Merge remote-tracking branch 'master' into queue
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <linux/gfp.h>
51 #include <linux/vmalloc.h>
52 #include <linux/highmem.h>
53 #include <linux/hugetlb.h>
54
55 /* #define EXIT_DEBUG */
56 /* #define EXIT_DEBUG_SIMPLE */
57 /* #define EXIT_DEBUG_INT */
58
59 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
60 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
61
62 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
63 {
64         struct kvmppc_vcore *vc = vcpu->arch.vcore;
65
66         local_paca->kvm_hstate.kvm_vcpu = vcpu;
67         local_paca->kvm_hstate.kvm_vcore = vc;
68         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
69                 vc->stolen_tb += mftb() - vc->preempt_tb;
70 }
71
72 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
73 {
74         struct kvmppc_vcore *vc = vcpu->arch.vcore;
75
76         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
77                 vc->preempt_tb = mftb();
78 }
79
80 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
81 {
82         vcpu->arch.shregs.msr = msr;
83         kvmppc_end_cede(vcpu);
84 }
85
86 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
87 {
88         vcpu->arch.pvr = pvr;
89 }
90
91 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
92 {
93         int r;
94
95         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
96         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
97                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
98         for (r = 0; r < 16; ++r)
99                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
100                        r, kvmppc_get_gpr(vcpu, r),
101                        r+16, kvmppc_get_gpr(vcpu, r+16));
102         pr_err("ctr = %.16lx  lr  = %.16lx\n",
103                vcpu->arch.ctr, vcpu->arch.lr);
104         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
105                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
106         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
107                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
108         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
109                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
110         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
111                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
112         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
113         pr_err("fault dar = %.16lx dsisr = %.8x\n",
114                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
115         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
116         for (r = 0; r < vcpu->arch.slb_max; ++r)
117                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
118                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
119         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
120                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
121                vcpu->arch.last_inst);
122 }
123
124 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
125 {
126         int r;
127         struct kvm_vcpu *v, *ret = NULL;
128
129         mutex_lock(&kvm->lock);
130         kvm_for_each_vcpu(r, v, kvm) {
131                 if (v->vcpu_id == id) {
132                         ret = v;
133                         break;
134                 }
135         }
136         mutex_unlock(&kvm->lock);
137         return ret;
138 }
139
140 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
141 {
142         vpa->shared_proc = 1;
143         vpa->yield_count = 1;
144 }
145
146 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
147                    unsigned long addr, unsigned long len)
148 {
149         /* check address is cacheline aligned */
150         if (addr & (L1_CACHE_BYTES - 1))
151                 return -EINVAL;
152         spin_lock(&vcpu->arch.vpa_update_lock);
153         if (v->next_gpa != addr || v->len != len) {
154                 v->next_gpa = addr;
155                 v->len = addr ? len : 0;
156                 v->update_pending = 1;
157         }
158         spin_unlock(&vcpu->arch.vpa_update_lock);
159         return 0;
160 }
161
162 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
163 struct reg_vpa {
164         u32 dummy;
165         union {
166                 u16 hword;
167                 u32 word;
168         } length;
169 };
170
171 static int vpa_is_registered(struct kvmppc_vpa *vpap)
172 {
173         if (vpap->update_pending)
174                 return vpap->next_gpa != 0;
175         return vpap->pinned_addr != NULL;
176 }
177
178 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
179                                        unsigned long flags,
180                                        unsigned long vcpuid, unsigned long vpa)
181 {
182         struct kvm *kvm = vcpu->kvm;
183         unsigned long len, nb;
184         void *va;
185         struct kvm_vcpu *tvcpu;
186         int err;
187         int subfunc;
188         struct kvmppc_vpa *vpap;
189
190         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
191         if (!tvcpu)
192                 return H_PARAMETER;
193
194         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
195         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
196             subfunc == H_VPA_REG_SLB) {
197                 /* Registering new area - address must be cache-line aligned */
198                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
199                         return H_PARAMETER;
200
201                 /* convert logical addr to kernel addr and read length */
202                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
203                 if (va == NULL)
204                         return H_PARAMETER;
205                 if (subfunc == H_VPA_REG_VPA)
206                         len = ((struct reg_vpa *)va)->length.hword;
207                 else
208                         len = ((struct reg_vpa *)va)->length.word;
209                 kvmppc_unpin_guest_page(kvm, va);
210
211                 /* Check length */
212                 if (len > nb || len < sizeof(struct reg_vpa))
213                         return H_PARAMETER;
214         } else {
215                 vpa = 0;
216                 len = 0;
217         }
218
219         err = H_PARAMETER;
220         vpap = NULL;
221         spin_lock(&tvcpu->arch.vpa_update_lock);
222
223         switch (subfunc) {
224         case H_VPA_REG_VPA:             /* register VPA */
225                 if (len < sizeof(struct lppaca))
226                         break;
227                 vpap = &tvcpu->arch.vpa;
228                 err = 0;
229                 break;
230
231         case H_VPA_REG_DTL:             /* register DTL */
232                 if (len < sizeof(struct dtl_entry))
233                         break;
234                 len -= len % sizeof(struct dtl_entry);
235
236                 /* Check that they have previously registered a VPA */
237                 err = H_RESOURCE;
238                 if (!vpa_is_registered(&tvcpu->arch.vpa))
239                         break;
240
241                 vpap = &tvcpu->arch.dtl;
242                 err = 0;
243                 break;
244
245         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
246                 /* Check that they have previously registered a VPA */
247                 err = H_RESOURCE;
248                 if (!vpa_is_registered(&tvcpu->arch.vpa))
249                         break;
250
251                 vpap = &tvcpu->arch.slb_shadow;
252                 err = 0;
253                 break;
254
255         case H_VPA_DEREG_VPA:           /* deregister VPA */
256                 /* Check they don't still have a DTL or SLB buf registered */
257                 err = H_RESOURCE;
258                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
259                     vpa_is_registered(&tvcpu->arch.slb_shadow))
260                         break;
261
262                 vpap = &tvcpu->arch.vpa;
263                 err = 0;
264                 break;
265
266         case H_VPA_DEREG_DTL:           /* deregister DTL */
267                 vpap = &tvcpu->arch.dtl;
268                 err = 0;
269                 break;
270
271         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
272                 vpap = &tvcpu->arch.slb_shadow;
273                 err = 0;
274                 break;
275         }
276
277         if (vpap) {
278                 vpap->next_gpa = vpa;
279                 vpap->len = len;
280                 vpap->update_pending = 1;
281         }
282
283         spin_unlock(&tvcpu->arch.vpa_update_lock);
284
285         return err;
286 }
287
288 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
289 {
290         struct kvm *kvm = vcpu->kvm;
291         void *va;
292         unsigned long nb;
293         unsigned long gpa;
294
295         /*
296          * We need to pin the page pointed to by vpap->next_gpa,
297          * but we can't call kvmppc_pin_guest_page under the lock
298          * as it does get_user_pages() and down_read().  So we
299          * have to drop the lock, pin the page, then get the lock
300          * again and check that a new area didn't get registered
301          * in the meantime.
302          */
303         for (;;) {
304                 gpa = vpap->next_gpa;
305                 spin_unlock(&vcpu->arch.vpa_update_lock);
306                 va = NULL;
307                 nb = 0;
308                 if (gpa)
309                         va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
310                 spin_lock(&vcpu->arch.vpa_update_lock);
311                 if (gpa == vpap->next_gpa)
312                         break;
313                 /* sigh... unpin that one and try again */
314                 if (va)
315                         kvmppc_unpin_guest_page(kvm, va);
316         }
317
318         vpap->update_pending = 0;
319         if (va && nb < vpap->len) {
320                 /*
321                  * If it's now too short, it must be that userspace
322                  * has changed the mappings underlying guest memory,
323                  * so unregister the region.
324                  */
325                 kvmppc_unpin_guest_page(kvm, va);
326                 va = NULL;
327         }
328         if (vpap->pinned_addr)
329                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
330         vpap->pinned_addr = va;
331         if (va)
332                 vpap->pinned_end = va + vpap->len;
333 }
334
335 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
336 {
337         spin_lock(&vcpu->arch.vpa_update_lock);
338         if (vcpu->arch.vpa.update_pending) {
339                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
340                 if (vcpu->arch.vpa.pinned_addr)
341                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
342         }
343         if (vcpu->arch.dtl.update_pending) {
344                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
345                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
346                 vcpu->arch.dtl_index = 0;
347         }
348         if (vcpu->arch.slb_shadow.update_pending)
349                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
350         spin_unlock(&vcpu->arch.vpa_update_lock);
351 }
352
353 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
354                                     struct kvmppc_vcore *vc)
355 {
356         struct dtl_entry *dt;
357         struct lppaca *vpa;
358         unsigned long old_stolen;
359
360         dt = vcpu->arch.dtl_ptr;
361         vpa = vcpu->arch.vpa.pinned_addr;
362         old_stolen = vcpu->arch.stolen_logged;
363         vcpu->arch.stolen_logged = vc->stolen_tb;
364         if (!dt || !vpa)
365                 return;
366         memset(dt, 0, sizeof(struct dtl_entry));
367         dt->dispatch_reason = 7;
368         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
369         dt->timebase = mftb();
370         dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
371         dt->srr0 = kvmppc_get_pc(vcpu);
372         dt->srr1 = vcpu->arch.shregs.msr;
373         ++dt;
374         if (dt == vcpu->arch.dtl.pinned_end)
375                 dt = vcpu->arch.dtl.pinned_addr;
376         vcpu->arch.dtl_ptr = dt;
377         /* order writing *dt vs. writing vpa->dtl_idx */
378         smp_wmb();
379         vpa->dtl_idx = ++vcpu->arch.dtl_index;
380 }
381
382 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
383 {
384         unsigned long req = kvmppc_get_gpr(vcpu, 3);
385         unsigned long target, ret = H_SUCCESS;
386         struct kvm_vcpu *tvcpu;
387         int idx;
388
389         switch (req) {
390         case H_ENTER:
391                 idx = srcu_read_lock(&vcpu->kvm->srcu);
392                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
393                                               kvmppc_get_gpr(vcpu, 5),
394                                               kvmppc_get_gpr(vcpu, 6),
395                                               kvmppc_get_gpr(vcpu, 7));
396                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
397                 break;
398         case H_CEDE:
399                 break;
400         case H_PROD:
401                 target = kvmppc_get_gpr(vcpu, 4);
402                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
403                 if (!tvcpu) {
404                         ret = H_PARAMETER;
405                         break;
406                 }
407                 tvcpu->arch.prodded = 1;
408                 smp_mb();
409                 if (vcpu->arch.ceded) {
410                         if (waitqueue_active(&vcpu->wq)) {
411                                 wake_up_interruptible(&vcpu->wq);
412                                 vcpu->stat.halt_wakeup++;
413                         }
414                 }
415                 break;
416         case H_CONFER:
417                 break;
418         case H_REGISTER_VPA:
419                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
420                                         kvmppc_get_gpr(vcpu, 5),
421                                         kvmppc_get_gpr(vcpu, 6));
422                 break;
423         default:
424                 return RESUME_HOST;
425         }
426         kvmppc_set_gpr(vcpu, 3, ret);
427         vcpu->arch.hcall_needed = 0;
428         return RESUME_GUEST;
429 }
430
431 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
432                               struct task_struct *tsk)
433 {
434         int r = RESUME_HOST;
435         int srcu_idx;
436
437         vcpu->stat.sum_exits++;
438
439         run->exit_reason = KVM_EXIT_UNKNOWN;
440         run->ready_for_interrupt_injection = 1;
441         switch (vcpu->arch.trap) {
442         /* We're good on these - the host merely wanted to get our attention */
443         case BOOK3S_INTERRUPT_HV_DECREMENTER:
444                 vcpu->stat.dec_exits++;
445                 r = RESUME_GUEST;
446                 break;
447         case BOOK3S_INTERRUPT_EXTERNAL:
448                 vcpu->stat.ext_intr_exits++;
449                 r = RESUME_GUEST;
450                 break;
451         case BOOK3S_INTERRUPT_PERFMON:
452                 r = RESUME_GUEST;
453                 break;
454         case BOOK3S_INTERRUPT_PROGRAM:
455         {
456                 ulong flags;
457                 /*
458                  * Normally program interrupts are delivered directly
459                  * to the guest by the hardware, but we can get here
460                  * as a result of a hypervisor emulation interrupt
461                  * (e40) getting turned into a 700 by BML RTAS.
462                  */
463                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
464                 kvmppc_core_queue_program(vcpu, flags);
465                 r = RESUME_GUEST;
466                 break;
467         }
468         case BOOK3S_INTERRUPT_SYSCALL:
469         {
470                 /* hcall - punt to userspace */
471                 int i;
472
473                 if (vcpu->arch.shregs.msr & MSR_PR) {
474                         /* sc 1 from userspace - reflect to guest syscall */
475                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
476                         r = RESUME_GUEST;
477                         break;
478                 }
479                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
480                 for (i = 0; i < 9; ++i)
481                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
482                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
483                 vcpu->arch.hcall_needed = 1;
484                 r = RESUME_HOST;
485                 break;
486         }
487         /*
488          * We get these next two if the guest accesses a page which it thinks
489          * it has mapped but which is not actually present, either because
490          * it is for an emulated I/O device or because the corresonding
491          * host page has been paged out.  Any other HDSI/HISI interrupts
492          * have been handled already.
493          */
494         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
495                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
496                 r = kvmppc_book3s_hv_page_fault(run, vcpu,
497                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
498                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
499                 break;
500         case BOOK3S_INTERRUPT_H_INST_STORAGE:
501                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
502                 r = kvmppc_book3s_hv_page_fault(run, vcpu,
503                                 kvmppc_get_pc(vcpu), 0);
504                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
505                 break;
506         /*
507          * This occurs if the guest executes an illegal instruction.
508          * We just generate a program interrupt to the guest, since
509          * we don't emulate any guest instructions at this stage.
510          */
511         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
512                 kvmppc_core_queue_program(vcpu, 0x80000);
513                 r = RESUME_GUEST;
514                 break;
515         default:
516                 kvmppc_dump_regs(vcpu);
517                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
518                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
519                         vcpu->arch.shregs.msr);
520                 r = RESUME_HOST;
521                 BUG();
522                 break;
523         }
524
525         return r;
526 }
527
528 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
529                                   struct kvm_sregs *sregs)
530 {
531         int i;
532
533         sregs->pvr = vcpu->arch.pvr;
534
535         memset(sregs, 0, sizeof(struct kvm_sregs));
536         for (i = 0; i < vcpu->arch.slb_max; i++) {
537                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
538                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
539         }
540
541         return 0;
542 }
543
544 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
545                                   struct kvm_sregs *sregs)
546 {
547         int i, j;
548
549         kvmppc_set_pvr(vcpu, sregs->pvr);
550
551         j = 0;
552         for (i = 0; i < vcpu->arch.slb_nr; i++) {
553                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
554                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
555                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
556                         ++j;
557                 }
558         }
559         vcpu->arch.slb_max = j;
560
561         return 0;
562 }
563
564 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
565 {
566         int r = 0;
567         long int i;
568
569         switch (id) {
570         case KVM_REG_PPC_HIOR:
571                 *val = get_reg_val(id, 0);
572                 break;
573         case KVM_REG_PPC_DABR:
574                 *val = get_reg_val(id, vcpu->arch.dabr);
575                 break;
576         case KVM_REG_PPC_DSCR:
577                 *val = get_reg_val(id, vcpu->arch.dscr);
578                 break;
579         case KVM_REG_PPC_PURR:
580                 *val = get_reg_val(id, vcpu->arch.purr);
581                 break;
582         case KVM_REG_PPC_SPURR:
583                 *val = get_reg_val(id, vcpu->arch.spurr);
584                 break;
585         case KVM_REG_PPC_AMR:
586                 *val = get_reg_val(id, vcpu->arch.amr);
587                 break;
588         case KVM_REG_PPC_UAMOR:
589                 *val = get_reg_val(id, vcpu->arch.uamor);
590                 break;
591         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
592                 i = id - KVM_REG_PPC_MMCR0;
593                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
594                 break;
595         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
596                 i = id - KVM_REG_PPC_PMC1;
597                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
598                 break;
599 #ifdef CONFIG_VSX
600         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
601                 if (cpu_has_feature(CPU_FTR_VSX)) {
602                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
603                         long int i = id - KVM_REG_PPC_FPR0;
604                         *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
605                 } else {
606                         /* let generic code handle it */
607                         r = -EINVAL;
608                 }
609                 break;
610         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
611                 if (cpu_has_feature(CPU_FTR_VSX)) {
612                         long int i = id - KVM_REG_PPC_VSR0;
613                         val->vsxval[0] = vcpu->arch.vsr[2 * i];
614                         val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
615                 } else {
616                         r = -ENXIO;
617                 }
618                 break;
619 #endif /* CONFIG_VSX */
620         case KVM_REG_PPC_VPA_ADDR:
621                 spin_lock(&vcpu->arch.vpa_update_lock);
622                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
623                 spin_unlock(&vcpu->arch.vpa_update_lock);
624                 break;
625         case KVM_REG_PPC_VPA_SLB:
626                 spin_lock(&vcpu->arch.vpa_update_lock);
627                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
628                 val->vpaval.length = vcpu->arch.slb_shadow.len;
629                 spin_unlock(&vcpu->arch.vpa_update_lock);
630                 break;
631         case KVM_REG_PPC_VPA_DTL:
632                 spin_lock(&vcpu->arch.vpa_update_lock);
633                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
634                 val->vpaval.length = vcpu->arch.dtl.len;
635                 spin_unlock(&vcpu->arch.vpa_update_lock);
636                 break;
637         default:
638                 r = -EINVAL;
639                 break;
640         }
641
642         return r;
643 }
644
645 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
646 {
647         int r = 0;
648         long int i;
649         unsigned long addr, len;
650
651         switch (id) {
652         case KVM_REG_PPC_HIOR:
653                 /* Only allow this to be set to zero */
654                 if (set_reg_val(id, *val))
655                         r = -EINVAL;
656                 break;
657         case KVM_REG_PPC_DABR:
658                 vcpu->arch.dabr = set_reg_val(id, *val);
659                 break;
660         case KVM_REG_PPC_DSCR:
661                 vcpu->arch.dscr = set_reg_val(id, *val);
662                 break;
663         case KVM_REG_PPC_PURR:
664                 vcpu->arch.purr = set_reg_val(id, *val);
665                 break;
666         case KVM_REG_PPC_SPURR:
667                 vcpu->arch.spurr = set_reg_val(id, *val);
668                 break;
669         case KVM_REG_PPC_AMR:
670                 vcpu->arch.amr = set_reg_val(id, *val);
671                 break;
672         case KVM_REG_PPC_UAMOR:
673                 vcpu->arch.uamor = set_reg_val(id, *val);
674                 break;
675         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
676                 i = id - KVM_REG_PPC_MMCR0;
677                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
678                 break;
679         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
680                 i = id - KVM_REG_PPC_PMC1;
681                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
682                 break;
683 #ifdef CONFIG_VSX
684         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
685                 if (cpu_has_feature(CPU_FTR_VSX)) {
686                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
687                         long int i = id - KVM_REG_PPC_FPR0;
688                         vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
689                 } else {
690                         /* let generic code handle it */
691                         r = -EINVAL;
692                 }
693                 break;
694         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
695                 if (cpu_has_feature(CPU_FTR_VSX)) {
696                         long int i = id - KVM_REG_PPC_VSR0;
697                         vcpu->arch.vsr[2 * i] = val->vsxval[0];
698                         vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
699                 } else {
700                         r = -ENXIO;
701                 }
702                 break;
703 #endif /* CONFIG_VSX */
704         case KVM_REG_PPC_VPA_ADDR:
705                 addr = set_reg_val(id, *val);
706                 r = -EINVAL;
707                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
708                               vcpu->arch.dtl.next_gpa))
709                         break;
710                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
711                 break;
712         case KVM_REG_PPC_VPA_SLB:
713                 addr = val->vpaval.addr;
714                 len = val->vpaval.length;
715                 r = -EINVAL;
716                 if (addr && !vcpu->arch.vpa.next_gpa)
717                         break;
718                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
719                 break;
720         case KVM_REG_PPC_VPA_DTL:
721                 addr = val->vpaval.addr;
722                 len = val->vpaval.length;
723                 r = -EINVAL;
724                 if (len < sizeof(struct dtl_entry))
725                         break;
726                 if (addr && !vcpu->arch.vpa.next_gpa)
727                         break;
728                 len -= len % sizeof(struct dtl_entry);
729                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
730                 break;
731         default:
732                 r = -EINVAL;
733                 break;
734         }
735
736         return r;
737 }
738
739 int kvmppc_core_check_processor_compat(void)
740 {
741         if (cpu_has_feature(CPU_FTR_HVMODE))
742                 return 0;
743         return -EIO;
744 }
745
746 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
747 {
748         struct kvm_vcpu *vcpu;
749         int err = -EINVAL;
750         int core;
751         struct kvmppc_vcore *vcore;
752
753         core = id / threads_per_core;
754         if (core >= KVM_MAX_VCORES)
755                 goto out;
756
757         err = -ENOMEM;
758         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
759         if (!vcpu)
760                 goto out;
761
762         err = kvm_vcpu_init(vcpu, kvm, id);
763         if (err)
764                 goto free_vcpu;
765
766         vcpu->arch.shared = &vcpu->arch.shregs;
767         vcpu->arch.last_cpu = -1;
768         vcpu->arch.mmcr[0] = MMCR0_FC;
769         vcpu->arch.ctrl = CTRL_RUNLATCH;
770         /* default to host PVR, since we can't spoof it */
771         vcpu->arch.pvr = mfspr(SPRN_PVR);
772         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
773         spin_lock_init(&vcpu->arch.vpa_update_lock);
774
775         kvmppc_mmu_book3s_hv_init(vcpu);
776
777         /*
778          * We consider the vcpu stopped until we see the first run ioctl for it.
779          */
780         vcpu->arch.state = KVMPPC_VCPU_STOPPED;
781
782         init_waitqueue_head(&vcpu->arch.cpu_run);
783
784         mutex_lock(&kvm->lock);
785         vcore = kvm->arch.vcores[core];
786         if (!vcore) {
787                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
788                 if (vcore) {
789                         INIT_LIST_HEAD(&vcore->runnable_threads);
790                         spin_lock_init(&vcore->lock);
791                         init_waitqueue_head(&vcore->wq);
792                         vcore->preempt_tb = mftb();
793                 }
794                 kvm->arch.vcores[core] = vcore;
795         }
796         mutex_unlock(&kvm->lock);
797
798         if (!vcore)
799                 goto free_vcpu;
800
801         spin_lock(&vcore->lock);
802         ++vcore->num_threads;
803         spin_unlock(&vcore->lock);
804         vcpu->arch.vcore = vcore;
805         vcpu->arch.stolen_logged = vcore->stolen_tb;
806
807         vcpu->arch.cpu_type = KVM_CPU_3S_64;
808         kvmppc_sanity_check(vcpu);
809
810         return vcpu;
811
812 free_vcpu:
813         kmem_cache_free(kvm_vcpu_cache, vcpu);
814 out:
815         return ERR_PTR(err);
816 }
817
818 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
819 {
820         spin_lock(&vcpu->arch.vpa_update_lock);
821         if (vcpu->arch.dtl.pinned_addr)
822                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
823         if (vcpu->arch.slb_shadow.pinned_addr)
824                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
825         if (vcpu->arch.vpa.pinned_addr)
826                 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
827         spin_unlock(&vcpu->arch.vpa_update_lock);
828         kvm_vcpu_uninit(vcpu);
829         kmem_cache_free(kvm_vcpu_cache, vcpu);
830 }
831
832 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
833 {
834         unsigned long dec_nsec, now;
835
836         now = get_tb();
837         if (now > vcpu->arch.dec_expires) {
838                 /* decrementer has already gone negative */
839                 kvmppc_core_queue_dec(vcpu);
840                 kvmppc_core_prepare_to_enter(vcpu);
841                 return;
842         }
843         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
844                    / tb_ticks_per_sec;
845         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
846                       HRTIMER_MODE_REL);
847         vcpu->arch.timer_running = 1;
848 }
849
850 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
851 {
852         vcpu->arch.ceded = 0;
853         if (vcpu->arch.timer_running) {
854                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
855                 vcpu->arch.timer_running = 0;
856         }
857 }
858
859 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
860 extern void xics_wake_cpu(int cpu);
861
862 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
863                                    struct kvm_vcpu *vcpu)
864 {
865         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
866                 return;
867         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
868         --vc->n_runnable;
869         ++vc->n_busy;
870         list_del(&vcpu->arch.run_list);
871 }
872
873 static int kvmppc_grab_hwthread(int cpu)
874 {
875         struct paca_struct *tpaca;
876         long timeout = 1000;
877
878         tpaca = &paca[cpu];
879
880         /* Ensure the thread won't go into the kernel if it wakes */
881         tpaca->kvm_hstate.hwthread_req = 1;
882
883         /*
884          * If the thread is already executing in the kernel (e.g. handling
885          * a stray interrupt), wait for it to get back to nap mode.
886          * The smp_mb() is to ensure that our setting of hwthread_req
887          * is visible before we look at hwthread_state, so if this
888          * races with the code at system_reset_pSeries and the thread
889          * misses our setting of hwthread_req, we are sure to see its
890          * setting of hwthread_state, and vice versa.
891          */
892         smp_mb();
893         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
894                 if (--timeout <= 0) {
895                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
896                         return -EBUSY;
897                 }
898                 udelay(1);
899         }
900         return 0;
901 }
902
903 static void kvmppc_release_hwthread(int cpu)
904 {
905         struct paca_struct *tpaca;
906
907         tpaca = &paca[cpu];
908         tpaca->kvm_hstate.hwthread_req = 0;
909         tpaca->kvm_hstate.kvm_vcpu = NULL;
910 }
911
912 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
913 {
914         int cpu;
915         struct paca_struct *tpaca;
916         struct kvmppc_vcore *vc = vcpu->arch.vcore;
917
918         if (vcpu->arch.timer_running) {
919                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
920                 vcpu->arch.timer_running = 0;
921         }
922         cpu = vc->pcpu + vcpu->arch.ptid;
923         tpaca = &paca[cpu];
924         tpaca->kvm_hstate.kvm_vcpu = vcpu;
925         tpaca->kvm_hstate.kvm_vcore = vc;
926         tpaca->kvm_hstate.napping = 0;
927         vcpu->cpu = vc->pcpu;
928         smp_wmb();
929 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
930         if (vcpu->arch.ptid) {
931                 kvmppc_grab_hwthread(cpu);
932                 xics_wake_cpu(cpu);
933                 ++vc->n_woken;
934         }
935 #endif
936 }
937
938 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
939 {
940         int i;
941
942         HMT_low();
943         i = 0;
944         while (vc->nap_count < vc->n_woken) {
945                 if (++i >= 1000000) {
946                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
947                                vc->nap_count, vc->n_woken);
948                         break;
949                 }
950                 cpu_relax();
951         }
952         HMT_medium();
953 }
954
955 /*
956  * Check that we are on thread 0 and that any other threads in
957  * this core are off-line.
958  */
959 static int on_primary_thread(void)
960 {
961         int cpu = smp_processor_id();
962         int thr = cpu_thread_in_core(cpu);
963
964         if (thr)
965                 return 0;
966         while (++thr < threads_per_core)
967                 if (cpu_online(cpu + thr))
968                         return 0;
969         return 1;
970 }
971
972 /*
973  * Run a set of guest threads on a physical core.
974  * Called with vc->lock held.
975  */
976 static int kvmppc_run_core(struct kvmppc_vcore *vc)
977 {
978         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
979         long ret;
980         u64 now;
981         int ptid, i, need_vpa_update;
982         int srcu_idx;
983
984         /* don't start if any threads have a signal pending */
985         need_vpa_update = 0;
986         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
987                 if (signal_pending(vcpu->arch.run_task))
988                         return 0;
989                 need_vpa_update |= vcpu->arch.vpa.update_pending |
990                         vcpu->arch.slb_shadow.update_pending |
991                         vcpu->arch.dtl.update_pending;
992         }
993
994         /*
995          * Initialize *vc, in particular vc->vcore_state, so we can
996          * drop the vcore lock if necessary.
997          */
998         vc->n_woken = 0;
999         vc->nap_count = 0;
1000         vc->entry_exit_count = 0;
1001         vc->vcore_state = VCORE_RUNNING;
1002         vc->in_guest = 0;
1003         vc->napping_threads = 0;
1004
1005         /*
1006          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1007          * which can't be called with any spinlocks held.
1008          */
1009         if (need_vpa_update) {
1010                 spin_unlock(&vc->lock);
1011                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1012                         kvmppc_update_vpas(vcpu);
1013                 spin_lock(&vc->lock);
1014         }
1015
1016         /*
1017          * Make sure we are running on thread 0, and that
1018          * secondary threads are offline.
1019          * XXX we should also block attempts to bring any
1020          * secondary threads online.
1021          */
1022         if (threads_per_core > 1 && !on_primary_thread()) {
1023                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1024                         vcpu->arch.ret = -EBUSY;
1025                 goto out;
1026         }
1027
1028         /*
1029          * Assign physical thread IDs, first to non-ceded vcpus
1030          * and then to ceded ones.
1031          */
1032         ptid = 0;
1033         vcpu0 = NULL;
1034         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1035                 if (!vcpu->arch.ceded) {
1036                         if (!ptid)
1037                                 vcpu0 = vcpu;
1038                         vcpu->arch.ptid = ptid++;
1039                 }
1040         }
1041         if (!vcpu0)
1042                 return 0;               /* nothing to run */
1043         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1044                 if (vcpu->arch.ceded)
1045                         vcpu->arch.ptid = ptid++;
1046
1047         vc->stolen_tb += mftb() - vc->preempt_tb;
1048         vc->pcpu = smp_processor_id();
1049         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1050                 kvmppc_start_thread(vcpu);
1051                 kvmppc_create_dtl_entry(vcpu, vc);
1052         }
1053         /* Grab any remaining hw threads so they can't go into the kernel */
1054         for (i = ptid; i < threads_per_core; ++i)
1055                 kvmppc_grab_hwthread(vc->pcpu + i);
1056
1057         preempt_disable();
1058         spin_unlock(&vc->lock);
1059
1060         kvm_guest_enter();
1061
1062         srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1063
1064         __kvmppc_vcore_entry(NULL, vcpu0);
1065         for (i = 0; i < threads_per_core; ++i)
1066                 kvmppc_release_hwthread(vc->pcpu + i);
1067
1068         spin_lock(&vc->lock);
1069         /* disable sending of IPIs on virtual external irqs */
1070         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1071                 vcpu->cpu = -1;
1072         /* wait for secondary threads to finish writing their state to memory */
1073         if (vc->nap_count < vc->n_woken)
1074                 kvmppc_wait_for_nap(vc);
1075         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1076         vc->vcore_state = VCORE_EXITING;
1077         spin_unlock(&vc->lock);
1078
1079         srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1080
1081         /* make sure updates to secondary vcpu structs are visible now */
1082         smp_mb();
1083         kvm_guest_exit();
1084
1085         preempt_enable();
1086         kvm_resched(vcpu);
1087
1088         now = get_tb();
1089         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1090                 /* cancel pending dec exception if dec is positive */
1091                 if (now < vcpu->arch.dec_expires &&
1092                     kvmppc_core_pending_dec(vcpu))
1093                         kvmppc_core_dequeue_dec(vcpu);
1094
1095                 ret = RESUME_GUEST;
1096                 if (vcpu->arch.trap)
1097                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1098                                                  vcpu->arch.run_task);
1099
1100                 vcpu->arch.ret = ret;
1101                 vcpu->arch.trap = 0;
1102
1103                 if (vcpu->arch.ceded) {
1104                         if (ret != RESUME_GUEST)
1105                                 kvmppc_end_cede(vcpu);
1106                         else
1107                                 kvmppc_set_timer(vcpu);
1108                 }
1109         }
1110
1111         spin_lock(&vc->lock);
1112  out:
1113         vc->vcore_state = VCORE_INACTIVE;
1114         vc->preempt_tb = mftb();
1115         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1116                                  arch.run_list) {
1117                 if (vcpu->arch.ret != RESUME_GUEST) {
1118                         kvmppc_remove_runnable(vc, vcpu);
1119                         wake_up(&vcpu->arch.cpu_run);
1120                 }
1121         }
1122
1123         return 1;
1124 }
1125
1126 /*
1127  * Wait for some other vcpu thread to execute us, and
1128  * wake us up when we need to handle something in the host.
1129  */
1130 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1131 {
1132         DEFINE_WAIT(wait);
1133
1134         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1135         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1136                 schedule();
1137         finish_wait(&vcpu->arch.cpu_run, &wait);
1138 }
1139
1140 /*
1141  * All the vcpus in this vcore are idle, so wait for a decrementer
1142  * or external interrupt to one of the vcpus.  vc->lock is held.
1143  */
1144 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1145 {
1146         DEFINE_WAIT(wait);
1147         struct kvm_vcpu *v;
1148         int all_idle = 1;
1149
1150         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1151         vc->vcore_state = VCORE_SLEEPING;
1152         spin_unlock(&vc->lock);
1153         list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1154                 if (!v->arch.ceded || v->arch.pending_exceptions) {
1155                         all_idle = 0;
1156                         break;
1157                 }
1158         }
1159         if (all_idle)
1160                 schedule();
1161         finish_wait(&vc->wq, &wait);
1162         spin_lock(&vc->lock);
1163         vc->vcore_state = VCORE_INACTIVE;
1164 }
1165
1166 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1167 {
1168         int n_ceded;
1169         int prev_state;
1170         struct kvmppc_vcore *vc;
1171         struct kvm_vcpu *v, *vn;
1172
1173         kvm_run->exit_reason = 0;
1174         vcpu->arch.ret = RESUME_GUEST;
1175         vcpu->arch.trap = 0;
1176
1177         /*
1178          * Synchronize with other threads in this virtual core
1179          */
1180         vc = vcpu->arch.vcore;
1181         spin_lock(&vc->lock);
1182         vcpu->arch.ceded = 0;
1183         vcpu->arch.run_task = current;
1184         vcpu->arch.kvm_run = kvm_run;
1185         prev_state = vcpu->arch.state;
1186         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1187         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1188         ++vc->n_runnable;
1189
1190         /*
1191          * This happens the first time this is called for a vcpu.
1192          * If the vcore is already running, we may be able to start
1193          * this thread straight away and have it join in.
1194          */
1195         if (prev_state == KVMPPC_VCPU_STOPPED) {
1196                 if (vc->vcore_state == VCORE_RUNNING &&
1197                     VCORE_EXIT_COUNT(vc) == 0) {
1198                         vcpu->arch.ptid = vc->n_runnable - 1;
1199                         kvmppc_start_thread(vcpu);
1200                 }
1201
1202         } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
1203                 --vc->n_busy;
1204
1205         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1206                !signal_pending(current)) {
1207                 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
1208                         spin_unlock(&vc->lock);
1209                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1210                         spin_lock(&vc->lock);
1211                         continue;
1212                 }
1213                 vc->runner = vcpu;
1214                 n_ceded = 0;
1215                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1216                         n_ceded += v->arch.ceded;
1217                 if (n_ceded == vc->n_runnable)
1218                         kvmppc_vcore_blocked(vc);
1219                 else
1220                         kvmppc_run_core(vc);
1221
1222                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1223                                          arch.run_list) {
1224                         kvmppc_core_prepare_to_enter(v);
1225                         if (signal_pending(v->arch.run_task)) {
1226                                 kvmppc_remove_runnable(vc, v);
1227                                 v->stat.signal_exits++;
1228                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1229                                 v->arch.ret = -EINTR;
1230                                 wake_up(&v->arch.cpu_run);
1231                         }
1232                 }
1233                 vc->runner = NULL;
1234         }
1235
1236         if (signal_pending(current)) {
1237                 if (vc->vcore_state == VCORE_RUNNING ||
1238                     vc->vcore_state == VCORE_EXITING) {
1239                         spin_unlock(&vc->lock);
1240                         kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1241                         spin_lock(&vc->lock);
1242                 }
1243                 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1244                         kvmppc_remove_runnable(vc, vcpu);
1245                         vcpu->stat.signal_exits++;
1246                         kvm_run->exit_reason = KVM_EXIT_INTR;
1247                         vcpu->arch.ret = -EINTR;
1248                 }
1249         }
1250
1251         spin_unlock(&vc->lock);
1252         return vcpu->arch.ret;
1253 }
1254
1255 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1256 {
1257         int r;
1258
1259         if (!vcpu->arch.sane) {
1260                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1261                 return -EINVAL;
1262         }
1263
1264         kvmppc_core_prepare_to_enter(vcpu);
1265
1266         /* No need to go into the guest when all we'll do is come back out */
1267         if (signal_pending(current)) {
1268                 run->exit_reason = KVM_EXIT_INTR;
1269                 return -EINTR;
1270         }
1271
1272         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1273         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1274         smp_mb();
1275
1276         /* On the first time here, set up HTAB and VRMA or RMA */
1277         if (!vcpu->kvm->arch.rma_setup_done) {
1278                 r = kvmppc_hv_setup_htab_rma(vcpu);
1279                 if (r)
1280                         goto out;
1281         }
1282
1283         flush_fp_to_thread(current);
1284         flush_altivec_to_thread(current);
1285         flush_vsx_to_thread(current);
1286         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1287         vcpu->arch.pgdir = current->mm->pgd;
1288
1289         do {
1290                 r = kvmppc_run_vcpu(run, vcpu);
1291
1292                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1293                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1294                         r = kvmppc_pseries_do_hcall(vcpu);
1295                         kvmppc_core_prepare_to_enter(vcpu);
1296                 }
1297         } while (r == RESUME_GUEST);
1298
1299  out:
1300         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1301         return r;
1302 }
1303
1304
1305 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1306    Assumes POWER7 or PPC970. */
1307 static inline int lpcr_rmls(unsigned long rma_size)
1308 {
1309         switch (rma_size) {
1310         case 32ul << 20:        /* 32 MB */
1311                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1312                         return 8;       /* only supported on POWER7 */
1313                 return -1;
1314         case 64ul << 20:        /* 64 MB */
1315                 return 3;
1316         case 128ul << 20:       /* 128 MB */
1317                 return 7;
1318         case 256ul << 20:       /* 256 MB */
1319                 return 4;
1320         case 1ul << 30:         /* 1 GB */
1321                 return 2;
1322         case 16ul << 30:        /* 16 GB */
1323                 return 1;
1324         case 256ul << 30:       /* 256 GB */
1325                 return 0;
1326         default:
1327                 return -1;
1328         }
1329 }
1330
1331 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1332 {
1333         struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1334         struct page *page;
1335
1336         if (vmf->pgoff >= ri->npages)
1337                 return VM_FAULT_SIGBUS;
1338
1339         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1340         get_page(page);
1341         vmf->page = page;
1342         return 0;
1343 }
1344
1345 static const struct vm_operations_struct kvm_rma_vm_ops = {
1346         .fault = kvm_rma_fault,
1347 };
1348
1349 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1350 {
1351         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1352         vma->vm_ops = &kvm_rma_vm_ops;
1353         return 0;
1354 }
1355
1356 static int kvm_rma_release(struct inode *inode, struct file *filp)
1357 {
1358         struct kvmppc_linear_info *ri = filp->private_data;
1359
1360         kvm_release_rma(ri);
1361         return 0;
1362 }
1363
1364 static struct file_operations kvm_rma_fops = {
1365         .mmap           = kvm_rma_mmap,
1366         .release        = kvm_rma_release,
1367 };
1368
1369 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1370 {
1371         struct kvmppc_linear_info *ri;
1372         long fd;
1373
1374         ri = kvm_alloc_rma();
1375         if (!ri)
1376                 return -ENOMEM;
1377
1378         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1379         if (fd < 0)
1380                 kvm_release_rma(ri);
1381
1382         ret->rma_size = ri->npages << PAGE_SHIFT;
1383         return fd;
1384 }
1385
1386 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1387                                      int linux_psize)
1388 {
1389         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1390
1391         if (!def->shift)
1392                 return;
1393         (*sps)->page_shift = def->shift;
1394         (*sps)->slb_enc = def->sllp;
1395         (*sps)->enc[0].page_shift = def->shift;
1396         (*sps)->enc[0].pte_enc = def->penc;
1397         (*sps)++;
1398 }
1399
1400 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1401 {
1402         struct kvm_ppc_one_seg_page_size *sps;
1403
1404         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1405         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1406                 info->flags |= KVM_PPC_1T_SEGMENTS;
1407         info->slb_size = mmu_slb_size;
1408
1409         /* We only support these sizes for now, and no muti-size segments */
1410         sps = &info->sps[0];
1411         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1412         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1413         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1414
1415         return 0;
1416 }
1417
1418 /*
1419  * Get (and clear) the dirty memory log for a memory slot.
1420  */
1421 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1422 {
1423         struct kvm_memory_slot *memslot;
1424         int r;
1425         unsigned long n;
1426
1427         mutex_lock(&kvm->slots_lock);
1428
1429         r = -EINVAL;
1430         if (log->slot >= KVM_MEMORY_SLOTS)
1431                 goto out;
1432
1433         memslot = id_to_memslot(kvm->memslots, log->slot);
1434         r = -ENOENT;
1435         if (!memslot->dirty_bitmap)
1436                 goto out;
1437
1438         n = kvm_dirty_bitmap_bytes(memslot);
1439         memset(memslot->dirty_bitmap, 0, n);
1440
1441         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1442         if (r)
1443                 goto out;
1444
1445         r = -EFAULT;
1446         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1447                 goto out;
1448
1449         r = 0;
1450 out:
1451         mutex_unlock(&kvm->slots_lock);
1452         return r;
1453 }
1454
1455 static unsigned long slb_pgsize_encoding(unsigned long psize)
1456 {
1457         unsigned long senc = 0;
1458
1459         if (psize > 0x1000) {
1460                 senc = SLB_VSID_L;
1461                 if (psize == 0x10000)
1462                         senc |= SLB_VSID_LP_01;
1463         }
1464         return senc;
1465 }
1466
1467 static void unpin_slot(struct kvm_memory_slot *memslot)
1468 {
1469         unsigned long *physp;
1470         unsigned long j, npages, pfn;
1471         struct page *page;
1472
1473         physp = memslot->arch.slot_phys;
1474         npages = memslot->npages;
1475         if (!physp)
1476                 return;
1477         for (j = 0; j < npages; j++) {
1478                 if (!(physp[j] & KVMPPC_GOT_PAGE))
1479                         continue;
1480                 pfn = physp[j] >> PAGE_SHIFT;
1481                 page = pfn_to_page(pfn);
1482                 SetPageDirty(page);
1483                 put_page(page);
1484         }
1485 }
1486
1487 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1488                               struct kvm_memory_slot *dont)
1489 {
1490         if (!dont || free->arch.rmap != dont->arch.rmap) {
1491                 vfree(free->arch.rmap);
1492                 free->arch.rmap = NULL;
1493         }
1494         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1495                 unpin_slot(free);
1496                 vfree(free->arch.slot_phys);
1497                 free->arch.slot_phys = NULL;
1498         }
1499 }
1500
1501 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1502                                unsigned long npages)
1503 {
1504         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1505         if (!slot->arch.rmap)
1506                 return -ENOMEM;
1507         slot->arch.slot_phys = NULL;
1508
1509         return 0;
1510 }
1511
1512 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1513                                       struct kvm_memory_slot *memslot,
1514                                       struct kvm_userspace_memory_region *mem)
1515 {
1516         unsigned long *phys;
1517
1518         /* Allocate a slot_phys array if needed */
1519         phys = memslot->arch.slot_phys;
1520         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1521                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1522                 if (!phys)
1523                         return -ENOMEM;
1524                 memslot->arch.slot_phys = phys;
1525         }
1526
1527         return 0;
1528 }
1529
1530 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1531                                       struct kvm_userspace_memory_region *mem,
1532                                       struct kvm_memory_slot old)
1533 {
1534         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1535         struct kvm_memory_slot *memslot;
1536
1537         if (npages && old.npages) {
1538                 /*
1539                  * If modifying a memslot, reset all the rmap dirty bits.
1540                  * If this is a new memslot, we don't need to do anything
1541                  * since the rmap array starts out as all zeroes,
1542                  * i.e. no pages are dirty.
1543                  */
1544                 memslot = id_to_memslot(kvm->memslots, mem->slot);
1545                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1546         }
1547 }
1548
1549 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1550 {
1551         int err = 0;
1552         struct kvm *kvm = vcpu->kvm;
1553         struct kvmppc_linear_info *ri = NULL;
1554         unsigned long hva;
1555         struct kvm_memory_slot *memslot;
1556         struct vm_area_struct *vma;
1557         unsigned long lpcr, senc;
1558         unsigned long psize, porder;
1559         unsigned long rma_size;
1560         unsigned long rmls;
1561         unsigned long *physp;
1562         unsigned long i, npages;
1563         int srcu_idx;
1564
1565         mutex_lock(&kvm->lock);
1566         if (kvm->arch.rma_setup_done)
1567                 goto out;       /* another vcpu beat us to it */
1568
1569         /* Allocate hashed page table (if not done already) and reset it */
1570         if (!kvm->arch.hpt_virt) {
1571                 err = kvmppc_alloc_hpt(kvm, NULL);
1572                 if (err) {
1573                         pr_err("KVM: Couldn't alloc HPT\n");
1574                         goto out;
1575                 }
1576         }
1577
1578         /* Look up the memslot for guest physical address 0 */
1579         srcu_idx = srcu_read_lock(&kvm->srcu);
1580         memslot = gfn_to_memslot(kvm, 0);
1581
1582         /* We must have some memory at 0 by now */
1583         err = -EINVAL;
1584         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1585                 goto out_srcu;
1586
1587         /* Look up the VMA for the start of this memory slot */
1588         hva = memslot->userspace_addr;
1589         down_read(&current->mm->mmap_sem);
1590         vma = find_vma(current->mm, hva);
1591         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1592                 goto up_out;
1593
1594         psize = vma_kernel_pagesize(vma);
1595         porder = __ilog2(psize);
1596
1597         /* Is this one of our preallocated RMAs? */
1598         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1599             hva == vma->vm_start)
1600                 ri = vma->vm_file->private_data;
1601
1602         up_read(&current->mm->mmap_sem);
1603
1604         if (!ri) {
1605                 /* On POWER7, use VRMA; on PPC970, give up */
1606                 err = -EPERM;
1607                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1608                         pr_err("KVM: CPU requires an RMO\n");
1609                         goto out_srcu;
1610                 }
1611
1612                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1613                 err = -EINVAL;
1614                 if (!(psize == 0x1000 || psize == 0x10000 ||
1615                       psize == 0x1000000))
1616                         goto out_srcu;
1617
1618                 /* Update VRMASD field in the LPCR */
1619                 senc = slb_pgsize_encoding(psize);
1620                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1621                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1622                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1623                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1624                 kvm->arch.lpcr = lpcr;
1625
1626                 /* Create HPTEs in the hash page table for the VRMA */
1627                 kvmppc_map_vrma(vcpu, memslot, porder);
1628
1629         } else {
1630                 /* Set up to use an RMO region */
1631                 rma_size = ri->npages;
1632                 if (rma_size > memslot->npages)
1633                         rma_size = memslot->npages;
1634                 rma_size <<= PAGE_SHIFT;
1635                 rmls = lpcr_rmls(rma_size);
1636                 err = -EINVAL;
1637                 if (rmls < 0) {
1638                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1639                         goto out_srcu;
1640                 }
1641                 atomic_inc(&ri->use_count);
1642                 kvm->arch.rma = ri;
1643
1644                 /* Update LPCR and RMOR */
1645                 lpcr = kvm->arch.lpcr;
1646                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1647                         /* PPC970; insert RMLS value (split field) in HID4 */
1648                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1649                                   (3ul << HID4_RMLS2_SH));
1650                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1651                                 ((rmls & 3) << HID4_RMLS2_SH);
1652                         /* RMOR is also in HID4 */
1653                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1654                                 << HID4_RMOR_SH;
1655                 } else {
1656                         /* POWER7 */
1657                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1658                         lpcr |= rmls << LPCR_RMLS_SH;
1659                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1660                 }
1661                 kvm->arch.lpcr = lpcr;
1662                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1663                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1664
1665                 /* Initialize phys addrs of pages in RMO */
1666                 npages = ri->npages;
1667                 porder = __ilog2(npages);
1668                 physp = memslot->arch.slot_phys;
1669                 if (physp) {
1670                         if (npages > memslot->npages)
1671                                 npages = memslot->npages;
1672                         spin_lock(&kvm->arch.slot_phys_lock);
1673                         for (i = 0; i < npages; ++i)
1674                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1675                                         porder;
1676                         spin_unlock(&kvm->arch.slot_phys_lock);
1677                 }
1678         }
1679
1680         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1681         smp_wmb();
1682         kvm->arch.rma_setup_done = 1;
1683         err = 0;
1684  out_srcu:
1685         srcu_read_unlock(&kvm->srcu, srcu_idx);
1686  out:
1687         mutex_unlock(&kvm->lock);
1688         return err;
1689
1690  up_out:
1691         up_read(&current->mm->mmap_sem);
1692         goto out;
1693 }
1694
1695 int kvmppc_core_init_vm(struct kvm *kvm)
1696 {
1697         unsigned long lpcr, lpid;
1698
1699         /* Allocate the guest's logical partition ID */
1700
1701         lpid = kvmppc_alloc_lpid();
1702         if (lpid < 0)
1703                 return -ENOMEM;
1704         kvm->arch.lpid = lpid;
1705
1706         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1707
1708         kvm->arch.rma = NULL;
1709
1710         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1711
1712         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1713                 /* PPC970; HID4 is effectively the LPCR */
1714                 kvm->arch.host_lpid = 0;
1715                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1716                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1717                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1718                         ((lpid & 0xf) << HID4_LPID5_SH);
1719         } else {
1720                 /* POWER7; init LPCR for virtual RMA mode */
1721                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1722                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1723                 lpcr &= LPCR_PECE | LPCR_LPES;
1724                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1725                         LPCR_VPM0 | LPCR_VPM1;
1726                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1727                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1728         }
1729         kvm->arch.lpcr = lpcr;
1730
1731         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1732         spin_lock_init(&kvm->arch.slot_phys_lock);
1733         return 0;
1734 }
1735
1736 void kvmppc_core_destroy_vm(struct kvm *kvm)
1737 {
1738         if (kvm->arch.rma) {
1739                 kvm_release_rma(kvm->arch.rma);
1740                 kvm->arch.rma = NULL;
1741         }
1742
1743         kvmppc_free_hpt(kvm);
1744         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1745 }
1746
1747 /* These are stubs for now */
1748 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1749 {
1750 }
1751
1752 /* We don't need to emulate any privileged instructions or dcbz */
1753 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1754                            unsigned int inst, int *advance)
1755 {
1756         return EMULATE_FAIL;
1757 }
1758
1759 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1760 {
1761         return EMULATE_FAIL;
1762 }
1763
1764 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1765 {
1766         return EMULATE_FAIL;
1767 }
1768
1769 static int kvmppc_book3s_hv_init(void)
1770 {
1771         int r;
1772
1773         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1774
1775         if (r)
1776                 return r;
1777
1778         r = kvmppc_mmu_hv_init();
1779
1780         return r;
1781 }
1782
1783 static void kvmppc_book3s_hv_exit(void)
1784 {
1785         kvm_exit();
1786 }
1787
1788 module_init(kvmppc_book3s_hv_init);
1789 module_exit(kvmppc_book3s_hv_exit);