Merge branches 'acpi-battery', 'acpi-video' and 'acpi-misc'
[sfrench/cifs-2.6.git] / arch / arm64 / kvm / hyp / include / hyp / switch.h
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18
19 #include <kvm/arm_psci.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/fpsimd.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/processor.h>
32
33 struct kvm_exception_table_entry {
34         int insn, fixup;
35 };
36
37 extern struct kvm_exception_table_entry __start___kvm_ex_table;
38 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
39
40 /* Check whether the FP regs were dirtied while in the host-side run loop: */
41 static inline bool update_fp_enabled(struct kvm_vcpu *vcpu)
42 {
43         /*
44          * When the system doesn't support FP/SIMD, we cannot rely on
45          * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
46          * abort on the very first access to FP and thus we should never
47          * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
48          * trap the accesses.
49          */
50         if (!system_supports_fpsimd() ||
51             vcpu->arch.flags & KVM_ARM64_FP_FOREIGN_FPSTATE)
52                 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
53                                       KVM_ARM64_FP_HOST);
54
55         return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
56 }
57
58 /* Save the 32-bit only FPSIMD system register state */
59 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
60 {
61         if (!vcpu_el1_is_32bit(vcpu))
62                 return;
63
64         __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
65 }
66
67 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
68 {
69         /*
70          * We are about to set CPTR_EL2.TFP to trap all floating point
71          * register accesses to EL2, however, the ARM ARM clearly states that
72          * traps are only taken to EL2 if the operation would not otherwise
73          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
74          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
75          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
76          * it will cause an exception.
77          */
78         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
79                 write_sysreg(1 << 30, fpexc32_el2);
80                 isb();
81         }
82 }
83
84 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
85 {
86         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
87         write_sysreg(1 << 15, hstr_el2);
88
89         /*
90          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
91          * PMSELR_EL0 to make sure it never contains the cycle
92          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
93          * EL1 instead of being trapped to EL2.
94          */
95         if (kvm_arm_support_pmu_v3()) {
96                 write_sysreg(0, pmselr_el0);
97                 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
98         }
99
100         vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
101         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
102 }
103
104 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
105 {
106         write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
107
108         write_sysreg(0, hstr_el2);
109         if (kvm_arm_support_pmu_v3())
110                 write_sysreg(0, pmuserenr_el0);
111 }
112
113 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
114 {
115         u64 hcr = vcpu->arch.hcr_el2;
116
117         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
118                 hcr |= HCR_TVM;
119
120         write_sysreg(hcr, hcr_el2);
121
122         if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
123                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
124 }
125
126 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
127 {
128         /*
129          * If we pended a virtual abort, preserve it until it gets
130          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
131          * the crucial bit is "On taking a vSError interrupt,
132          * HCR_EL2.VSE is cleared to 0."
133          */
134         if (vcpu->arch.hcr_el2 & HCR_VSE) {
135                 vcpu->arch.hcr_el2 &= ~HCR_VSE;
136                 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
137         }
138 }
139
140 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
141 {
142         return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
143 }
144
145 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
146 {
147         sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
148         __sve_restore_state(vcpu_sve_pffr(vcpu),
149                             &vcpu->arch.ctxt.fp_regs.fpsr);
150         write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
151 }
152
153 /*
154  * We trap the first access to the FP/SIMD to save the host context and
155  * restore the guest context lazily.
156  * If FP/SIMD is not implemented, handle the trap and inject an undefined
157  * instruction exception to the guest. Similarly for trapped SVE accesses.
158  */
159 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
160 {
161         bool sve_guest;
162         u8 esr_ec;
163         u64 reg;
164
165         if (!system_supports_fpsimd())
166                 return false;
167
168         sve_guest = vcpu_has_sve(vcpu);
169         esr_ec = kvm_vcpu_trap_get_class(vcpu);
170
171         /* Don't handle SVE traps for non-SVE vcpus here: */
172         if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD)
173                 return false;
174
175         /* Valid trap.  Switch the context: */
176
177         /* First disable enough traps to allow us to update the registers */
178         if (has_vhe()) {
179                 reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
180                 if (sve_guest)
181                         reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
182
183                 sysreg_clear_set(cpacr_el1, 0, reg);
184         } else {
185                 reg = CPTR_EL2_TFP;
186                 if (sve_guest)
187                         reg |= CPTR_EL2_TZ;
188
189                 sysreg_clear_set(cptr_el2, reg, 0);
190         }
191         isb();
192
193         /* Write out the host state if it's in the registers */
194         if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
195                 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
196                 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
197         }
198
199         /* Restore the guest state */
200         if (sve_guest)
201                 __hyp_sve_restore_guest(vcpu);
202         else
203                 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
204
205         /* Skip restoring fpexc32 for AArch64 guests */
206         if (!(read_sysreg(hcr_el2) & HCR_RW))
207                 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
208
209         vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
210
211         return true;
212 }
213
214 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
215 {
216         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
217         int rt = kvm_vcpu_sys_get_rt(vcpu);
218         u64 val = vcpu_get_reg(vcpu, rt);
219
220         /*
221          * The normal sysreg handling code expects to see the traps,
222          * let's not do anything here.
223          */
224         if (vcpu->arch.hcr_el2 & HCR_TVM)
225                 return false;
226
227         switch (sysreg) {
228         case SYS_SCTLR_EL1:
229                 write_sysreg_el1(val, SYS_SCTLR);
230                 break;
231         case SYS_TTBR0_EL1:
232                 write_sysreg_el1(val, SYS_TTBR0);
233                 break;
234         case SYS_TTBR1_EL1:
235                 write_sysreg_el1(val, SYS_TTBR1);
236                 break;
237         case SYS_TCR_EL1:
238                 write_sysreg_el1(val, SYS_TCR);
239                 break;
240         case SYS_ESR_EL1:
241                 write_sysreg_el1(val, SYS_ESR);
242                 break;
243         case SYS_FAR_EL1:
244                 write_sysreg_el1(val, SYS_FAR);
245                 break;
246         case SYS_AFSR0_EL1:
247                 write_sysreg_el1(val, SYS_AFSR0);
248                 break;
249         case SYS_AFSR1_EL1:
250                 write_sysreg_el1(val, SYS_AFSR1);
251                 break;
252         case SYS_MAIR_EL1:
253                 write_sysreg_el1(val, SYS_MAIR);
254                 break;
255         case SYS_AMAIR_EL1:
256                 write_sysreg_el1(val, SYS_AMAIR);
257                 break;
258         case SYS_CONTEXTIDR_EL1:
259                 write_sysreg_el1(val, SYS_CONTEXTIDR);
260                 break;
261         default:
262                 return false;
263         }
264
265         __kvm_skip_instr(vcpu);
266         return true;
267 }
268
269 static inline bool esr_is_ptrauth_trap(u64 esr)
270 {
271         switch (esr_sys64_to_sysreg(esr)) {
272         case SYS_APIAKEYLO_EL1:
273         case SYS_APIAKEYHI_EL1:
274         case SYS_APIBKEYLO_EL1:
275         case SYS_APIBKEYHI_EL1:
276         case SYS_APDAKEYLO_EL1:
277         case SYS_APDAKEYHI_EL1:
278         case SYS_APDBKEYLO_EL1:
279         case SYS_APDBKEYHI_EL1:
280         case SYS_APGAKEYLO_EL1:
281         case SYS_APGAKEYHI_EL1:
282                 return true;
283         }
284
285         return false;
286 }
287
288 #define __ptrauth_save_key(ctxt, key)                                   \
289         do {                                                            \
290         u64 __val;                                                      \
291         __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
292         ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
293         __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
294         ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
295 } while(0)
296
297 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
298
299 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
300 {
301         struct kvm_cpu_context *ctxt;
302         u64 val;
303
304         if (!vcpu_has_ptrauth(vcpu))
305                 return false;
306
307         ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
308         __ptrauth_save_key(ctxt, APIA);
309         __ptrauth_save_key(ctxt, APIB);
310         __ptrauth_save_key(ctxt, APDA);
311         __ptrauth_save_key(ctxt, APDB);
312         __ptrauth_save_key(ctxt, APGA);
313
314         vcpu_ptrauth_enable(vcpu);
315
316         val = read_sysreg(hcr_el2);
317         val |= (HCR_API | HCR_APK);
318         write_sysreg(val, hcr_el2);
319
320         return true;
321 }
322
323 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
324 {
325         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
326             handle_tx2_tvm(vcpu))
327                 return true;
328
329         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
330             __vgic_v3_perform_cpuif_access(vcpu) == 1)
331                 return true;
332
333         if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
334                 return kvm_hyp_handle_ptrauth(vcpu, exit_code);
335
336         return false;
337 }
338
339 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
340 {
341         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
342             __vgic_v3_perform_cpuif_access(vcpu) == 1)
343                 return true;
344
345         return false;
346 }
347
348 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
349 {
350         if (!__populate_fault_info(vcpu))
351                 return true;
352
353         return false;
354 }
355
356 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
357 {
358         if (!__populate_fault_info(vcpu))
359                 return true;
360
361         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
362                 bool valid;
363
364                 valid = kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
365                         kvm_vcpu_dabt_isvalid(vcpu) &&
366                         !kvm_vcpu_abt_issea(vcpu) &&
367                         !kvm_vcpu_abt_iss1tw(vcpu);
368
369                 if (valid) {
370                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
371
372                         if (ret == 1)
373                                 return true;
374
375                         /* Promote an illegal access to an SError.*/
376                         if (ret == -1)
377                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
378                 }
379         }
380
381         return false;
382 }
383
384 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
385
386 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
387
388 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
389
390 /*
391  * Allow the hypervisor to handle the exit with an exit handler if it has one.
392  *
393  * Returns true if the hypervisor handled the exit, and control should go back
394  * to the guest, or false if it hasn't.
395  */
396 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
397 {
398         const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
399         exit_handler_fn fn;
400
401         fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
402
403         if (fn)
404                 return fn(vcpu, exit_code);
405
406         return false;
407 }
408
409 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
410 {
411         /*
412          * Check for the conditions of Cortex-A510's #2077057. When these occur
413          * SPSR_EL2 can't be trusted, but isn't needed either as it is
414          * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
415          * Are we single-stepping the guest, and took a PAC exception from the
416          * active-not-pending state?
417          */
418         if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)               &&
419             vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP                 &&
420             *vcpu_cpsr(vcpu) & DBG_SPSR_SS                              &&
421             ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
422                 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
423
424         vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
425 }
426
427 /*
428  * Return true when we were able to fixup the guest exit and should return to
429  * the guest, false when we should restore the host state and return to the
430  * main run loop.
431  */
432 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
433 {
434         /*
435          * Save PSTATE early so that we can evaluate the vcpu mode
436          * early on.
437          */
438         synchronize_vcpu_pstate(vcpu, exit_code);
439
440         /*
441          * Check whether we want to repaint the state one way or
442          * another.
443          */
444         early_exit_filter(vcpu, exit_code);
445
446         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
447                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
448
449         if (ARM_SERROR_PENDING(*exit_code) &&
450             ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
451                 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
452
453                 /*
454                  * HVC already have an adjusted PC, which we need to
455                  * correct in order to return to after having injected
456                  * the SError.
457                  *
458                  * SMC, on the other hand, is *trapped*, meaning its
459                  * preferred return address is the SMC itself.
460                  */
461                 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
462                         write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
463         }
464
465         /*
466          * We're using the raw exception code in order to only process
467          * the trap if no SError is pending. We will come back to the
468          * same PC once the SError has been injected, and replay the
469          * trapping instruction.
470          */
471         if (*exit_code != ARM_EXCEPTION_TRAP)
472                 goto exit;
473
474         /* Check if there's an exit handler and allow it to handle the exit. */
475         if (kvm_hyp_handle_exit(vcpu, exit_code))
476                 goto guest;
477 exit:
478         /* Return to the host kernel and handle the exit */
479         return false;
480
481 guest:
482         /* Re-enter the guest */
483         asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
484         return true;
485 }
486
487 static inline void __kvm_unexpected_el2_exception(void)
488 {
489         extern char __guest_exit_panic[];
490         unsigned long addr, fixup;
491         struct kvm_exception_table_entry *entry, *end;
492         unsigned long elr_el2 = read_sysreg(elr_el2);
493
494         entry = &__start___kvm_ex_table;
495         end = &__stop___kvm_ex_table;
496
497         while (entry < end) {
498                 addr = (unsigned long)&entry->insn + entry->insn;
499                 fixup = (unsigned long)&entry->fixup + entry->fixup;
500
501                 if (addr != elr_el2) {
502                         entry++;
503                         continue;
504                 }
505
506                 write_sysreg(fixup, elr_el2);
507                 return;
508         }
509
510         /* Trigger a panic after restoring the hyp context. */
511         write_sysreg(__guest_exit_panic, elr_el2);
512 }
513
514 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */