dt-bindings: reset: imx7: Fix the spelling of 'indices'
[sfrench/cifs-2.6.git] / arch / ia64 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/ia64/kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  * Copyright (C) Intel Corporation, 2005
21  *
22  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23  *              <anil.s.keshavamurthy@intel.com> adapted from i386
24  */
25
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/extable.h>
32 #include <linux/kdebug.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/exception.h>
37
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40
41 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
42
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
45   { M, I, I },                          /* 00 */
46   { M, I, I },                          /* 01 */
47   { M, I, I },                          /* 02 */
48   { M, I, I },                          /* 03 */
49   { M, L, X },                          /* 04 */
50   { M, L, X },                          /* 05 */
51   { u, u, u },                          /* 06 */
52   { u, u, u },                          /* 07 */
53   { M, M, I },                          /* 08 */
54   { M, M, I },                          /* 09 */
55   { M, M, I },                          /* 0A */
56   { M, M, I },                          /* 0B */
57   { M, F, I },                          /* 0C */
58   { M, F, I },                          /* 0D */
59   { M, M, F },                          /* 0E */
60   { M, M, F },                          /* 0F */
61   { M, I, B },                          /* 10 */
62   { M, I, B },                          /* 11 */
63   { M, B, B },                          /* 12 */
64   { M, B, B },                          /* 13 */
65   { u, u, u },                          /* 14 */
66   { u, u, u },                          /* 15 */
67   { B, B, B },                          /* 16 */
68   { B, B, B },                          /* 17 */
69   { M, M, B },                          /* 18 */
70   { M, M, B },                          /* 19 */
71   { u, u, u },                          /* 1A */
72   { u, u, u },                          /* 1B */
73   { M, F, B },                          /* 1C */
74   { M, F, B },                          /* 1D */
75   { u, u, u },                          /* 1E */
76   { u, u, u },                          /* 1F */
77 };
78
79 /* Insert a long branch code */
80 static void __kprobes set_brl_inst(void *from, void *to)
81 {
82         s64 rel = ((s64) to - (s64) from) >> 4;
83         bundle_t *brl;
84         brl = (bundle_t *) ((u64) from & ~0xf);
85         brl->quad0.template = 0x05;     /* [MLX](stop) */
86         brl->quad0.slot0 = NOP_M_INST;  /* nop.m 0x0 */
87         brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
88         brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
89         /* brl.cond.sptk.many.clr rel<<4 (qp=0) */
90         brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
91 }
92
93 /*
94  * In this function we check to see if the instruction
95  * is IP relative instruction and update the kprobe
96  * inst flag accordingly
97  */
98 static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
99                                               uint major_opcode,
100                                               unsigned long kprobe_inst,
101                                               struct kprobe *p)
102 {
103         p->ainsn.inst_flag = 0;
104         p->ainsn.target_br_reg = 0;
105         p->ainsn.slot = slot;
106
107         /* Check for Break instruction
108          * Bits 37:40 Major opcode to be zero
109          * Bits 27:32 X6 to be zero
110          * Bits 32:35 X3 to be zero
111          */
112         if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
113                 /* is a break instruction */
114                 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
115                 return;
116         }
117
118         if (bundle_encoding[template][slot] == B) {
119                 switch (major_opcode) {
120                   case INDIRECT_CALL_OPCODE:
121                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
122                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
123                         break;
124                   case IP_RELATIVE_PREDICT_OPCODE:
125                   case IP_RELATIVE_BRANCH_OPCODE:
126                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
127                         break;
128                   case IP_RELATIVE_CALL_OPCODE:
129                         p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
130                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
131                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
132                         break;
133                 }
134         } else if (bundle_encoding[template][slot] == X) {
135                 switch (major_opcode) {
136                   case LONG_CALL_OPCODE:
137                         p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
138                         p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
139                   break;
140                 }
141         }
142         return;
143 }
144
145 /*
146  * In this function we check to see if the instruction
147  * (qp) cmpx.crel.ctype p1,p2=r2,r3
148  * on which we are inserting kprobe is cmp instruction
149  * with ctype as unc.
150  */
151 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
152                                             uint major_opcode,
153                                             unsigned long kprobe_inst)
154 {
155         cmp_inst_t cmp_inst;
156         uint ctype_unc = 0;
157
158         if (!((bundle_encoding[template][slot] == I) ||
159                 (bundle_encoding[template][slot] == M)))
160                 goto out;
161
162         if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
163                 (major_opcode == 0xE)))
164                 goto out;
165
166         cmp_inst.l = kprobe_inst;
167         if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
168                 /* Integer compare - Register Register (A6 type)*/
169                 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
170                                 &&(cmp_inst.f.c == 1))
171                         ctype_unc = 1;
172         } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
173                 /* Integer compare - Immediate Register (A8 type)*/
174                 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
175                         ctype_unc = 1;
176         }
177 out:
178         return ctype_unc;
179 }
180
181 /*
182  * In this function we check to see if the instruction
183  * on which we are inserting kprobe is supported.
184  * Returns qp value if supported
185  * Returns -EINVAL if unsupported
186  */
187 static int __kprobes unsupported_inst(uint template, uint  slot,
188                                       uint major_opcode,
189                                       unsigned long kprobe_inst,
190                                       unsigned long addr)
191 {
192         int qp;
193
194         qp = kprobe_inst & 0x3f;
195         if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
196                 if (slot == 1 && qp)  {
197                         printk(KERN_WARNING "Kprobes on cmp unc "
198                                         "instruction on slot 1 at <0x%lx> "
199                                         "is not supported\n", addr);
200                         return -EINVAL;
201
202                 }
203                 qp = 0;
204         }
205         else if (bundle_encoding[template][slot] == I) {
206                 if (major_opcode == 0) {
207                         /*
208                          * Check for Integer speculation instruction
209                          * - Bit 33-35 to be equal to 0x1
210                          */
211                         if (((kprobe_inst >> 33) & 0x7) == 1) {
212                                 printk(KERN_WARNING
213                                         "Kprobes on speculation inst at <0x%lx> not supported\n",
214                                                 addr);
215                                 return -EINVAL;
216                         }
217                         /*
218                          * IP relative mov instruction
219                          *  - Bit 27-35 to be equal to 0x30
220                          */
221                         if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
222                                 printk(KERN_WARNING
223                                         "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
224                                                 addr);
225                                 return -EINVAL;
226
227                         }
228                 }
229                 else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) &&
230                                 (kprobe_inst & (0x1UL << 12))) {
231                         /* test bit instructions, tbit,tnat,tf
232                          * bit 33-36 to be equal to 0
233                          * bit 12 to be equal to 1
234                          */
235                         if (slot == 1 && qp) {
236                                 printk(KERN_WARNING "Kprobes on test bit "
237                                                 "instruction on slot at <0x%lx> "
238                                                 "is not supported\n", addr);
239                                 return -EINVAL;
240                         }
241                         qp = 0;
242                 }
243         }
244         else if (bundle_encoding[template][slot] == B) {
245                 if (major_opcode == 7) {
246                         /* IP-Relative Predict major code is 7 */
247                         printk(KERN_WARNING "Kprobes on IP-Relative"
248                                         "Predict is not supported\n");
249                         return -EINVAL;
250                 }
251                 else if (major_opcode == 2) {
252                         /* Indirect Predict, major code is 2
253                          * bit 27-32 to be equal to 10 or 11
254                          */
255                         int x6=(kprobe_inst >> 27) & 0x3F;
256                         if ((x6 == 0x10) || (x6 == 0x11)) {
257                                 printk(KERN_WARNING "Kprobes on "
258                                         "Indirect Predict is not supported\n");
259                                 return -EINVAL;
260                         }
261                 }
262         }
263         /* kernel does not use float instruction, here for safety kprobe
264          * will judge whether it is fcmp/flass/float approximation instruction
265          */
266         else if (unlikely(bundle_encoding[template][slot] == F)) {
267                 if ((major_opcode == 4 || major_opcode == 5) &&
268                                 (kprobe_inst  & (0x1 << 12))) {
269                         /* fcmp/fclass unc instruction */
270                         if (slot == 1 && qp) {
271                                 printk(KERN_WARNING "Kprobes on fcmp/fclass "
272                                         "instruction on slot at <0x%lx> "
273                                         "is not supported\n", addr);
274                                 return -EINVAL;
275
276                         }
277                         qp = 0;
278                 }
279                 if ((major_opcode == 0 || major_opcode == 1) &&
280                         (kprobe_inst & (0x1UL << 33))) {
281                         /* float Approximation instruction */
282                         if (slot == 1 && qp) {
283                                 printk(KERN_WARNING "Kprobes on float Approx "
284                                         "instr at <0x%lx> is not supported\n",
285                                                 addr);
286                                 return -EINVAL;
287                         }
288                         qp = 0;
289                 }
290         }
291         return qp;
292 }
293
294 /*
295  * In this function we override the bundle with
296  * the break instruction at the given slot.
297  */
298 static void __kprobes prepare_break_inst(uint template, uint  slot,
299                                          uint major_opcode,
300                                          unsigned long kprobe_inst,
301                                          struct kprobe *p,
302                                          int qp)
303 {
304         unsigned long break_inst = BREAK_INST;
305         bundle_t *bundle = &p->opcode.bundle;
306
307         /*
308          * Copy the original kprobe_inst qualifying predicate(qp)
309          * to the break instruction
310          */
311         break_inst |= qp;
312
313         switch (slot) {
314           case 0:
315                 bundle->quad0.slot0 = break_inst;
316                 break;
317           case 1:
318                 bundle->quad0.slot1_p0 = break_inst;
319                 bundle->quad1.slot1_p1 = break_inst >> (64-46);
320                 break;
321           case 2:
322                 bundle->quad1.slot2 = break_inst;
323                 break;
324         }
325
326         /*
327          * Update the instruction flag, so that we can
328          * emulate the instruction properly after we
329          * single step on original instruction
330          */
331         update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
332 }
333
334 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
335                 unsigned long *kprobe_inst, uint *major_opcode)
336 {
337         unsigned long kprobe_inst_p0, kprobe_inst_p1;
338         unsigned int template;
339
340         template = bundle->quad0.template;
341
342         switch (slot) {
343           case 0:
344                 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
345                 *kprobe_inst = bundle->quad0.slot0;
346                   break;
347           case 1:
348                 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
349                 kprobe_inst_p0 = bundle->quad0.slot1_p0;
350                 kprobe_inst_p1 = bundle->quad1.slot1_p1;
351                 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
352                 break;
353           case 2:
354                 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
355                 *kprobe_inst = bundle->quad1.slot2;
356                 break;
357         }
358 }
359
360 /* Returns non-zero if the addr is in the Interrupt Vector Table */
361 static int __kprobes in_ivt_functions(unsigned long addr)
362 {
363         return (addr >= (unsigned long)__start_ivt_text
364                 && addr < (unsigned long)__end_ivt_text);
365 }
366
367 static int __kprobes valid_kprobe_addr(int template, int slot,
368                                        unsigned long addr)
369 {
370         if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
371                 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
372                                 "at 0x%lx\n", addr);
373                 return -EINVAL;
374         }
375
376         if (in_ivt_functions(addr)) {
377                 printk(KERN_WARNING "Kprobes can't be inserted inside "
378                                 "IVT functions at 0x%lx\n", addr);
379                 return -EINVAL;
380         }
381
382         return 0;
383 }
384
385 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
386 {
387         unsigned int i;
388         i = atomic_add_return(1, &kcb->prev_kprobe_index);
389         kcb->prev_kprobe[i-1].kp = kprobe_running();
390         kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
391 }
392
393 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
394 {
395         unsigned int i;
396         i = atomic_read(&kcb->prev_kprobe_index);
397         __this_cpu_write(current_kprobe, kcb->prev_kprobe[i-1].kp);
398         kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
399         atomic_sub(1, &kcb->prev_kprobe_index);
400 }
401
402 static void __kprobes set_current_kprobe(struct kprobe *p,
403                         struct kprobe_ctlblk *kcb)
404 {
405         __this_cpu_write(current_kprobe, p);
406 }
407
408 static void kretprobe_trampoline(void)
409 {
410 }
411
412 /*
413  * At this point the target function has been tricked into
414  * returning into our trampoline.  Lookup the associated instance
415  * and then:
416  *    - call the handler function
417  *    - cleanup by marking the instance as unused
418  *    - long jump back to the original return address
419  */
420 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
421 {
422         struct kretprobe_instance *ri = NULL;
423         struct hlist_head *head, empty_rp;
424         struct hlist_node *tmp;
425         unsigned long flags, orig_ret_address = 0;
426         unsigned long trampoline_address =
427                 ((struct fnptr *)kretprobe_trampoline)->ip;
428
429         INIT_HLIST_HEAD(&empty_rp);
430         kretprobe_hash_lock(current, &head, &flags);
431
432         /*
433          * It is possible to have multiple instances associated with a given
434          * task either because an multiple functions in the call path
435          * have a return probe installed on them, and/or more than one return
436          * return probe was registered for a target function.
437          *
438          * We can handle this because:
439          *     - instances are always inserted at the head of the list
440          *     - when multiple return probes are registered for the same
441          *       function, the first instance's ret_addr will point to the
442          *       real return address, and all the rest will point to
443          *       kretprobe_trampoline
444          */
445         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
446                 if (ri->task != current)
447                         /* another task is sharing our hash bucket */
448                         continue;
449
450                 orig_ret_address = (unsigned long)ri->ret_addr;
451                 if (orig_ret_address != trampoline_address)
452                         /*
453                          * This is the real return address. Any other
454                          * instances associated with this task are for
455                          * other calls deeper on the call stack
456                          */
457                         break;
458         }
459
460         regs->cr_iip = orig_ret_address;
461
462         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
463                 if (ri->task != current)
464                         /* another task is sharing our hash bucket */
465                         continue;
466
467                 if (ri->rp && ri->rp->handler)
468                         ri->rp->handler(ri, regs);
469
470                 orig_ret_address = (unsigned long)ri->ret_addr;
471                 recycle_rp_inst(ri, &empty_rp);
472
473                 if (orig_ret_address != trampoline_address)
474                         /*
475                          * This is the real return address. Any other
476                          * instances associated with this task are for
477                          * other calls deeper on the call stack
478                          */
479                         break;
480         }
481         kretprobe_assert(ri, orig_ret_address, trampoline_address);
482
483         kretprobe_hash_unlock(current, &flags);
484
485         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
486                 hlist_del(&ri->hlist);
487                 kfree(ri);
488         }
489         /*
490          * By returning a non-zero value, we are telling
491          * kprobe_handler() that we don't want the post_handler
492          * to run (and have re-enabled preemption)
493          */
494         return 1;
495 }
496
497 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
498                                       struct pt_regs *regs)
499 {
500         ri->ret_addr = (kprobe_opcode_t *)regs->b0;
501
502         /* Replace the return addr with trampoline addr */
503         regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
504 }
505
506 /* Check the instruction in the slot is break */
507 static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
508 {
509         unsigned int major_opcode;
510         unsigned int template = bundle->quad0.template;
511         unsigned long kprobe_inst;
512
513         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
514         if (slot == 1 && bundle_encoding[template][1] == L)
515                 slot++;
516
517         /* Get Kprobe probe instruction at given slot*/
518         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
519
520         /* For break instruction,
521          * Bits 37:40 Major opcode to be zero
522          * Bits 27:32 X6 to be zero
523          * Bits 32:35 X3 to be zero
524          */
525         if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
526                 /* Not a break instruction */
527                 return 0;
528         }
529
530         /* Is a break instruction */
531         return 1;
532 }
533
534 /*
535  * In this function, we check whether the target bundle modifies IP or
536  * it triggers an exception. If so, it cannot be boostable.
537  */
538 static int __kprobes can_boost(bundle_t *bundle, uint slot,
539                                unsigned long bundle_addr)
540 {
541         unsigned int template = bundle->quad0.template;
542
543         do {
544                 if (search_exception_tables(bundle_addr + slot) ||
545                     __is_ia64_break_inst(bundle, slot))
546                         return 0;       /* exception may occur in this bundle*/
547         } while ((++slot) < 3);
548         template &= 0x1e;
549         if (template >= 0x10 /* including B unit */ ||
550             template == 0x04 /* including X unit */ ||
551             template == 0x06) /* undefined */
552                 return 0;
553
554         return 1;
555 }
556
557 /* Prepare long jump bundle and disables other boosters if need */
558 static void __kprobes prepare_booster(struct kprobe *p)
559 {
560         unsigned long addr = (unsigned long)p->addr & ~0xFULL;
561         unsigned int slot = (unsigned long)p->addr & 0xf;
562         struct kprobe *other_kp;
563
564         if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
565                 set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
566                 p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
567         }
568
569         /* disables boosters in previous slots */
570         for (; addr < (unsigned long)p->addr; addr++) {
571                 other_kp = get_kprobe((void *)addr);
572                 if (other_kp)
573                         other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
574         }
575 }
576
577 int __kprobes arch_prepare_kprobe(struct kprobe *p)
578 {
579         unsigned long addr = (unsigned long) p->addr;
580         unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
581         unsigned long kprobe_inst=0;
582         unsigned int slot = addr & 0xf, template, major_opcode = 0;
583         bundle_t *bundle;
584         int qp;
585
586         bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
587         template = bundle->quad0.template;
588
589         if(valid_kprobe_addr(template, slot, addr))
590                 return -EINVAL;
591
592         /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
593         if (slot == 1 && bundle_encoding[template][1] == L)
594                 slot++;
595
596         /* Get kprobe_inst and major_opcode from the bundle */
597         get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
598
599         qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
600         if (qp < 0)
601                 return -EINVAL;
602
603         p->ainsn.insn = get_insn_slot();
604         if (!p->ainsn.insn)
605                 return -ENOMEM;
606         memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
607         memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
608
609         prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
610
611         prepare_booster(p);
612
613         return 0;
614 }
615
616 void __kprobes arch_arm_kprobe(struct kprobe *p)
617 {
618         unsigned long arm_addr;
619         bundle_t *src, *dest;
620
621         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
622         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
623         src = &p->opcode.bundle;
624
625         flush_icache_range((unsigned long)p->ainsn.insn,
626                            (unsigned long)p->ainsn.insn +
627                            sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
628
629         switch (p->ainsn.slot) {
630                 case 0:
631                         dest->quad0.slot0 = src->quad0.slot0;
632                         break;
633                 case 1:
634                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
635                         break;
636                 case 2:
637                         dest->quad1.slot2 = src->quad1.slot2;
638                         break;
639         }
640         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
641 }
642
643 void __kprobes arch_disarm_kprobe(struct kprobe *p)
644 {
645         unsigned long arm_addr;
646         bundle_t *src, *dest;
647
648         arm_addr = ((unsigned long)p->addr) & ~0xFUL;
649         dest = &((kprobe_opcode_t *)arm_addr)->bundle;
650         /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
651         src = &p->ainsn.insn->bundle;
652         switch (p->ainsn.slot) {
653                 case 0:
654                         dest->quad0.slot0 = src->quad0.slot0;
655                         break;
656                 case 1:
657                         dest->quad1.slot1_p1 = src->quad1.slot1_p1;
658                         break;
659                 case 2:
660                         dest->quad1.slot2 = src->quad1.slot2;
661                         break;
662         }
663         flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
664 }
665
666 void __kprobes arch_remove_kprobe(struct kprobe *p)
667 {
668         if (p->ainsn.insn) {
669                 free_insn_slot(p->ainsn.insn,
670                                p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
671                 p->ainsn.insn = NULL;
672         }
673 }
674 /*
675  * We are resuming execution after a single step fault, so the pt_regs
676  * structure reflects the register state after we executed the instruction
677  * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
678  * the ip to point back to the original stack address. To set the IP address
679  * to original stack address, handle the case where we need to fixup the
680  * relative IP address and/or fixup branch register.
681  */
682 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
683 {
684         unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
685         unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
686         unsigned long template;
687         int slot = ((unsigned long)p->addr & 0xf);
688
689         template = p->ainsn.insn->bundle.quad0.template;
690
691         if (slot == 1 && bundle_encoding[template][1] == L)
692                 slot = 2;
693
694         if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
695
696                 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
697                         /* Fix relative IP address */
698                         regs->cr_iip = (regs->cr_iip - bundle_addr) +
699                                         resume_addr;
700                 }
701
702                 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
703                 /*
704                  * Fix target branch register, software convention is
705                  * to use either b0 or b6 or b7, so just checking
706                  * only those registers
707                  */
708                         switch (p->ainsn.target_br_reg) {
709                         case 0:
710                                 if ((regs->b0 == bundle_addr) ||
711                                         (regs->b0 == bundle_addr + 0x10)) {
712                                         regs->b0 = (regs->b0 - bundle_addr) +
713                                                 resume_addr;
714                                 }
715                                 break;
716                         case 6:
717                                 if ((regs->b6 == bundle_addr) ||
718                                         (regs->b6 == bundle_addr + 0x10)) {
719                                         regs->b6 = (regs->b6 - bundle_addr) +
720                                                 resume_addr;
721                                 }
722                                 break;
723                         case 7:
724                                 if ((regs->b7 == bundle_addr) ||
725                                         (regs->b7 == bundle_addr + 0x10)) {
726                                         regs->b7 = (regs->b7 - bundle_addr) +
727                                                 resume_addr;
728                                 }
729                                 break;
730                         } /* end switch */
731                 }
732                 goto turn_ss_off;
733         }
734
735         if (slot == 2) {
736                 if (regs->cr_iip == bundle_addr + 0x10) {
737                         regs->cr_iip = resume_addr + 0x10;
738                 }
739         } else {
740                 if (regs->cr_iip == bundle_addr) {
741                         regs->cr_iip = resume_addr;
742                 }
743         }
744
745 turn_ss_off:
746         /* Turn off Single Step bit */
747         ia64_psr(regs)->ss = 0;
748 }
749
750 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
751 {
752         unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
753         unsigned long slot = (unsigned long)p->addr & 0xf;
754
755         /* single step inline if break instruction */
756         if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
757                 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
758         else
759                 regs->cr_iip = bundle_addr & ~0xFULL;
760
761         if (slot > 2)
762                 slot = 0;
763
764         ia64_psr(regs)->ri = slot;
765
766         /* turn on single stepping */
767         ia64_psr(regs)->ss = 1;
768 }
769
770 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
771 {
772         unsigned int slot = ia64_psr(regs)->ri;
773         unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
774         bundle_t bundle;
775
776         memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
777
778         return __is_ia64_break_inst(&bundle, slot);
779 }
780
781 static int __kprobes pre_kprobes_handler(struct die_args *args)
782 {
783         struct kprobe *p;
784         int ret = 0;
785         struct pt_regs *regs = args->regs;
786         kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
787         struct kprobe_ctlblk *kcb;
788
789         /*
790          * We don't want to be preempted for the entire
791          * duration of kprobe processing
792          */
793         preempt_disable();
794         kcb = get_kprobe_ctlblk();
795
796         /* Handle recursion cases */
797         if (kprobe_running()) {
798                 p = get_kprobe(addr);
799                 if (p) {
800                         if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
801                              (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
802                                 ia64_psr(regs)->ss = 0;
803                                 goto no_kprobe;
804                         }
805                         /* We have reentered the pre_kprobe_handler(), since
806                          * another probe was hit while within the handler.
807                          * We here save the original kprobes variables and
808                          * just single step on the instruction of the new probe
809                          * without calling any user handlers.
810                          */
811                         save_previous_kprobe(kcb);
812                         set_current_kprobe(p, kcb);
813                         kprobes_inc_nmissed_count(p);
814                         prepare_ss(p, regs);
815                         kcb->kprobe_status = KPROBE_REENTER;
816                         return 1;
817                 } else if (!is_ia64_break_inst(regs)) {
818                         /* The breakpoint instruction was removed by
819                          * another cpu right after we hit, no further
820                          * handling of this interrupt is appropriate
821                          */
822                         ret = 1;
823                         goto no_kprobe;
824                 } else {
825                         /* Not our break */
826                         goto no_kprobe;
827                 }
828         }
829
830         p = get_kprobe(addr);
831         if (!p) {
832                 if (!is_ia64_break_inst(regs)) {
833                         /*
834                          * The breakpoint instruction was removed right
835                          * after we hit it.  Another cpu has removed
836                          * either a probepoint or a debugger breakpoint
837                          * at this address.  In either case, no further
838                          * handling of this interrupt is appropriate.
839                          */
840                         ret = 1;
841
842                 }
843
844                 /* Not one of our break, let kernel handle it */
845                 goto no_kprobe;
846         }
847
848         set_current_kprobe(p, kcb);
849         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
850
851         if (p->pre_handler && p->pre_handler(p, regs)) {
852                 reset_current_kprobe();
853                 preempt_enable_no_resched();
854                 return 1;
855         }
856
857 #if !defined(CONFIG_PREEMPT)
858         if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
859                 /* Boost up -- we can execute copied instructions directly */
860                 ia64_psr(regs)->ri = p->ainsn.slot;
861                 regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
862                 /* turn single stepping off */
863                 ia64_psr(regs)->ss = 0;
864
865                 reset_current_kprobe();
866                 preempt_enable_no_resched();
867                 return 1;
868         }
869 #endif
870         prepare_ss(p, regs);
871         kcb->kprobe_status = KPROBE_HIT_SS;
872         return 1;
873
874 no_kprobe:
875         preempt_enable_no_resched();
876         return ret;
877 }
878
879 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
880 {
881         struct kprobe *cur = kprobe_running();
882         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
883
884         if (!cur)
885                 return 0;
886
887         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
888                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
889                 cur->post_handler(cur, regs, 0);
890         }
891
892         resume_execution(cur, regs);
893
894         /*Restore back the original saved kprobes variables and continue. */
895         if (kcb->kprobe_status == KPROBE_REENTER) {
896                 restore_previous_kprobe(kcb);
897                 goto out;
898         }
899         reset_current_kprobe();
900
901 out:
902         preempt_enable_no_resched();
903         return 1;
904 }
905
906 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
907 {
908         struct kprobe *cur = kprobe_running();
909         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
910
911
912         switch(kcb->kprobe_status) {
913         case KPROBE_HIT_SS:
914         case KPROBE_REENTER:
915                 /*
916                  * We are here because the instruction being single
917                  * stepped caused a page fault. We reset the current
918                  * kprobe and the instruction pointer points back to
919                  * the probe address and allow the page fault handler
920                  * to continue as a normal page fault.
921                  */
922                 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
923                 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
924                 if (kcb->kprobe_status == KPROBE_REENTER)
925                         restore_previous_kprobe(kcb);
926                 else
927                         reset_current_kprobe();
928                 preempt_enable_no_resched();
929                 break;
930         case KPROBE_HIT_ACTIVE:
931         case KPROBE_HIT_SSDONE:
932                 /*
933                  * We increment the nmissed count for accounting,
934                  * we can also use npre/npostfault count for accounting
935                  * these specific fault cases.
936                  */
937                 kprobes_inc_nmissed_count(cur);
938
939                 /*
940                  * We come here because instructions in the pre/post
941                  * handler caused the page_fault, this could happen
942                  * if handler tries to access user space by
943                  * copy_from_user(), get_user() etc. Let the
944                  * user-specified handler try to fix it first.
945                  */
946                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
947                         return 1;
948                 /*
949                  * In case the user-specified fault handler returned
950                  * zero, try to fix up.
951                  */
952                 if (ia64_done_with_exception(regs))
953                         return 1;
954
955                 /*
956                  * Let ia64_do_page_fault() fix it.
957                  */
958                 break;
959         default:
960                 break;
961         }
962
963         return 0;
964 }
965
966 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
967                                        unsigned long val, void *data)
968 {
969         struct die_args *args = (struct die_args *)data;
970         int ret = NOTIFY_DONE;
971
972         if (args->regs && user_mode(args->regs))
973                 return ret;
974
975         switch(val) {
976         case DIE_BREAK:
977                 /* err is break number from ia64_bad_break() */
978                 if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
979                         || args->err == 0)
980                         if (pre_kprobes_handler(args))
981                                 ret = NOTIFY_STOP;
982                 break;
983         case DIE_FAULT:
984                 /* err is vector number from ia64_fault() */
985                 if (args->err == 36)
986                         if (post_kprobes_handler(args->regs))
987                                 ret = NOTIFY_STOP;
988                 break;
989         default:
990                 break;
991         }
992         return ret;
993 }
994
995 struct param_bsp_cfm {
996         unsigned long ip;
997         unsigned long *bsp;
998         unsigned long cfm;
999 };
1000
1001 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
1002 {
1003         unsigned long ip;
1004         struct param_bsp_cfm *lp = arg;
1005
1006         do {
1007                 unw_get_ip(info, &ip);
1008                 if (ip == 0)
1009                         break;
1010                 if (ip == lp->ip) {
1011                         unw_get_bsp(info, (unsigned long*)&lp->bsp);
1012                         unw_get_cfm(info, (unsigned long*)&lp->cfm);
1013                         return;
1014                 }
1015         } while (unw_unwind(info) >= 0);
1016         lp->bsp = NULL;
1017         lp->cfm = 0;
1018         return;
1019 }
1020
1021 unsigned long arch_deref_entry_point(void *entry)
1022 {
1023         return ((struct fnptr *)entry)->ip;
1024 }
1025
1026 static struct kprobe trampoline_p = {
1027         .pre_handler = trampoline_probe_handler
1028 };
1029
1030 int __init arch_init_kprobes(void)
1031 {
1032         trampoline_p.addr =
1033                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1034         return register_kprobe(&trampoline_p);
1035 }
1036
1037 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1038 {
1039         if (p->addr ==
1040                 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1041                 return 1;
1042
1043         return 0;
1044 }