HID: input: avoid polling stylus battery on Chromebook Pompom
[sfrench/cifs-2.6.git] / arch / arm64 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31
32 static unsigned long __ro_after_init io_map_base;
33
34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35                                            phys_addr_t size)
36 {
37         phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39         return (boundary - 1 < end - 1) ? boundary : end;
40 }
41
42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43 {
44         phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45
46         return __stage2_range_addr_end(addr, end, size);
47 }
48
49 /*
50  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53  * long will also starve other vCPUs. We have to also make sure that the page
54  * tables are not freed while we released the lock.
55  */
56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57                               phys_addr_t end,
58                               int (*fn)(struct kvm_pgtable *, u64, u64),
59                               bool resched)
60 {
61         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62         int ret;
63         u64 next;
64
65         do {
66                 struct kvm_pgtable *pgt = mmu->pgt;
67                 if (!pgt)
68                         return -EINVAL;
69
70                 next = stage2_range_addr_end(addr, end);
71                 ret = fn(pgt, addr, next - addr);
72                 if (ret)
73                         break;
74
75                 if (resched && next != end)
76                         cond_resched_rwlock_write(&kvm->mmu_lock);
77         } while (addr = next, addr != end);
78
79         return ret;
80 }
81
82 #define stage2_apply_range_resched(mmu, addr, end, fn)                  \
83         stage2_apply_range(mmu, addr, end, fn, true)
84
85 /*
86  * Get the maximum number of page-tables pages needed to split a range
87  * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88  * mapped at level 2, or at level 1 if allowed.
89  */
90 static int kvm_mmu_split_nr_page_tables(u64 range)
91 {
92         int n = 0;
93
94         if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95                 n += DIV_ROUND_UP(range, PUD_SIZE);
96         n += DIV_ROUND_UP(range, PMD_SIZE);
97         return n;
98 }
99
100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101 {
102         struct kvm_mmu_memory_cache *cache;
103         u64 chunk_size, min;
104
105         if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
106                 return true;
107
108         chunk_size = kvm->arch.mmu.split_page_chunk_size;
109         min = kvm_mmu_split_nr_page_tables(chunk_size);
110         cache = &kvm->arch.mmu.split_page_cache;
111         return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
112 }
113
114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115                                     phys_addr_t end)
116 {
117         struct kvm_mmu_memory_cache *cache;
118         struct kvm_pgtable *pgt;
119         int ret, cache_capacity;
120         u64 next, chunk_size;
121
122         lockdep_assert_held_write(&kvm->mmu_lock);
123
124         chunk_size = kvm->arch.mmu.split_page_chunk_size;
125         cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
126
127         if (chunk_size == 0)
128                 return 0;
129
130         cache = &kvm->arch.mmu.split_page_cache;
131
132         do {
133                 if (need_split_memcache_topup_or_resched(kvm)) {
134                         write_unlock(&kvm->mmu_lock);
135                         cond_resched();
136                         /* Eager page splitting is best-effort. */
137                         ret = __kvm_mmu_topup_memory_cache(cache,
138                                                            cache_capacity,
139                                                            cache_capacity);
140                         write_lock(&kvm->mmu_lock);
141                         if (ret)
142                                 break;
143                 }
144
145                 pgt = kvm->arch.mmu.pgt;
146                 if (!pgt)
147                         return -EINVAL;
148
149                 next = __stage2_range_addr_end(addr, end, chunk_size);
150                 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151                 if (ret)
152                         break;
153         } while (addr = next, addr != end);
154
155         return ret;
156 }
157
158 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159 {
160         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161 }
162
163 /**
164  * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165  * @kvm:        pointer to kvm structure.
166  *
167  * Interface to HYP function to flush all VM TLB entries
168  */
169 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
170 {
171         kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
172         return 0;
173 }
174
175 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
176                                       gfn_t gfn, u64 nr_pages)
177 {
178         kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
179                                 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
180         return 0;
181 }
182
183 static bool kvm_is_device_pfn(unsigned long pfn)
184 {
185         return !pfn_is_map_memory(pfn);
186 }
187
188 static void *stage2_memcache_zalloc_page(void *arg)
189 {
190         struct kvm_mmu_memory_cache *mc = arg;
191         void *virt;
192
193         /* Allocated with __GFP_ZERO, so no need to zero */
194         virt = kvm_mmu_memory_cache_alloc(mc);
195         if (virt)
196                 kvm_account_pgtable_pages(virt, 1);
197         return virt;
198 }
199
200 static void *kvm_host_zalloc_pages_exact(size_t size)
201 {
202         return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
203 }
204
205 static void *kvm_s2_zalloc_pages_exact(size_t size)
206 {
207         void *virt = kvm_host_zalloc_pages_exact(size);
208
209         if (virt)
210                 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
211         return virt;
212 }
213
214 static void kvm_s2_free_pages_exact(void *virt, size_t size)
215 {
216         kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
217         free_pages_exact(virt, size);
218 }
219
220 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
221
222 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
223 {
224         struct page *page = container_of(head, struct page, rcu_head);
225         void *pgtable = page_to_virt(page);
226         u32 level = page_private(page);
227
228         kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
229 }
230
231 static void stage2_free_unlinked_table(void *addr, u32 level)
232 {
233         struct page *page = virt_to_page(addr);
234
235         set_page_private(page, (unsigned long)level);
236         call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
237 }
238
239 static void kvm_host_get_page(void *addr)
240 {
241         get_page(virt_to_page(addr));
242 }
243
244 static void kvm_host_put_page(void *addr)
245 {
246         put_page(virt_to_page(addr));
247 }
248
249 static void kvm_s2_put_page(void *addr)
250 {
251         struct page *p = virt_to_page(addr);
252         /* Dropping last refcount, the page will be freed */
253         if (page_count(p) == 1)
254                 kvm_account_pgtable_pages(addr, -1);
255         put_page(p);
256 }
257
258 static int kvm_host_page_count(void *addr)
259 {
260         return page_count(virt_to_page(addr));
261 }
262
263 static phys_addr_t kvm_host_pa(void *addr)
264 {
265         return __pa(addr);
266 }
267
268 static void *kvm_host_va(phys_addr_t phys)
269 {
270         return __va(phys);
271 }
272
273 static void clean_dcache_guest_page(void *va, size_t size)
274 {
275         __clean_dcache_guest_page(va, size);
276 }
277
278 static void invalidate_icache_guest_page(void *va, size_t size)
279 {
280         __invalidate_icache_guest_page(va, size);
281 }
282
283 /*
284  * Unmapping vs dcache management:
285  *
286  * If a guest maps certain memory pages as uncached, all writes will
287  * bypass the data cache and go directly to RAM.  However, the CPUs
288  * can still speculate reads (not writes) and fill cache lines with
289  * data.
290  *
291  * Those cache lines will be *clean* cache lines though, so a
292  * clean+invalidate operation is equivalent to an invalidate
293  * operation, because no cache lines are marked dirty.
294  *
295  * Those clean cache lines could be filled prior to an uncached write
296  * by the guest, and the cache coherent IO subsystem would therefore
297  * end up writing old data to disk.
298  *
299  * This is why right after unmapping a page/section and invalidating
300  * the corresponding TLBs, we flush to make sure the IO subsystem will
301  * never hit in the cache.
302  *
303  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
304  * we then fully enforce cacheability of RAM, no matter what the guest
305  * does.
306  */
307 /**
308  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
309  * @mmu:   The KVM stage-2 MMU pointer
310  * @start: The intermediate physical base address of the range to unmap
311  * @size:  The size of the area to unmap
312  * @may_block: Whether or not we are permitted to block
313  *
314  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
315  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
316  * destroying the VM), otherwise another faulting VCPU may come in and mess
317  * with things behind our backs.
318  */
319 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
320                                  bool may_block)
321 {
322         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
323         phys_addr_t end = start + size;
324
325         lockdep_assert_held_write(&kvm->mmu_lock);
326         WARN_ON(size & ~PAGE_MASK);
327         WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
328                                    may_block));
329 }
330
331 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
332 {
333         __unmap_stage2_range(mmu, start, size, true);
334 }
335
336 static void stage2_flush_memslot(struct kvm *kvm,
337                                  struct kvm_memory_slot *memslot)
338 {
339         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
340         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
341
342         stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
343 }
344
345 /**
346  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
347  * @kvm: The struct kvm pointer
348  *
349  * Go through the stage 2 page tables and invalidate any cache lines
350  * backing memory already mapped to the VM.
351  */
352 static void stage2_flush_vm(struct kvm *kvm)
353 {
354         struct kvm_memslots *slots;
355         struct kvm_memory_slot *memslot;
356         int idx, bkt;
357
358         idx = srcu_read_lock(&kvm->srcu);
359         write_lock(&kvm->mmu_lock);
360
361         slots = kvm_memslots(kvm);
362         kvm_for_each_memslot(memslot, bkt, slots)
363                 stage2_flush_memslot(kvm, memslot);
364
365         write_unlock(&kvm->mmu_lock);
366         srcu_read_unlock(&kvm->srcu, idx);
367 }
368
369 /**
370  * free_hyp_pgds - free Hyp-mode page tables
371  */
372 void __init free_hyp_pgds(void)
373 {
374         mutex_lock(&kvm_hyp_pgd_mutex);
375         if (hyp_pgtable) {
376                 kvm_pgtable_hyp_destroy(hyp_pgtable);
377                 kfree(hyp_pgtable);
378                 hyp_pgtable = NULL;
379         }
380         mutex_unlock(&kvm_hyp_pgd_mutex);
381 }
382
383 static bool kvm_host_owns_hyp_mappings(void)
384 {
385         if (is_kernel_in_hyp_mode())
386                 return false;
387
388         if (static_branch_likely(&kvm_protected_mode_initialized))
389                 return false;
390
391         /*
392          * This can happen at boot time when __create_hyp_mappings() is called
393          * after the hyp protection has been enabled, but the static key has
394          * not been flipped yet.
395          */
396         if (!hyp_pgtable && is_protected_kvm_enabled())
397                 return false;
398
399         WARN_ON(!hyp_pgtable);
400
401         return true;
402 }
403
404 int __create_hyp_mappings(unsigned long start, unsigned long size,
405                           unsigned long phys, enum kvm_pgtable_prot prot)
406 {
407         int err;
408
409         if (WARN_ON(!kvm_host_owns_hyp_mappings()))
410                 return -EINVAL;
411
412         mutex_lock(&kvm_hyp_pgd_mutex);
413         err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
414         mutex_unlock(&kvm_hyp_pgd_mutex);
415
416         return err;
417 }
418
419 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
420 {
421         if (!is_vmalloc_addr(kaddr)) {
422                 BUG_ON(!virt_addr_valid(kaddr));
423                 return __pa(kaddr);
424         } else {
425                 return page_to_phys(vmalloc_to_page(kaddr)) +
426                        offset_in_page(kaddr);
427         }
428 }
429
430 struct hyp_shared_pfn {
431         u64 pfn;
432         int count;
433         struct rb_node node;
434 };
435
436 static DEFINE_MUTEX(hyp_shared_pfns_lock);
437 static struct rb_root hyp_shared_pfns = RB_ROOT;
438
439 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
440                                               struct rb_node **parent)
441 {
442         struct hyp_shared_pfn *this;
443
444         *node = &hyp_shared_pfns.rb_node;
445         *parent = NULL;
446         while (**node) {
447                 this = container_of(**node, struct hyp_shared_pfn, node);
448                 *parent = **node;
449                 if (this->pfn < pfn)
450                         *node = &((**node)->rb_left);
451                 else if (this->pfn > pfn)
452                         *node = &((**node)->rb_right);
453                 else
454                         return this;
455         }
456
457         return NULL;
458 }
459
460 static int share_pfn_hyp(u64 pfn)
461 {
462         struct rb_node **node, *parent;
463         struct hyp_shared_pfn *this;
464         int ret = 0;
465
466         mutex_lock(&hyp_shared_pfns_lock);
467         this = find_shared_pfn(pfn, &node, &parent);
468         if (this) {
469                 this->count++;
470                 goto unlock;
471         }
472
473         this = kzalloc(sizeof(*this), GFP_KERNEL);
474         if (!this) {
475                 ret = -ENOMEM;
476                 goto unlock;
477         }
478
479         this->pfn = pfn;
480         this->count = 1;
481         rb_link_node(&this->node, parent, node);
482         rb_insert_color(&this->node, &hyp_shared_pfns);
483         ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
484 unlock:
485         mutex_unlock(&hyp_shared_pfns_lock);
486
487         return ret;
488 }
489
490 static int unshare_pfn_hyp(u64 pfn)
491 {
492         struct rb_node **node, *parent;
493         struct hyp_shared_pfn *this;
494         int ret = 0;
495
496         mutex_lock(&hyp_shared_pfns_lock);
497         this = find_shared_pfn(pfn, &node, &parent);
498         if (WARN_ON(!this)) {
499                 ret = -ENOENT;
500                 goto unlock;
501         }
502
503         this->count--;
504         if (this->count)
505                 goto unlock;
506
507         rb_erase(&this->node, &hyp_shared_pfns);
508         kfree(this);
509         ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
510 unlock:
511         mutex_unlock(&hyp_shared_pfns_lock);
512
513         return ret;
514 }
515
516 int kvm_share_hyp(void *from, void *to)
517 {
518         phys_addr_t start, end, cur;
519         u64 pfn;
520         int ret;
521
522         if (is_kernel_in_hyp_mode())
523                 return 0;
524
525         /*
526          * The share hcall maps things in the 'fixed-offset' region of the hyp
527          * VA space, so we can only share physically contiguous data-structures
528          * for now.
529          */
530         if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
531                 return -EINVAL;
532
533         if (kvm_host_owns_hyp_mappings())
534                 return create_hyp_mappings(from, to, PAGE_HYP);
535
536         start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
537         end = PAGE_ALIGN(__pa(to));
538         for (cur = start; cur < end; cur += PAGE_SIZE) {
539                 pfn = __phys_to_pfn(cur);
540                 ret = share_pfn_hyp(pfn);
541                 if (ret)
542                         return ret;
543         }
544
545         return 0;
546 }
547
548 void kvm_unshare_hyp(void *from, void *to)
549 {
550         phys_addr_t start, end, cur;
551         u64 pfn;
552
553         if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
554                 return;
555
556         start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
557         end = PAGE_ALIGN(__pa(to));
558         for (cur = start; cur < end; cur += PAGE_SIZE) {
559                 pfn = __phys_to_pfn(cur);
560                 WARN_ON(unshare_pfn_hyp(pfn));
561         }
562 }
563
564 /**
565  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
566  * @from:       The virtual kernel start address of the range
567  * @to:         The virtual kernel end address of the range (exclusive)
568  * @prot:       The protection to be applied to this range
569  *
570  * The same virtual address as the kernel virtual address is also used
571  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
572  * physical pages.
573  */
574 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
575 {
576         phys_addr_t phys_addr;
577         unsigned long virt_addr;
578         unsigned long start = kern_hyp_va((unsigned long)from);
579         unsigned long end = kern_hyp_va((unsigned long)to);
580
581         if (is_kernel_in_hyp_mode())
582                 return 0;
583
584         if (!kvm_host_owns_hyp_mappings())
585                 return -EPERM;
586
587         start = start & PAGE_MASK;
588         end = PAGE_ALIGN(end);
589
590         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
591                 int err;
592
593                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
594                 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
595                                             prot);
596                 if (err)
597                         return err;
598         }
599
600         return 0;
601 }
602
603 static int __hyp_alloc_private_va_range(unsigned long base)
604 {
605         lockdep_assert_held(&kvm_hyp_pgd_mutex);
606
607         if (!PAGE_ALIGNED(base))
608                 return -EINVAL;
609
610         /*
611          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
612          * allocating the new area, as it would indicate we've
613          * overflowed the idmap/IO address range.
614          */
615         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
616                 return -ENOMEM;
617
618         io_map_base = base;
619
620         return 0;
621 }
622
623 /**
624  * hyp_alloc_private_va_range - Allocates a private VA range.
625  * @size:       The size of the VA range to reserve.
626  * @haddr:      The hypervisor virtual start address of the allocation.
627  *
628  * The private virtual address (VA) range is allocated below io_map_base
629  * and aligned based on the order of @size.
630  *
631  * Return: 0 on success or negative error code on failure.
632  */
633 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
634 {
635         unsigned long base;
636         int ret = 0;
637
638         mutex_lock(&kvm_hyp_pgd_mutex);
639
640         /*
641          * This assumes that we have enough space below the idmap
642          * page to allocate our VAs. If not, the check in
643          * __hyp_alloc_private_va_range() will kick. A potential
644          * alternative would be to detect that overflow and switch
645          * to an allocation above the idmap.
646          *
647          * The allocated size is always a multiple of PAGE_SIZE.
648          */
649         size = PAGE_ALIGN(size);
650         base = io_map_base - size;
651         ret = __hyp_alloc_private_va_range(base);
652
653         mutex_unlock(&kvm_hyp_pgd_mutex);
654
655         if (!ret)
656                 *haddr = base;
657
658         return ret;
659 }
660
661 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
662                                         unsigned long *haddr,
663                                         enum kvm_pgtable_prot prot)
664 {
665         unsigned long addr;
666         int ret = 0;
667
668         if (!kvm_host_owns_hyp_mappings()) {
669                 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
670                                          phys_addr, size, prot);
671                 if (IS_ERR_VALUE(addr))
672                         return addr;
673                 *haddr = addr;
674
675                 return 0;
676         }
677
678         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
679         ret = hyp_alloc_private_va_range(size, &addr);
680         if (ret)
681                 return ret;
682
683         ret = __create_hyp_mappings(addr, size, phys_addr, prot);
684         if (ret)
685                 return ret;
686
687         *haddr = addr + offset_in_page(phys_addr);
688         return ret;
689 }
690
691 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
692 {
693         unsigned long base;
694         size_t size;
695         int ret;
696
697         mutex_lock(&kvm_hyp_pgd_mutex);
698         /*
699          * Efficient stack verification using the PAGE_SHIFT bit implies
700          * an alignment of our allocation on the order of the size.
701          */
702         size = PAGE_SIZE * 2;
703         base = ALIGN_DOWN(io_map_base - size, size);
704
705         ret = __hyp_alloc_private_va_range(base);
706
707         mutex_unlock(&kvm_hyp_pgd_mutex);
708
709         if (ret) {
710                 kvm_err("Cannot allocate hyp stack guard page\n");
711                 return ret;
712         }
713
714         /*
715          * Since the stack grows downwards, map the stack to the page
716          * at the higher address and leave the lower guard page
717          * unbacked.
718          *
719          * Any valid stack address now has the PAGE_SHIFT bit as 1
720          * and addresses corresponding to the guard page have the
721          * PAGE_SHIFT bit as 0 - this is used for overflow detection.
722          */
723         ret = __create_hyp_mappings(base + PAGE_SIZE, PAGE_SIZE, phys_addr,
724                                     PAGE_HYP);
725         if (ret)
726                 kvm_err("Cannot map hyp stack\n");
727
728         *haddr = base + size;
729
730         return ret;
731 }
732
733 /**
734  * create_hyp_io_mappings - Map IO into both kernel and HYP
735  * @phys_addr:  The physical start address which gets mapped
736  * @size:       Size of the region being mapped
737  * @kaddr:      Kernel VA for this mapping
738  * @haddr:      HYP VA for this mapping
739  */
740 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
741                            void __iomem **kaddr,
742                            void __iomem **haddr)
743 {
744         unsigned long addr;
745         int ret;
746
747         if (is_protected_kvm_enabled())
748                 return -EPERM;
749
750         *kaddr = ioremap(phys_addr, size);
751         if (!*kaddr)
752                 return -ENOMEM;
753
754         if (is_kernel_in_hyp_mode()) {
755                 *haddr = *kaddr;
756                 return 0;
757         }
758
759         ret = __create_hyp_private_mapping(phys_addr, size,
760                                            &addr, PAGE_HYP_DEVICE);
761         if (ret) {
762                 iounmap(*kaddr);
763                 *kaddr = NULL;
764                 *haddr = NULL;
765                 return ret;
766         }
767
768         *haddr = (void __iomem *)addr;
769         return 0;
770 }
771
772 /**
773  * create_hyp_exec_mappings - Map an executable range into HYP
774  * @phys_addr:  The physical start address which gets mapped
775  * @size:       Size of the region being mapped
776  * @haddr:      HYP VA for this mapping
777  */
778 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
779                              void **haddr)
780 {
781         unsigned long addr;
782         int ret;
783
784         BUG_ON(is_kernel_in_hyp_mode());
785
786         ret = __create_hyp_private_mapping(phys_addr, size,
787                                            &addr, PAGE_HYP_EXEC);
788         if (ret) {
789                 *haddr = NULL;
790                 return ret;
791         }
792
793         *haddr = (void *)addr;
794         return 0;
795 }
796
797 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
798         /* We shouldn't need any other callback to walk the PT */
799         .phys_to_virt           = kvm_host_va,
800 };
801
802 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
803 {
804         struct kvm_pgtable pgt = {
805                 .pgd            = (kvm_pteref_t)kvm->mm->pgd,
806                 .ia_bits        = vabits_actual,
807                 .start_level    = (KVM_PGTABLE_MAX_LEVELS -
808                                    CONFIG_PGTABLE_LEVELS),
809                 .mm_ops         = &kvm_user_mm_ops,
810         };
811         unsigned long flags;
812         kvm_pte_t pte = 0;      /* Keep GCC quiet... */
813         u32 level = ~0;
814         int ret;
815
816         /*
817          * Disable IRQs so that we hazard against a concurrent
818          * teardown of the userspace page tables (which relies on
819          * IPI-ing threads).
820          */
821         local_irq_save(flags);
822         ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
823         local_irq_restore(flags);
824
825         if (ret)
826                 return ret;
827
828         /*
829          * Not seeing an error, but not updating level? Something went
830          * deeply wrong...
831          */
832         if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS))
833                 return -EFAULT;
834
835         /* Oops, the userspace PTs are gone... Replay the fault */
836         if (!kvm_pte_valid(pte))
837                 return -EAGAIN;
838
839         return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
840 }
841
842 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
843         .zalloc_page            = stage2_memcache_zalloc_page,
844         .zalloc_pages_exact     = kvm_s2_zalloc_pages_exact,
845         .free_pages_exact       = kvm_s2_free_pages_exact,
846         .free_unlinked_table    = stage2_free_unlinked_table,
847         .get_page               = kvm_host_get_page,
848         .put_page               = kvm_s2_put_page,
849         .page_count             = kvm_host_page_count,
850         .phys_to_virt           = kvm_host_va,
851         .virt_to_phys           = kvm_host_pa,
852         .dcache_clean_inval_poc = clean_dcache_guest_page,
853         .icache_inval_pou       = invalidate_icache_guest_page,
854 };
855
856 /**
857  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
858  * @kvm:        The pointer to the KVM structure
859  * @mmu:        The pointer to the s2 MMU structure
860  * @type:       The machine type of the virtual machine
861  *
862  * Allocates only the stage-2 HW PGD level table(s).
863  * Note we don't need locking here as this is only called when the VM is
864  * created, which can only be done once.
865  */
866 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
867 {
868         u32 kvm_ipa_limit = get_kvm_ipa_limit();
869         int cpu, err;
870         struct kvm_pgtable *pgt;
871         u64 mmfr0, mmfr1;
872         u32 phys_shift;
873
874         if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
875                 return -EINVAL;
876
877         phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
878         if (is_protected_kvm_enabled()) {
879                 phys_shift = kvm_ipa_limit;
880         } else if (phys_shift) {
881                 if (phys_shift > kvm_ipa_limit ||
882                     phys_shift < ARM64_MIN_PARANGE_BITS)
883                         return -EINVAL;
884         } else {
885                 phys_shift = KVM_PHYS_SHIFT;
886                 if (phys_shift > kvm_ipa_limit) {
887                         pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
888                                      current->comm);
889                         return -EINVAL;
890                 }
891         }
892
893         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
894         mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
895         mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
896
897         if (mmu->pgt != NULL) {
898                 kvm_err("kvm_arch already initialized?\n");
899                 return -EINVAL;
900         }
901
902         pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
903         if (!pgt)
904                 return -ENOMEM;
905
906         mmu->arch = &kvm->arch;
907         err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
908         if (err)
909                 goto out_free_pgtable;
910
911         mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
912         if (!mmu->last_vcpu_ran) {
913                 err = -ENOMEM;
914                 goto out_destroy_pgtable;
915         }
916
917         for_each_possible_cpu(cpu)
918                 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
919
920          /* The eager page splitting is disabled by default */
921         mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
922         mmu->split_page_cache.gfp_zero = __GFP_ZERO;
923
924         mmu->pgt = pgt;
925         mmu->pgd_phys = __pa(pgt->pgd);
926         return 0;
927
928 out_destroy_pgtable:
929         kvm_pgtable_stage2_destroy(pgt);
930 out_free_pgtable:
931         kfree(pgt);
932         return err;
933 }
934
935 void kvm_uninit_stage2_mmu(struct kvm *kvm)
936 {
937         kvm_free_stage2_pgd(&kvm->arch.mmu);
938         kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
939 }
940
941 static void stage2_unmap_memslot(struct kvm *kvm,
942                                  struct kvm_memory_slot *memslot)
943 {
944         hva_t hva = memslot->userspace_addr;
945         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
946         phys_addr_t size = PAGE_SIZE * memslot->npages;
947         hva_t reg_end = hva + size;
948
949         /*
950          * A memory region could potentially cover multiple VMAs, and any holes
951          * between them, so iterate over all of them to find out if we should
952          * unmap any of them.
953          *
954          *     +--------------------------------------------+
955          * +---------------+----------------+   +----------------+
956          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
957          * +---------------+----------------+   +----------------+
958          *     |               memory region                |
959          *     +--------------------------------------------+
960          */
961         do {
962                 struct vm_area_struct *vma;
963                 hva_t vm_start, vm_end;
964
965                 vma = find_vma_intersection(current->mm, hva, reg_end);
966                 if (!vma)
967                         break;
968
969                 /*
970                  * Take the intersection of this VMA with the memory region
971                  */
972                 vm_start = max(hva, vma->vm_start);
973                 vm_end = min(reg_end, vma->vm_end);
974
975                 if (!(vma->vm_flags & VM_PFNMAP)) {
976                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
977                         unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
978                 }
979                 hva = vm_end;
980         } while (hva < reg_end);
981 }
982
983 /**
984  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
985  * @kvm: The struct kvm pointer
986  *
987  * Go through the memregions and unmap any regular RAM
988  * backing memory already mapped to the VM.
989  */
990 void stage2_unmap_vm(struct kvm *kvm)
991 {
992         struct kvm_memslots *slots;
993         struct kvm_memory_slot *memslot;
994         int idx, bkt;
995
996         idx = srcu_read_lock(&kvm->srcu);
997         mmap_read_lock(current->mm);
998         write_lock(&kvm->mmu_lock);
999
1000         slots = kvm_memslots(kvm);
1001         kvm_for_each_memslot(memslot, bkt, slots)
1002                 stage2_unmap_memslot(kvm, memslot);
1003
1004         write_unlock(&kvm->mmu_lock);
1005         mmap_read_unlock(current->mm);
1006         srcu_read_unlock(&kvm->srcu, idx);
1007 }
1008
1009 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1010 {
1011         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1012         struct kvm_pgtable *pgt = NULL;
1013
1014         write_lock(&kvm->mmu_lock);
1015         pgt = mmu->pgt;
1016         if (pgt) {
1017                 mmu->pgd_phys = 0;
1018                 mmu->pgt = NULL;
1019                 free_percpu(mmu->last_vcpu_ran);
1020         }
1021         write_unlock(&kvm->mmu_lock);
1022
1023         if (pgt) {
1024                 kvm_pgtable_stage2_destroy(pgt);
1025                 kfree(pgt);
1026         }
1027 }
1028
1029 static void hyp_mc_free_fn(void *addr, void *unused)
1030 {
1031         free_page((unsigned long)addr);
1032 }
1033
1034 static void *hyp_mc_alloc_fn(void *unused)
1035 {
1036         return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1037 }
1038
1039 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1040 {
1041         if (is_protected_kvm_enabled())
1042                 __free_hyp_memcache(mc, hyp_mc_free_fn,
1043                                     kvm_host_va, NULL);
1044 }
1045
1046 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1047 {
1048         if (!is_protected_kvm_enabled())
1049                 return 0;
1050
1051         return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1052                                     kvm_host_pa, NULL);
1053 }
1054
1055 /**
1056  * kvm_phys_addr_ioremap - map a device range to guest IPA
1057  *
1058  * @kvm:        The KVM pointer
1059  * @guest_ipa:  The IPA at which to insert the mapping
1060  * @pa:         The physical address of the device
1061  * @size:       The size of the mapping
1062  * @writable:   Whether or not to create a writable mapping
1063  */
1064 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1065                           phys_addr_t pa, unsigned long size, bool writable)
1066 {
1067         phys_addr_t addr;
1068         int ret = 0;
1069         struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1070         struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1071         struct kvm_pgtable *pgt = mmu->pgt;
1072         enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1073                                      KVM_PGTABLE_PROT_R |
1074                                      (writable ? KVM_PGTABLE_PROT_W : 0);
1075
1076         if (is_protected_kvm_enabled())
1077                 return -EPERM;
1078
1079         size += offset_in_page(guest_ipa);
1080         guest_ipa &= PAGE_MASK;
1081
1082         for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1083                 ret = kvm_mmu_topup_memory_cache(&cache,
1084                                                  kvm_mmu_cache_min_pages(mmu));
1085                 if (ret)
1086                         break;
1087
1088                 write_lock(&kvm->mmu_lock);
1089                 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1090                                              &cache, 0);
1091                 write_unlock(&kvm->mmu_lock);
1092                 if (ret)
1093                         break;
1094
1095                 pa += PAGE_SIZE;
1096         }
1097
1098         kvm_mmu_free_memory_cache(&cache);
1099         return ret;
1100 }
1101
1102 /**
1103  * stage2_wp_range() - write protect stage2 memory region range
1104  * @mmu:        The KVM stage-2 MMU pointer
1105  * @addr:       Start address of range
1106  * @end:        End address of range
1107  */
1108 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1109 {
1110         stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1111 }
1112
1113 /**
1114  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1115  * @kvm:        The KVM pointer
1116  * @slot:       The memory slot to write protect
1117  *
1118  * Called to start logging dirty pages after memory region
1119  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1120  * all present PUD, PMD and PTEs are write protected in the memory region.
1121  * Afterwards read of dirty page log can be called.
1122  *
1123  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1124  * serializing operations for VM memory regions.
1125  */
1126 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1127 {
1128         struct kvm_memslots *slots = kvm_memslots(kvm);
1129         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1130         phys_addr_t start, end;
1131
1132         if (WARN_ON_ONCE(!memslot))
1133                 return;
1134
1135         start = memslot->base_gfn << PAGE_SHIFT;
1136         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1137
1138         write_lock(&kvm->mmu_lock);
1139         stage2_wp_range(&kvm->arch.mmu, start, end);
1140         write_unlock(&kvm->mmu_lock);
1141         kvm_flush_remote_tlbs_memslot(kvm, memslot);
1142 }
1143
1144 /**
1145  * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1146  *                                 pages for memory slot
1147  * @kvm:        The KVM pointer
1148  * @slot:       The memory slot to split
1149  *
1150  * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1151  * serializing operations for VM memory regions.
1152  */
1153 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1154 {
1155         struct kvm_memslots *slots;
1156         struct kvm_memory_slot *memslot;
1157         phys_addr_t start, end;
1158
1159         lockdep_assert_held(&kvm->slots_lock);
1160
1161         slots = kvm_memslots(kvm);
1162         memslot = id_to_memslot(slots, slot);
1163
1164         start = memslot->base_gfn << PAGE_SHIFT;
1165         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1166
1167         write_lock(&kvm->mmu_lock);
1168         kvm_mmu_split_huge_pages(kvm, start, end);
1169         write_unlock(&kvm->mmu_lock);
1170 }
1171
1172 /*
1173  * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1174  * @kvm:        The KVM pointer
1175  * @slot:       The memory slot associated with mask
1176  * @gfn_offset: The gfn offset in memory slot
1177  * @mask:       The mask of pages at offset 'gfn_offset' in this memory
1178  *              slot to enable dirty logging on
1179  *
1180  * Writes protect selected pages to enable dirty logging, and then
1181  * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1182  */
1183 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1184                 struct kvm_memory_slot *slot,
1185                 gfn_t gfn_offset, unsigned long mask)
1186 {
1187         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1188         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1189         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1190
1191         lockdep_assert_held_write(&kvm->mmu_lock);
1192
1193         stage2_wp_range(&kvm->arch.mmu, start, end);
1194
1195         /*
1196          * Eager-splitting is done when manual-protect is set.  We
1197          * also check for initially-all-set because we can avoid
1198          * eager-splitting if initially-all-set is false.
1199          * Initially-all-set equal false implies that huge-pages were
1200          * already split when enabling dirty logging: no need to do it
1201          * again.
1202          */
1203         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1204                 kvm_mmu_split_huge_pages(kvm, start, end);
1205 }
1206
1207 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1208 {
1209         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1210 }
1211
1212 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1213                                                unsigned long hva,
1214                                                unsigned long map_size)
1215 {
1216         gpa_t gpa_start;
1217         hva_t uaddr_start, uaddr_end;
1218         size_t size;
1219
1220         /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1221         if (map_size == PAGE_SIZE)
1222                 return true;
1223
1224         size = memslot->npages * PAGE_SIZE;
1225
1226         gpa_start = memslot->base_gfn << PAGE_SHIFT;
1227
1228         uaddr_start = memslot->userspace_addr;
1229         uaddr_end = uaddr_start + size;
1230
1231         /*
1232          * Pages belonging to memslots that don't have the same alignment
1233          * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1234          * PMD/PUD entries, because we'll end up mapping the wrong pages.
1235          *
1236          * Consider a layout like the following:
1237          *
1238          *    memslot->userspace_addr:
1239          *    +-----+--------------------+--------------------+---+
1240          *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1241          *    +-----+--------------------+--------------------+---+
1242          *
1243          *    memslot->base_gfn << PAGE_SHIFT:
1244          *      +---+--------------------+--------------------+-----+
1245          *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1246          *      +---+--------------------+--------------------+-----+
1247          *
1248          * If we create those stage-2 blocks, we'll end up with this incorrect
1249          * mapping:
1250          *   d -> f
1251          *   e -> g
1252          *   f -> h
1253          */
1254         if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1255                 return false;
1256
1257         /*
1258          * Next, let's make sure we're not trying to map anything not covered
1259          * by the memslot. This means we have to prohibit block size mappings
1260          * for the beginning and end of a non-block aligned and non-block sized
1261          * memory slot (illustrated by the head and tail parts of the
1262          * userspace view above containing pages 'abcde' and 'xyz',
1263          * respectively).
1264          *
1265          * Note that it doesn't matter if we do the check using the
1266          * userspace_addr or the base_gfn, as both are equally aligned (per
1267          * the check above) and equally sized.
1268          */
1269         return (hva & ~(map_size - 1)) >= uaddr_start &&
1270                (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1271 }
1272
1273 /*
1274  * Check if the given hva is backed by a transparent huge page (THP) and
1275  * whether it can be mapped using block mapping in stage2. If so, adjust
1276  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1277  * supported. This will need to be updated to support other THP sizes.
1278  *
1279  * Returns the size of the mapping.
1280  */
1281 static long
1282 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1283                             unsigned long hva, kvm_pfn_t *pfnp,
1284                             phys_addr_t *ipap)
1285 {
1286         kvm_pfn_t pfn = *pfnp;
1287
1288         /*
1289          * Make sure the adjustment is done only for THP pages. Also make
1290          * sure that the HVA and IPA are sufficiently aligned and that the
1291          * block map is contained within the memslot.
1292          */
1293         if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1294                 int sz = get_user_mapping_size(kvm, hva);
1295
1296                 if (sz < 0)
1297                         return sz;
1298
1299                 if (sz < PMD_SIZE)
1300                         return PAGE_SIZE;
1301
1302                 *ipap &= PMD_MASK;
1303                 pfn &= ~(PTRS_PER_PMD - 1);
1304                 *pfnp = pfn;
1305
1306                 return PMD_SIZE;
1307         }
1308
1309         /* Use page mapping if we cannot use block mapping. */
1310         return PAGE_SIZE;
1311 }
1312
1313 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1314 {
1315         unsigned long pa;
1316
1317         if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1318                 return huge_page_shift(hstate_vma(vma));
1319
1320         if (!(vma->vm_flags & VM_PFNMAP))
1321                 return PAGE_SHIFT;
1322
1323         VM_BUG_ON(is_vm_hugetlb_page(vma));
1324
1325         pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1326
1327 #ifndef __PAGETABLE_PMD_FOLDED
1328         if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1329             ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1330             ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1331                 return PUD_SHIFT;
1332 #endif
1333
1334         if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1335             ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1336             ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1337                 return PMD_SHIFT;
1338
1339         return PAGE_SHIFT;
1340 }
1341
1342 /*
1343  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1344  * able to see the page's tags and therefore they must be initialised first. If
1345  * PG_mte_tagged is set, tags have already been initialised.
1346  *
1347  * The race in the test/set of the PG_mte_tagged flag is handled by:
1348  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1349  *   racing to santise the same page
1350  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1351  *   an mprotect() to add VM_MTE
1352  */
1353 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1354                               unsigned long size)
1355 {
1356         unsigned long i, nr_pages = size >> PAGE_SHIFT;
1357         struct page *page = pfn_to_page(pfn);
1358
1359         if (!kvm_has_mte(kvm))
1360                 return;
1361
1362         for (i = 0; i < nr_pages; i++, page++) {
1363                 if (try_page_mte_tagging(page)) {
1364                         mte_clear_page_tags(page_address(page));
1365                         set_page_mte_tagged(page);
1366                 }
1367         }
1368 }
1369
1370 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1371 {
1372         return vma->vm_flags & VM_MTE_ALLOWED;
1373 }
1374
1375 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1376                           struct kvm_memory_slot *memslot, unsigned long hva,
1377                           unsigned long fault_status)
1378 {
1379         int ret = 0;
1380         bool write_fault, writable, force_pte = false;
1381         bool exec_fault, mte_allowed;
1382         bool device = false;
1383         unsigned long mmu_seq;
1384         struct kvm *kvm = vcpu->kvm;
1385         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1386         struct vm_area_struct *vma;
1387         short vma_shift;
1388         gfn_t gfn;
1389         kvm_pfn_t pfn;
1390         bool logging_active = memslot_is_logging(memslot);
1391         unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1392         long vma_pagesize, fault_granule;
1393         enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1394         struct kvm_pgtable *pgt;
1395
1396         fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1397         write_fault = kvm_is_write_fault(vcpu);
1398         exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1399         VM_BUG_ON(write_fault && exec_fault);
1400
1401         if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
1402                 kvm_err("Unexpected L2 read permission error\n");
1403                 return -EFAULT;
1404         }
1405
1406         /*
1407          * Permission faults just need to update the existing leaf entry,
1408          * and so normally don't require allocations from the memcache. The
1409          * only exception to this is when dirty logging is enabled at runtime
1410          * and a write fault needs to collapse a block entry into a table.
1411          */
1412         if (fault_status != ESR_ELx_FSC_PERM ||
1413             (logging_active && write_fault)) {
1414                 ret = kvm_mmu_topup_memory_cache(memcache,
1415                                                  kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu));
1416                 if (ret)
1417                         return ret;
1418         }
1419
1420         /*
1421          * Let's check if we will get back a huge page backed by hugetlbfs, or
1422          * get block mapping for device MMIO region.
1423          */
1424         mmap_read_lock(current->mm);
1425         vma = vma_lookup(current->mm, hva);
1426         if (unlikely(!vma)) {
1427                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1428                 mmap_read_unlock(current->mm);
1429                 return -EFAULT;
1430         }
1431
1432         /*
1433          * logging_active is guaranteed to never be true for VM_PFNMAP
1434          * memslots.
1435          */
1436         if (logging_active) {
1437                 force_pte = true;
1438                 vma_shift = PAGE_SHIFT;
1439         } else {
1440                 vma_shift = get_vma_page_shift(vma, hva);
1441         }
1442
1443         switch (vma_shift) {
1444 #ifndef __PAGETABLE_PMD_FOLDED
1445         case PUD_SHIFT:
1446                 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1447                         break;
1448                 fallthrough;
1449 #endif
1450         case CONT_PMD_SHIFT:
1451                 vma_shift = PMD_SHIFT;
1452                 fallthrough;
1453         case PMD_SHIFT:
1454                 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1455                         break;
1456                 fallthrough;
1457         case CONT_PTE_SHIFT:
1458                 vma_shift = PAGE_SHIFT;
1459                 force_pte = true;
1460                 fallthrough;
1461         case PAGE_SHIFT:
1462                 break;
1463         default:
1464                 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1465         }
1466
1467         vma_pagesize = 1UL << vma_shift;
1468         if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1469                 fault_ipa &= ~(vma_pagesize - 1);
1470
1471         gfn = fault_ipa >> PAGE_SHIFT;
1472         mte_allowed = kvm_vma_mte_allowed(vma);
1473
1474         /* Don't use the VMA after the unlock -- it may have vanished */
1475         vma = NULL;
1476
1477         /*
1478          * Read mmu_invalidate_seq so that KVM can detect if the results of
1479          * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1480          * acquiring kvm->mmu_lock.
1481          *
1482          * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1483          * with the smp_wmb() in kvm_mmu_invalidate_end().
1484          */
1485         mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1486         mmap_read_unlock(current->mm);
1487
1488         pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1489                                    write_fault, &writable, NULL);
1490         if (pfn == KVM_PFN_ERR_HWPOISON) {
1491                 kvm_send_hwpoison_signal(hva, vma_shift);
1492                 return 0;
1493         }
1494         if (is_error_noslot_pfn(pfn))
1495                 return -EFAULT;
1496
1497         if (kvm_is_device_pfn(pfn)) {
1498                 /*
1499                  * If the page was identified as device early by looking at
1500                  * the VMA flags, vma_pagesize is already representing the
1501                  * largest quantity we can map.  If instead it was mapped
1502                  * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1503                  * and must not be upgraded.
1504                  *
1505                  * In both cases, we don't let transparent_hugepage_adjust()
1506                  * change things at the last minute.
1507                  */
1508                 device = true;
1509         } else if (logging_active && !write_fault) {
1510                 /*
1511                  * Only actually map the page as writable if this was a write
1512                  * fault.
1513                  */
1514                 writable = false;
1515         }
1516
1517         if (exec_fault && device)
1518                 return -ENOEXEC;
1519
1520         read_lock(&kvm->mmu_lock);
1521         pgt = vcpu->arch.hw_mmu->pgt;
1522         if (mmu_invalidate_retry(kvm, mmu_seq))
1523                 goto out_unlock;
1524
1525         /*
1526          * If we are not forced to use page mapping, check if we are
1527          * backed by a THP and thus use block mapping if possible.
1528          */
1529         if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1530                 if (fault_status ==  ESR_ELx_FSC_PERM &&
1531                     fault_granule > PAGE_SIZE)
1532                         vma_pagesize = fault_granule;
1533                 else
1534                         vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1535                                                                    hva, &pfn,
1536                                                                    &fault_ipa);
1537
1538                 if (vma_pagesize < 0) {
1539                         ret = vma_pagesize;
1540                         goto out_unlock;
1541                 }
1542         }
1543
1544         if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
1545                 /* Check the VMM hasn't introduced a new disallowed VMA */
1546                 if (mte_allowed) {
1547                         sanitise_mte_tags(kvm, pfn, vma_pagesize);
1548                 } else {
1549                         ret = -EFAULT;
1550                         goto out_unlock;
1551                 }
1552         }
1553
1554         if (writable)
1555                 prot |= KVM_PGTABLE_PROT_W;
1556
1557         if (exec_fault)
1558                 prot |= KVM_PGTABLE_PROT_X;
1559
1560         if (device)
1561                 prot |= KVM_PGTABLE_PROT_DEVICE;
1562         else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC))
1563                 prot |= KVM_PGTABLE_PROT_X;
1564
1565         /*
1566          * Under the premise of getting a FSC_PERM fault, we just need to relax
1567          * permissions only if vma_pagesize equals fault_granule. Otherwise,
1568          * kvm_pgtable_stage2_map() should be called to change block size.
1569          */
1570         if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
1571                 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1572         else
1573                 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1574                                              __pfn_to_phys(pfn), prot,
1575                                              memcache,
1576                                              KVM_PGTABLE_WALK_HANDLE_FAULT |
1577                                              KVM_PGTABLE_WALK_SHARED);
1578
1579         /* Mark the page dirty only if the fault is handled successfully */
1580         if (writable && !ret) {
1581                 kvm_set_pfn_dirty(pfn);
1582                 mark_page_dirty_in_slot(kvm, memslot, gfn);
1583         }
1584
1585 out_unlock:
1586         read_unlock(&kvm->mmu_lock);
1587         kvm_release_pfn_clean(pfn);
1588         return ret != -EAGAIN ? ret : 0;
1589 }
1590
1591 /* Resolve the access fault by making the page young again. */
1592 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1593 {
1594         kvm_pte_t pte;
1595         struct kvm_s2_mmu *mmu;
1596
1597         trace_kvm_access_fault(fault_ipa);
1598
1599         read_lock(&vcpu->kvm->mmu_lock);
1600         mmu = vcpu->arch.hw_mmu;
1601         pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1602         read_unlock(&vcpu->kvm->mmu_lock);
1603
1604         if (kvm_pte_valid(pte))
1605                 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1606 }
1607
1608 /**
1609  * kvm_handle_guest_abort - handles all 2nd stage aborts
1610  * @vcpu:       the VCPU pointer
1611  *
1612  * Any abort that gets to the host is almost guaranteed to be caused by a
1613  * missing second stage translation table entry, which can mean that either the
1614  * guest simply needs more memory and we must allocate an appropriate page or it
1615  * can mean that the guest tried to access I/O memory, which is emulated by user
1616  * space. The distinction is based on the IPA causing the fault and whether this
1617  * memory region has been registered as standard RAM by user space.
1618  */
1619 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1620 {
1621         unsigned long fault_status;
1622         phys_addr_t fault_ipa;
1623         struct kvm_memory_slot *memslot;
1624         unsigned long hva;
1625         bool is_iabt, write_fault, writable;
1626         gfn_t gfn;
1627         int ret, idx;
1628
1629         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1630
1631         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1632         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1633
1634         if (fault_status == ESR_ELx_FSC_FAULT) {
1635                 /* Beyond sanitised PARange (which is the IPA limit) */
1636                 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1637                         kvm_inject_size_fault(vcpu);
1638                         return 1;
1639                 }
1640
1641                 /* Falls between the IPA range and the PARange? */
1642                 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1643                         fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1644
1645                         if (is_iabt)
1646                                 kvm_inject_pabt(vcpu, fault_ipa);
1647                         else
1648                                 kvm_inject_dabt(vcpu, fault_ipa);
1649                         return 1;
1650                 }
1651         }
1652
1653         /* Synchronous External Abort? */
1654         if (kvm_vcpu_abt_issea(vcpu)) {
1655                 /*
1656                  * For RAS the host kernel may handle this abort.
1657                  * There is no need to pass the error into the guest.
1658                  */
1659                 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1660                         kvm_inject_vabt(vcpu);
1661
1662                 return 1;
1663         }
1664
1665         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1666                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1667
1668         /* Check the stage-2 fault is trans. fault or write fault */
1669         if (fault_status != ESR_ELx_FSC_FAULT &&
1670             fault_status != ESR_ELx_FSC_PERM &&
1671             fault_status != ESR_ELx_FSC_ACCESS) {
1672                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1673                         kvm_vcpu_trap_get_class(vcpu),
1674                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1675                         (unsigned long)kvm_vcpu_get_esr(vcpu));
1676                 return -EFAULT;
1677         }
1678
1679         idx = srcu_read_lock(&vcpu->kvm->srcu);
1680
1681         gfn = fault_ipa >> PAGE_SHIFT;
1682         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1683         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1684         write_fault = kvm_is_write_fault(vcpu);
1685         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1686                 /*
1687                  * The guest has put either its instructions or its page-tables
1688                  * somewhere it shouldn't have. Userspace won't be able to do
1689                  * anything about this (there's no syndrome for a start), so
1690                  * re-inject the abort back into the guest.
1691                  */
1692                 if (is_iabt) {
1693                         ret = -ENOEXEC;
1694                         goto out;
1695                 }
1696
1697                 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1698                         kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1699                         ret = 1;
1700                         goto out_unlock;
1701                 }
1702
1703                 /*
1704                  * Check for a cache maintenance operation. Since we
1705                  * ended-up here, we know it is outside of any memory
1706                  * slot. But we can't find out if that is for a device,
1707                  * or if the guest is just being stupid. The only thing
1708                  * we know for sure is that this range cannot be cached.
1709                  *
1710                  * So let's assume that the guest is just being
1711                  * cautious, and skip the instruction.
1712                  */
1713                 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1714                         kvm_incr_pc(vcpu);
1715                         ret = 1;
1716                         goto out_unlock;
1717                 }
1718
1719                 /*
1720                  * The IPA is reported as [MAX:12], so we need to
1721                  * complement it with the bottom 12 bits from the
1722                  * faulting VA. This is always 12 bits, irrespective
1723                  * of the page size.
1724                  */
1725                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1726                 ret = io_mem_abort(vcpu, fault_ipa);
1727                 goto out_unlock;
1728         }
1729
1730         /* Userspace should not be able to register out-of-bounds IPAs */
1731         VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
1732
1733         if (fault_status == ESR_ELx_FSC_ACCESS) {
1734                 handle_access_fault(vcpu, fault_ipa);
1735                 ret = 1;
1736                 goto out_unlock;
1737         }
1738
1739         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1740         if (ret == 0)
1741                 ret = 1;
1742 out:
1743         if (ret == -ENOEXEC) {
1744                 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1745                 ret = 1;
1746         }
1747 out_unlock:
1748         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1749         return ret;
1750 }
1751
1752 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1753 {
1754         if (!kvm->arch.mmu.pgt)
1755                 return false;
1756
1757         __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1758                              (range->end - range->start) << PAGE_SHIFT,
1759                              range->may_block);
1760
1761         return false;
1762 }
1763
1764 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1765 {
1766         kvm_pfn_t pfn = pte_pfn(range->arg.pte);
1767
1768         if (!kvm->arch.mmu.pgt)
1769                 return false;
1770
1771         WARN_ON(range->end - range->start != 1);
1772
1773         /*
1774          * If the page isn't tagged, defer to user_mem_abort() for sanitising
1775          * the MTE tags. The S2 pte should have been unmapped by
1776          * mmu_notifier_invalidate_range_end().
1777          */
1778         if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1779                 return false;
1780
1781         /*
1782          * We've moved a page around, probably through CoW, so let's treat
1783          * it just like a translation fault and the map handler will clean
1784          * the cache to the PoC.
1785          *
1786          * The MMU notifiers will have unmapped a huge PMD before calling
1787          * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1788          * therefore we never need to clear out a huge PMD through this
1789          * calling path and a memcache is not required.
1790          */
1791         kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1792                                PAGE_SIZE, __pfn_to_phys(pfn),
1793                                KVM_PGTABLE_PROT_R, NULL, 0);
1794
1795         return false;
1796 }
1797
1798 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1799 {
1800         u64 size = (range->end - range->start) << PAGE_SHIFT;
1801
1802         if (!kvm->arch.mmu.pgt)
1803                 return false;
1804
1805         return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1806                                                    range->start << PAGE_SHIFT,
1807                                                    size, true);
1808 }
1809
1810 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1811 {
1812         u64 size = (range->end - range->start) << PAGE_SHIFT;
1813
1814         if (!kvm->arch.mmu.pgt)
1815                 return false;
1816
1817         return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
1818                                                    range->start << PAGE_SHIFT,
1819                                                    size, false);
1820 }
1821
1822 phys_addr_t kvm_mmu_get_httbr(void)
1823 {
1824         return __pa(hyp_pgtable->pgd);
1825 }
1826
1827 phys_addr_t kvm_get_idmap_vector(void)
1828 {
1829         return hyp_idmap_vector;
1830 }
1831
1832 static int kvm_map_idmap_text(void)
1833 {
1834         unsigned long size = hyp_idmap_end - hyp_idmap_start;
1835         int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1836                                         PAGE_HYP_EXEC);
1837         if (err)
1838                 kvm_err("Failed to idmap %lx-%lx\n",
1839                         hyp_idmap_start, hyp_idmap_end);
1840
1841         return err;
1842 }
1843
1844 static void *kvm_hyp_zalloc_page(void *arg)
1845 {
1846         return (void *)get_zeroed_page(GFP_KERNEL);
1847 }
1848
1849 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1850         .zalloc_page            = kvm_hyp_zalloc_page,
1851         .get_page               = kvm_host_get_page,
1852         .put_page               = kvm_host_put_page,
1853         .phys_to_virt           = kvm_host_va,
1854         .virt_to_phys           = kvm_host_pa,
1855 };
1856
1857 int __init kvm_mmu_init(u32 *hyp_va_bits)
1858 {
1859         int err;
1860         u32 idmap_bits;
1861         u32 kernel_bits;
1862
1863         hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1864         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1865         hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1866         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1867         hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1868
1869         /*
1870          * We rely on the linker script to ensure at build time that the HYP
1871          * init code does not cross a page boundary.
1872          */
1873         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1874
1875         /*
1876          * The ID map may be configured to use an extended virtual address
1877          * range. This is only the case if system RAM is out of range for the
1878          * currently configured page size and VA_BITS_MIN, in which case we will
1879          * also need the extended virtual range for the HYP ID map, or we won't
1880          * be able to enable the EL2 MMU.
1881          *
1882          * However, in some cases the ID map may be configured for fewer than
1883          * the number of VA bits used by the regular kernel stage 1. This
1884          * happens when VA_BITS=52 and the kernel image is placed in PA space
1885          * below 48 bits.
1886          *
1887          * At EL2, there is only one TTBR register, and we can't switch between
1888          * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1889          * line: we need to use the extended range with *both* our translation
1890          * tables.
1891          *
1892          * So use the maximum of the idmap VA bits and the regular kernel stage
1893          * 1 VA bits to assure that the hypervisor can both ID map its code page
1894          * and map any kernel memory.
1895          */
1896         idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1897         kernel_bits = vabits_actual;
1898         *hyp_va_bits = max(idmap_bits, kernel_bits);
1899
1900         kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1901         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1902         kvm_debug("HYP VA range: %lx:%lx\n",
1903                   kern_hyp_va(PAGE_OFFSET),
1904                   kern_hyp_va((unsigned long)high_memory - 1));
1905
1906         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1907             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1908             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1909                 /*
1910                  * The idmap page is intersecting with the VA space,
1911                  * it is not safe to continue further.
1912                  */
1913                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1914                 err = -EINVAL;
1915                 goto out;
1916         }
1917
1918         hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1919         if (!hyp_pgtable) {
1920                 kvm_err("Hyp mode page-table not allocated\n");
1921                 err = -ENOMEM;
1922                 goto out;
1923         }
1924
1925         err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1926         if (err)
1927                 goto out_free_pgtable;
1928
1929         err = kvm_map_idmap_text();
1930         if (err)
1931                 goto out_destroy_pgtable;
1932
1933         io_map_base = hyp_idmap_start;
1934         return 0;
1935
1936 out_destroy_pgtable:
1937         kvm_pgtable_hyp_destroy(hyp_pgtable);
1938 out_free_pgtable:
1939         kfree(hyp_pgtable);
1940         hyp_pgtable = NULL;
1941 out:
1942         return err;
1943 }
1944
1945 void kvm_arch_commit_memory_region(struct kvm *kvm,
1946                                    struct kvm_memory_slot *old,
1947                                    const struct kvm_memory_slot *new,
1948                                    enum kvm_mr_change change)
1949 {
1950         bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
1951
1952         /*
1953          * At this point memslot has been committed and there is an
1954          * allocated dirty_bitmap[], dirty pages will be tracked while the
1955          * memory slot is write protected.
1956          */
1957         if (log_dirty_pages) {
1958
1959                 if (change == KVM_MR_DELETE)
1960                         return;
1961
1962                 /*
1963                  * Huge and normal pages are write-protected and split
1964                  * on either of these two cases:
1965                  *
1966                  * 1. with initial-all-set: gradually with CLEAR ioctls,
1967                  */
1968                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1969                         return;
1970                 /*
1971                  * or
1972                  * 2. without initial-all-set: all in one shot when
1973                  *    enabling dirty logging.
1974                  */
1975                 kvm_mmu_wp_memory_region(kvm, new->id);
1976                 kvm_mmu_split_memory_region(kvm, new->id);
1977         } else {
1978                 /*
1979                  * Free any leftovers from the eager page splitting cache. Do
1980                  * this when deleting, moving, disabling dirty logging, or
1981                  * creating the memslot (a nop). Doing it for deletes makes
1982                  * sure we don't leak memory, and there's no need to keep the
1983                  * cache around for any of the other cases.
1984                  */
1985                 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
1986         }
1987 }
1988
1989 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1990                                    const struct kvm_memory_slot *old,
1991                                    struct kvm_memory_slot *new,
1992                                    enum kvm_mr_change change)
1993 {
1994         hva_t hva, reg_end;
1995         int ret = 0;
1996
1997         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1998                         change != KVM_MR_FLAGS_ONLY)
1999                 return 0;
2000
2001         /*
2002          * Prevent userspace from creating a memory region outside of the IPA
2003          * space addressable by the KVM guest IPA space.
2004          */
2005         if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2006                 return -EFAULT;
2007
2008         hva = new->userspace_addr;
2009         reg_end = hva + (new->npages << PAGE_SHIFT);
2010
2011         mmap_read_lock(current->mm);
2012         /*
2013          * A memory region could potentially cover multiple VMAs, and any holes
2014          * between them, so iterate over all of them.
2015          *
2016          *     +--------------------------------------------+
2017          * +---------------+----------------+   +----------------+
2018          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2019          * +---------------+----------------+   +----------------+
2020          *     |               memory region                |
2021          *     +--------------------------------------------+
2022          */
2023         do {
2024                 struct vm_area_struct *vma;
2025
2026                 vma = find_vma_intersection(current->mm, hva, reg_end);
2027                 if (!vma)
2028                         break;
2029
2030                 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2031                         ret = -EINVAL;
2032                         break;
2033                 }
2034
2035                 if (vma->vm_flags & VM_PFNMAP) {
2036                         /* IO region dirty page logging not allowed */
2037                         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2038                                 ret = -EINVAL;
2039                                 break;
2040                         }
2041                 }
2042                 hva = min(reg_end, vma->vm_end);
2043         } while (hva < reg_end);
2044
2045         mmap_read_unlock(current->mm);
2046         return ret;
2047 }
2048
2049 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2050 {
2051 }
2052
2053 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2054 {
2055 }
2056
2057 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2058 {
2059         kvm_uninit_stage2_mmu(kvm);
2060 }
2061
2062 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2063                                    struct kvm_memory_slot *slot)
2064 {
2065         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2066         phys_addr_t size = slot->npages << PAGE_SHIFT;
2067
2068         write_lock(&kvm->mmu_lock);
2069         unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2070         write_unlock(&kvm->mmu_lock);
2071 }
2072
2073 /*
2074  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2075  *
2076  * Main problems:
2077  * - S/W ops are local to a CPU (not broadcast)
2078  * - We have line migration behind our back (speculation)
2079  * - System caches don't support S/W at all (damn!)
2080  *
2081  * In the face of the above, the best we can do is to try and convert
2082  * S/W ops to VA ops. Because the guest is not allowed to infer the
2083  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2084  * which is a rather good thing for us.
2085  *
2086  * Also, it is only used when turning caches on/off ("The expected
2087  * usage of the cache maintenance instructions that operate by set/way
2088  * is associated with the cache maintenance instructions associated
2089  * with the powerdown and powerup of caches, if this is required by
2090  * the implementation.").
2091  *
2092  * We use the following policy:
2093  *
2094  * - If we trap a S/W operation, we enable VM trapping to detect
2095  *   caches being turned on/off, and do a full clean.
2096  *
2097  * - We flush the caches on both caches being turned on and off.
2098  *
2099  * - Once the caches are enabled, we stop trapping VM ops.
2100  */
2101 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2102 {
2103         unsigned long hcr = *vcpu_hcr(vcpu);
2104
2105         /*
2106          * If this is the first time we do a S/W operation
2107          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2108          * VM trapping.
2109          *
2110          * Otherwise, rely on the VM trapping to wait for the MMU +
2111          * Caches to be turned off. At that point, we'll be able to
2112          * clean the caches again.
2113          */
2114         if (!(hcr & HCR_TVM)) {
2115                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2116                                         vcpu_has_cache_enabled(vcpu));
2117                 stage2_flush_vm(vcpu->kvm);
2118                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2119         }
2120 }
2121
2122 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2123 {
2124         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2125
2126         /*
2127          * If switching the MMU+caches on, need to invalidate the caches.
2128          * If switching it off, need to clean the caches.
2129          * Clean + invalidate does the trick always.
2130          */
2131         if (now_enabled != was_enabled)
2132                 stage2_flush_vm(vcpu->kvm);
2133
2134         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2135         if (now_enabled)
2136                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2137
2138         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2139 }