arm64: expose FAR_EL1 tag bits in siginfo
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / topology.c
1 /*
2  * arch/arm64/kernel/topology.c
3  *
4  * Copyright (C) 2011,2013,2014 Linaro Limited.
5  *
6  * Based on the arm32 version written by Vincent Guittot in turn based on
7  * arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13
14 #include <linux/acpi.h>
15 #include <linux/arch_topology.h>
16 #include <linux/cacheinfo.h>
17 #include <linux/cpufreq.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20
21 #include <asm/cpu.h>
22 #include <asm/cputype.h>
23 #include <asm/topology.h>
24
25 void store_cpu_topology(unsigned int cpuid)
26 {
27         struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
28         u64 mpidr;
29
30         if (cpuid_topo->package_id != -1)
31                 goto topology_populated;
32
33         mpidr = read_cpuid_mpidr();
34
35         /* Uniprocessor systems can rely on default topology values */
36         if (mpidr & MPIDR_UP_BITMASK)
37                 return;
38
39         /*
40          * This would be the place to create cpu topology based on MPIDR.
41          *
42          * However, it cannot be trusted to depict the actual topology; some
43          * pieces of the architecture enforce an artificial cap on Aff0 values
44          * (e.g. GICv3's ICC_SGI1R_EL1 limits it to 15), leading to an
45          * artificial cycling of Aff1, Aff2 and Aff3 values. IOW, these end up
46          * having absolutely no relationship to the actual underlying system
47          * topology, and cannot be reasonably used as core / package ID.
48          *
49          * If the MT bit is set, Aff0 *could* be used to define a thread ID, but
50          * we still wouldn't be able to obtain a sane core ID. This means we
51          * need to entirely ignore MPIDR for any topology deduction.
52          */
53         cpuid_topo->thread_id  = -1;
54         cpuid_topo->core_id    = cpuid;
55         cpuid_topo->package_id = cpu_to_node(cpuid);
56
57         pr_debug("CPU%u: cluster %d core %d thread %d mpidr %#016llx\n",
58                  cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
59                  cpuid_topo->thread_id, mpidr);
60
61 topology_populated:
62         update_siblings_masks(cpuid);
63 }
64
65 #ifdef CONFIG_ACPI
66 static bool __init acpi_cpu_is_threaded(int cpu)
67 {
68         int is_threaded = acpi_pptt_cpu_is_thread(cpu);
69
70         /*
71          * if the PPTT doesn't have thread information, assume a homogeneous
72          * machine and return the current CPU's thread state.
73          */
74         if (is_threaded < 0)
75                 is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
76
77         return !!is_threaded;
78 }
79
80 /*
81  * Propagate the topology information of the processor_topology_node tree to the
82  * cpu_topology array.
83  */
84 int __init parse_acpi_topology(void)
85 {
86         int cpu, topology_id;
87
88         if (acpi_disabled)
89                 return 0;
90
91         for_each_possible_cpu(cpu) {
92                 int i, cache_id;
93
94                 topology_id = find_acpi_cpu_topology(cpu, 0);
95                 if (topology_id < 0)
96                         return topology_id;
97
98                 if (acpi_cpu_is_threaded(cpu)) {
99                         cpu_topology[cpu].thread_id = topology_id;
100                         topology_id = find_acpi_cpu_topology(cpu, 1);
101                         cpu_topology[cpu].core_id   = topology_id;
102                 } else {
103                         cpu_topology[cpu].thread_id  = -1;
104                         cpu_topology[cpu].core_id    = topology_id;
105                 }
106                 topology_id = find_acpi_cpu_topology_package(cpu);
107                 cpu_topology[cpu].package_id = topology_id;
108
109                 i = acpi_find_last_cache_level(cpu);
110
111                 if (i > 0) {
112                         /*
113                          * this is the only part of cpu_topology that has
114                          * a direct relationship with the cache topology
115                          */
116                         cache_id = find_acpi_cpu_cache_topology(cpu, i);
117                         if (cache_id > 0)
118                                 cpu_topology[cpu].llc_id = cache_id;
119                 }
120         }
121
122         return 0;
123 }
124 #endif
125
126 #ifdef CONFIG_ARM64_AMU_EXTN
127
128 #undef pr_fmt
129 #define pr_fmt(fmt) "AMU: " fmt
130
131 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale);
132 static DEFINE_PER_CPU(u64, arch_const_cycles_prev);
133 static DEFINE_PER_CPU(u64, arch_core_cycles_prev);
134 static cpumask_var_t amu_fie_cpus;
135
136 /* Initialize counter reference per-cpu variables for the current CPU */
137 void init_cpu_freq_invariance_counters(void)
138 {
139         this_cpu_write(arch_core_cycles_prev,
140                        read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0));
141         this_cpu_write(arch_const_cycles_prev,
142                        read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0));
143 }
144
145 static int validate_cpu_freq_invariance_counters(int cpu)
146 {
147         u64 max_freq_hz, ratio;
148
149         if (!cpu_has_amu_feat(cpu)) {
150                 pr_debug("CPU%d: counters are not supported.\n", cpu);
151                 return -EINVAL;
152         }
153
154         if (unlikely(!per_cpu(arch_const_cycles_prev, cpu) ||
155                      !per_cpu(arch_core_cycles_prev, cpu))) {
156                 pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
157                 return -EINVAL;
158         }
159
160         /* Convert maximum frequency from KHz to Hz and validate */
161         max_freq_hz = cpufreq_get_hw_max_freq(cpu) * 1000;
162         if (unlikely(!max_freq_hz)) {
163                 pr_debug("CPU%d: invalid maximum frequency.\n", cpu);
164                 return -EINVAL;
165         }
166
167         /*
168          * Pre-compute the fixed ratio between the frequency of the constant
169          * counter and the maximum frequency of the CPU.
170          *
171          *                            const_freq
172          * arch_max_freq_scale =   ---------------- * SCHED_CAPACITY_SCALEĀ²
173          *                         cpuinfo_max_freq
174          *
175          * We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALEĀ²
176          * in order to ensure a good resolution for arch_max_freq_scale for
177          * very low arch timer frequencies (down to the KHz range which should
178          * be unlikely).
179          */
180         ratio = (u64)arch_timer_get_rate() << (2 * SCHED_CAPACITY_SHIFT);
181         ratio = div64_u64(ratio, max_freq_hz);
182         if (!ratio) {
183                 WARN_ONCE(1, "System timer frequency too low.\n");
184                 return -EINVAL;
185         }
186
187         per_cpu(arch_max_freq_scale, cpu) = (unsigned long)ratio;
188
189         return 0;
190 }
191
192 static inline bool
193 enable_policy_freq_counters(int cpu, cpumask_var_t valid_cpus)
194 {
195         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
196
197         if (!policy) {
198                 pr_debug("CPU%d: No cpufreq policy found.\n", cpu);
199                 return false;
200         }
201
202         if (cpumask_subset(policy->related_cpus, valid_cpus))
203                 cpumask_or(amu_fie_cpus, policy->related_cpus,
204                            amu_fie_cpus);
205
206         cpufreq_cpu_put(policy);
207
208         return true;
209 }
210
211 static DEFINE_STATIC_KEY_FALSE(amu_fie_key);
212 #define amu_freq_invariant() static_branch_unlikely(&amu_fie_key)
213
214 static int __init init_amu_fie(void)
215 {
216         cpumask_var_t valid_cpus;
217         bool have_policy = false;
218         int ret = 0;
219         int cpu;
220
221         if (!zalloc_cpumask_var(&valid_cpus, GFP_KERNEL))
222                 return -ENOMEM;
223
224         if (!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
225                 ret = -ENOMEM;
226                 goto free_valid_mask;
227         }
228
229         for_each_present_cpu(cpu) {
230                 if (validate_cpu_freq_invariance_counters(cpu))
231                         continue;
232                 cpumask_set_cpu(cpu, valid_cpus);
233                 have_policy |= enable_policy_freq_counters(cpu, valid_cpus);
234         }
235
236         /*
237          * If we are not restricted by cpufreq policies, we only enable
238          * the use of the AMU feature for FIE if all CPUs support AMU.
239          * Otherwise, enable_policy_freq_counters has already enabled
240          * policy cpus.
241          */
242         if (!have_policy && cpumask_equal(valid_cpus, cpu_present_mask))
243                 cpumask_or(amu_fie_cpus, amu_fie_cpus, valid_cpus);
244
245         if (!cpumask_empty(amu_fie_cpus)) {
246                 pr_info("CPUs[%*pbl]: counters will be used for FIE.",
247                         cpumask_pr_args(amu_fie_cpus));
248                 static_branch_enable(&amu_fie_key);
249         }
250
251         /*
252          * If the system is not fully invariant after AMU init, disable
253          * partial use of counters for frequency invariance.
254          */
255         if (!topology_scale_freq_invariant())
256                 static_branch_disable(&amu_fie_key);
257
258 free_valid_mask:
259         free_cpumask_var(valid_cpus);
260
261         return ret;
262 }
263 late_initcall_sync(init_amu_fie);
264
265 bool arch_freq_counters_available(const struct cpumask *cpus)
266 {
267         return amu_freq_invariant() &&
268                cpumask_subset(cpus, amu_fie_cpus);
269 }
270
271 void topology_scale_freq_tick(void)
272 {
273         u64 prev_core_cnt, prev_const_cnt;
274         u64 core_cnt, const_cnt, scale;
275         int cpu = smp_processor_id();
276
277         if (!amu_freq_invariant())
278                 return;
279
280         if (!cpumask_test_cpu(cpu, amu_fie_cpus))
281                 return;
282
283         const_cnt = read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0);
284         core_cnt = read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0);
285         prev_const_cnt = this_cpu_read(arch_const_cycles_prev);
286         prev_core_cnt = this_cpu_read(arch_core_cycles_prev);
287
288         if (unlikely(core_cnt <= prev_core_cnt ||
289                      const_cnt <= prev_const_cnt))
290                 goto store_and_exit;
291
292         /*
293          *          /\core    arch_max_freq_scale
294          * scale =  ------- * --------------------
295          *          /\const   SCHED_CAPACITY_SCALE
296          *
297          * See validate_cpu_freq_invariance_counters() for details on
298          * arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
299          */
300         scale = core_cnt - prev_core_cnt;
301         scale *= this_cpu_read(arch_max_freq_scale);
302         scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
303                           const_cnt - prev_const_cnt);
304
305         scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
306         this_cpu_write(freq_scale, (unsigned long)scale);
307
308 store_and_exit:
309         this_cpu_write(arch_core_cycles_prev, core_cnt);
310         this_cpu_write(arch_const_cycles_prev, const_cnt);
311 }
312 #endif /* CONFIG_ARM64_AMU_EXTN */