Merge remote-tracking branch 'kvmarm/misc-5.5' into kvmarm/next
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34
35 #include "timing.h"
36 #include "irq.h"
37 #include "../mm/mmu_decl.h"
38
39 #define CREATE_TRACE_POINTS
40 #include "trace.h"
41
42 struct kvmppc_ops *kvmppc_hv_ops;
43 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
44 struct kvmppc_ops *kvmppc_pr_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
46
47
48 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
49 {
50         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
51 }
52
53 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
54 {
55         return kvm_arch_vcpu_runnable(vcpu);
56 }
57
58 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
59 {
60         return false;
61 }
62
63 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
64 {
65         return 1;
66 }
67
68 /*
69  * Common checks before entering the guest world.  Call with interrupts
70  * disabled.
71  *
72  * returns:
73  *
74  * == 1 if we're ready to go into guest state
75  * <= 0 if we need to go back to the host with return value
76  */
77 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
78 {
79         int r;
80
81         WARN_ON(irqs_disabled());
82         hard_irq_disable();
83
84         while (true) {
85                 if (need_resched()) {
86                         local_irq_enable();
87                         cond_resched();
88                         hard_irq_disable();
89                         continue;
90                 }
91
92                 if (signal_pending(current)) {
93                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
94                         vcpu->run->exit_reason = KVM_EXIT_INTR;
95                         r = -EINTR;
96                         break;
97                 }
98
99                 vcpu->mode = IN_GUEST_MODE;
100
101                 /*
102                  * Reading vcpu->requests must happen after setting vcpu->mode,
103                  * so we don't miss a request because the requester sees
104                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
105                  * before next entering the guest (and thus doesn't IPI).
106                  * This also orders the write to mode from any reads
107                  * to the page tables done while the VCPU is running.
108                  * Please see the comment in kvm_flush_remote_tlbs.
109                  */
110                 smp_mb();
111
112                 if (kvm_request_pending(vcpu)) {
113                         /* Make sure we process requests preemptable */
114                         local_irq_enable();
115                         trace_kvm_check_requests(vcpu);
116                         r = kvmppc_core_check_requests(vcpu);
117                         hard_irq_disable();
118                         if (r > 0)
119                                 continue;
120                         break;
121                 }
122
123                 if (kvmppc_core_prepare_to_enter(vcpu)) {
124                         /* interrupts got enabled in between, so we
125                            are back at square 1 */
126                         continue;
127                 }
128
129                 guest_enter_irqoff();
130                 return 1;
131         }
132
133         /* return to host */
134         local_irq_enable();
135         return r;
136 }
137 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
138
139 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
140 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
141 {
142         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
143         int i;
144
145         shared->sprg0 = swab64(shared->sprg0);
146         shared->sprg1 = swab64(shared->sprg1);
147         shared->sprg2 = swab64(shared->sprg2);
148         shared->sprg3 = swab64(shared->sprg3);
149         shared->srr0 = swab64(shared->srr0);
150         shared->srr1 = swab64(shared->srr1);
151         shared->dar = swab64(shared->dar);
152         shared->msr = swab64(shared->msr);
153         shared->dsisr = swab32(shared->dsisr);
154         shared->int_pending = swab32(shared->int_pending);
155         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
156                 shared->sr[i] = swab32(shared->sr[i]);
157 }
158 #endif
159
160 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
161 {
162         int nr = kvmppc_get_gpr(vcpu, 11);
163         int r;
164         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
165         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
166         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
167         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
168         unsigned long r2 = 0;
169
170         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
171                 /* 32 bit mode */
172                 param1 &= 0xffffffff;
173                 param2 &= 0xffffffff;
174                 param3 &= 0xffffffff;
175                 param4 &= 0xffffffff;
176         }
177
178         switch (nr) {
179         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
180         {
181 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
182                 /* Book3S can be little endian, find it out here */
183                 int shared_big_endian = true;
184                 if (vcpu->arch.intr_msr & MSR_LE)
185                         shared_big_endian = false;
186                 if (shared_big_endian != vcpu->arch.shared_big_endian)
187                         kvmppc_swab_shared(vcpu);
188                 vcpu->arch.shared_big_endian = shared_big_endian;
189 #endif
190
191                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
192                         /*
193                          * Older versions of the Linux magic page code had
194                          * a bug where they would map their trampoline code
195                          * NX. If that's the case, remove !PR NX capability.
196                          */
197                         vcpu->arch.disable_kernel_nx = true;
198                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
199                 }
200
201                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
202                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
203
204 #ifdef CONFIG_PPC_64K_PAGES
205                 /*
206                  * Make sure our 4k magic page is in the same window of a 64k
207                  * page within the guest and within the host's page.
208                  */
209                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
210                     ((ulong)vcpu->arch.shared & 0xf000)) {
211                         void *old_shared = vcpu->arch.shared;
212                         ulong shared = (ulong)vcpu->arch.shared;
213                         void *new_shared;
214
215                         shared &= PAGE_MASK;
216                         shared |= vcpu->arch.magic_page_pa & 0xf000;
217                         new_shared = (void*)shared;
218                         memcpy(new_shared, old_shared, 0x1000);
219                         vcpu->arch.shared = new_shared;
220                 }
221 #endif
222
223                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
224
225                 r = EV_SUCCESS;
226                 break;
227         }
228         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
229                 r = EV_SUCCESS;
230 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
231                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
232 #endif
233
234                 /* Second return value is in r4 */
235                 break;
236         case EV_HCALL_TOKEN(EV_IDLE):
237                 r = EV_SUCCESS;
238                 kvm_vcpu_block(vcpu);
239                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
240                 break;
241         default:
242                 r = EV_UNIMPLEMENTED;
243                 break;
244         }
245
246         kvmppc_set_gpr(vcpu, 4, r2);
247
248         return r;
249 }
250 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
251
252 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
253 {
254         int r = false;
255
256         /* We have to know what CPU to virtualize */
257         if (!vcpu->arch.pvr)
258                 goto out;
259
260         /* PAPR only works with book3s_64 */
261         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
262                 goto out;
263
264         /* HV KVM can only do PAPR mode for now */
265         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
266                 goto out;
267
268 #ifdef CONFIG_KVM_BOOKE_HV
269         if (!cpu_has_feature(CPU_FTR_EMB_HV))
270                 goto out;
271 #endif
272
273         r = true;
274
275 out:
276         vcpu->arch.sane = r;
277         return r ? 0 : -EINVAL;
278 }
279 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
280
281 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
282 {
283         enum emulation_result er;
284         int r;
285
286         er = kvmppc_emulate_loadstore(vcpu);
287         switch (er) {
288         case EMULATE_DONE:
289                 /* Future optimization: only reload non-volatiles if they were
290                  * actually modified. */
291                 r = RESUME_GUEST_NV;
292                 break;
293         case EMULATE_AGAIN:
294                 r = RESUME_GUEST;
295                 break;
296         case EMULATE_DO_MMIO:
297                 run->exit_reason = KVM_EXIT_MMIO;
298                 /* We must reload nonvolatiles because "update" load/store
299                  * instructions modify register state. */
300                 /* Future optimization: only reload non-volatiles if they were
301                  * actually modified. */
302                 r = RESUME_HOST_NV;
303                 break;
304         case EMULATE_FAIL:
305         {
306                 u32 last_inst;
307
308                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
309                 /* XXX Deliver Program interrupt to guest. */
310                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
311                 r = RESUME_HOST;
312                 break;
313         }
314         default:
315                 WARN_ON(1);
316                 r = RESUME_GUEST;
317         }
318
319         return r;
320 }
321 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
322
323 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
324               bool data)
325 {
326         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
327         struct kvmppc_pte pte;
328         int r = -EINVAL;
329
330         vcpu->stat.st++;
331
332         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
333                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
334                                                             size);
335
336         if ((!r) || (r == -EAGAIN))
337                 return r;
338
339         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340                          XLATE_WRITE, &pte);
341         if (r < 0)
342                 return r;
343
344         *eaddr = pte.raddr;
345
346         if (!pte.may_write)
347                 return -EPERM;
348
349         /* Magic page override */
350         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353                 void *magic = vcpu->arch.shared;
354                 magic += pte.eaddr & 0xfff;
355                 memcpy(magic, ptr, size);
356                 return EMULATE_DONE;
357         }
358
359         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360                 return EMULATE_DO_MMIO;
361
362         return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367                       bool data)
368 {
369         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370         struct kvmppc_pte pte;
371         int rc = -EINVAL;
372
373         vcpu->stat.ld++;
374
375         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
376                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
377                                                               size);
378
379         if ((!rc) || (rc == -EAGAIN))
380                 return rc;
381
382         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
383                           XLATE_READ, &pte);
384         if (rc)
385                 return rc;
386
387         *eaddr = pte.raddr;
388
389         if (!pte.may_read)
390                 return -EPERM;
391
392         if (!data && !pte.may_execute)
393                 return -ENOEXEC;
394
395         /* Magic page override */
396         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
397             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
398             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
399                 void *magic = vcpu->arch.shared;
400                 magic += pte.eaddr & 0xfff;
401                 memcpy(ptr, magic, size);
402                 return EMULATE_DONE;
403         }
404
405         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
406                 return EMULATE_DO_MMIO;
407
408         return EMULATE_DONE;
409 }
410 EXPORT_SYMBOL_GPL(kvmppc_ld);
411
412 int kvm_arch_hardware_enable(void)
413 {
414         return 0;
415 }
416
417 int kvm_arch_hardware_setup(void)
418 {
419         return 0;
420 }
421
422 int kvm_arch_check_processor_compat(void)
423 {
424         return kvmppc_core_check_processor_compat();
425 }
426
427 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
428 {
429         struct kvmppc_ops *kvm_ops = NULL;
430         /*
431          * if we have both HV and PR enabled, default is HV
432          */
433         if (type == 0) {
434                 if (kvmppc_hv_ops)
435                         kvm_ops = kvmppc_hv_ops;
436                 else
437                         kvm_ops = kvmppc_pr_ops;
438                 if (!kvm_ops)
439                         goto err_out;
440         } else  if (type == KVM_VM_PPC_HV) {
441                 if (!kvmppc_hv_ops)
442                         goto err_out;
443                 kvm_ops = kvmppc_hv_ops;
444         } else if (type == KVM_VM_PPC_PR) {
445                 if (!kvmppc_pr_ops)
446                         goto err_out;
447                 kvm_ops = kvmppc_pr_ops;
448         } else
449                 goto err_out;
450
451         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
452                 return -ENOENT;
453
454         kvm->arch.kvm_ops = kvm_ops;
455         return kvmppc_core_init_vm(kvm);
456 err_out:
457         return -EINVAL;
458 }
459
460 void kvm_arch_destroy_vm(struct kvm *kvm)
461 {
462         unsigned int i;
463         struct kvm_vcpu *vcpu;
464
465 #ifdef CONFIG_KVM_XICS
466         /*
467          * We call kick_all_cpus_sync() to ensure that all
468          * CPUs have executed any pending IPIs before we
469          * continue and free VCPUs structures below.
470          */
471         if (is_kvmppc_hv_enabled(kvm))
472                 kick_all_cpus_sync();
473 #endif
474
475         kvm_for_each_vcpu(i, vcpu, kvm)
476                 kvm_arch_vcpu_free(vcpu);
477
478         mutex_lock(&kvm->lock);
479         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
480                 kvm->vcpus[i] = NULL;
481
482         atomic_set(&kvm->online_vcpus, 0);
483
484         kvmppc_core_destroy_vm(kvm);
485
486         mutex_unlock(&kvm->lock);
487
488         /* drop the module reference */
489         module_put(kvm->arch.kvm_ops->owner);
490 }
491
492 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
493 {
494         int r;
495         /* Assume we're using HV mode when the HV module is loaded */
496         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
497
498         if (kvm) {
499                 /*
500                  * Hooray - we know which VM type we're running on. Depend on
501                  * that rather than the guess above.
502                  */
503                 hv_enabled = is_kvmppc_hv_enabled(kvm);
504         }
505
506         switch (ext) {
507 #ifdef CONFIG_BOOKE
508         case KVM_CAP_PPC_BOOKE_SREGS:
509         case KVM_CAP_PPC_BOOKE_WATCHDOG:
510         case KVM_CAP_PPC_EPR:
511 #else
512         case KVM_CAP_PPC_SEGSTATE:
513         case KVM_CAP_PPC_HIOR:
514         case KVM_CAP_PPC_PAPR:
515 #endif
516         case KVM_CAP_PPC_UNSET_IRQ:
517         case KVM_CAP_PPC_IRQ_LEVEL:
518         case KVM_CAP_ENABLE_CAP:
519         case KVM_CAP_ONE_REG:
520         case KVM_CAP_IOEVENTFD:
521         case KVM_CAP_DEVICE_CTRL:
522         case KVM_CAP_IMMEDIATE_EXIT:
523                 r = 1;
524                 break;
525         case KVM_CAP_PPC_PAIRED_SINGLES:
526         case KVM_CAP_PPC_OSI:
527         case KVM_CAP_PPC_GET_PVINFO:
528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
529         case KVM_CAP_SW_TLB:
530 #endif
531                 /* We support this only for PR */
532                 r = !hv_enabled;
533                 break;
534 #ifdef CONFIG_KVM_MPIC
535         case KVM_CAP_IRQ_MPIC:
536                 r = 1;
537                 break;
538 #endif
539
540 #ifdef CONFIG_PPC_BOOK3S_64
541         case KVM_CAP_SPAPR_TCE:
542         case KVM_CAP_SPAPR_TCE_64:
543                 r = 1;
544                 break;
545         case KVM_CAP_SPAPR_TCE_VFIO:
546                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
547                 break;
548         case KVM_CAP_PPC_RTAS:
549         case KVM_CAP_PPC_FIXUP_HCALL:
550         case KVM_CAP_PPC_ENABLE_HCALL:
551 #ifdef CONFIG_KVM_XICS
552         case KVM_CAP_IRQ_XICS:
553 #endif
554         case KVM_CAP_PPC_GET_CPU_CHAR:
555                 r = 1;
556                 break;
557 #ifdef CONFIG_KVM_XIVE
558         case KVM_CAP_PPC_IRQ_XIVE:
559                 /*
560                  * We need XIVE to be enabled on the platform (implies
561                  * a POWER9 processor) and the PowerNV platform, as
562                  * nested is not yet supported.
563                  */
564                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
565                         kvmppc_xive_native_supported();
566                 break;
567 #endif
568
569         case KVM_CAP_PPC_ALLOC_HTAB:
570                 r = hv_enabled;
571                 break;
572 #endif /* CONFIG_PPC_BOOK3S_64 */
573 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
574         case KVM_CAP_PPC_SMT:
575                 r = 0;
576                 if (kvm) {
577                         if (kvm->arch.emul_smt_mode > 1)
578                                 r = kvm->arch.emul_smt_mode;
579                         else
580                                 r = kvm->arch.smt_mode;
581                 } else if (hv_enabled) {
582                         if (cpu_has_feature(CPU_FTR_ARCH_300))
583                                 r = 1;
584                         else
585                                 r = threads_per_subcore;
586                 }
587                 break;
588         case KVM_CAP_PPC_SMT_POSSIBLE:
589                 r = 1;
590                 if (hv_enabled) {
591                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
592                                 r = ((threads_per_subcore << 1) - 1);
593                         else
594                                 /* P9 can emulate dbells, so allow any mode */
595                                 r = 8 | 4 | 2 | 1;
596                 }
597                 break;
598         case KVM_CAP_PPC_RMA:
599                 r = 0;
600                 break;
601         case KVM_CAP_PPC_HWRNG:
602                 r = kvmppc_hwrng_present();
603                 break;
604         case KVM_CAP_PPC_MMU_RADIX:
605                 r = !!(hv_enabled && radix_enabled());
606                 break;
607         case KVM_CAP_PPC_MMU_HASH_V3:
608                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
609                        cpu_has_feature(CPU_FTR_HVMODE));
610                 break;
611         case KVM_CAP_PPC_NESTED_HV:
612                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
613                        !kvmppc_hv_ops->enable_nested(NULL));
614                 break;
615 #endif
616         case KVM_CAP_SYNC_MMU:
617 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
618                 r = hv_enabled;
619 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
620                 r = 1;
621 #else
622                 r = 0;
623 #endif
624                 break;
625 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
626         case KVM_CAP_PPC_HTAB_FD:
627                 r = hv_enabled;
628                 break;
629 #endif
630         case KVM_CAP_NR_VCPUS:
631                 /*
632                  * Recommending a number of CPUs is somewhat arbitrary; we
633                  * return the number of present CPUs for -HV (since a host
634                  * will have secondary threads "offline"), and for other KVM
635                  * implementations just count online CPUs.
636                  */
637                 if (hv_enabled)
638                         r = num_present_cpus();
639                 else
640                         r = num_online_cpus();
641                 break;
642         case KVM_CAP_MAX_VCPUS:
643                 r = KVM_MAX_VCPUS;
644                 break;
645         case KVM_CAP_MAX_VCPU_ID:
646                 r = KVM_MAX_VCPU_ID;
647                 break;
648 #ifdef CONFIG_PPC_BOOK3S_64
649         case KVM_CAP_PPC_GET_SMMU_INFO:
650                 r = 1;
651                 break;
652         case KVM_CAP_SPAPR_MULTITCE:
653                 r = 1;
654                 break;
655         case KVM_CAP_SPAPR_RESIZE_HPT:
656                 r = !!hv_enabled;
657                 break;
658 #endif
659 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
660         case KVM_CAP_PPC_FWNMI:
661                 r = hv_enabled;
662                 break;
663 #endif
664 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
665         case KVM_CAP_PPC_HTM:
666                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
667                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
668                 break;
669 #endif
670         default:
671                 r = 0;
672                 break;
673         }
674         return r;
675
676 }
677
678 long kvm_arch_dev_ioctl(struct file *filp,
679                         unsigned int ioctl, unsigned long arg)
680 {
681         return -EINVAL;
682 }
683
684 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
685                            struct kvm_memory_slot *dont)
686 {
687         kvmppc_core_free_memslot(kvm, free, dont);
688 }
689
690 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
691                             unsigned long npages)
692 {
693         return kvmppc_core_create_memslot(kvm, slot, npages);
694 }
695
696 int kvm_arch_prepare_memory_region(struct kvm *kvm,
697                                    struct kvm_memory_slot *memslot,
698                                    const struct kvm_userspace_memory_region *mem,
699                                    enum kvm_mr_change change)
700 {
701         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
702 }
703
704 void kvm_arch_commit_memory_region(struct kvm *kvm,
705                                    const struct kvm_userspace_memory_region *mem,
706                                    const struct kvm_memory_slot *old,
707                                    const struct kvm_memory_slot *new,
708                                    enum kvm_mr_change change)
709 {
710         kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
711 }
712
713 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
714                                    struct kvm_memory_slot *slot)
715 {
716         kvmppc_core_flush_memslot(kvm, slot);
717 }
718
719 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
720 {
721         struct kvm_vcpu *vcpu;
722         vcpu = kvmppc_core_vcpu_create(kvm, id);
723         if (!IS_ERR(vcpu)) {
724                 vcpu->arch.wqp = &vcpu->wq;
725                 kvmppc_create_vcpu_debugfs(vcpu, id);
726         }
727         return vcpu;
728 }
729
730 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
731 {
732 }
733
734 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
735 {
736         /* Make sure we're not using the vcpu anymore */
737         hrtimer_cancel(&vcpu->arch.dec_timer);
738
739         kvmppc_remove_vcpu_debugfs(vcpu);
740
741         switch (vcpu->arch.irq_type) {
742         case KVMPPC_IRQ_MPIC:
743                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
744                 break;
745         case KVMPPC_IRQ_XICS:
746                 if (xics_on_xive())
747                         kvmppc_xive_cleanup_vcpu(vcpu);
748                 else
749                         kvmppc_xics_free_icp(vcpu);
750                 break;
751         case KVMPPC_IRQ_XIVE:
752                 kvmppc_xive_native_cleanup_vcpu(vcpu);
753                 break;
754         }
755
756         kvmppc_core_vcpu_free(vcpu);
757 }
758
759 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
760 {
761         kvm_arch_vcpu_free(vcpu);
762 }
763
764 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
765 {
766         return kvmppc_core_pending_dec(vcpu);
767 }
768
769 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
770 {
771         struct kvm_vcpu *vcpu;
772
773         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
774         kvmppc_decrementer_func(vcpu);
775
776         return HRTIMER_NORESTART;
777 }
778
779 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
780 {
781         int ret;
782
783         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
784         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
785         vcpu->arch.dec_expires = get_tb();
786
787 #ifdef CONFIG_KVM_EXIT_TIMING
788         mutex_init(&vcpu->arch.exit_timing_lock);
789 #endif
790         ret = kvmppc_subarch_vcpu_init(vcpu);
791         return ret;
792 }
793
794 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
795 {
796         kvmppc_mmu_destroy(vcpu);
797         kvmppc_subarch_vcpu_uninit(vcpu);
798 }
799
800 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
801 {
802 #ifdef CONFIG_BOOKE
803         /*
804          * vrsave (formerly usprg0) isn't used by Linux, but may
805          * be used by the guest.
806          *
807          * On non-booke this is associated with Altivec and
808          * is handled by code in book3s.c.
809          */
810         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
811 #endif
812         kvmppc_core_vcpu_load(vcpu, cpu);
813 }
814
815 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
816 {
817         kvmppc_core_vcpu_put(vcpu);
818 #ifdef CONFIG_BOOKE
819         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
820 #endif
821 }
822
823 /*
824  * irq_bypass_add_producer and irq_bypass_del_producer are only
825  * useful if the architecture supports PCI passthrough.
826  * irq_bypass_stop and irq_bypass_start are not needed and so
827  * kvm_ops are not defined for them.
828  */
829 bool kvm_arch_has_irq_bypass(void)
830 {
831         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
832                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
833 }
834
835 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
836                                      struct irq_bypass_producer *prod)
837 {
838         struct kvm_kernel_irqfd *irqfd =
839                 container_of(cons, struct kvm_kernel_irqfd, consumer);
840         struct kvm *kvm = irqfd->kvm;
841
842         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
843                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
844
845         return 0;
846 }
847
848 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
849                                       struct irq_bypass_producer *prod)
850 {
851         struct kvm_kernel_irqfd *irqfd =
852                 container_of(cons, struct kvm_kernel_irqfd, consumer);
853         struct kvm *kvm = irqfd->kvm;
854
855         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
856                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
857 }
858
859 #ifdef CONFIG_VSX
860 static inline int kvmppc_get_vsr_dword_offset(int index)
861 {
862         int offset;
863
864         if ((index != 0) && (index != 1))
865                 return -1;
866
867 #ifdef __BIG_ENDIAN
868         offset =  index;
869 #else
870         offset = 1 - index;
871 #endif
872
873         return offset;
874 }
875
876 static inline int kvmppc_get_vsr_word_offset(int index)
877 {
878         int offset;
879
880         if ((index > 3) || (index < 0))
881                 return -1;
882
883 #ifdef __BIG_ENDIAN
884         offset = index;
885 #else
886         offset = 3 - index;
887 #endif
888         return offset;
889 }
890
891 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
892         u64 gpr)
893 {
894         union kvmppc_one_reg val;
895         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
896         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
897
898         if (offset == -1)
899                 return;
900
901         if (index >= 32) {
902                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
903                 val.vsxval[offset] = gpr;
904                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
905         } else {
906                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
907         }
908 }
909
910 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
911         u64 gpr)
912 {
913         union kvmppc_one_reg val;
914         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
915
916         if (index >= 32) {
917                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
918                 val.vsxval[0] = gpr;
919                 val.vsxval[1] = gpr;
920                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
921         } else {
922                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
923                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
924         }
925 }
926
927 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
928         u32 gpr)
929 {
930         union kvmppc_one_reg val;
931         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
932
933         if (index >= 32) {
934                 val.vsx32val[0] = gpr;
935                 val.vsx32val[1] = gpr;
936                 val.vsx32val[2] = gpr;
937                 val.vsx32val[3] = gpr;
938                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
939         } else {
940                 val.vsx32val[0] = gpr;
941                 val.vsx32val[1] = gpr;
942                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
943                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
944         }
945 }
946
947 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
948         u32 gpr32)
949 {
950         union kvmppc_one_reg val;
951         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
952         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
953         int dword_offset, word_offset;
954
955         if (offset == -1)
956                 return;
957
958         if (index >= 32) {
959                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
960                 val.vsx32val[offset] = gpr32;
961                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
962         } else {
963                 dword_offset = offset / 2;
964                 word_offset = offset % 2;
965                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
966                 val.vsx32val[word_offset] = gpr32;
967                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
968         }
969 }
970 #endif /* CONFIG_VSX */
971
972 #ifdef CONFIG_ALTIVEC
973 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
974                 int index, int element_size)
975 {
976         int offset;
977         int elts = sizeof(vector128)/element_size;
978
979         if ((index < 0) || (index >= elts))
980                 return -1;
981
982         if (kvmppc_need_byteswap(vcpu))
983                 offset = elts - index - 1;
984         else
985                 offset = index;
986
987         return offset;
988 }
989
990 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
991                 int index)
992 {
993         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
994 }
995
996 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
997                 int index)
998 {
999         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1000 }
1001
1002 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1003                 int index)
1004 {
1005         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1006 }
1007
1008 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1009                 int index)
1010 {
1011         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1012 }
1013
1014
1015 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1016         u64 gpr)
1017 {
1018         union kvmppc_one_reg val;
1019         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1020                         vcpu->arch.mmio_vmx_offset);
1021         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1022
1023         if (offset == -1)
1024                 return;
1025
1026         val.vval = VCPU_VSX_VR(vcpu, index);
1027         val.vsxval[offset] = gpr;
1028         VCPU_VSX_VR(vcpu, index) = val.vval;
1029 }
1030
1031 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1032         u32 gpr32)
1033 {
1034         union kvmppc_one_reg val;
1035         int offset = kvmppc_get_vmx_word_offset(vcpu,
1036                         vcpu->arch.mmio_vmx_offset);
1037         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1038
1039         if (offset == -1)
1040                 return;
1041
1042         val.vval = VCPU_VSX_VR(vcpu, index);
1043         val.vsx32val[offset] = gpr32;
1044         VCPU_VSX_VR(vcpu, index) = val.vval;
1045 }
1046
1047 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1048         u16 gpr16)
1049 {
1050         union kvmppc_one_reg val;
1051         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1052                         vcpu->arch.mmio_vmx_offset);
1053         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1054
1055         if (offset == -1)
1056                 return;
1057
1058         val.vval = VCPU_VSX_VR(vcpu, index);
1059         val.vsx16val[offset] = gpr16;
1060         VCPU_VSX_VR(vcpu, index) = val.vval;
1061 }
1062
1063 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1064         u8 gpr8)
1065 {
1066         union kvmppc_one_reg val;
1067         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1068                         vcpu->arch.mmio_vmx_offset);
1069         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1070
1071         if (offset == -1)
1072                 return;
1073
1074         val.vval = VCPU_VSX_VR(vcpu, index);
1075         val.vsx8val[offset] = gpr8;
1076         VCPU_VSX_VR(vcpu, index) = val.vval;
1077 }
1078 #endif /* CONFIG_ALTIVEC */
1079
1080 #ifdef CONFIG_PPC_FPU
1081 static inline u64 sp_to_dp(u32 fprs)
1082 {
1083         u64 fprd;
1084
1085         preempt_disable();
1086         enable_kernel_fp();
1087         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1088              : "fr0");
1089         preempt_enable();
1090         return fprd;
1091 }
1092
1093 static inline u32 dp_to_sp(u64 fprd)
1094 {
1095         u32 fprs;
1096
1097         preempt_disable();
1098         enable_kernel_fp();
1099         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1100              : "fr0");
1101         preempt_enable();
1102         return fprs;
1103 }
1104
1105 #else
1106 #define sp_to_dp(x)     (x)
1107 #define dp_to_sp(x)     (x)
1108 #endif /* CONFIG_PPC_FPU */
1109
1110 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1111                                       struct kvm_run *run)
1112 {
1113         u64 uninitialized_var(gpr);
1114
1115         if (run->mmio.len > sizeof(gpr)) {
1116                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1117                 return;
1118         }
1119
1120         if (!vcpu->arch.mmio_host_swabbed) {
1121                 switch (run->mmio.len) {
1122                 case 8: gpr = *(u64 *)run->mmio.data; break;
1123                 case 4: gpr = *(u32 *)run->mmio.data; break;
1124                 case 2: gpr = *(u16 *)run->mmio.data; break;
1125                 case 1: gpr = *(u8 *)run->mmio.data; break;
1126                 }
1127         } else {
1128                 switch (run->mmio.len) {
1129                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1130                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1131                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1132                 case 1: gpr = *(u8 *)run->mmio.data; break;
1133                 }
1134         }
1135
1136         /* conversion between single and double precision */
1137         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1138                 gpr = sp_to_dp(gpr);
1139
1140         if (vcpu->arch.mmio_sign_extend) {
1141                 switch (run->mmio.len) {
1142 #ifdef CONFIG_PPC64
1143                 case 4:
1144                         gpr = (s64)(s32)gpr;
1145                         break;
1146 #endif
1147                 case 2:
1148                         gpr = (s64)(s16)gpr;
1149                         break;
1150                 case 1:
1151                         gpr = (s64)(s8)gpr;
1152                         break;
1153                 }
1154         }
1155
1156         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1157         case KVM_MMIO_REG_GPR:
1158                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1159                 break;
1160         case KVM_MMIO_REG_FPR:
1161                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1162                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1163
1164                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1165                 break;
1166 #ifdef CONFIG_PPC_BOOK3S
1167         case KVM_MMIO_REG_QPR:
1168                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1169                 break;
1170         case KVM_MMIO_REG_FQPR:
1171                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1172                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1173                 break;
1174 #endif
1175 #ifdef CONFIG_VSX
1176         case KVM_MMIO_REG_VSX:
1177                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1178                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1179
1180                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1181                         kvmppc_set_vsr_dword(vcpu, gpr);
1182                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1183                         kvmppc_set_vsr_word(vcpu, gpr);
1184                 else if (vcpu->arch.mmio_copy_type ==
1185                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1186                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1187                 else if (vcpu->arch.mmio_copy_type ==
1188                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1189                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1190                 break;
1191 #endif
1192 #ifdef CONFIG_ALTIVEC
1193         case KVM_MMIO_REG_VMX:
1194                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1195                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1196
1197                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1198                         kvmppc_set_vmx_dword(vcpu, gpr);
1199                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1200                         kvmppc_set_vmx_word(vcpu, gpr);
1201                 else if (vcpu->arch.mmio_copy_type ==
1202                                 KVMPPC_VMX_COPY_HWORD)
1203                         kvmppc_set_vmx_hword(vcpu, gpr);
1204                 else if (vcpu->arch.mmio_copy_type ==
1205                                 KVMPPC_VMX_COPY_BYTE)
1206                         kvmppc_set_vmx_byte(vcpu, gpr);
1207                 break;
1208 #endif
1209 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1210         case KVM_MMIO_REG_NESTED_GPR:
1211                 if (kvmppc_need_byteswap(vcpu))
1212                         gpr = swab64(gpr);
1213                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1214                                      sizeof(gpr));
1215                 break;
1216 #endif
1217         default:
1218                 BUG();
1219         }
1220 }
1221
1222 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1223                                 unsigned int rt, unsigned int bytes,
1224                                 int is_default_endian, int sign_extend)
1225 {
1226         int idx, ret;
1227         bool host_swabbed;
1228
1229         /* Pity C doesn't have a logical XOR operator */
1230         if (kvmppc_need_byteswap(vcpu)) {
1231                 host_swabbed = is_default_endian;
1232         } else {
1233                 host_swabbed = !is_default_endian;
1234         }
1235
1236         if (bytes > sizeof(run->mmio.data)) {
1237                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1238                        run->mmio.len);
1239         }
1240
1241         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1242         run->mmio.len = bytes;
1243         run->mmio.is_write = 0;
1244
1245         vcpu->arch.io_gpr = rt;
1246         vcpu->arch.mmio_host_swabbed = host_swabbed;
1247         vcpu->mmio_needed = 1;
1248         vcpu->mmio_is_write = 0;
1249         vcpu->arch.mmio_sign_extend = sign_extend;
1250
1251         idx = srcu_read_lock(&vcpu->kvm->srcu);
1252
1253         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1254                               bytes, &run->mmio.data);
1255
1256         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1257
1258         if (!ret) {
1259                 kvmppc_complete_mmio_load(vcpu, run);
1260                 vcpu->mmio_needed = 0;
1261                 return EMULATE_DONE;
1262         }
1263
1264         return EMULATE_DO_MMIO;
1265 }
1266
1267 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1268                        unsigned int rt, unsigned int bytes,
1269                        int is_default_endian)
1270 {
1271         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1272 }
1273 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1274
1275 /* Same as above, but sign extends */
1276 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1277                         unsigned int rt, unsigned int bytes,
1278                         int is_default_endian)
1279 {
1280         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1281 }
1282
1283 #ifdef CONFIG_VSX
1284 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1285                         unsigned int rt, unsigned int bytes,
1286                         int is_default_endian, int mmio_sign_extend)
1287 {
1288         enum emulation_result emulated = EMULATE_DONE;
1289
1290         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1291         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1292                 return EMULATE_FAIL;
1293
1294         while (vcpu->arch.mmio_vsx_copy_nums) {
1295                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1296                         is_default_endian, mmio_sign_extend);
1297
1298                 if (emulated != EMULATE_DONE)
1299                         break;
1300
1301                 vcpu->arch.paddr_accessed += run->mmio.len;
1302
1303                 vcpu->arch.mmio_vsx_copy_nums--;
1304                 vcpu->arch.mmio_vsx_offset++;
1305         }
1306         return emulated;
1307 }
1308 #endif /* CONFIG_VSX */
1309
1310 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1311                         u64 val, unsigned int bytes, int is_default_endian)
1312 {
1313         void *data = run->mmio.data;
1314         int idx, ret;
1315         bool host_swabbed;
1316
1317         /* Pity C doesn't have a logical XOR operator */
1318         if (kvmppc_need_byteswap(vcpu)) {
1319                 host_swabbed = is_default_endian;
1320         } else {
1321                 host_swabbed = !is_default_endian;
1322         }
1323
1324         if (bytes > sizeof(run->mmio.data)) {
1325                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1326                        run->mmio.len);
1327         }
1328
1329         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1330         run->mmio.len = bytes;
1331         run->mmio.is_write = 1;
1332         vcpu->mmio_needed = 1;
1333         vcpu->mmio_is_write = 1;
1334
1335         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1336                 val = dp_to_sp(val);
1337
1338         /* Store the value at the lowest bytes in 'data'. */
1339         if (!host_swabbed) {
1340                 switch (bytes) {
1341                 case 8: *(u64 *)data = val; break;
1342                 case 4: *(u32 *)data = val; break;
1343                 case 2: *(u16 *)data = val; break;
1344                 case 1: *(u8  *)data = val; break;
1345                 }
1346         } else {
1347                 switch (bytes) {
1348                 case 8: *(u64 *)data = swab64(val); break;
1349                 case 4: *(u32 *)data = swab32(val); break;
1350                 case 2: *(u16 *)data = swab16(val); break;
1351                 case 1: *(u8  *)data = val; break;
1352                 }
1353         }
1354
1355         idx = srcu_read_lock(&vcpu->kvm->srcu);
1356
1357         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1358                                bytes, &run->mmio.data);
1359
1360         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1361
1362         if (!ret) {
1363                 vcpu->mmio_needed = 0;
1364                 return EMULATE_DONE;
1365         }
1366
1367         return EMULATE_DO_MMIO;
1368 }
1369 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1370
1371 #ifdef CONFIG_VSX
1372 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1373 {
1374         u32 dword_offset, word_offset;
1375         union kvmppc_one_reg reg;
1376         int vsx_offset = 0;
1377         int copy_type = vcpu->arch.mmio_copy_type;
1378         int result = 0;
1379
1380         switch (copy_type) {
1381         case KVMPPC_VSX_COPY_DWORD:
1382                 vsx_offset =
1383                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1384
1385                 if (vsx_offset == -1) {
1386                         result = -1;
1387                         break;
1388                 }
1389
1390                 if (rs < 32) {
1391                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1392                 } else {
1393                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1394                         *val = reg.vsxval[vsx_offset];
1395                 }
1396                 break;
1397
1398         case KVMPPC_VSX_COPY_WORD:
1399                 vsx_offset =
1400                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1401
1402                 if (vsx_offset == -1) {
1403                         result = -1;
1404                         break;
1405                 }
1406
1407                 if (rs < 32) {
1408                         dword_offset = vsx_offset / 2;
1409                         word_offset = vsx_offset % 2;
1410                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1411                         *val = reg.vsx32val[word_offset];
1412                 } else {
1413                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1414                         *val = reg.vsx32val[vsx_offset];
1415                 }
1416                 break;
1417
1418         default:
1419                 result = -1;
1420                 break;
1421         }
1422
1423         return result;
1424 }
1425
1426 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1427                         int rs, unsigned int bytes, int is_default_endian)
1428 {
1429         u64 val;
1430         enum emulation_result emulated = EMULATE_DONE;
1431
1432         vcpu->arch.io_gpr = rs;
1433
1434         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1435         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1436                 return EMULATE_FAIL;
1437
1438         while (vcpu->arch.mmio_vsx_copy_nums) {
1439                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1440                         return EMULATE_FAIL;
1441
1442                 emulated = kvmppc_handle_store(run, vcpu,
1443                          val, bytes, is_default_endian);
1444
1445                 if (emulated != EMULATE_DONE)
1446                         break;
1447
1448                 vcpu->arch.paddr_accessed += run->mmio.len;
1449
1450                 vcpu->arch.mmio_vsx_copy_nums--;
1451                 vcpu->arch.mmio_vsx_offset++;
1452         }
1453
1454         return emulated;
1455 }
1456
1457 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1458                         struct kvm_run *run)
1459 {
1460         enum emulation_result emulated = EMULATE_FAIL;
1461         int r;
1462
1463         vcpu->arch.paddr_accessed += run->mmio.len;
1464
1465         if (!vcpu->mmio_is_write) {
1466                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1467                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1468         } else {
1469                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1470                          vcpu->arch.io_gpr, run->mmio.len, 1);
1471         }
1472
1473         switch (emulated) {
1474         case EMULATE_DO_MMIO:
1475                 run->exit_reason = KVM_EXIT_MMIO;
1476                 r = RESUME_HOST;
1477                 break;
1478         case EMULATE_FAIL:
1479                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1480                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1481                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1482                 r = RESUME_HOST;
1483                 break;
1484         default:
1485                 r = RESUME_GUEST;
1486                 break;
1487         }
1488         return r;
1489 }
1490 #endif /* CONFIG_VSX */
1491
1492 #ifdef CONFIG_ALTIVEC
1493 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1494                 unsigned int rt, unsigned int bytes, int is_default_endian)
1495 {
1496         enum emulation_result emulated = EMULATE_DONE;
1497
1498         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1499                 return EMULATE_FAIL;
1500
1501         while (vcpu->arch.mmio_vmx_copy_nums) {
1502                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1503                                 is_default_endian, 0);
1504
1505                 if (emulated != EMULATE_DONE)
1506                         break;
1507
1508                 vcpu->arch.paddr_accessed += run->mmio.len;
1509                 vcpu->arch.mmio_vmx_copy_nums--;
1510                 vcpu->arch.mmio_vmx_offset++;
1511         }
1512
1513         return emulated;
1514 }
1515
1516 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1517 {
1518         union kvmppc_one_reg reg;
1519         int vmx_offset = 0;
1520         int result = 0;
1521
1522         vmx_offset =
1523                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1524
1525         if (vmx_offset == -1)
1526                 return -1;
1527
1528         reg.vval = VCPU_VSX_VR(vcpu, index);
1529         *val = reg.vsxval[vmx_offset];
1530
1531         return result;
1532 }
1533
1534 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1535 {
1536         union kvmppc_one_reg reg;
1537         int vmx_offset = 0;
1538         int result = 0;
1539
1540         vmx_offset =
1541                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1542
1543         if (vmx_offset == -1)
1544                 return -1;
1545
1546         reg.vval = VCPU_VSX_VR(vcpu, index);
1547         *val = reg.vsx32val[vmx_offset];
1548
1549         return result;
1550 }
1551
1552 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1553 {
1554         union kvmppc_one_reg reg;
1555         int vmx_offset = 0;
1556         int result = 0;
1557
1558         vmx_offset =
1559                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1560
1561         if (vmx_offset == -1)
1562                 return -1;
1563
1564         reg.vval = VCPU_VSX_VR(vcpu, index);
1565         *val = reg.vsx16val[vmx_offset];
1566
1567         return result;
1568 }
1569
1570 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1571 {
1572         union kvmppc_one_reg reg;
1573         int vmx_offset = 0;
1574         int result = 0;
1575
1576         vmx_offset =
1577                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1578
1579         if (vmx_offset == -1)
1580                 return -1;
1581
1582         reg.vval = VCPU_VSX_VR(vcpu, index);
1583         *val = reg.vsx8val[vmx_offset];
1584
1585         return result;
1586 }
1587
1588 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1589                 unsigned int rs, unsigned int bytes, int is_default_endian)
1590 {
1591         u64 val = 0;
1592         unsigned int index = rs & KVM_MMIO_REG_MASK;
1593         enum emulation_result emulated = EMULATE_DONE;
1594
1595         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1596                 return EMULATE_FAIL;
1597
1598         vcpu->arch.io_gpr = rs;
1599
1600         while (vcpu->arch.mmio_vmx_copy_nums) {
1601                 switch (vcpu->arch.mmio_copy_type) {
1602                 case KVMPPC_VMX_COPY_DWORD:
1603                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1604                                 return EMULATE_FAIL;
1605
1606                         break;
1607                 case KVMPPC_VMX_COPY_WORD:
1608                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1609                                 return EMULATE_FAIL;
1610                         break;
1611                 case KVMPPC_VMX_COPY_HWORD:
1612                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1613                                 return EMULATE_FAIL;
1614                         break;
1615                 case KVMPPC_VMX_COPY_BYTE:
1616                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1617                                 return EMULATE_FAIL;
1618                         break;
1619                 default:
1620                         return EMULATE_FAIL;
1621                 }
1622
1623                 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1624                                 is_default_endian);
1625                 if (emulated != EMULATE_DONE)
1626                         break;
1627
1628                 vcpu->arch.paddr_accessed += run->mmio.len;
1629                 vcpu->arch.mmio_vmx_copy_nums--;
1630                 vcpu->arch.mmio_vmx_offset++;
1631         }
1632
1633         return emulated;
1634 }
1635
1636 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1637                 struct kvm_run *run)
1638 {
1639         enum emulation_result emulated = EMULATE_FAIL;
1640         int r;
1641
1642         vcpu->arch.paddr_accessed += run->mmio.len;
1643
1644         if (!vcpu->mmio_is_write) {
1645                 emulated = kvmppc_handle_vmx_load(run, vcpu,
1646                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1647         } else {
1648                 emulated = kvmppc_handle_vmx_store(run, vcpu,
1649                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1650         }
1651
1652         switch (emulated) {
1653         case EMULATE_DO_MMIO:
1654                 run->exit_reason = KVM_EXIT_MMIO;
1655                 r = RESUME_HOST;
1656                 break;
1657         case EMULATE_FAIL:
1658                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1659                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1660                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1661                 r = RESUME_HOST;
1662                 break;
1663         default:
1664                 r = RESUME_GUEST;
1665                 break;
1666         }
1667         return r;
1668 }
1669 #endif /* CONFIG_ALTIVEC */
1670
1671 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1672 {
1673         int r = 0;
1674         union kvmppc_one_reg val;
1675         int size;
1676
1677         size = one_reg_size(reg->id);
1678         if (size > sizeof(val))
1679                 return -EINVAL;
1680
1681         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1682         if (r == -EINVAL) {
1683                 r = 0;
1684                 switch (reg->id) {
1685 #ifdef CONFIG_ALTIVEC
1686                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1687                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1688                                 r = -ENXIO;
1689                                 break;
1690                         }
1691                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1692                         break;
1693                 case KVM_REG_PPC_VSCR:
1694                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1695                                 r = -ENXIO;
1696                                 break;
1697                         }
1698                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1699                         break;
1700                 case KVM_REG_PPC_VRSAVE:
1701                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1702                         break;
1703 #endif /* CONFIG_ALTIVEC */
1704                 default:
1705                         r = -EINVAL;
1706                         break;
1707                 }
1708         }
1709
1710         if (r)
1711                 return r;
1712
1713         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1714                 r = -EFAULT;
1715
1716         return r;
1717 }
1718
1719 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1720 {
1721         int r;
1722         union kvmppc_one_reg val;
1723         int size;
1724
1725         size = one_reg_size(reg->id);
1726         if (size > sizeof(val))
1727                 return -EINVAL;
1728
1729         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1730                 return -EFAULT;
1731
1732         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1733         if (r == -EINVAL) {
1734                 r = 0;
1735                 switch (reg->id) {
1736 #ifdef CONFIG_ALTIVEC
1737                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1738                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1739                                 r = -ENXIO;
1740                                 break;
1741                         }
1742                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1743                         break;
1744                 case KVM_REG_PPC_VSCR:
1745                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1746                                 r = -ENXIO;
1747                                 break;
1748                         }
1749                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1750                         break;
1751                 case KVM_REG_PPC_VRSAVE:
1752                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1753                                 r = -ENXIO;
1754                                 break;
1755                         }
1756                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1757                         break;
1758 #endif /* CONFIG_ALTIVEC */
1759                 default:
1760                         r = -EINVAL;
1761                         break;
1762                 }
1763         }
1764
1765         return r;
1766 }
1767
1768 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1769 {
1770         int r;
1771
1772         vcpu_load(vcpu);
1773
1774         if (vcpu->mmio_needed) {
1775                 vcpu->mmio_needed = 0;
1776                 if (!vcpu->mmio_is_write)
1777                         kvmppc_complete_mmio_load(vcpu, run);
1778 #ifdef CONFIG_VSX
1779                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1780                         vcpu->arch.mmio_vsx_copy_nums--;
1781                         vcpu->arch.mmio_vsx_offset++;
1782                 }
1783
1784                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1785                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1786                         if (r == RESUME_HOST) {
1787                                 vcpu->mmio_needed = 1;
1788                                 goto out;
1789                         }
1790                 }
1791 #endif
1792 #ifdef CONFIG_ALTIVEC
1793                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1794                         vcpu->arch.mmio_vmx_copy_nums--;
1795                         vcpu->arch.mmio_vmx_offset++;
1796                 }
1797
1798                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1799                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1800                         if (r == RESUME_HOST) {
1801                                 vcpu->mmio_needed = 1;
1802                                 goto out;
1803                         }
1804                 }
1805 #endif
1806         } else if (vcpu->arch.osi_needed) {
1807                 u64 *gprs = run->osi.gprs;
1808                 int i;
1809
1810                 for (i = 0; i < 32; i++)
1811                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1812                 vcpu->arch.osi_needed = 0;
1813         } else if (vcpu->arch.hcall_needed) {
1814                 int i;
1815
1816                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1817                 for (i = 0; i < 9; ++i)
1818                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1819                 vcpu->arch.hcall_needed = 0;
1820 #ifdef CONFIG_BOOKE
1821         } else if (vcpu->arch.epr_needed) {
1822                 kvmppc_set_epr(vcpu, run->epr.epr);
1823                 vcpu->arch.epr_needed = 0;
1824 #endif
1825         }
1826
1827         kvm_sigset_activate(vcpu);
1828
1829         if (run->immediate_exit)
1830                 r = -EINTR;
1831         else
1832                 r = kvmppc_vcpu_run(run, vcpu);
1833
1834         kvm_sigset_deactivate(vcpu);
1835
1836 #ifdef CONFIG_ALTIVEC
1837 out:
1838 #endif
1839         vcpu_put(vcpu);
1840         return r;
1841 }
1842
1843 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1844 {
1845         if (irq->irq == KVM_INTERRUPT_UNSET) {
1846                 kvmppc_core_dequeue_external(vcpu);
1847                 return 0;
1848         }
1849
1850         kvmppc_core_queue_external(vcpu, irq);
1851
1852         kvm_vcpu_kick(vcpu);
1853
1854         return 0;
1855 }
1856
1857 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1858                                      struct kvm_enable_cap *cap)
1859 {
1860         int r;
1861
1862         if (cap->flags)
1863                 return -EINVAL;
1864
1865         switch (cap->cap) {
1866         case KVM_CAP_PPC_OSI:
1867                 r = 0;
1868                 vcpu->arch.osi_enabled = true;
1869                 break;
1870         case KVM_CAP_PPC_PAPR:
1871                 r = 0;
1872                 vcpu->arch.papr_enabled = true;
1873                 break;
1874         case KVM_CAP_PPC_EPR:
1875                 r = 0;
1876                 if (cap->args[0])
1877                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1878                 else
1879                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1880                 break;
1881 #ifdef CONFIG_BOOKE
1882         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1883                 r = 0;
1884                 vcpu->arch.watchdog_enabled = true;
1885                 break;
1886 #endif
1887 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1888         case KVM_CAP_SW_TLB: {
1889                 struct kvm_config_tlb cfg;
1890                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1891
1892                 r = -EFAULT;
1893                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1894                         break;
1895
1896                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1897                 break;
1898         }
1899 #endif
1900 #ifdef CONFIG_KVM_MPIC
1901         case KVM_CAP_IRQ_MPIC: {
1902                 struct fd f;
1903                 struct kvm_device *dev;
1904
1905                 r = -EBADF;
1906                 f = fdget(cap->args[0]);
1907                 if (!f.file)
1908                         break;
1909
1910                 r = -EPERM;
1911                 dev = kvm_device_from_filp(f.file);
1912                 if (dev)
1913                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1914
1915                 fdput(f);
1916                 break;
1917         }
1918 #endif
1919 #ifdef CONFIG_KVM_XICS
1920         case KVM_CAP_IRQ_XICS: {
1921                 struct fd f;
1922                 struct kvm_device *dev;
1923
1924                 r = -EBADF;
1925                 f = fdget(cap->args[0]);
1926                 if (!f.file)
1927                         break;
1928
1929                 r = -EPERM;
1930                 dev = kvm_device_from_filp(f.file);
1931                 if (dev) {
1932                         if (xics_on_xive())
1933                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1934                         else
1935                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1936                 }
1937
1938                 fdput(f);
1939                 break;
1940         }
1941 #endif /* CONFIG_KVM_XICS */
1942 #ifdef CONFIG_KVM_XIVE
1943         case KVM_CAP_PPC_IRQ_XIVE: {
1944                 struct fd f;
1945                 struct kvm_device *dev;
1946
1947                 r = -EBADF;
1948                 f = fdget(cap->args[0]);
1949                 if (!f.file)
1950                         break;
1951
1952                 r = -ENXIO;
1953                 if (!xive_enabled())
1954                         break;
1955
1956                 r = -EPERM;
1957                 dev = kvm_device_from_filp(f.file);
1958                 if (dev)
1959                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1960                                                             cap->args[1]);
1961
1962                 fdput(f);
1963                 break;
1964         }
1965 #endif /* CONFIG_KVM_XIVE */
1966 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1967         case KVM_CAP_PPC_FWNMI:
1968                 r = -EINVAL;
1969                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1970                         break;
1971                 r = 0;
1972                 vcpu->kvm->arch.fwnmi_enabled = true;
1973                 break;
1974 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1975         default:
1976                 r = -EINVAL;
1977                 break;
1978         }
1979
1980         if (!r)
1981                 r = kvmppc_sanity_check(vcpu);
1982
1983         return r;
1984 }
1985
1986 bool kvm_arch_intc_initialized(struct kvm *kvm)
1987 {
1988 #ifdef CONFIG_KVM_MPIC
1989         if (kvm->arch.mpic)
1990                 return true;
1991 #endif
1992 #ifdef CONFIG_KVM_XICS
1993         if (kvm->arch.xics || kvm->arch.xive)
1994                 return true;
1995 #endif
1996         return false;
1997 }
1998
1999 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2000                                     struct kvm_mp_state *mp_state)
2001 {
2002         return -EINVAL;
2003 }
2004
2005 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2006                                     struct kvm_mp_state *mp_state)
2007 {
2008         return -EINVAL;
2009 }
2010
2011 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2012                                unsigned int ioctl, unsigned long arg)
2013 {
2014         struct kvm_vcpu *vcpu = filp->private_data;
2015         void __user *argp = (void __user *)arg;
2016
2017         if (ioctl == KVM_INTERRUPT) {
2018                 struct kvm_interrupt irq;
2019                 if (copy_from_user(&irq, argp, sizeof(irq)))
2020                         return -EFAULT;
2021                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2022         }
2023         return -ENOIOCTLCMD;
2024 }
2025
2026 long kvm_arch_vcpu_ioctl(struct file *filp,
2027                          unsigned int ioctl, unsigned long arg)
2028 {
2029         struct kvm_vcpu *vcpu = filp->private_data;
2030         void __user *argp = (void __user *)arg;
2031         long r;
2032
2033         switch (ioctl) {
2034         case KVM_ENABLE_CAP:
2035         {
2036                 struct kvm_enable_cap cap;
2037                 r = -EFAULT;
2038                 vcpu_load(vcpu);
2039                 if (copy_from_user(&cap, argp, sizeof(cap)))
2040                         goto out;
2041                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2042                 vcpu_put(vcpu);
2043                 break;
2044         }
2045
2046         case KVM_SET_ONE_REG:
2047         case KVM_GET_ONE_REG:
2048         {
2049                 struct kvm_one_reg reg;
2050                 r = -EFAULT;
2051                 if (copy_from_user(&reg, argp, sizeof(reg)))
2052                         goto out;
2053                 if (ioctl == KVM_SET_ONE_REG)
2054                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2055                 else
2056                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2057                 break;
2058         }
2059
2060 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2061         case KVM_DIRTY_TLB: {
2062                 struct kvm_dirty_tlb dirty;
2063                 r = -EFAULT;
2064                 vcpu_load(vcpu);
2065                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2066                         goto out;
2067                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2068                 vcpu_put(vcpu);
2069                 break;
2070         }
2071 #endif
2072         default:
2073                 r = -EINVAL;
2074         }
2075
2076 out:
2077         return r;
2078 }
2079
2080 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2081 {
2082         return VM_FAULT_SIGBUS;
2083 }
2084
2085 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2086 {
2087         u32 inst_nop = 0x60000000;
2088 #ifdef CONFIG_KVM_BOOKE_HV
2089         u32 inst_sc1 = 0x44000022;
2090         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2091         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2092         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2093         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2094 #else
2095         u32 inst_lis = 0x3c000000;
2096         u32 inst_ori = 0x60000000;
2097         u32 inst_sc = 0x44000002;
2098         u32 inst_imm_mask = 0xffff;
2099
2100         /*
2101          * The hypercall to get into KVM from within guest context is as
2102          * follows:
2103          *
2104          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2105          *    ori r0, KVM_SC_MAGIC_R0@l
2106          *    sc
2107          *    nop
2108          */
2109         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2110         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2111         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2112         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2113 #endif
2114
2115         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2116
2117         return 0;
2118 }
2119
2120 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2121                           bool line_status)
2122 {
2123         if (!irqchip_in_kernel(kvm))
2124                 return -ENXIO;
2125
2126         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2127                                         irq_event->irq, irq_event->level,
2128                                         line_status);
2129         return 0;
2130 }
2131
2132
2133 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2134                             struct kvm_enable_cap *cap)
2135 {
2136         int r;
2137
2138         if (cap->flags)
2139                 return -EINVAL;
2140
2141         switch (cap->cap) {
2142 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2143         case KVM_CAP_PPC_ENABLE_HCALL: {
2144                 unsigned long hcall = cap->args[0];
2145
2146                 r = -EINVAL;
2147                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2148                     cap->args[1] > 1)
2149                         break;
2150                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2151                         break;
2152                 if (cap->args[1])
2153                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2154                 else
2155                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2156                 r = 0;
2157                 break;
2158         }
2159         case KVM_CAP_PPC_SMT: {
2160                 unsigned long mode = cap->args[0];
2161                 unsigned long flags = cap->args[1];
2162
2163                 r = -EINVAL;
2164                 if (kvm->arch.kvm_ops->set_smt_mode)
2165                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2166                 break;
2167         }
2168
2169         case KVM_CAP_PPC_NESTED_HV:
2170                 r = -EINVAL;
2171                 if (!is_kvmppc_hv_enabled(kvm) ||
2172                     !kvm->arch.kvm_ops->enable_nested)
2173                         break;
2174                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2175                 break;
2176 #endif
2177         default:
2178                 r = -EINVAL;
2179                 break;
2180         }
2181
2182         return r;
2183 }
2184
2185 #ifdef CONFIG_PPC_BOOK3S_64
2186 /*
2187  * These functions check whether the underlying hardware is safe
2188  * against attacks based on observing the effects of speculatively
2189  * executed instructions, and whether it supplies instructions for
2190  * use in workarounds.  The information comes from firmware, either
2191  * via the device tree on powernv platforms or from an hcall on
2192  * pseries platforms.
2193  */
2194 #ifdef CONFIG_PPC_PSERIES
2195 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2196 {
2197         struct h_cpu_char_result c;
2198         unsigned long rc;
2199
2200         if (!machine_is(pseries))
2201                 return -ENOTTY;
2202
2203         rc = plpar_get_cpu_characteristics(&c);
2204         if (rc == H_SUCCESS) {
2205                 cp->character = c.character;
2206                 cp->behaviour = c.behaviour;
2207                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2208                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2209                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2210                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2211                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2212                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2213                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2214                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2215                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2216                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2217                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2218                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2219                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2220         }
2221         return 0;
2222 }
2223 #else
2224 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2225 {
2226         return -ENOTTY;
2227 }
2228 #endif
2229
2230 static inline bool have_fw_feat(struct device_node *fw_features,
2231                                 const char *state, const char *name)
2232 {
2233         struct device_node *np;
2234         bool r = false;
2235
2236         np = of_get_child_by_name(fw_features, name);
2237         if (np) {
2238                 r = of_property_read_bool(np, state);
2239                 of_node_put(np);
2240         }
2241         return r;
2242 }
2243
2244 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2245 {
2246         struct device_node *np, *fw_features;
2247         int r;
2248
2249         memset(cp, 0, sizeof(*cp));
2250         r = pseries_get_cpu_char(cp);
2251         if (r != -ENOTTY)
2252                 return r;
2253
2254         np = of_find_node_by_name(NULL, "ibm,opal");
2255         if (np) {
2256                 fw_features = of_get_child_by_name(np, "fw-features");
2257                 of_node_put(np);
2258                 if (!fw_features)
2259                         return 0;
2260                 if (have_fw_feat(fw_features, "enabled",
2261                                  "inst-spec-barrier-ori31,31,0"))
2262                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2263                 if (have_fw_feat(fw_features, "enabled",
2264                                  "fw-bcctrl-serialized"))
2265                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2266                 if (have_fw_feat(fw_features, "enabled",
2267                                  "inst-l1d-flush-ori30,30,0"))
2268                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2269                 if (have_fw_feat(fw_features, "enabled",
2270                                  "inst-l1d-flush-trig2"))
2271                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2272                 if (have_fw_feat(fw_features, "enabled",
2273                                  "fw-l1d-thread-split"))
2274                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2275                 if (have_fw_feat(fw_features, "enabled",
2276                                  "fw-count-cache-disabled"))
2277                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2278                 if (have_fw_feat(fw_features, "enabled",
2279                                  "fw-count-cache-flush-bcctr2,0,0"))
2280                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2281                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2282                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2283                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2284                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2285                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2286                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2287                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2288
2289                 if (have_fw_feat(fw_features, "enabled",
2290                                  "speculation-policy-favor-security"))
2291                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2292                 if (!have_fw_feat(fw_features, "disabled",
2293                                   "needs-l1d-flush-msr-pr-0-to-1"))
2294                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2295                 if (!have_fw_feat(fw_features, "disabled",
2296                                   "needs-spec-barrier-for-bound-checks"))
2297                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2298                 if (have_fw_feat(fw_features, "enabled",
2299                                  "needs-count-cache-flush-on-context-switch"))
2300                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2301                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2302                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2303                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2304                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2305
2306                 of_node_put(fw_features);
2307         }
2308
2309         return 0;
2310 }
2311 #endif
2312
2313 long kvm_arch_vm_ioctl(struct file *filp,
2314                        unsigned int ioctl, unsigned long arg)
2315 {
2316         struct kvm *kvm __maybe_unused = filp->private_data;
2317         void __user *argp = (void __user *)arg;
2318         long r;
2319
2320         switch (ioctl) {
2321         case KVM_PPC_GET_PVINFO: {
2322                 struct kvm_ppc_pvinfo pvinfo;
2323                 memset(&pvinfo, 0, sizeof(pvinfo));
2324                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2325                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2326                         r = -EFAULT;
2327                         goto out;
2328                 }
2329
2330                 break;
2331         }
2332 #ifdef CONFIG_SPAPR_TCE_IOMMU
2333         case KVM_CREATE_SPAPR_TCE_64: {
2334                 struct kvm_create_spapr_tce_64 create_tce_64;
2335
2336                 r = -EFAULT;
2337                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2338                         goto out;
2339                 if (create_tce_64.flags) {
2340                         r = -EINVAL;
2341                         goto out;
2342                 }
2343                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2344                 goto out;
2345         }
2346         case KVM_CREATE_SPAPR_TCE: {
2347                 struct kvm_create_spapr_tce create_tce;
2348                 struct kvm_create_spapr_tce_64 create_tce_64;
2349
2350                 r = -EFAULT;
2351                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2352                         goto out;
2353
2354                 create_tce_64.liobn = create_tce.liobn;
2355                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2356                 create_tce_64.offset = 0;
2357                 create_tce_64.size = create_tce.window_size >>
2358                                 IOMMU_PAGE_SHIFT_4K;
2359                 create_tce_64.flags = 0;
2360                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2361                 goto out;
2362         }
2363 #endif
2364 #ifdef CONFIG_PPC_BOOK3S_64
2365         case KVM_PPC_GET_SMMU_INFO: {
2366                 struct kvm_ppc_smmu_info info;
2367                 struct kvm *kvm = filp->private_data;
2368
2369                 memset(&info, 0, sizeof(info));
2370                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2371                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2372                         r = -EFAULT;
2373                 break;
2374         }
2375         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2376                 struct kvm *kvm = filp->private_data;
2377
2378                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2379                 break;
2380         }
2381         case KVM_PPC_CONFIGURE_V3_MMU: {
2382                 struct kvm *kvm = filp->private_data;
2383                 struct kvm_ppc_mmuv3_cfg cfg;
2384
2385                 r = -EINVAL;
2386                 if (!kvm->arch.kvm_ops->configure_mmu)
2387                         goto out;
2388                 r = -EFAULT;
2389                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2390                         goto out;
2391                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2392                 break;
2393         }
2394         case KVM_PPC_GET_RMMU_INFO: {
2395                 struct kvm *kvm = filp->private_data;
2396                 struct kvm_ppc_rmmu_info info;
2397
2398                 r = -EINVAL;
2399                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2400                         goto out;
2401                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2402                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2403                         r = -EFAULT;
2404                 break;
2405         }
2406         case KVM_PPC_GET_CPU_CHAR: {
2407                 struct kvm_ppc_cpu_char cpuchar;
2408
2409                 r = kvmppc_get_cpu_char(&cpuchar);
2410                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2411                         r = -EFAULT;
2412                 break;
2413         }
2414         default: {
2415                 struct kvm *kvm = filp->private_data;
2416                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2417         }
2418 #else /* CONFIG_PPC_BOOK3S_64 */
2419         default:
2420                 r = -ENOTTY;
2421 #endif
2422         }
2423 out:
2424         return r;
2425 }
2426
2427 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2428 static unsigned long nr_lpids;
2429
2430 long kvmppc_alloc_lpid(void)
2431 {
2432         long lpid;
2433
2434         do {
2435                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2436                 if (lpid >= nr_lpids) {
2437                         pr_err("%s: No LPIDs free\n", __func__);
2438                         return -ENOMEM;
2439                 }
2440         } while (test_and_set_bit(lpid, lpid_inuse));
2441
2442         return lpid;
2443 }
2444 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2445
2446 void kvmppc_claim_lpid(long lpid)
2447 {
2448         set_bit(lpid, lpid_inuse);
2449 }
2450 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2451
2452 void kvmppc_free_lpid(long lpid)
2453 {
2454         clear_bit(lpid, lpid_inuse);
2455 }
2456 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2457
2458 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2459 {
2460         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2461         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2462 }
2463 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2464
2465 int kvm_arch_init(void *opaque)
2466 {
2467         return 0;
2468 }
2469
2470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);