Merge remote-tracking branch 'arm64/for-next/fixes' into for-next/core
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / probes / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm64/kernel/probes/kprobes.c
4  *
5  * Kprobes support for ARM64
6  *
7  * Copyright (C) 2013 Linaro Limited.
8  * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
9  */
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/extable.h>
14 #include <linux/slab.h>
15 #include <linux/stop_machine.h>
16 #include <linux/sched/debug.h>
17 #include <linux/set_memory.h>
18 #include <linux/stringify.h>
19 #include <linux/vmalloc.h>
20 #include <asm/traps.h>
21 #include <asm/ptrace.h>
22 #include <asm/cacheflush.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/daifflags.h>
25 #include <asm/system_misc.h>
26 #include <asm/insn.h>
27 #include <linux/uaccess.h>
28 #include <asm/irq.h>
29 #include <asm/sections.h>
30
31 #include "decode-insn.h"
32
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35
36 static void __kprobes
37 post_kprobe_handler(struct kprobe *, struct kprobe_ctlblk *, struct pt_regs *);
38
39 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
40 {
41         kprobe_opcode_t *addr = p->ainsn.api.insn;
42         void *addrs[] = {addr, addr + 1};
43         u32 insns[] = {p->opcode, BRK64_OPCODE_KPROBES_SS};
44
45         /* prepare insn slot */
46         aarch64_insn_patch_text(addrs, insns, 2);
47
48         flush_icache_range((uintptr_t)addr, (uintptr_t)(addr + MAX_INSN_SIZE));
49
50         /*
51          * Needs restoring of return address after stepping xol.
52          */
53         p->ainsn.api.restore = (unsigned long) p->addr +
54           sizeof(kprobe_opcode_t);
55 }
56
57 static void __kprobes arch_prepare_simulate(struct kprobe *p)
58 {
59         /* This instructions is not executed xol. No need to adjust the PC */
60         p->ainsn.api.restore = 0;
61 }
62
63 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
64 {
65         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
66
67         if (p->ainsn.api.handler)
68                 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
69
70         /* single step simulated, now go for post processing */
71         post_kprobe_handler(p, kcb, regs);
72 }
73
74 int __kprobes arch_prepare_kprobe(struct kprobe *p)
75 {
76         unsigned long probe_addr = (unsigned long)p->addr;
77
78         if (probe_addr & 0x3)
79                 return -EINVAL;
80
81         /* copy instruction */
82         p->opcode = le32_to_cpu(*p->addr);
83
84         if (search_exception_tables(probe_addr))
85                 return -EINVAL;
86
87         /* decode instruction */
88         switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
89         case INSN_REJECTED:     /* insn not supported */
90                 return -EINVAL;
91
92         case INSN_GOOD_NO_SLOT: /* insn need simulation */
93                 p->ainsn.api.insn = NULL;
94                 break;
95
96         case INSN_GOOD: /* instruction uses slot */
97                 p->ainsn.api.insn = get_insn_slot();
98                 if (!p->ainsn.api.insn)
99                         return -ENOMEM;
100                 break;
101         }
102
103         /* prepare the instruction */
104         if (p->ainsn.api.insn)
105                 arch_prepare_ss_slot(p);
106         else
107                 arch_prepare_simulate(p);
108
109         return 0;
110 }
111
112 void *alloc_insn_page(void)
113 {
114         return __vmalloc_node_range(PAGE_SIZE, 1, VMALLOC_START, VMALLOC_END,
115                         GFP_KERNEL, PAGE_KERNEL_ROX, VM_FLUSH_RESET_PERMS,
116                         NUMA_NO_NODE, __builtin_return_address(0));
117 }
118
119 /* arm kprobe: install breakpoint in text */
120 void __kprobes arch_arm_kprobe(struct kprobe *p)
121 {
122         void *addr = p->addr;
123         u32 insn = BRK64_OPCODE_KPROBES;
124
125         aarch64_insn_patch_text(&addr, &insn, 1);
126 }
127
128 /* disarm kprobe: remove breakpoint from text */
129 void __kprobes arch_disarm_kprobe(struct kprobe *p)
130 {
131         void *addr = p->addr;
132
133         aarch64_insn_patch_text(&addr, &p->opcode, 1);
134 }
135
136 void __kprobes arch_remove_kprobe(struct kprobe *p)
137 {
138         if (p->ainsn.api.insn) {
139                 free_insn_slot(p->ainsn.api.insn, 0);
140                 p->ainsn.api.insn = NULL;
141         }
142 }
143
144 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
145 {
146         kcb->prev_kprobe.kp = kprobe_running();
147         kcb->prev_kprobe.status = kcb->kprobe_status;
148 }
149
150 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
151 {
152         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
153         kcb->kprobe_status = kcb->prev_kprobe.status;
154 }
155
156 static void __kprobes set_current_kprobe(struct kprobe *p)
157 {
158         __this_cpu_write(current_kprobe, p);
159 }
160
161 /*
162  * Mask all of DAIF while executing the instruction out-of-line, to keep things
163  * simple and avoid nesting exceptions. Interrupts do have to be disabled since
164  * the kprobe state is per-CPU and doesn't get migrated.
165  */
166 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
167                                                 struct pt_regs *regs)
168 {
169         kcb->saved_irqflag = regs->pstate & DAIF_MASK;
170         regs->pstate |= DAIF_MASK;
171 }
172
173 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
174                                                 struct pt_regs *regs)
175 {
176         regs->pstate &= ~DAIF_MASK;
177         regs->pstate |= kcb->saved_irqflag;
178 }
179
180 static void __kprobes setup_singlestep(struct kprobe *p,
181                                        struct pt_regs *regs,
182                                        struct kprobe_ctlblk *kcb, int reenter)
183 {
184         unsigned long slot;
185
186         if (reenter) {
187                 save_previous_kprobe(kcb);
188                 set_current_kprobe(p);
189                 kcb->kprobe_status = KPROBE_REENTER;
190         } else {
191                 kcb->kprobe_status = KPROBE_HIT_SS;
192         }
193
194
195         if (p->ainsn.api.insn) {
196                 /* prepare for single stepping */
197                 slot = (unsigned long)p->ainsn.api.insn;
198
199                 kprobes_save_local_irqflag(kcb, regs);
200                 instruction_pointer_set(regs, slot);
201         } else {
202                 /* insn simulation */
203                 arch_simulate_insn(p, regs);
204         }
205 }
206
207 static int __kprobes reenter_kprobe(struct kprobe *p,
208                                     struct pt_regs *regs,
209                                     struct kprobe_ctlblk *kcb)
210 {
211         switch (kcb->kprobe_status) {
212         case KPROBE_HIT_SSDONE:
213         case KPROBE_HIT_ACTIVE:
214                 kprobes_inc_nmissed_count(p);
215                 setup_singlestep(p, regs, kcb, 1);
216                 break;
217         case KPROBE_HIT_SS:
218         case KPROBE_REENTER:
219                 pr_warn("Unrecoverable kprobe detected.\n");
220                 dump_kprobe(p);
221                 BUG();
222                 break;
223         default:
224                 WARN_ON(1);
225                 return 0;
226         }
227
228         return 1;
229 }
230
231 static void __kprobes
232 post_kprobe_handler(struct kprobe *cur, struct kprobe_ctlblk *kcb, struct pt_regs *regs)
233 {
234         /* return addr restore if non-branching insn */
235         if (cur->ainsn.api.restore != 0)
236                 instruction_pointer_set(regs, cur->ainsn.api.restore);
237
238         /* restore back original saved kprobe variables and continue */
239         if (kcb->kprobe_status == KPROBE_REENTER) {
240                 restore_previous_kprobe(kcb);
241                 return;
242         }
243         /* call post handler */
244         kcb->kprobe_status = KPROBE_HIT_SSDONE;
245         if (cur->post_handler)
246                 cur->post_handler(cur, regs, 0);
247
248         reset_current_kprobe();
249 }
250
251 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
252 {
253         struct kprobe *cur = kprobe_running();
254         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
255
256         switch (kcb->kprobe_status) {
257         case KPROBE_HIT_SS:
258         case KPROBE_REENTER:
259                 /*
260                  * We are here because the instruction being single
261                  * stepped caused a page fault. We reset the current
262                  * kprobe and the ip points back to the probe address
263                  * and allow the page fault handler to continue as a
264                  * normal page fault.
265                  */
266                 instruction_pointer_set(regs, (unsigned long) cur->addr);
267                 if (!instruction_pointer(regs))
268                         BUG();
269
270                 if (kcb->kprobe_status == KPROBE_REENTER)
271                         restore_previous_kprobe(kcb);
272                 else
273                         reset_current_kprobe();
274
275                 break;
276         case KPROBE_HIT_ACTIVE:
277         case KPROBE_HIT_SSDONE:
278                 /*
279                  * We increment the nmissed count for accounting,
280                  * we can also use npre/npostfault count for accounting
281                  * these specific fault cases.
282                  */
283                 kprobes_inc_nmissed_count(cur);
284
285                 /*
286                  * We come here because instructions in the pre/post
287                  * handler caused the page_fault, this could happen
288                  * if handler tries to access user space by
289                  * copy_from_user(), get_user() etc. Let the
290                  * user-specified handler try to fix it first.
291                  */
292                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
293                         return 1;
294
295                 /*
296                  * In case the user-specified fault handler returned
297                  * zero, try to fix up.
298                  */
299                 if (fixup_exception(regs))
300                         return 1;
301         }
302         return 0;
303 }
304
305 static void __kprobes kprobe_handler(struct pt_regs *regs)
306 {
307         struct kprobe *p, *cur_kprobe;
308         struct kprobe_ctlblk *kcb;
309         unsigned long addr = instruction_pointer(regs);
310
311         kcb = get_kprobe_ctlblk();
312         cur_kprobe = kprobe_running();
313
314         p = get_kprobe((kprobe_opcode_t *) addr);
315
316         if (p) {
317                 if (cur_kprobe) {
318                         if (reenter_kprobe(p, regs, kcb))
319                                 return;
320                 } else {
321                         /* Probe hit */
322                         set_current_kprobe(p);
323                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
324
325                         /*
326                          * If we have no pre-handler or it returned 0, we
327                          * continue with normal processing.  If we have a
328                          * pre-handler and it returned non-zero, it will
329                          * modify the execution path and no need to single
330                          * stepping. Let's just reset current kprobe and exit.
331                          */
332                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
333                                 setup_singlestep(p, regs, kcb, 0);
334                         } else
335                                 reset_current_kprobe();
336                 }
337         }
338         /*
339          * The breakpoint instruction was removed right
340          * after we hit it.  Another cpu has removed
341          * either a probepoint or a debugger breakpoint
342          * at this address.  In either case, no further
343          * handling of this interrupt is appropriate.
344          * Return back to original instruction, and continue.
345          */
346 }
347
348 static int __kprobes
349 kprobe_breakpoint_ss_handler(struct pt_regs *regs, unsigned int esr)
350 {
351         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
352         unsigned long addr = instruction_pointer(regs);
353         struct kprobe *cur = kprobe_running();
354
355         if (cur && (kcb->kprobe_status == KPROBE_HIT_SS)
356             && ((unsigned long)&cur->ainsn.api.insn[1] == addr)) {
357                 kprobes_restore_local_irqflag(kcb, regs);
358                 post_kprobe_handler(cur, kcb, regs);
359
360                 return DBG_HOOK_HANDLED;
361         }
362
363         /* not ours, kprobes should ignore it */
364         return DBG_HOOK_ERROR;
365 }
366
367 static struct break_hook kprobes_break_ss_hook = {
368         .imm = KPROBES_BRK_SS_IMM,
369         .fn = kprobe_breakpoint_ss_handler,
370 };
371
372 static int __kprobes
373 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
374 {
375         kprobe_handler(regs);
376         return DBG_HOOK_HANDLED;
377 }
378
379 static struct break_hook kprobes_break_hook = {
380         .imm = KPROBES_BRK_IMM,
381         .fn = kprobe_breakpoint_handler,
382 };
383
384 /*
385  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
386  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
387  */
388 int __init arch_populate_kprobe_blacklist(void)
389 {
390         int ret;
391
392         ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start,
393                                         (unsigned long)__entry_text_end);
394         if (ret)
395                 return ret;
396         ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
397                                         (unsigned long)__irqentry_text_end);
398         if (ret)
399                 return ret;
400         ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
401                                         (unsigned long)__idmap_text_end);
402         if (ret)
403                 return ret;
404         ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start,
405                                         (unsigned long)__hyp_text_end);
406         if (ret || is_kernel_in_hyp_mode())
407                 return ret;
408         ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start,
409                                         (unsigned long)__hyp_idmap_text_end);
410         return ret;
411 }
412
413 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
414 {
415         return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline,
416                                         (void *)kernel_stack_pointer(regs));
417 }
418
419 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
420                                       struct pt_regs *regs)
421 {
422         ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
423         ri->fp = (void *)kernel_stack_pointer(regs);
424
425         /* replace return addr (x30) with trampoline */
426         regs->regs[30] = (long)&kretprobe_trampoline;
427 }
428
429 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
430 {
431         return 0;
432 }
433
434 int __init arch_init_kprobes(void)
435 {
436         register_kernel_break_hook(&kprobes_break_hook);
437         register_kernel_break_hook(&kprobes_break_ss_hook);
438
439         return 0;
440 }