }
2232         return 0;
2233 }
2234 #else
2235 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2236 {
2237         return -ENOTTY;
2238 }
2239 #endif
2240
2241 static inline bool have_fw_feat(struct device_node *fw_features,
2242                                 const char *state, const char *name)
2243 {
2244         struct device_node *np;
2245         bool r = false;
2246
2247         np = of_get_child_by_name(fw_features, name);
2248         if (np) {
2249                 r = of_property_read_bool(np, state);
2250                 of_node_put(np);
2251         }
2252         return r;
2253 }
2254
2255 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2256 {
2257         struct device_node *np, *fw_features;
2258         int r;
2259
2260         memset(cp, 0, sizeof(*cp));
2261         r = pseries_get_cpu_char(cp);
2262         if (r != -ENOTTY)
2263                 return r;
2264
2265         np = of_find_node_by_name(NULL, "ibm,opal");
2266         if (np) {
2267                 fw_features = of_get_child_by_name(np, "fw-features");
2268                 of_node_put(np);
2269                 if (!fw_features)
2270                         return 0;
2271                 if (have_fw_feat(fw_features, "enabled",
2272                                  "inst-spec-barrier-ori31,31,0"))
2273                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2274                 if (have_fw_feat(fw_features, "enabled",
2275                                  "fw-bcctrl-serialized"))
2276                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2277                 if (have_fw_feat(fw_features, "enabled",
2278                                  "inst-l1d-flush-ori30,30,0"))
2279                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2280                 if (have_fw_feat(fw_features, "enabled",
2281                                  "inst-l1d-flush-trig2"))
2282                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2283                 if (have_fw_feat(fw_features, "enabled",
2284                                  "fw-l1d-thread-split"))
2285                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2286                 if (have_fw_feat(fw_features, "enabled",
2287                                  "fw-count-cache-disabled"))
2288                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2289                 if (have_fw_feat(fw_features, "enabled",
2290                                  "fw-count-cache-flush-bcctr2,0,0"))
2291                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2292                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2293                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2294                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2295                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2296                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2297                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2298                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2299
2300                 if (have_fw_feat(fw_features, "enabled",
2301                                  "speculation-policy-favor-security"))
2302                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2303                 if (!have_fw_feat(fw_features, "disabled",
2304                                   "needs-l1d-flush-msr-pr-0-to-1"))
2305                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2306                 if (!have_fw_feat(fw_features, "disabled",
2307                                   "needs-spec-barrier-for-bound-checks"))
2308                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2309                 if (have_fw_feat(fw_features, "enabled",
2310                                  "needs-count-cache-flush-on-context-switch"))
2311                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2312                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2313                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2314                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2315                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2316
2317                 of_node_put(fw_features);
2318         }
2319
2320         return 0;
2321 }
2322 #endif
2323
2324 long kvm_arch_vm_ioctl(struct file *filp,
2325                        unsigned int ioctl, unsigned long arg)
2326 {
2327         struct kvm *kvm __maybe_unused = filp->private_data;
2328         void __user *argp = (void __user *)arg;
2329         long r;
2330
2331         switch (ioctl) {
2332         case KVM_PPC_GET_PVINFO: {
2333                 struct kvm_ppc_pvinfo pvinfo;
2334                 memset(&pvinfo, 0, sizeof(pvinfo));
2335                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2336                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2337                         r = -EFAULT;
2338                         goto out;
2339                 }
2340
2341                 break;
2342         }
2343 #ifdef CONFIG_SPAPR_TCE_IOMMU
2344         case KVM_CREATE_SPAPR_TCE_64: {
2345                 struct kvm_create_spapr_tce_64 create_tce_64;
2346
2347                 r = -EFAULT;
2348                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2349                         goto out;
2350                 if (create_tce_64.flags) {
2351                         r = -EINVAL;
2352                         goto out;
2353                 }
2354                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2355                 goto out;
2356         }
2357         case KVM_CREATE_SPAPR_TCE: {
2358                 struct kvm_create_spapr_tce create_tce;
2359                 struct kvm_create_spapr_tce_64 create_tce_64;
2360
2361                 r = -EFAULT;
2362                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2363                         goto out;
2364
2365                 create_tce_64.liobn = create_tce.liobn;
2366                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2367                 create_tce_64.offset = 0;
2368                 create_tce_64.size = create_tce.window_size >>
2369                                 IOMMU_PAGE_SHIFT_4K;
2370                 create_tce_64.flags = 0;
2371                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2372                 goto out;
2373         }
2374 #endif
2375 #ifdef CONFIG_PPC_BOOK3S_64
2376         case KVM_PPC_GET_SMMU_INFO: {
2377                 struct kvm_ppc_smmu_info info;
2378                 struct kvm *kvm = filp->private_data;
2379
2380                 memset(&info, 0, sizeof(info));
2381                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2382                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2383                         r = -EFAULT;
2384                 break;
2385         }
2386         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2387                 struct kvm *kvm = filp->private_data;
2388
2389                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2390                 break;
2391         }
2392         case KVM_PPC_CONFIGURE_V3_MMU: {
2393                 struct kvm *kvm = filp->private_data;
2394                 struct kvm_ppc_mmuv3_cfg cfg;
2395
2396                 r = -EINVAL;
2397                 if (!kvm->arch.kvm_ops->configure_mmu)
2398                         goto out;
2399                 r = -EFAULT;
2400                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2401                         goto out;
2402                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2403                 break;
2404         }
2405         case KVM_PPC_GET_RMMU_INFO: {
2406                 struct kvm *kvm = filp->private_data;
2407                 struct kvm_ppc_rmmu_info info;
2408
2409                 r = -EINVAL;
2410                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2411                         goto out;
2412                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2413                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2414                         r = -EFAULT;
2415                 break;
2416         }
2417         case KVM_PPC_GET_CPU_CHAR: {
2418                 struct kvm_ppc_cpu_char cpuchar;
2419
2420                 r = kvmppc_get_cpu_char(&cpuchar);
2421                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2422                         r = -EFAULT;
2423                 break;
2424         }
2425         case KVM_PPC_SVM_OFF: {
2426                 struct kvm *kvm = filp->private_data;
2427
2428                 r = 0;
2429                 if (!kvm->arch.kvm_ops->svm_off)
2430                         goto out;
2431
2432                 r = kvm->arch.kvm_ops->svm_off(kvm);
2433                 break;
2434         }
2435         default: {
2436                 struct kvm *kvm = filp->private_data;
2437                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2438         }
2439 #else /* CONFIG_PPC_BOOK3S_64 */
2440         default:
2441                 r = -ENOTTY;
2442 #endif
2443         }
2444 out:
2445         return r;
2446 }
2447
2448 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2449 static unsigned long nr_lpids;
2450
2451 long kvmppc_alloc_lpid(void)
2452 {
2453         long lpid;
2454
2455         do {
2456                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2457                 if (lpid >= nr_lpids) {
2458                         pr_err("%s: No LPIDs free\n", __func__);
2459                         return -ENOMEM;
2460                 }
2461         } while (test_and_set_bit(lpid, lpid_inuse));
2462
2463         return lpid;
2464 }
2465 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2466
2467 void kvmppc_claim_lpid(long lpid)
2468 {
2469         set_bit(lpid, lpid_inuse);
2470 }
2471 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2472
2473 void kvmppc_free_lpid(long lpid)
2474 {
2475         clear_bit(lpid, lpid_inuse);
2476 }
2477 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2478
2479 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2480 {
2481         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2482         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2483 }
2484 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2485
2486 int kvm_arch_init(void *opaque)
2487 {
2488         return 0;
2489 }
2490
2491 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);