HID: input: avoid polling stylus battery on Chromebook Pompom
[sfrench/cifs-2.6.git] / arch / arm64 / kvm / vgic / vgic-mmio.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGIC MMIO handling functions
4  */
5
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
15
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18
19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20                                  gpa_t addr, unsigned int len)
21 {
22         return 0;
23 }
24
25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26                                  gpa_t addr, unsigned int len)
27 {
28         return -1UL;
29 }
30
31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32                         unsigned int len, unsigned long val)
33 {
34         /* Ignore */
35 }
36
37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38                                unsigned int len, unsigned long val)
39 {
40         /* Ignore */
41         return 0;
42 }
43
44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45                                    gpa_t addr, unsigned int len)
46 {
47         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
48         u32 value = 0;
49         int i;
50
51         /* Loop over all IRQs affected by this read */
52         for (i = 0; i < len * 8; i++) {
53                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
54
55                 if (irq->group)
56                         value |= BIT(i);
57
58                 vgic_put_irq(vcpu->kvm, irq);
59         }
60
61         return value;
62 }
63
64 static void vgic_update_vsgi(struct vgic_irq *irq)
65 {
66         WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
67 }
68
69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70                            unsigned int len, unsigned long val)
71 {
72         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
73         int i;
74         unsigned long flags;
75
76         for (i = 0; i < len * 8; i++) {
77                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
78
79                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
80                 irq->group = !!(val & BIT(i));
81                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82                         vgic_update_vsgi(irq);
83                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
84                 } else {
85                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
86                 }
87
88                 vgic_put_irq(vcpu->kvm, irq);
89         }
90 }
91
92 /*
93  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94  * of the enabled bit, so there is only one function for both here.
95  */
96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97                                     gpa_t addr, unsigned int len)
98 {
99         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100         u32 value = 0;
101         int i;
102
103         /* Loop over all IRQs affected by this read */
104         for (i = 0; i < len * 8; i++) {
105                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
106
107                 if (irq->enabled)
108                         value |= (1U << i);
109
110                 vgic_put_irq(vcpu->kvm, irq);
111         }
112
113         return value;
114 }
115
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117                              gpa_t addr, unsigned int len,
118                              unsigned long val)
119 {
120         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121         int i;
122         unsigned long flags;
123
124         for_each_set_bit(i, &val, len * 8) {
125                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
126
127                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
128                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129                         if (!irq->enabled) {
130                                 struct irq_data *data;
131
132                                 irq->enabled = true;
133                                 data = &irq_to_desc(irq->host_irq)->irq_data;
134                                 while (irqd_irq_disabled(data))
135                                         enable_irq(irq->host_irq);
136                         }
137
138                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139                         vgic_put_irq(vcpu->kvm, irq);
140
141                         continue;
142                 } else if (vgic_irq_is_mapped_level(irq)) {
143                         bool was_high = irq->line_level;
144
145                         /*
146                          * We need to update the state of the interrupt because
147                          * the guest might have changed the state of the device
148                          * while the interrupt was disabled at the VGIC level.
149                          */
150                         irq->line_level = vgic_get_phys_line_level(irq);
151                         /*
152                          * Deactivate the physical interrupt so the GIC will let
153                          * us know when it is asserted again.
154                          */
155                         if (!irq->active && was_high && !irq->line_level)
156                                 vgic_irq_set_phys_active(irq, false);
157                 }
158                 irq->enabled = true;
159                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160
161                 vgic_put_irq(vcpu->kvm, irq);
162         }
163 }
164
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166                              gpa_t addr, unsigned int len,
167                              unsigned long val)
168 {
169         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170         int i;
171         unsigned long flags;
172
173         for_each_set_bit(i, &val, len * 8) {
174                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
175
176                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
177                 if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178                         disable_irq_nosync(irq->host_irq);
179
180                 irq->enabled = false;
181
182                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183                 vgic_put_irq(vcpu->kvm, irq);
184         }
185 }
186
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188                                gpa_t addr, unsigned int len,
189                                unsigned long val)
190 {
191         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192         int i;
193         unsigned long flags;
194
195         for_each_set_bit(i, &val, len * 8) {
196                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
197
198                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
199                 irq->enabled = true;
200                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201
202                 vgic_put_irq(vcpu->kvm, irq);
203         }
204
205         return 0;
206 }
207
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209                                gpa_t addr, unsigned int len,
210                                unsigned long val)
211 {
212         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213         int i;
214         unsigned long flags;
215
216         for_each_set_bit(i, &val, len * 8) {
217                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
218
219                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
220                 irq->enabled = false;
221                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222
223                 vgic_put_irq(vcpu->kvm, irq);
224         }
225
226         return 0;
227 }
228
229 static unsigned long __read_pending(struct kvm_vcpu *vcpu,
230                                     gpa_t addr, unsigned int len,
231                                     bool is_user)
232 {
233         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
234         u32 value = 0;
235         int i;
236
237         /* Loop over all IRQs affected by this read */
238         for (i = 0; i < len * 8; i++) {
239                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
240                 unsigned long flags;
241                 bool val;
242
243                 /*
244                  * When used from userspace with a GICv3 model:
245                  *
246                  * Pending state of interrupt is latched in pending_latch
247                  * variable.  Userspace will save and restore pending state
248                  * and line_level separately.
249                  * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
250                  * for handling of ISPENDR and ICPENDR.
251                  */
252                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
253                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
254                         int err;
255
256                         val = false;
257                         err = irq_get_irqchip_state(irq->host_irq,
258                                                     IRQCHIP_STATE_PENDING,
259                                                     &val);
260                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
261                 } else if (!is_user && vgic_irq_is_mapped_level(irq)) {
262                         val = vgic_get_phys_line_level(irq);
263                 } else {
264                         switch (vcpu->kvm->arch.vgic.vgic_model) {
265                         case KVM_DEV_TYPE_ARM_VGIC_V3:
266                                 if (is_user) {
267                                         val = irq->pending_latch;
268                                         break;
269                                 }
270                                 fallthrough;
271                         default:
272                                 val = irq_is_pending(irq);
273                                 break;
274                         }
275                 }
276
277                 value |= ((u32)val << i);
278                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
279
280                 vgic_put_irq(vcpu->kvm, irq);
281         }
282
283         return value;
284 }
285
286 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
287                                      gpa_t addr, unsigned int len)
288 {
289         return __read_pending(vcpu, addr, len, false);
290 }
291
292 unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
293                                         gpa_t addr, unsigned int len)
294 {
295         return __read_pending(vcpu, addr, len, true);
296 }
297
298 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
299 {
300         return (vgic_irq_is_sgi(irq->intid) &&
301                 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
302 }
303
304 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
305                               gpa_t addr, unsigned int len,
306                               unsigned long val)
307 {
308         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
309         int i;
310         unsigned long flags;
311
312         for_each_set_bit(i, &val, len * 8) {
313                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
314
315                 /* GICD_ISPENDR0 SGI bits are WI */
316                 if (is_vgic_v2_sgi(vcpu, irq)) {
317                         vgic_put_irq(vcpu->kvm, irq);
318                         continue;
319                 }
320
321                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
322
323                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
324                         /* HW SGI? Ask the GIC to inject it */
325                         int err;
326                         err = irq_set_irqchip_state(irq->host_irq,
327                                                     IRQCHIP_STATE_PENDING,
328                                                     true);
329                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
330
331                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
332                         vgic_put_irq(vcpu->kvm, irq);
333
334                         continue;
335                 }
336
337                 irq->pending_latch = true;
338                 if (irq->hw)
339                         vgic_irq_set_phys_active(irq, true);
340
341                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
342                 vgic_put_irq(vcpu->kvm, irq);
343         }
344 }
345
346 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
347                                 gpa_t addr, unsigned int len,
348                                 unsigned long val)
349 {
350         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
351         int i;
352         unsigned long flags;
353
354         for_each_set_bit(i, &val, len * 8) {
355                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
356
357                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
358                 irq->pending_latch = true;
359
360                 /*
361                  * GICv2 SGIs are terribly broken. We can't restore
362                  * the source of the interrupt, so just pick the vcpu
363                  * itself as the source...
364                  */
365                 if (is_vgic_v2_sgi(vcpu, irq))
366                         irq->source |= BIT(vcpu->vcpu_id);
367
368                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
369
370                 vgic_put_irq(vcpu->kvm, irq);
371         }
372
373         return 0;
374 }
375
376 /* Must be called with irq->irq_lock held */
377 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
378 {
379         irq->pending_latch = false;
380
381         /*
382          * We don't want the guest to effectively mask the physical
383          * interrupt by doing a write to SPENDR followed by a write to
384          * CPENDR for HW interrupts, so we clear the active state on
385          * the physical side if the virtual interrupt is not active.
386          * This may lead to taking an additional interrupt on the
387          * host, but that should not be a problem as the worst that
388          * can happen is an additional vgic injection.  We also clear
389          * the pending state to maintain proper semantics for edge HW
390          * interrupts.
391          */
392         vgic_irq_set_phys_pending(irq, false);
393         if (!irq->active)
394                 vgic_irq_set_phys_active(irq, false);
395 }
396
397 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
398                               gpa_t addr, unsigned int len,
399                               unsigned long val)
400 {
401         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
402         int i;
403         unsigned long flags;
404
405         for_each_set_bit(i, &val, len * 8) {
406                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
407
408                 /* GICD_ICPENDR0 SGI bits are WI */
409                 if (is_vgic_v2_sgi(vcpu, irq)) {
410                         vgic_put_irq(vcpu->kvm, irq);
411                         continue;
412                 }
413
414                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
415
416                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
417                         /* HW SGI? Ask the GIC to clear its pending bit */
418                         int err;
419                         err = irq_set_irqchip_state(irq->host_irq,
420                                                     IRQCHIP_STATE_PENDING,
421                                                     false);
422                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
423
424                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
425                         vgic_put_irq(vcpu->kvm, irq);
426
427                         continue;
428                 }
429
430                 if (irq->hw)
431                         vgic_hw_irq_cpending(vcpu, irq);
432                 else
433                         irq->pending_latch = false;
434
435                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
436                 vgic_put_irq(vcpu->kvm, irq);
437         }
438 }
439
440 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
441                                 gpa_t addr, unsigned int len,
442                                 unsigned long val)
443 {
444         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
445         int i;
446         unsigned long flags;
447
448         for_each_set_bit(i, &val, len * 8) {
449                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
450
451                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
452                 /*
453                  * More fun with GICv2 SGIs! If we're clearing one of them
454                  * from userspace, which source vcpu to clear? Let's not
455                  * even think of it, and blow the whole set.
456                  */
457                 if (is_vgic_v2_sgi(vcpu, irq))
458                         irq->source = 0;
459
460                 irq->pending_latch = false;
461
462                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
463
464                 vgic_put_irq(vcpu->kvm, irq);
465         }
466
467         return 0;
468 }
469
470 /*
471  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
472  * is not queued on some running VCPU's LRs, because then the change to the
473  * active state can be overwritten when the VCPU's state is synced coming back
474  * from the guest.
475  *
476  * For shared interrupts as well as GICv3 private interrupts accessed from the
477  * non-owning CPU, we have to stop all the VCPUs because interrupts can be
478  * migrated while we don't hold the IRQ locks and we don't want to be chasing
479  * moving targets.
480  *
481  * For GICv2 private interrupts we don't have to do anything because
482  * userspace accesses to the VGIC state already require all VCPUs to be
483  * stopped, and only the VCPU itself can modify its private interrupts
484  * active state, which guarantees that the VCPU is not running.
485  */
486 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
487 {
488         if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
489              vcpu != kvm_get_running_vcpu()) ||
490             intid >= VGIC_NR_PRIVATE_IRQS)
491                 kvm_arm_halt_guest(vcpu->kvm);
492 }
493
494 /* See vgic_access_active_prepare */
495 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
496 {
497         if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
498              vcpu != kvm_get_running_vcpu()) ||
499             intid >= VGIC_NR_PRIVATE_IRQS)
500                 kvm_arm_resume_guest(vcpu->kvm);
501 }
502
503 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
504                                              gpa_t addr, unsigned int len)
505 {
506         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
507         u32 value = 0;
508         int i;
509
510         /* Loop over all IRQs affected by this read */
511         for (i = 0; i < len * 8; i++) {
512                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
513
514                 /*
515                  * Even for HW interrupts, don't evaluate the HW state as
516                  * all the guest is interested in is the virtual state.
517                  */
518                 if (irq->active)
519                         value |= (1U << i);
520
521                 vgic_put_irq(vcpu->kvm, irq);
522         }
523
524         return value;
525 }
526
527 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
528                                     gpa_t addr, unsigned int len)
529 {
530         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
531         u32 val;
532
533         mutex_lock(&vcpu->kvm->arch.config_lock);
534         vgic_access_active_prepare(vcpu, intid);
535
536         val = __vgic_mmio_read_active(vcpu, addr, len);
537
538         vgic_access_active_finish(vcpu, intid);
539         mutex_unlock(&vcpu->kvm->arch.config_lock);
540
541         return val;
542 }
543
544 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
545                                     gpa_t addr, unsigned int len)
546 {
547         return __vgic_mmio_read_active(vcpu, addr, len);
548 }
549
550 /* Must be called with irq->irq_lock held */
551 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
552                                       bool active, bool is_uaccess)
553 {
554         if (is_uaccess)
555                 return;
556
557         irq->active = active;
558         vgic_irq_set_phys_active(irq, active);
559 }
560
561 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
562                                     bool active)
563 {
564         unsigned long flags;
565         struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
566
567         raw_spin_lock_irqsave(&irq->irq_lock, flags);
568
569         if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
570                 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
571         } else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
572                 /*
573                  * GICv4.1 VSGI feature doesn't track an active state,
574                  * so let's not kid ourselves, there is nothing we can
575                  * do here.
576                  */
577                 irq->active = false;
578         } else {
579                 u32 model = vcpu->kvm->arch.vgic.vgic_model;
580                 u8 active_source;
581
582                 irq->active = active;
583
584                 /*
585                  * The GICv2 architecture indicates that the source CPUID for
586                  * an SGI should be provided during an EOI which implies that
587                  * the active state is stored somewhere, but at the same time
588                  * this state is not architecturally exposed anywhere and we
589                  * have no way of knowing the right source.
590                  *
591                  * This may lead to a VCPU not being able to receive
592                  * additional instances of a particular SGI after migration
593                  * for a GICv2 VM on some GIC implementations.  Oh well.
594                  */
595                 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
596
597                 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
598                     active && vgic_irq_is_sgi(irq->intid))
599                         irq->active_source = active_source;
600         }
601
602         if (irq->active)
603                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
604         else
605                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
606 }
607
608 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
609                                       gpa_t addr, unsigned int len,
610                                       unsigned long val)
611 {
612         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
613         int i;
614
615         for_each_set_bit(i, &val, len * 8) {
616                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
617                 vgic_mmio_change_active(vcpu, irq, false);
618                 vgic_put_irq(vcpu->kvm, irq);
619         }
620 }
621
622 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
623                              gpa_t addr, unsigned int len,
624                              unsigned long val)
625 {
626         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
627
628         mutex_lock(&vcpu->kvm->arch.config_lock);
629         vgic_access_active_prepare(vcpu, intid);
630
631         __vgic_mmio_write_cactive(vcpu, addr, len, val);
632
633         vgic_access_active_finish(vcpu, intid);
634         mutex_unlock(&vcpu->kvm->arch.config_lock);
635 }
636
637 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
638                                      gpa_t addr, unsigned int len,
639                                      unsigned long val)
640 {
641         __vgic_mmio_write_cactive(vcpu, addr, len, val);
642         return 0;
643 }
644
645 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
646                                       gpa_t addr, unsigned int len,
647                                       unsigned long val)
648 {
649         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
650         int i;
651
652         for_each_set_bit(i, &val, len * 8) {
653                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
654                 vgic_mmio_change_active(vcpu, irq, true);
655                 vgic_put_irq(vcpu->kvm, irq);
656         }
657 }
658
659 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
660                              gpa_t addr, unsigned int len,
661                              unsigned long val)
662 {
663         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
664
665         mutex_lock(&vcpu->kvm->arch.config_lock);
666         vgic_access_active_prepare(vcpu, intid);
667
668         __vgic_mmio_write_sactive(vcpu, addr, len, val);
669
670         vgic_access_active_finish(vcpu, intid);
671         mutex_unlock(&vcpu->kvm->arch.config_lock);
672 }
673
674 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
675                                      gpa_t addr, unsigned int len,
676                                      unsigned long val)
677 {
678         __vgic_mmio_write_sactive(vcpu, addr, len, val);
679         return 0;
680 }
681
682 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
683                                       gpa_t addr, unsigned int len)
684 {
685         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
686         int i;
687         u64 val = 0;
688
689         for (i = 0; i < len; i++) {
690                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
691
692                 val |= (u64)irq->priority << (i * 8);
693
694                 vgic_put_irq(vcpu->kvm, irq);
695         }
696
697         return val;
698 }
699
700 /*
701  * We currently don't handle changing the priority of an interrupt that
702  * is already pending on a VCPU. If there is a need for this, we would
703  * need to make this VCPU exit and re-evaluate the priorities, potentially
704  * leading to this interrupt getting presented now to the guest (if it has
705  * been masked by the priority mask before).
706  */
707 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
708                               gpa_t addr, unsigned int len,
709                               unsigned long val)
710 {
711         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
712         int i;
713         unsigned long flags;
714
715         for (i = 0; i < len; i++) {
716                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
717
718                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
719                 /* Narrow the priority range to what we actually support */
720                 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
721                 if (irq->hw && vgic_irq_is_sgi(irq->intid))
722                         vgic_update_vsgi(irq);
723                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
724
725                 vgic_put_irq(vcpu->kvm, irq);
726         }
727 }
728
729 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
730                                     gpa_t addr, unsigned int len)
731 {
732         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
733         u32 value = 0;
734         int i;
735
736         for (i = 0; i < len * 4; i++) {
737                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
738
739                 if (irq->config == VGIC_CONFIG_EDGE)
740                         value |= (2U << (i * 2));
741
742                 vgic_put_irq(vcpu->kvm, irq);
743         }
744
745         return value;
746 }
747
748 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
749                             gpa_t addr, unsigned int len,
750                             unsigned long val)
751 {
752         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
753         int i;
754         unsigned long flags;
755
756         for (i = 0; i < len * 4; i++) {
757                 struct vgic_irq *irq;
758
759                 /*
760                  * The configuration cannot be changed for SGIs in general,
761                  * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
762                  * code relies on PPIs being level triggered, so we also
763                  * make them read-only here.
764                  */
765                 if (intid + i < VGIC_NR_PRIVATE_IRQS)
766                         continue;
767
768                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
769                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
770
771                 if (test_bit(i * 2 + 1, &val))
772                         irq->config = VGIC_CONFIG_EDGE;
773                 else
774                         irq->config = VGIC_CONFIG_LEVEL;
775
776                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
777                 vgic_put_irq(vcpu->kvm, irq);
778         }
779 }
780
781 u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
782 {
783         int i;
784         u32 val = 0;
785         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
786
787         for (i = 0; i < 32; i++) {
788                 struct vgic_irq *irq;
789
790                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
791                         continue;
792
793                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
794                 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
795                         val |= (1U << i);
796
797                 vgic_put_irq(vcpu->kvm, irq);
798         }
799
800         return val;
801 }
802
803 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
804                                     const u32 val)
805 {
806         int i;
807         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
808         unsigned long flags;
809
810         for (i = 0; i < 32; i++) {
811                 struct vgic_irq *irq;
812                 bool new_level;
813
814                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
815                         continue;
816
817                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
818
819                 /*
820                  * Line level is set irrespective of irq type
821                  * (level or edge) to avoid dependency that VM should
822                  * restore irq config before line level.
823                  */
824                 new_level = !!(val & (1U << i));
825                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
826                 irq->line_level = new_level;
827                 if (new_level)
828                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
829                 else
830                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
831
832                 vgic_put_irq(vcpu->kvm, irq);
833         }
834 }
835
836 static int match_region(const void *key, const void *elt)
837 {
838         const unsigned int offset = (unsigned long)key;
839         const struct vgic_register_region *region = elt;
840
841         if (offset < region->reg_offset)
842                 return -1;
843
844         if (offset >= region->reg_offset + region->len)
845                 return 1;
846
847         return 0;
848 }
849
850 const struct vgic_register_region *
851 vgic_find_mmio_region(const struct vgic_register_region *regions,
852                       int nr_regions, unsigned int offset)
853 {
854         return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
855                        sizeof(regions[0]), match_region);
856 }
857
858 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
859 {
860         if (kvm_vgic_global_state.type == VGIC_V2)
861                 vgic_v2_set_vmcr(vcpu, vmcr);
862         else
863                 vgic_v3_set_vmcr(vcpu, vmcr);
864 }
865
866 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
867 {
868         if (kvm_vgic_global_state.type == VGIC_V2)
869                 vgic_v2_get_vmcr(vcpu, vmcr);
870         else
871                 vgic_v3_get_vmcr(vcpu, vmcr);
872 }
873
874 /*
875  * kvm_mmio_read_buf() returns a value in a format where it can be converted
876  * to a byte array and be directly observed as the guest wanted it to appear
877  * in memory if it had done the store itself, which is LE for the GIC, as the
878  * guest knows the GIC is always LE.
879  *
880  * We convert this value to the CPUs native format to deal with it as a data
881  * value.
882  */
883 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
884 {
885         unsigned long data = kvm_mmio_read_buf(val, len);
886
887         switch (len) {
888         case 1:
889                 return data;
890         case 2:
891                 return le16_to_cpu(data);
892         case 4:
893                 return le32_to_cpu(data);
894         default:
895                 return le64_to_cpu(data);
896         }
897 }
898
899 /*
900  * kvm_mmio_write_buf() expects a value in a format such that if converted to
901  * a byte array it is observed as the guest would see it if it could perform
902  * the load directly.  Since the GIC is LE, and the guest knows this, the
903  * guest expects a value in little endian format.
904  *
905  * We convert the data value from the CPUs native format to LE so that the
906  * value is returned in the proper format.
907  */
908 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
909                                 unsigned long data)
910 {
911         switch (len) {
912         case 1:
913                 break;
914         case 2:
915                 data = cpu_to_le16(data);
916                 break;
917         case 4:
918                 data = cpu_to_le32(data);
919                 break;
920         default:
921                 data = cpu_to_le64(data);
922         }
923
924         kvm_mmio_write_buf(buf, len, data);
925 }
926
927 static
928 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
929 {
930         return container_of(dev, struct vgic_io_device, dev);
931 }
932
933 static bool check_region(const struct kvm *kvm,
934                          const struct vgic_register_region *region,
935                          gpa_t addr, int len)
936 {
937         int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
938
939         switch (len) {
940         case sizeof(u8):
941                 flags = VGIC_ACCESS_8bit;
942                 break;
943         case sizeof(u32):
944                 flags = VGIC_ACCESS_32bit;
945                 break;
946         case sizeof(u64):
947                 flags = VGIC_ACCESS_64bit;
948                 break;
949         default:
950                 return false;
951         }
952
953         if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
954                 if (!region->bits_per_irq)
955                         return true;
956
957                 /* Do we access a non-allocated IRQ? */
958                 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
959         }
960
961         return false;
962 }
963
964 const struct vgic_register_region *
965 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
966                      gpa_t addr, int len)
967 {
968         const struct vgic_register_region *region;
969
970         region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
971                                        addr - iodev->base_addr);
972         if (!region || !check_region(vcpu->kvm, region, addr, len))
973                 return NULL;
974
975         return region;
976 }
977
978 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
979                              gpa_t addr, u32 *val)
980 {
981         const struct vgic_register_region *region;
982         struct kvm_vcpu *r_vcpu;
983
984         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
985         if (!region) {
986                 *val = 0;
987                 return 0;
988         }
989
990         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
991         if (region->uaccess_read)
992                 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
993         else
994                 *val = region->read(r_vcpu, addr, sizeof(u32));
995
996         return 0;
997 }
998
999 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
1000                               gpa_t addr, const u32 *val)
1001 {
1002         const struct vgic_register_region *region;
1003         struct kvm_vcpu *r_vcpu;
1004
1005         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
1006         if (!region)
1007                 return 0;
1008
1009         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
1010         if (region->uaccess_write)
1011                 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
1012
1013         region->write(r_vcpu, addr, sizeof(u32), *val);
1014         return 0;
1015 }
1016
1017 /*
1018  * Userland access to VGIC registers.
1019  */
1020 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
1021                  bool is_write, int offset, u32 *val)
1022 {
1023         if (is_write)
1024                 return vgic_uaccess_write(vcpu, dev, offset, val);
1025         else
1026                 return vgic_uaccess_read(vcpu, dev, offset, val);
1027 }
1028
1029 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1030                               gpa_t addr, int len, void *val)
1031 {
1032         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1033         const struct vgic_register_region *region;
1034         unsigned long data = 0;
1035
1036         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1037         if (!region) {
1038                 memset(val, 0, len);
1039                 return 0;
1040         }
1041
1042         switch (iodev->iodev_type) {
1043         case IODEV_CPUIF:
1044                 data = region->read(vcpu, addr, len);
1045                 break;
1046         case IODEV_DIST:
1047                 data = region->read(vcpu, addr, len);
1048                 break;
1049         case IODEV_REDIST:
1050                 data = region->read(iodev->redist_vcpu, addr, len);
1051                 break;
1052         case IODEV_ITS:
1053                 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1054                 break;
1055         }
1056
1057         vgic_data_host_to_mmio_bus(val, len, data);
1058         return 0;
1059 }
1060
1061 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1062                                gpa_t addr, int len, const void *val)
1063 {
1064         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1065         const struct vgic_register_region *region;
1066         unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1067
1068         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1069         if (!region)
1070                 return 0;
1071
1072         switch (iodev->iodev_type) {
1073         case IODEV_CPUIF:
1074                 region->write(vcpu, addr, len, data);
1075                 break;
1076         case IODEV_DIST:
1077                 region->write(vcpu, addr, len, data);
1078                 break;
1079         case IODEV_REDIST:
1080                 region->write(iodev->redist_vcpu, addr, len, data);
1081                 break;
1082         case IODEV_ITS:
1083                 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1084                 break;
1085         }
1086
1087         return 0;
1088 }
1089
1090 const struct kvm_io_device_ops kvm_io_gic_ops = {
1091         .read = dispatch_mmio_read,
1092         .write = dispatch_mmio_write,
1093 };
1094
1095 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1096                              enum vgic_type type)
1097 {
1098         struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1099         unsigned int len;
1100
1101         switch (type) {
1102         case VGIC_V2:
1103                 len = vgic_v2_init_dist_iodev(io_device);
1104                 break;
1105         case VGIC_V3:
1106                 len = vgic_v3_init_dist_iodev(io_device);
1107                 break;
1108         default:
1109                 BUG_ON(1);
1110         }
1111
1112         io_device->base_addr = dist_base_address;
1113         io_device->iodev_type = IODEV_DIST;
1114         io_device->redist_vcpu = NULL;
1115
1116         return kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1117                                        len, &io_device->dev);
1118 }