Merge branch 'for-4.14-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[sfrench/cifs-2.6.git] / arch / mips / kernel / elf.c
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/binfmts.h>
12 #include <linux/elf.h>
13 #include <linux/export.h>
14 #include <linux/sched.h>
15
16 #include <asm/cpu-features.h>
17 #include <asm/cpu-info.h>
18
19 /* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
20 bool mips_use_nan_legacy;
21 bool mips_use_nan_2008;
22
23 /* FPU modes */
24 enum {
25         FP_FRE,
26         FP_FR0,
27         FP_FR1,
28 };
29
30 /**
31  * struct mode_req - ABI FPU mode requirements
32  * @single:     The program being loaded needs an FPU but it will only issue
33  *              single precision instructions meaning that it can execute in
34  *              either FR0 or FR1.
35  * @soft:       The soft(-float) requirement means that the program being
36  *              loaded needs has no FPU dependency at all (i.e. it has no
37  *              FPU instructions).
38  * @fr1:        The program being loaded depends on FPU being in FR=1 mode.
39  * @frdefault:  The program being loaded depends on the default FPU mode.
40  *              That is FR0 for O32 and FR1 for N32/N64.
41  * @fre:        The program being loaded depends on FPU with FRE=1. This mode is
42  *              a bridge which uses FR=1 whilst still being able to maintain
43  *              full compatibility with pre-existing code using the O32 FP32
44  *              ABI.
45  *
46  * More information about the FP ABIs can be found here:
47  *
48  * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
49  *
50  */
51
52 struct mode_req {
53         bool single;
54         bool soft;
55         bool fr1;
56         bool frdefault;
57         bool fre;
58 };
59
60 static const struct mode_req fpu_reqs[] = {
61         [MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
62         [MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
63         [MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
64         [MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
65         [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
66         [MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
67         [MIPS_ABI_FP_64]     = { false, false, true,  false, false },
68         [MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
69 };
70
71 /*
72  * Mode requirements when .MIPS.abiflags is not present in the ELF.
73  * Not present means that everything is acceptable except FR1.
74  */
75 static struct mode_req none_req = { true, true, false, true, true };
76
77 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
78                      bool is_interp, struct arch_elf_state *state)
79 {
80         union {
81                 struct elf32_hdr e32;
82                 struct elf64_hdr e64;
83         } *ehdr = _ehdr;
84         struct elf32_phdr *phdr32 = _phdr;
85         struct elf64_phdr *phdr64 = _phdr;
86         struct mips_elf_abiflags_v0 abiflags;
87         bool elf32;
88         u32 flags;
89         int ret;
90         loff_t pos;
91
92         elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
93         flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
94
95         /* Let's see if this is an O32 ELF */
96         if (elf32) {
97                 if (flags & EF_MIPS_FP64) {
98                         /*
99                          * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
100                          * later if needed
101                          */
102                         if (is_interp)
103                                 state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
104                         else
105                                 state->fp_abi = MIPS_ABI_FP_OLD_64;
106                 }
107                 if (phdr32->p_type != PT_MIPS_ABIFLAGS)
108                         return 0;
109
110                 if (phdr32->p_filesz < sizeof(abiflags))
111                         return -EINVAL;
112                 pos = phdr32->p_offset;
113         } else {
114                 if (phdr64->p_type != PT_MIPS_ABIFLAGS)
115                         return 0;
116                 if (phdr64->p_filesz < sizeof(abiflags))
117                         return -EINVAL;
118                 pos = phdr64->p_offset;
119         }
120
121         ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
122         if (ret < 0)
123                 return ret;
124         if (ret != sizeof(abiflags))
125                 return -EIO;
126
127         /* Record the required FP ABIs for use by mips_check_elf */
128         if (is_interp)
129                 state->interp_fp_abi = abiflags.fp_abi;
130         else
131                 state->fp_abi = abiflags.fp_abi;
132
133         return 0;
134 }
135
136 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
137                    struct arch_elf_state *state)
138 {
139         union {
140                 struct elf32_hdr e32;
141                 struct elf64_hdr e64;
142         } *ehdr = _ehdr;
143         union {
144                 struct elf32_hdr e32;
145                 struct elf64_hdr e64;
146         } *iehdr = _interp_ehdr;
147         struct mode_req prog_req, interp_req;
148         int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
149         bool elf32;
150         u32 flags;
151
152         elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
153         flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
154
155         /*
156          * Determine the NaN personality, reject the binary if not allowed.
157          * Also ensure that any interpreter matches the executable.
158          */
159         if (flags & EF_MIPS_NAN2008) {
160                 if (mips_use_nan_2008)
161                         state->nan_2008 = 1;
162                 else
163                         return -ENOEXEC;
164         } else {
165                 if (mips_use_nan_legacy)
166                         state->nan_2008 = 0;
167                 else
168                         return -ENOEXEC;
169         }
170         if (has_interpreter) {
171                 bool ielf32;
172                 u32 iflags;
173
174                 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
175                 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
176
177                 if ((flags ^ iflags) & EF_MIPS_NAN2008)
178                         return -ELIBBAD;
179         }
180
181         if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
182                 return 0;
183
184         fp_abi = state->fp_abi;
185
186         if (has_interpreter) {
187                 interp_fp_abi = state->interp_fp_abi;
188
189                 abi0 = min(fp_abi, interp_fp_abi);
190                 abi1 = max(fp_abi, interp_fp_abi);
191         } else {
192                 abi0 = abi1 = fp_abi;
193         }
194
195         if (elf32 && !(flags & EF_MIPS_ABI2)) {
196                 /* Default to a mode capable of running code expecting FR=0 */
197                 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
198
199                 /* Allow all ABIs we know about */
200                 max_abi = MIPS_ABI_FP_64A;
201         } else {
202                 /* MIPS64 code always uses FR=1, thus the default is easy */
203                 state->overall_fp_mode = FP_FR1;
204
205                 /* Disallow access to the various FPXX & FP64 ABIs */
206                 max_abi = MIPS_ABI_FP_SOFT;
207         }
208
209         if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
210             (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
211                 return -ELIBBAD;
212
213         /* It's time to determine the FPU mode requirements */
214         prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
215         interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
216
217         /*
218          * Check whether the program's and interp's ABIs have a matching FPU
219          * mode requirement.
220          */
221         prog_req.single = interp_req.single && prog_req.single;
222         prog_req.soft = interp_req.soft && prog_req.soft;
223         prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
224         prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
225         prog_req.fre = interp_req.fre && prog_req.fre;
226
227         /*
228          * Determine the desired FPU mode
229          *
230          * Decision making:
231          *
232          * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
233          *   means that we have a combination of program and interpreter
234          *   that inherently require the hybrid FP mode.
235          * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
236          *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
237          *   instructions so we don't care about the mode. We will simply use
238          *   the one preferred by the hardware. In fpxx case, that ABI can
239          *   handle both FR=1 and FR=0, so, again, we simply choose the one
240          *   preferred by the hardware. Next, if we only use single-precision
241          *   FPU instructions, and the default ABI FPU mode is not good
242          *   (ie single + any ABI combination), we set again the FPU mode to the
243          *   one is preferred by the hardware. Next, if we know that the code
244          *   will only use single-precision instructions, shown by single being
245          *   true but frdefault being false, then we again set the FPU mode to
246          *   the one that is preferred by the hardware.
247          * - We want FP_FR1 if that's the only matching mode and the default one
248          *   is not good.
249          * - Return with -ELIBADD if we can't find a matching FPU mode.
250          */
251         if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
252                 state->overall_fp_mode = FP_FRE;
253         else if ((prog_req.fr1 && prog_req.frdefault) ||
254                  (prog_req.single && !prog_req.frdefault))
255                 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
256                 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
257                                           cpu_has_mips_r2_r6) ?
258                                           FP_FR1 : FP_FR0;
259         else if (prog_req.fr1)
260                 state->overall_fp_mode = FP_FR1;
261         else  if (!prog_req.fre && !prog_req.frdefault &&
262                   !prog_req.fr1 && !prog_req.single && !prog_req.soft)
263                 return -ELIBBAD;
264
265         return 0;
266 }
267
268 static inline void set_thread_fp_mode(int hybrid, int regs32)
269 {
270         if (hybrid)
271                 set_thread_flag(TIF_HYBRID_FPREGS);
272         else
273                 clear_thread_flag(TIF_HYBRID_FPREGS);
274         if (regs32)
275                 set_thread_flag(TIF_32BIT_FPREGS);
276         else
277                 clear_thread_flag(TIF_32BIT_FPREGS);
278 }
279
280 void mips_set_personality_fp(struct arch_elf_state *state)
281 {
282         /*
283          * This function is only ever called for O32 ELFs so we should
284          * not be worried about N32/N64 binaries.
285          */
286
287         if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
288                 return;
289
290         switch (state->overall_fp_mode) {
291         case FP_FRE:
292                 set_thread_fp_mode(1, 0);
293                 break;
294         case FP_FR0:
295                 set_thread_fp_mode(0, 1);
296                 break;
297         case FP_FR1:
298                 set_thread_fp_mode(0, 0);
299                 break;
300         default:
301                 BUG();
302         }
303 }
304
305 /*
306  * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
307  * in FCSR according to the ELF NaN personality.
308  */
309 void mips_set_personality_nan(struct arch_elf_state *state)
310 {
311         struct cpuinfo_mips *c = &boot_cpu_data;
312         struct task_struct *t = current;
313
314         t->thread.fpu.fcr31 = c->fpu_csr31;
315         switch (state->nan_2008) {
316         case 0:
317                 break;
318         case 1:
319                 if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
320                         t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
321                 if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
322                         t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
323                 break;
324         default:
325                 BUG();
326         }
327 }
328
329 int mips_elf_read_implies_exec(void *elf_ex, int exstack)
330 {
331         if (exstack != EXSTACK_DISABLE_X) {
332                 /* The binary doesn't request a non-executable stack */
333                 return 1;
334         }
335
336         if (!cpu_has_rixi) {
337                 /* The CPU doesn't support non-executable memory */
338                 return 1;
339         }
340
341         return 0;
342 }
343 EXPORT_SYMBOL(mips_elf_read_implies_exec);