Input: wm97xx: add new AC97 bus support
[sfrench/cifs-2.6.git] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/mmzone.h>
17 #include <linux/module.h>
18 #include <linux/personality.h>
19 #include <linux/reboot.h>
20 #include <linux/slab.h>
21 #include <linux/swap.h>
22 #include <linux/proc_fs.h>
23 #include <linux/bitops.h>
24 #include <linux/kexec.h>
25
26 #include <asm/dma.h>
27 #include <asm/io.h>
28 #include <asm/machvec.h>
29 #include <asm/numa.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 #include <asm/tlb.h>
35 #include <linux/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/mca.h>
38
39 extern void ia64_tlb_init (void);
40
41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42
43 #ifdef CONFIG_VIRTUAL_MEM_MAP
44 unsigned long VMALLOC_END = VMALLOC_END_INIT;
45 EXPORT_SYMBOL(VMALLOC_END);
46 struct page *vmem_map;
47 EXPORT_SYMBOL(vmem_map);
48 #endif
49
50 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
51 EXPORT_SYMBOL(zero_page_memmap_ptr);
52
53 void
54 __ia64_sync_icache_dcache (pte_t pte)
55 {
56         unsigned long addr;
57         struct page *page;
58
59         page = pte_page(pte);
60         addr = (unsigned long) page_address(page);
61
62         if (test_bit(PG_arch_1, &page->flags))
63                 return;                         /* i-cache is already coherent with d-cache */
64
65         flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
66         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
67 }
68
69 /*
70  * Since DMA is i-cache coherent, any (complete) pages that were written via
71  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72  * flush them when they get mapped into an executable vm-area.
73  */
74 void
75 dma_mark_clean(void *addr, size_t size)
76 {
77         unsigned long pg_addr, end;
78
79         pg_addr = PAGE_ALIGN((unsigned long) addr);
80         end = (unsigned long) addr + size;
81         while (pg_addr + PAGE_SIZE <= end) {
82                 struct page *page = virt_to_page(pg_addr);
83                 set_bit(PG_arch_1, &page->flags);
84                 pg_addr += PAGE_SIZE;
85         }
86 }
87
88 inline void
89 ia64_set_rbs_bot (void)
90 {
91         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
92
93         if (stack_size > MAX_USER_STACK_SIZE)
94                 stack_size = MAX_USER_STACK_SIZE;
95         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
96 }
97
98 /*
99  * This performs some platform-dependent address space initialization.
100  * On IA-64, we want to setup the VM area for the register backing
101  * store (which grows upwards) and install the gateway page which is
102  * used for signal trampolines, etc.
103  */
104 void
105 ia64_init_addr_space (void)
106 {
107         struct vm_area_struct *vma;
108
109         ia64_set_rbs_bot();
110
111         /*
112          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113          * the problem.  When the process attempts to write to the register backing store
114          * for the first time, it will get a SEGFAULT in this case.
115          */
116         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117         if (vma) {
118                 INIT_LIST_HEAD(&vma->anon_vma_chain);
119                 vma->vm_mm = current->mm;
120                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121                 vma->vm_end = vma->vm_start + PAGE_SIZE;
122                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
123                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
124                 down_write(&current->mm->mmap_sem);
125                 if (insert_vm_struct(current->mm, vma)) {
126                         up_write(&current->mm->mmap_sem);
127                         kmem_cache_free(vm_area_cachep, vma);
128                         return;
129                 }
130                 up_write(&current->mm->mmap_sem);
131         }
132
133         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134         if (!(current->personality & MMAP_PAGE_ZERO)) {
135                 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136                 if (vma) {
137                         INIT_LIST_HEAD(&vma->anon_vma_chain);
138                         vma->vm_mm = current->mm;
139                         vma->vm_end = PAGE_SIZE;
140                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
142                                         VM_DONTEXPAND | VM_DONTDUMP;
143                         down_write(&current->mm->mmap_sem);
144                         if (insert_vm_struct(current->mm, vma)) {
145                                 up_write(&current->mm->mmap_sem);
146                                 kmem_cache_free(vm_area_cachep, vma);
147                                 return;
148                         }
149                         up_write(&current->mm->mmap_sem);
150                 }
151         }
152 }
153
154 void
155 free_initmem (void)
156 {
157         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
158                            -1, "unused kernel");
159 }
160
161 void __init
162 free_initrd_mem (unsigned long start, unsigned long end)
163 {
164         /*
165          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
166          * Thus EFI and the kernel may have different page sizes. It is
167          * therefore possible to have the initrd share the same page as
168          * the end of the kernel (given current setup).
169          *
170          * To avoid freeing/using the wrong page (kernel sized) we:
171          *      - align up the beginning of initrd
172          *      - align down the end of initrd
173          *
174          *  |             |
175          *  |=============| a000
176          *  |             |
177          *  |             |
178          *  |             | 9000
179          *  |/////////////|
180          *  |/////////////|
181          *  |=============| 8000
182          *  |///INITRD////|
183          *  |/////////////|
184          *  |/////////////| 7000
185          *  |             |
186          *  |KKKKKKKKKKKKK|
187          *  |=============| 6000
188          *  |KKKKKKKKKKKKK|
189          *  |KKKKKKKKKKKKK|
190          *  K=kernel using 8KB pages
191          *
192          * In this example, we must free page 8000 ONLY. So we must align up
193          * initrd_start and keep initrd_end as is.
194          */
195         start = PAGE_ALIGN(start);
196         end = end & PAGE_MASK;
197
198         if (start < end)
199                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
200
201         for (; start < end; start += PAGE_SIZE) {
202                 if (!virt_addr_valid(start))
203                         continue;
204                 free_reserved_page(virt_to_page(start));
205         }
206 }
207
208 /*
209  * This installs a clean page in the kernel's page table.
210  */
211 static struct page * __init
212 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
213 {
214         pgd_t *pgd;
215         pud_t *pud;
216         pmd_t *pmd;
217         pte_t *pte;
218
219         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
220
221         {
222                 pud = pud_alloc(&init_mm, pgd, address);
223                 if (!pud)
224                         goto out;
225                 pmd = pmd_alloc(&init_mm, pud, address);
226                 if (!pmd)
227                         goto out;
228                 pte = pte_alloc_kernel(pmd, address);
229                 if (!pte)
230                         goto out;
231                 if (!pte_none(*pte))
232                         goto out;
233                 set_pte(pte, mk_pte(page, pgprot));
234         }
235   out:
236         /* no need for flush_tlb */
237         return page;
238 }
239
240 static void __init
241 setup_gate (void)
242 {
243         struct page *page;
244
245         /*
246          * Map the gate page twice: once read-only to export the ELF
247          * headers etc. and once execute-only page to enable
248          * privilege-promotion via "epc":
249          */
250         page = virt_to_page(ia64_imva(__start_gate_section));
251         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
252 #ifdef HAVE_BUGGY_SEGREL
253         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
254         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
255 #else
256         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
257         /* Fill in the holes (if any) with read-only zero pages: */
258         {
259                 unsigned long addr;
260
261                 for (addr = GATE_ADDR + PAGE_SIZE;
262                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
263                      addr += PAGE_SIZE)
264                 {
265                         put_kernel_page(ZERO_PAGE(0), addr,
266                                         PAGE_READONLY);
267                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
268                                         PAGE_READONLY);
269                 }
270         }
271 #endif
272         ia64_patch_gate();
273 }
274
275 static struct vm_area_struct gate_vma;
276
277 static int __init gate_vma_init(void)
278 {
279         gate_vma.vm_mm = NULL;
280         gate_vma.vm_start = FIXADDR_USER_START;
281         gate_vma.vm_end = FIXADDR_USER_END;
282         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
283         gate_vma.vm_page_prot = __P101;
284
285         return 0;
286 }
287 __initcall(gate_vma_init);
288
289 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
290 {
291         return &gate_vma;
292 }
293
294 int in_gate_area_no_mm(unsigned long addr)
295 {
296         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
297                 return 1;
298         return 0;
299 }
300
301 int in_gate_area(struct mm_struct *mm, unsigned long addr)
302 {
303         return in_gate_area_no_mm(addr);
304 }
305
306 void ia64_mmu_init(void *my_cpu_data)
307 {
308         unsigned long pta, impl_va_bits;
309         extern void tlb_init(void);
310
311 #ifdef CONFIG_DISABLE_VHPT
312 #       define VHPT_ENABLE_BIT  0
313 #else
314 #       define VHPT_ENABLE_BIT  1
315 #endif
316
317         /*
318          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
319          * address space.  The IA-64 architecture guarantees that at least 50 bits of
320          * virtual address space are implemented but if we pick a large enough page size
321          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
322          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
323          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
324          * problem in practice.  Alternatively, we could truncate the top of the mapped
325          * address space to not permit mappings that would overlap with the VMLPT.
326          * --davidm 00/12/06
327          */
328 #       define pte_bits                 3
329 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
330         /*
331          * The virtual page table has to cover the entire implemented address space within
332          * a region even though not all of this space may be mappable.  The reason for
333          * this is that the Access bit and Dirty bit fault handlers perform
334          * non-speculative accesses to the virtual page table, so the address range of the
335          * virtual page table itself needs to be covered by virtual page table.
336          */
337 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
338 #       define POW2(n)                  (1ULL << (n))
339
340         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
341
342         if (impl_va_bits < 51 || impl_va_bits > 61)
343                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
344         /*
345          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
346          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
347          * the test makes sure that our mapped space doesn't overlap the
348          * unimplemented hole in the middle of the region.
349          */
350         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
351             (mapped_space_bits > impl_va_bits - 1))
352                 panic("Cannot build a big enough virtual-linear page table"
353                       " to cover mapped address space.\n"
354                       " Try using a smaller page size.\n");
355
356
357         /* place the VMLPT at the end of each page-table mapped region: */
358         pta = POW2(61) - POW2(vmlpt_bits);
359
360         /*
361          * Set the (virtually mapped linear) page table address.  Bit
362          * 8 selects between the short and long format, bits 2-7 the
363          * size of the table, and bit 0 whether the VHPT walker is
364          * enabled.
365          */
366         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
367
368         ia64_tlb_init();
369
370 #ifdef  CONFIG_HUGETLB_PAGE
371         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
372         ia64_srlz_d();
373 #endif
374 }
375
376 #ifdef CONFIG_VIRTUAL_MEM_MAP
377 int vmemmap_find_next_valid_pfn(int node, int i)
378 {
379         unsigned long end_address, hole_next_pfn;
380         unsigned long stop_address;
381         pg_data_t *pgdat = NODE_DATA(node);
382
383         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
384         end_address = PAGE_ALIGN(end_address);
385         stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
386
387         do {
388                 pgd_t *pgd;
389                 pud_t *pud;
390                 pmd_t *pmd;
391                 pte_t *pte;
392
393                 pgd = pgd_offset_k(end_address);
394                 if (pgd_none(*pgd)) {
395                         end_address += PGDIR_SIZE;
396                         continue;
397                 }
398
399                 pud = pud_offset(pgd, end_address);
400                 if (pud_none(*pud)) {
401                         end_address += PUD_SIZE;
402                         continue;
403                 }
404
405                 pmd = pmd_offset(pud, end_address);
406                 if (pmd_none(*pmd)) {
407                         end_address += PMD_SIZE;
408                         continue;
409                 }
410
411                 pte = pte_offset_kernel(pmd, end_address);
412 retry_pte:
413                 if (pte_none(*pte)) {
414                         end_address += PAGE_SIZE;
415                         pte++;
416                         if ((end_address < stop_address) &&
417                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
418                                 goto retry_pte;
419                         continue;
420                 }
421                 /* Found next valid vmem_map page */
422                 break;
423         } while (end_address < stop_address);
424
425         end_address = min(end_address, stop_address);
426         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
427         hole_next_pfn = end_address / sizeof(struct page);
428         return hole_next_pfn - pgdat->node_start_pfn;
429 }
430
431 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
432 {
433         unsigned long address, start_page, end_page;
434         struct page *map_start, *map_end;
435         int node;
436         pgd_t *pgd;
437         pud_t *pud;
438         pmd_t *pmd;
439         pte_t *pte;
440
441         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
442         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
443
444         start_page = (unsigned long) map_start & PAGE_MASK;
445         end_page = PAGE_ALIGN((unsigned long) map_end);
446         node = paddr_to_nid(__pa(start));
447
448         for (address = start_page; address < end_page; address += PAGE_SIZE) {
449                 pgd = pgd_offset_k(address);
450                 if (pgd_none(*pgd))
451                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
452                 pud = pud_offset(pgd, address);
453
454                 if (pud_none(*pud))
455                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
456                 pmd = pmd_offset(pud, address);
457
458                 if (pmd_none(*pmd))
459                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
460                 pte = pte_offset_kernel(pmd, address);
461
462                 if (pte_none(*pte))
463                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
464                                              PAGE_KERNEL));
465         }
466         return 0;
467 }
468
469 struct memmap_init_callback_data {
470         struct page *start;
471         struct page *end;
472         int nid;
473         unsigned long zone;
474 };
475
476 static int __meminit
477 virtual_memmap_init(u64 start, u64 end, void *arg)
478 {
479         struct memmap_init_callback_data *args;
480         struct page *map_start, *map_end;
481
482         args = (struct memmap_init_callback_data *) arg;
483         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
484         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
485
486         if (map_start < args->start)
487                 map_start = args->start;
488         if (map_end > args->end)
489                 map_end = args->end;
490
491         /*
492          * We have to initialize "out of bounds" struct page elements that fit completely
493          * on the same pages that were allocated for the "in bounds" elements because they
494          * may be referenced later (and found to be "reserved").
495          */
496         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
497         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
498                     / sizeof(struct page));
499
500         if (map_start < map_end)
501                 memmap_init_zone((unsigned long)(map_end - map_start),
502                                  args->nid, args->zone, page_to_pfn(map_start),
503                                  MEMMAP_EARLY);
504         return 0;
505 }
506
507 void __meminit
508 memmap_init (unsigned long size, int nid, unsigned long zone,
509              unsigned long start_pfn)
510 {
511         if (!vmem_map)
512                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
513         else {
514                 struct page *start;
515                 struct memmap_init_callback_data args;
516
517                 start = pfn_to_page(start_pfn);
518                 args.start = start;
519                 args.end = start + size;
520                 args.nid = nid;
521                 args.zone = zone;
522
523                 efi_memmap_walk(virtual_memmap_init, &args);
524         }
525 }
526
527 int
528 ia64_pfn_valid (unsigned long pfn)
529 {
530         char byte;
531         struct page *pg = pfn_to_page(pfn);
532
533         return     (__get_user(byte, (char __user *) pg) == 0)
534                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
535                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
536 }
537 EXPORT_SYMBOL(ia64_pfn_valid);
538
539 int __init find_largest_hole(u64 start, u64 end, void *arg)
540 {
541         u64 *max_gap = arg;
542
543         static u64 last_end = PAGE_OFFSET;
544
545         /* NOTE: this algorithm assumes efi memmap table is ordered */
546
547         if (*max_gap < (start - last_end))
548                 *max_gap = start - last_end;
549         last_end = end;
550         return 0;
551 }
552
553 #endif /* CONFIG_VIRTUAL_MEM_MAP */
554
555 int __init register_active_ranges(u64 start, u64 len, int nid)
556 {
557         u64 end = start + len;
558
559 #ifdef CONFIG_KEXEC
560         if (start > crashk_res.start && start < crashk_res.end)
561                 start = crashk_res.end;
562         if (end > crashk_res.start && end < crashk_res.end)
563                 end = crashk_res.start;
564 #endif
565
566         if (start < end)
567                 memblock_add_node(__pa(start), end - start, nid);
568         return 0;
569 }
570
571 int
572 find_max_min_low_pfn (u64 start, u64 end, void *arg)
573 {
574         unsigned long pfn_start, pfn_end;
575 #ifdef CONFIG_FLATMEM
576         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
577         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
578 #else
579         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
580         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
581 #endif
582         min_low_pfn = min(min_low_pfn, pfn_start);
583         max_low_pfn = max(max_low_pfn, pfn_end);
584         return 0;
585 }
586
587 /*
588  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
589  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
590  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
591  * useful for performance testing, but conceivably could also come in handy for debugging
592  * purposes.
593  */
594
595 static int nolwsys __initdata;
596
597 static int __init
598 nolwsys_setup (char *s)
599 {
600         nolwsys = 1;
601         return 1;
602 }
603
604 __setup("nolwsys", nolwsys_setup);
605
606 void __init
607 mem_init (void)
608 {
609         int i;
610
611         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
612         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
613         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
614
615 #ifdef CONFIG_PCI
616         /*
617          * This needs to be called _after_ the command line has been parsed but _before_
618          * any drivers that may need the PCI DMA interface are initialized or bootmem has
619          * been freed.
620          */
621         platform_dma_init();
622 #endif
623
624 #ifdef CONFIG_FLATMEM
625         BUG_ON(!mem_map);
626 #endif
627
628         set_max_mapnr(max_low_pfn);
629         high_memory = __va(max_low_pfn * PAGE_SIZE);
630         free_all_bootmem();
631         mem_init_print_info(NULL);
632
633         /*
634          * For fsyscall entrpoints with no light-weight handler, use the ordinary
635          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
636          * code can tell them apart.
637          */
638         for (i = 0; i < NR_syscalls; ++i) {
639                 extern unsigned long fsyscall_table[NR_syscalls];
640                 extern unsigned long sys_call_table[NR_syscalls];
641
642                 if (!fsyscall_table[i] || nolwsys)
643                         fsyscall_table[i] = sys_call_table[i] | 1;
644         }
645         setup_gate();
646 }
647
648 #ifdef CONFIG_MEMORY_HOTPLUG
649 int arch_add_memory(int nid, u64 start, u64 size, bool want_memblock)
650 {
651         unsigned long start_pfn = start >> PAGE_SHIFT;
652         unsigned long nr_pages = size >> PAGE_SHIFT;
653         int ret;
654
655         ret = __add_pages(nid, start_pfn, nr_pages, want_memblock);
656         if (ret)
657                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
658                        __func__,  ret);
659
660         return ret;
661 }
662
663 #ifdef CONFIG_MEMORY_HOTREMOVE
664 int arch_remove_memory(u64 start, u64 size)
665 {
666         unsigned long start_pfn = start >> PAGE_SHIFT;
667         unsigned long nr_pages = size >> PAGE_SHIFT;
668         struct zone *zone;
669         int ret;
670
671         zone = page_zone(pfn_to_page(start_pfn));
672         ret = __remove_pages(zone, start_pfn, nr_pages);
673         if (ret)
674                 pr_warn("%s: Problem encountered in __remove_pages() as"
675                         " ret=%d\n", __func__,  ret);
676
677         return ret;
678 }
679 #endif
680 #endif