Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Contains CPU feature definitions
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  *
7  * A note for the weary kernel hacker: the code here is confusing and hard to
8  * follow! That's partly because it's solving a nasty problem, but also because
9  * there's a little bit of over-abstraction that tends to obscure what's going
10  * on behind a maze of helper functions and macros.
11  *
12  * The basic problem is that hardware folks have started gluing together CPUs
13  * with distinct architectural features; in some cases even creating SoCs where
14  * user-visible instructions are available only on a subset of the available
15  * cores. We try to address this by snapshotting the feature registers of the
16  * boot CPU and comparing these with the feature registers of each secondary
17  * CPU when bringing them up. If there is a mismatch, then we update the
18  * snapshot state to indicate the lowest-common denominator of the feature,
19  * known as the "safe" value. This snapshot state can be queried to view the
20  * "sanitised" value of a feature register.
21  *
22  * The sanitised register values are used to decide which capabilities we
23  * have in the system. These may be in the form of traditional "hwcaps"
24  * advertised to userspace or internal "cpucaps" which are used to configure
25  * things like alternative patching and static keys. While a feature mismatch
26  * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27  * may prevent a CPU from being onlined at all.
28  *
29  * Some implementation details worth remembering:
30  *
31  * - Mismatched features are *always* sanitised to a "safe" value, which
32  *   usually indicates that the feature is not supported.
33  *
34  * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35  *   warning when onlining an offending CPU and the kernel will be tainted
36  *   with TAINT_CPU_OUT_OF_SPEC.
37  *
38  * - Features marked as FTR_VISIBLE have their sanitised value visible to
39  *   userspace. FTR_VISIBLE features in registers that are only visible
40  *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41  *   onlining of CPUs cannot lead to features disappearing at runtime.
42  *
43  * - A "feature" is typically a 4-bit register field. A "capability" is the
44  *   high-level description derived from the sanitised field value.
45  *
46  * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47  *   scheme for fields in ID registers") to understand when feature fields
48  *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49  *
50  * - KVM exposes its own view of the feature registers to guest operating
51  *   systems regardless of FTR_VISIBLE. This is typically driven from the
52  *   sanitised register values to allow virtual CPUs to be migrated between
53  *   arbitrary physical CPUs, but some features not present on the host are
54  *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55  *   details.
56  *
57  * - If the arm64_ftr_bits[] for a register has a missing field, then this
58  *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59  *   This is stronger than FTR_HIDDEN and can be used to hide features from
60  *   KVM guests.
61  */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT        \
100                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103                                  COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107
108 DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(system_cpucaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111
112 DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118
119 /*
120  * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121  * support it?
122  */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124
125 /*
126  * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127  * seen at least one CPU capable of 32-bit EL0.
128  */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130
131 /*
132  * Mask of CPUs supporting 32-bit EL0.
133  * Only valid if arm64_mismatched_32bit_el0 is enabled.
134  */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136
137 void dump_cpu_features(void)
138 {
139         /* file-wide pr_fmt adds "CPU features: " prefix */
140         pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141 }
142
143 #define ARM64_CPUID_FIELDS(reg, field, min_value)                       \
144                 .sys_reg = SYS_##reg,                                                   \
145                 .field_pos = reg##_##field##_SHIFT,                                             \
146                 .field_width = reg##_##field##_WIDTH,                                           \
147                 .sign = reg##_##field##_SIGNED,                                                 \
148                 .min_field_value = reg##_##field##_##min_value,
149
150 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
151         {                                               \
152                 .sign = SIGNED,                         \
153                 .visible = VISIBLE,                     \
154                 .strict = STRICT,                       \
155                 .type = TYPE,                           \
156                 .shift = SHIFT,                         \
157                 .width = WIDTH,                         \
158                 .safe_val = SAFE_VAL,                   \
159         }
160
161 /* Define a feature with unsigned values */
162 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
164
165 /* Define a feature with a signed value */
166 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
167         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
168
169 #define ARM64_FTR_END                                   \
170         {                                               \
171                 .width = 0,                             \
172         }
173
174 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
175
176 static bool __system_matches_cap(unsigned int n);
177
178 /*
179  * NOTE: Any changes to the visibility of features should be kept in
180  * sync with the documentation of the CPU feature register ABI.
181  */
182 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
183         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
189         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
197         ARM64_FTR_END,
198 };
199
200 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
201         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
204         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
205         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
206         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
207         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
208                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
209         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
210                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
211         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
212         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
213         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
214         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
215                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
216         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
217                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
218         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
219         ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
223         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
224         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
226         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
227         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
228         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
229                        FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
230         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
231                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
232         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
233         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
234         ARM64_FTR_END,
235 };
236
237 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
238         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
239         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
242         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
243         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
244         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
245                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
248         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
249         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
250         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
251         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
252         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
253         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
254         ARM64_FTR_END,
255 };
256
257 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
258         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
259                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
262         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
263                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
264         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
265         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
266                                     FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
267         ARM64_FTR_END,
268 };
269
270 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
271         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
272                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
273         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
274                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
275         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
277         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
278                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
279         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
281         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
283         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
285         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
287         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
288                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
289         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
290                        FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
291         ARM64_FTR_END,
292 };
293
294 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
295         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
296                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
297         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
298                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
299         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
300                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
301         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
302                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
303         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
304                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
305         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
306                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
307         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
308                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
309         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
311         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
313         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
315         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
316                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
317         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
318                        FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
319         ARM64_FTR_END,
320 };
321
322 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
323         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
324         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
325         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
326         /*
327          * Page size not being supported at Stage-2 is not fatal. You
328          * just give up KVM if PAGE_SIZE isn't supported there. Go fix
329          * your favourite nesting hypervisor.
330          *
331          * There is a small corner case where the hypervisor explicitly
332          * advertises a given granule size at Stage-2 (value 2) on some
333          * vCPUs, and uses the fallback to Stage-1 (value 0) for other
334          * vCPUs. Although this is not forbidden by the architecture, it
335          * indicates that the hypervisor is being silly (or buggy).
336          *
337          * We make no effort to cope with this and pretend that if these
338          * fields are inconsistent across vCPUs, then it isn't worth
339          * trying to bring KVM up.
340          */
341         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
342         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
343         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
344         /*
345          * We already refuse to boot CPUs that don't support our configured
346          * page size, so we can only detect mismatches for a page size other
347          * than the one we're currently using. Unfortunately, SoCs like this
348          * exist in the wild so, even though we don't like it, we'll have to go
349          * along with it and treat them as non-strict.
350          */
351         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
352         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
353         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
354
355         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
356         /* Linux shouldn't care about secure memory */
357         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
358         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
359         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
360         /*
361          * Differing PARange is fine as long as all peripherals and memory are mapped
362          * within the minimum PARange of all CPUs
363          */
364         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
365         ARM64_FTR_END,
366 };
367
368 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
369         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
370         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
371         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
372         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
373         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
374         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
375         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
376         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
377         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
378         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
379         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
380         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
381         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
382         ARM64_FTR_END,
383 };
384
385 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
386         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
387         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
388         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
389         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
390         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
391         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
392         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
393         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
394         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
395         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
396         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
397         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
398         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
399         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
400         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
401         ARM64_FTR_END,
402 };
403
404 static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
405         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
406         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
407         ARM64_FTR_END,
408 };
409
410 static const struct arm64_ftr_bits ftr_ctr[] = {
411         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
412         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
413         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
414         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
415         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
416         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
417         /*
418          * Linux can handle differing I-cache policies. Userspace JITs will
419          * make use of *minLine.
420          * If we have differing I-cache policies, report it as the weakest - VIPT.
421          */
422         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),        /* L1Ip */
423         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
424         ARM64_FTR_END,
425 };
426
427 static struct arm64_ftr_override __ro_after_init no_override = { };
428
429 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
430         .name           = "SYS_CTR_EL0",
431         .ftr_bits       = ftr_ctr,
432         .override       = &no_override,
433 };
434
435 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
436         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
437         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
438         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
439         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
440         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
441         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
442         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
443         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
444         ARM64_FTR_END,
445 };
446
447 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
448         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
449         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
450         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
451         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
452         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
453         /*
454          * We can instantiate multiple PMU instances with different levels
455          * of support.
456          */
457         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
458         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
459         ARM64_FTR_END,
460 };
461
462 static const struct arm64_ftr_bits ftr_mvfr0[] = {
463         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
464         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
465         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
466         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
467         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
468         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
469         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
470         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
471         ARM64_FTR_END,
472 };
473
474 static const struct arm64_ftr_bits ftr_mvfr1[] = {
475         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
476         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
477         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
478         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
479         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
480         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
481         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
482         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
483         ARM64_FTR_END,
484 };
485
486 static const struct arm64_ftr_bits ftr_mvfr2[] = {
487         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
488         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
489         ARM64_FTR_END,
490 };
491
492 static const struct arm64_ftr_bits ftr_dczid[] = {
493         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
494         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
495         ARM64_FTR_END,
496 };
497
498 static const struct arm64_ftr_bits ftr_gmid[] = {
499         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
500         ARM64_FTR_END,
501 };
502
503 static const struct arm64_ftr_bits ftr_id_isar0[] = {
504         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
505         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
506         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
507         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
508         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
509         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
510         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
511         ARM64_FTR_END,
512 };
513
514 static const struct arm64_ftr_bits ftr_id_isar5[] = {
515         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
516         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
517         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
518         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
519         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
520         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
521         ARM64_FTR_END,
522 };
523
524 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
525         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
526         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
527         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
528         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
529         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
530         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
531         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
532
533         /*
534          * SpecSEI = 1 indicates that the PE might generate an SError on an
535          * external abort on speculative read. It is safe to assume that an
536          * SError might be generated than it will not be. Hence it has been
537          * classified as FTR_HIGHER_SAFE.
538          */
539         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
540         ARM64_FTR_END,
541 };
542
543 static const struct arm64_ftr_bits ftr_id_isar4[] = {
544         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
545         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
546         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
547         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
548         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
549         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
550         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
551         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
552         ARM64_FTR_END,
553 };
554
555 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
556         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
557         ARM64_FTR_END,
558 };
559
560 static const struct arm64_ftr_bits ftr_id_isar6[] = {
561         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
562         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
563         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
564         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
565         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
566         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
567         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
568         ARM64_FTR_END,
569 };
570
571 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
572         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
573         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
574         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
575         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
576         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
577         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
578         ARM64_FTR_END,
579 };
580
581 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
582         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
583         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
584         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
585         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
586         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
587         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
588         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
589         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
590         ARM64_FTR_END,
591 };
592
593 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
594         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
595         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
596         ARM64_FTR_END,
597 };
598
599 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
600         /* [31:28] TraceFilt */
601         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
602         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
603         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
604         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
605         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
606         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
607         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
608         ARM64_FTR_END,
609 };
610
611 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
612         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
613         ARM64_FTR_END,
614 };
615
616 /*
617  * Common ftr bits for a 32bit register with all hidden, strict
618  * attributes, with 4bit feature fields and a default safe value of
619  * 0. Covers the following 32bit registers:
620  * id_isar[1-3], id_mmfr[1-3]
621  */
622 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
623         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
624         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
625         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
626         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
627         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
628         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
629         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
630         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
631         ARM64_FTR_END,
632 };
633
634 /* Table for a single 32bit feature value */
635 static const struct arm64_ftr_bits ftr_single32[] = {
636         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
637         ARM64_FTR_END,
638 };
639
640 static const struct arm64_ftr_bits ftr_raz[] = {
641         ARM64_FTR_END,
642 };
643
644 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {      \
645                 .sys_id = id,                                   \
646                 .reg =  &(struct arm64_ftr_reg){                \
647                         .name = id_str,                         \
648                         .override = (ovr),                      \
649                         .ftr_bits = &((table)[0]),              \
650         }}
651
652 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)  \
653         __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
654
655 #define ARM64_FTR_REG(id, table)                \
656         __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
657
658 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
659 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
660 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
661 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
662 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
663 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
664 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
665
666 struct arm64_ftr_override arm64_sw_feature_override;
667
668 static const struct __ftr_reg_entry {
669         u32                     sys_id;
670         struct arm64_ftr_reg    *reg;
671 } arm64_ftr_regs[] = {
672
673         /* Op1 = 0, CRn = 0, CRm = 1 */
674         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
675         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
676         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
677         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
678         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
679         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
680         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
681
682         /* Op1 = 0, CRn = 0, CRm = 2 */
683         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
684         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
685         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
686         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
687         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
688         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
689         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
690         ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
691
692         /* Op1 = 0, CRn = 0, CRm = 3 */
693         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
694         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
695         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
696         ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
697         ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
698         ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
699
700         /* Op1 = 0, CRn = 0, CRm = 4 */
701         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
702                                &id_aa64pfr0_override),
703         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
704                                &id_aa64pfr1_override),
705         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
706                                &id_aa64zfr0_override),
707         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
708                                &id_aa64smfr0_override),
709
710         /* Op1 = 0, CRn = 0, CRm = 5 */
711         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
712         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
713
714         /* Op1 = 0, CRn = 0, CRm = 6 */
715         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
716         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
717                                &id_aa64isar1_override),
718         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
719                                &id_aa64isar2_override),
720
721         /* Op1 = 0, CRn = 0, CRm = 7 */
722         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
723         ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
724                                &id_aa64mmfr1_override),
725         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
726         ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
727
728         /* Op1 = 1, CRn = 0, CRm = 0 */
729         ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
730
731         /* Op1 = 3, CRn = 0, CRm = 0 */
732         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
733         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
734
735         /* Op1 = 3, CRn = 14, CRm = 0 */
736         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
737 };
738
739 static int search_cmp_ftr_reg(const void *id, const void *regp)
740 {
741         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
742 }
743
744 /*
745  * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
746  * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
747  * ascending order of sys_id, we use binary search to find a matching
748  * entry.
749  *
750  * returns - Upon success,  matching ftr_reg entry for id.
751  *         - NULL on failure. It is upto the caller to decide
752  *           the impact of a failure.
753  */
754 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
755 {
756         const struct __ftr_reg_entry *ret;
757
758         ret = bsearch((const void *)(unsigned long)sys_id,
759                         arm64_ftr_regs,
760                         ARRAY_SIZE(arm64_ftr_regs),
761                         sizeof(arm64_ftr_regs[0]),
762                         search_cmp_ftr_reg);
763         if (ret)
764                 return ret->reg;
765         return NULL;
766 }
767
768 /*
769  * get_arm64_ftr_reg - Looks up a feature register entry using
770  * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
771  *
772  * returns - Upon success,  matching ftr_reg entry for id.
773  *         - NULL on failure but with an WARN_ON().
774  */
775 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
776 {
777         struct arm64_ftr_reg *reg;
778
779         reg = get_arm64_ftr_reg_nowarn(sys_id);
780
781         /*
782          * Requesting a non-existent register search is an error. Warn
783          * and let the caller handle it.
784          */
785         WARN_ON(!reg);
786         return reg;
787 }
788
789 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
790                                s64 ftr_val)
791 {
792         u64 mask = arm64_ftr_mask(ftrp);
793
794         reg &= ~mask;
795         reg |= (ftr_val << ftrp->shift) & mask;
796         return reg;
797 }
798
799 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
800                                 s64 cur)
801 {
802         s64 ret = 0;
803
804         switch (ftrp->type) {
805         case FTR_EXACT:
806                 ret = ftrp->safe_val;
807                 break;
808         case FTR_LOWER_SAFE:
809                 ret = min(new, cur);
810                 break;
811         case FTR_HIGHER_OR_ZERO_SAFE:
812                 if (!cur || !new)
813                         break;
814                 fallthrough;
815         case FTR_HIGHER_SAFE:
816                 ret = max(new, cur);
817                 break;
818         default:
819                 BUG();
820         }
821
822         return ret;
823 }
824
825 static void __init sort_ftr_regs(void)
826 {
827         unsigned int i;
828
829         for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
830                 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
831                 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
832                 unsigned int j = 0;
833
834                 /*
835                  * Features here must be sorted in descending order with respect
836                  * to their shift values and should not overlap with each other.
837                  */
838                 for (; ftr_bits->width != 0; ftr_bits++, j++) {
839                         unsigned int width = ftr_reg->ftr_bits[j].width;
840                         unsigned int shift = ftr_reg->ftr_bits[j].shift;
841                         unsigned int prev_shift;
842
843                         WARN((shift  + width) > 64,
844                                 "%s has invalid feature at shift %d\n",
845                                 ftr_reg->name, shift);
846
847                         /*
848                          * Skip the first feature. There is nothing to
849                          * compare against for now.
850                          */
851                         if (j == 0)
852                                 continue;
853
854                         prev_shift = ftr_reg->ftr_bits[j - 1].shift;
855                         WARN((shift + width) > prev_shift,
856                                 "%s has feature overlap at shift %d\n",
857                                 ftr_reg->name, shift);
858                 }
859
860                 /*
861                  * Skip the first register. There is nothing to
862                  * compare against for now.
863                  */
864                 if (i == 0)
865                         continue;
866                 /*
867                  * Registers here must be sorted in ascending order with respect
868                  * to sys_id for subsequent binary search in get_arm64_ftr_reg()
869                  * to work correctly.
870                  */
871                 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
872         }
873 }
874
875 /*
876  * Initialise the CPU feature register from Boot CPU values.
877  * Also initiliases the strict_mask for the register.
878  * Any bits that are not covered by an arm64_ftr_bits entry are considered
879  * RES0 for the system-wide value, and must strictly match.
880  */
881 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
882 {
883         u64 val = 0;
884         u64 strict_mask = ~0x0ULL;
885         u64 user_mask = 0;
886         u64 valid_mask = 0;
887
888         const struct arm64_ftr_bits *ftrp;
889         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
890
891         if (!reg)
892                 return;
893
894         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
895                 u64 ftr_mask = arm64_ftr_mask(ftrp);
896                 s64 ftr_new = arm64_ftr_value(ftrp, new);
897                 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
898
899                 if ((ftr_mask & reg->override->mask) == ftr_mask) {
900                         s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
901                         char *str = NULL;
902
903                         if (ftr_ovr != tmp) {
904                                 /* Unsafe, remove the override */
905                                 reg->override->mask &= ~ftr_mask;
906                                 reg->override->val &= ~ftr_mask;
907                                 tmp = ftr_ovr;
908                                 str = "ignoring override";
909                         } else if (ftr_new != tmp) {
910                                 /* Override was valid */
911                                 ftr_new = tmp;
912                                 str = "forced";
913                         } else if (ftr_ovr == tmp) {
914                                 /* Override was the safe value */
915                                 str = "already set";
916                         }
917
918                         if (str)
919                                 pr_warn("%s[%d:%d]: %s to %llx\n",
920                                         reg->name,
921                                         ftrp->shift + ftrp->width - 1,
922                                         ftrp->shift, str, tmp);
923                 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
924                         reg->override->val &= ~ftr_mask;
925                         pr_warn("%s[%d:%d]: impossible override, ignored\n",
926                                 reg->name,
927                                 ftrp->shift + ftrp->width - 1,
928                                 ftrp->shift);
929                 }
930
931                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
932
933                 valid_mask |= ftr_mask;
934                 if (!ftrp->strict)
935                         strict_mask &= ~ftr_mask;
936                 if (ftrp->visible)
937                         user_mask |= ftr_mask;
938                 else
939                         reg->user_val = arm64_ftr_set_value(ftrp,
940                                                             reg->user_val,
941                                                             ftrp->safe_val);
942         }
943
944         val &= valid_mask;
945
946         reg->sys_val = val;
947         reg->strict_mask = strict_mask;
948         reg->user_mask = user_mask;
949 }
950
951 extern const struct arm64_cpu_capabilities arm64_errata[];
952 static const struct arm64_cpu_capabilities arm64_features[];
953
954 static void __init
955 init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
956 {
957         for (; caps->matches; caps++) {
958                 if (WARN(caps->capability >= ARM64_NCAPS,
959                         "Invalid capability %d\n", caps->capability))
960                         continue;
961                 if (WARN(cpucap_ptrs[caps->capability],
962                         "Duplicate entry for capability %d\n",
963                         caps->capability))
964                         continue;
965                 cpucap_ptrs[caps->capability] = caps;
966         }
967 }
968
969 static void __init init_cpucap_indirect_list(void)
970 {
971         init_cpucap_indirect_list_from_array(arm64_features);
972         init_cpucap_indirect_list_from_array(arm64_errata);
973 }
974
975 static void __init setup_boot_cpu_capabilities(void);
976
977 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
978 {
979         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
980         init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
981         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
982         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
983         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
984         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
985         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
986         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
987         init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
988         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
989         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
990         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
991         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
992         init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
993         init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
994         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
995         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
996         init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
997         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
998         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
999         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1000 }
1001
1002 #ifdef CONFIG_ARM64_PSEUDO_NMI
1003 static bool enable_pseudo_nmi;
1004
1005 static int __init early_enable_pseudo_nmi(char *p)
1006 {
1007         return kstrtobool(p, &enable_pseudo_nmi);
1008 }
1009 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1010
1011 static __init void detect_system_supports_pseudo_nmi(void)
1012 {
1013         struct device_node *np;
1014
1015         if (!enable_pseudo_nmi)
1016                 return;
1017
1018         /*
1019          * Detect broken MediaTek firmware that doesn't properly save and
1020          * restore GIC priorities.
1021          */
1022         np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1023         if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1024                 pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1025                 enable_pseudo_nmi = false;
1026         }
1027         of_node_put(np);
1028 }
1029 #else /* CONFIG_ARM64_PSEUDO_NMI */
1030 static inline void detect_system_supports_pseudo_nmi(void) { }
1031 #endif
1032
1033 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1034 {
1035         /* Before we start using the tables, make sure it is sorted */
1036         sort_ftr_regs();
1037
1038         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1039         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1040         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1041         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1042         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1043         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1044         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1045         init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1046         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1047         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1048         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1049         init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1050         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1051         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1052         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1053         init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1054
1055         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1056                 init_32bit_cpu_features(&info->aarch32);
1057
1058         if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1059             id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1060                 unsigned long cpacr = cpacr_save_enable_kernel_sve();
1061
1062                 vec_init_vq_map(ARM64_VEC_SVE);
1063
1064                 cpacr_restore(cpacr);
1065         }
1066
1067         if (IS_ENABLED(CONFIG_ARM64_SME) &&
1068             id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1069                 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1070
1071                 /*
1072                  * We mask out SMPS since even if the hardware
1073                  * supports priorities the kernel does not at present
1074                  * and we block access to them.
1075                  */
1076                 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1077                 vec_init_vq_map(ARM64_VEC_SME);
1078
1079                 cpacr_restore(cpacr);
1080         }
1081
1082         if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1083                 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1084 }
1085
1086 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1087 {
1088         const struct arm64_ftr_bits *ftrp;
1089
1090         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1091                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1092                 s64 ftr_new = arm64_ftr_value(ftrp, new);
1093
1094                 if (ftr_cur == ftr_new)
1095                         continue;
1096                 /* Find a safe value */
1097                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1098                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1099         }
1100
1101 }
1102
1103 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1104 {
1105         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1106
1107         if (!regp)
1108                 return 0;
1109
1110         update_cpu_ftr_reg(regp, val);
1111         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1112                 return 0;
1113         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1114                         regp->name, boot, cpu, val);
1115         return 1;
1116 }
1117
1118 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1119 {
1120         const struct arm64_ftr_bits *ftrp;
1121         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1122
1123         if (!regp)
1124                 return;
1125
1126         for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1127                 if (ftrp->shift == field) {
1128                         regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1129                         break;
1130                 }
1131         }
1132
1133         /* Bogus field? */
1134         WARN_ON(!ftrp->width);
1135 }
1136
1137 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1138                                          struct cpuinfo_arm64 *boot)
1139 {
1140         static bool boot_cpu_32bit_regs_overridden = false;
1141
1142         if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1143                 return;
1144
1145         if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1146                 return;
1147
1148         boot->aarch32 = info->aarch32;
1149         init_32bit_cpu_features(&boot->aarch32);
1150         boot_cpu_32bit_regs_overridden = true;
1151 }
1152
1153 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1154                                      struct cpuinfo_32bit *boot)
1155 {
1156         int taint = 0;
1157         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1158
1159         /*
1160          * If we don't have AArch32 at EL1, then relax the strictness of
1161          * EL1-dependent register fields to avoid spurious sanity check fails.
1162          */
1163         if (!id_aa64pfr0_32bit_el1(pfr0)) {
1164                 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1165                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1166                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1167                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1168                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1169                 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1170         }
1171
1172         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1173                                       info->reg_id_dfr0, boot->reg_id_dfr0);
1174         taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1175                                       info->reg_id_dfr1, boot->reg_id_dfr1);
1176         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1177                                       info->reg_id_isar0, boot->reg_id_isar0);
1178         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1179                                       info->reg_id_isar1, boot->reg_id_isar1);
1180         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1181                                       info->reg_id_isar2, boot->reg_id_isar2);
1182         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1183                                       info->reg_id_isar3, boot->reg_id_isar3);
1184         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1185                                       info->reg_id_isar4, boot->reg_id_isar4);
1186         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1187                                       info->reg_id_isar5, boot->reg_id_isar5);
1188         taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1189                                       info->reg_id_isar6, boot->reg_id_isar6);
1190
1191         /*
1192          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1193          * ACTLR formats could differ across CPUs and therefore would have to
1194          * be trapped for virtualization anyway.
1195          */
1196         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1197                                       info->reg_id_mmfr0, boot->reg_id_mmfr0);
1198         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1199                                       info->reg_id_mmfr1, boot->reg_id_mmfr1);
1200         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1201                                       info->reg_id_mmfr2, boot->reg_id_mmfr2);
1202         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1203                                       info->reg_id_mmfr3, boot->reg_id_mmfr3);
1204         taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1205                                       info->reg_id_mmfr4, boot->reg_id_mmfr4);
1206         taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1207                                       info->reg_id_mmfr5, boot->reg_id_mmfr5);
1208         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1209                                       info->reg_id_pfr0, boot->reg_id_pfr0);
1210         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1211                                       info->reg_id_pfr1, boot->reg_id_pfr1);
1212         taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1213                                       info->reg_id_pfr2, boot->reg_id_pfr2);
1214         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1215                                       info->reg_mvfr0, boot->reg_mvfr0);
1216         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1217                                       info->reg_mvfr1, boot->reg_mvfr1);
1218         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1219                                       info->reg_mvfr2, boot->reg_mvfr2);
1220
1221         return taint;
1222 }
1223
1224 /*
1225  * Update system wide CPU feature registers with the values from a
1226  * non-boot CPU. Also performs SANITY checks to make sure that there
1227  * aren't any insane variations from that of the boot CPU.
1228  */
1229 void update_cpu_features(int cpu,
1230                          struct cpuinfo_arm64 *info,
1231                          struct cpuinfo_arm64 *boot)
1232 {
1233         int taint = 0;
1234
1235         /*
1236          * The kernel can handle differing I-cache policies, but otherwise
1237          * caches should look identical. Userspace JITs will make use of
1238          * *minLine.
1239          */
1240         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1241                                       info->reg_ctr, boot->reg_ctr);
1242
1243         /*
1244          * Userspace may perform DC ZVA instructions. Mismatched block sizes
1245          * could result in too much or too little memory being zeroed if a
1246          * process is preempted and migrated between CPUs.
1247          */
1248         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1249                                       info->reg_dczid, boot->reg_dczid);
1250
1251         /* If different, timekeeping will be broken (especially with KVM) */
1252         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1253                                       info->reg_cntfrq, boot->reg_cntfrq);
1254
1255         /*
1256          * The kernel uses self-hosted debug features and expects CPUs to
1257          * support identical debug features. We presently need CTX_CMPs, WRPs,
1258          * and BRPs to be identical.
1259          * ID_AA64DFR1 is currently RES0.
1260          */
1261         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1262                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1263         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1264                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1265         /*
1266          * Even in big.LITTLE, processors should be identical instruction-set
1267          * wise.
1268          */
1269         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1270                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1271         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1272                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1273         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1274                                       info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1275
1276         /*
1277          * Differing PARange support is fine as long as all peripherals and
1278          * memory are mapped within the minimum PARange of all CPUs.
1279          * Linux should not care about secure memory.
1280          */
1281         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1282                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1283         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1284                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1285         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1286                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1287         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1288                                       info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1289
1290         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1291                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1292         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1293                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1294
1295         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1296                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1297
1298         taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1299                                       info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1300
1301         /* Probe vector lengths */
1302         if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1303             id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1304                 if (!system_capabilities_finalized()) {
1305                         unsigned long cpacr = cpacr_save_enable_kernel_sve();
1306
1307                         vec_update_vq_map(ARM64_VEC_SVE);
1308
1309                         cpacr_restore(cpacr);
1310                 }
1311         }
1312
1313         if (IS_ENABLED(CONFIG_ARM64_SME) &&
1314             id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1315                 unsigned long cpacr = cpacr_save_enable_kernel_sme();
1316
1317                 /*
1318                  * We mask out SMPS since even if the hardware
1319                  * supports priorities the kernel does not at present
1320                  * and we block access to them.
1321                  */
1322                 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1323
1324                 /* Probe vector lengths */
1325                 if (!system_capabilities_finalized())
1326                         vec_update_vq_map(ARM64_VEC_SME);
1327
1328                 cpacr_restore(cpacr);
1329         }
1330
1331         /*
1332          * The kernel uses the LDGM/STGM instructions and the number of tags
1333          * they read/write depends on the GMID_EL1.BS field. Check that the
1334          * value is the same on all CPUs.
1335          */
1336         if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1337             id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1338                 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1339                                               info->reg_gmid, boot->reg_gmid);
1340         }
1341
1342         /*
1343          * If we don't have AArch32 at all then skip the checks entirely
1344          * as the register values may be UNKNOWN and we're not going to be
1345          * using them for anything.
1346          *
1347          * This relies on a sanitised view of the AArch64 ID registers
1348          * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1349          */
1350         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1351                 lazy_init_32bit_cpu_features(info, boot);
1352                 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1353                                                    &boot->aarch32);
1354         }
1355
1356         /*
1357          * Mismatched CPU features are a recipe for disaster. Don't even
1358          * pretend to support them.
1359          */
1360         if (taint) {
1361                 pr_warn_once("Unsupported CPU feature variation detected.\n");
1362                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1363         }
1364 }
1365
1366 u64 read_sanitised_ftr_reg(u32 id)
1367 {
1368         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1369
1370         if (!regp)
1371                 return 0;
1372         return regp->sys_val;
1373 }
1374 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1375
1376 #define read_sysreg_case(r)     \
1377         case r:         val = read_sysreg_s(r); break;
1378
1379 /*
1380  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1381  * Read the system register on the current CPU
1382  */
1383 u64 __read_sysreg_by_encoding(u32 sys_id)
1384 {
1385         struct arm64_ftr_reg *regp;
1386         u64 val;
1387
1388         switch (sys_id) {
1389         read_sysreg_case(SYS_ID_PFR0_EL1);
1390         read_sysreg_case(SYS_ID_PFR1_EL1);
1391         read_sysreg_case(SYS_ID_PFR2_EL1);
1392         read_sysreg_case(SYS_ID_DFR0_EL1);
1393         read_sysreg_case(SYS_ID_DFR1_EL1);
1394         read_sysreg_case(SYS_ID_MMFR0_EL1);
1395         read_sysreg_case(SYS_ID_MMFR1_EL1);
1396         read_sysreg_case(SYS_ID_MMFR2_EL1);
1397         read_sysreg_case(SYS_ID_MMFR3_EL1);
1398         read_sysreg_case(SYS_ID_MMFR4_EL1);
1399         read_sysreg_case(SYS_ID_MMFR5_EL1);
1400         read_sysreg_case(SYS_ID_ISAR0_EL1);
1401         read_sysreg_case(SYS_ID_ISAR1_EL1);
1402         read_sysreg_case(SYS_ID_ISAR2_EL1);
1403         read_sysreg_case(SYS_ID_ISAR3_EL1);
1404         read_sysreg_case(SYS_ID_ISAR4_EL1);
1405         read_sysreg_case(SYS_ID_ISAR5_EL1);
1406         read_sysreg_case(SYS_ID_ISAR6_EL1);
1407         read_sysreg_case(SYS_MVFR0_EL1);
1408         read_sysreg_case(SYS_MVFR1_EL1);
1409         read_sysreg_case(SYS_MVFR2_EL1);
1410
1411         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1412         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1413         read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1414         read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1415         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1416         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1417         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1418         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1419         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1420         read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1421         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1422         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1423         read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1424
1425         read_sysreg_case(SYS_CNTFRQ_EL0);
1426         read_sysreg_case(SYS_CTR_EL0);
1427         read_sysreg_case(SYS_DCZID_EL0);
1428
1429         default:
1430                 BUG();
1431                 return 0;
1432         }
1433
1434         regp  = get_arm64_ftr_reg(sys_id);
1435         if (regp) {
1436                 val &= ~regp->override->mask;
1437                 val |= (regp->override->val & regp->override->mask);
1438         }
1439
1440         return val;
1441 }
1442
1443 #include <linux/irqchip/arm-gic-v3.h>
1444
1445 static bool
1446 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1447 {
1448         return true;
1449 }
1450
1451 static bool
1452 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1453 {
1454         int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1455                                                     entry->field_width,
1456                                                     entry->sign);
1457
1458         return val >= entry->min_field_value;
1459 }
1460
1461 static u64
1462 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1463 {
1464         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1465         if (scope == SCOPE_SYSTEM)
1466                 return read_sanitised_ftr_reg(entry->sys_reg);
1467         else
1468                 return __read_sysreg_by_encoding(entry->sys_reg);
1469 }
1470
1471 static bool
1472 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1473 {
1474         int mask;
1475         struct arm64_ftr_reg *regp;
1476         u64 val = read_scoped_sysreg(entry, scope);
1477
1478         regp = get_arm64_ftr_reg(entry->sys_reg);
1479         if (!regp)
1480                 return false;
1481
1482         mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1483                                                           entry->field_pos,
1484                                                           entry->field_width);
1485         if (!mask)
1486                 return false;
1487
1488         return feature_matches(val, entry);
1489 }
1490
1491 static bool
1492 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1493 {
1494         u64 val = read_scoped_sysreg(entry, scope);
1495         return feature_matches(val, entry);
1496 }
1497
1498 const struct cpumask *system_32bit_el0_cpumask(void)
1499 {
1500         if (!system_supports_32bit_el0())
1501                 return cpu_none_mask;
1502
1503         if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1504                 return cpu_32bit_el0_mask;
1505
1506         return cpu_possible_mask;
1507 }
1508
1509 static int __init parse_32bit_el0_param(char *str)
1510 {
1511         allow_mismatched_32bit_el0 = true;
1512         return 0;
1513 }
1514 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1515
1516 static ssize_t aarch32_el0_show(struct device *dev,
1517                                 struct device_attribute *attr, char *buf)
1518 {
1519         const struct cpumask *mask = system_32bit_el0_cpumask();
1520
1521         return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1522 }
1523 static const DEVICE_ATTR_RO(aarch32_el0);
1524
1525 static int __init aarch32_el0_sysfs_init(void)
1526 {
1527         struct device *dev_root;
1528         int ret = 0;
1529
1530         if (!allow_mismatched_32bit_el0)
1531                 return 0;
1532
1533         dev_root = bus_get_dev_root(&cpu_subsys);
1534         if (dev_root) {
1535                 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1536                 put_device(dev_root);
1537         }
1538         return ret;
1539 }
1540 device_initcall(aarch32_el0_sysfs_init);
1541
1542 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1543 {
1544         if (!has_cpuid_feature(entry, scope))
1545                 return allow_mismatched_32bit_el0;
1546
1547         if (scope == SCOPE_SYSTEM)
1548                 pr_info("detected: 32-bit EL0 Support\n");
1549
1550         return true;
1551 }
1552
1553 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1554 {
1555         bool has_sre;
1556
1557         if (!has_cpuid_feature(entry, scope))
1558                 return false;
1559
1560         has_sre = gic_enable_sre();
1561         if (!has_sre)
1562                 pr_warn_once("%s present but disabled by higher exception level\n",
1563                              entry->desc);
1564
1565         return has_sre;
1566 }
1567
1568 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1569                           int scope)
1570 {
1571         u64 ctr;
1572
1573         if (scope == SCOPE_SYSTEM)
1574                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1575         else
1576                 ctr = read_cpuid_effective_cachetype();
1577
1578         return ctr & BIT(CTR_EL0_IDC_SHIFT);
1579 }
1580
1581 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1582 {
1583         /*
1584          * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1585          * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1586          * to the CTR_EL0 on this CPU and emulate it with the real/safe
1587          * value.
1588          */
1589         if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1590                 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1591 }
1592
1593 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1594                           int scope)
1595 {
1596         u64 ctr;
1597
1598         if (scope == SCOPE_SYSTEM)
1599                 ctr = arm64_ftr_reg_ctrel0.sys_val;
1600         else
1601                 ctr = read_cpuid_cachetype();
1602
1603         return ctr & BIT(CTR_EL0_DIC_SHIFT);
1604 }
1605
1606 static bool __maybe_unused
1607 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1608 {
1609         /*
1610          * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1611          * may share TLB entries with a CPU stuck in the crashed
1612          * kernel.
1613          */
1614         if (is_kdump_kernel())
1615                 return false;
1616
1617         if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1618                 return false;
1619
1620         return has_cpuid_feature(entry, scope);
1621 }
1622
1623 /*
1624  * This check is triggered during the early boot before the cpufeature
1625  * is initialised. Checking the status on the local CPU allows the boot
1626  * CPU to detect the need for non-global mappings and thus avoiding a
1627  * pagetable re-write after all the CPUs are booted. This check will be
1628  * anyway run on individual CPUs, allowing us to get the consistent
1629  * state once the SMP CPUs are up and thus make the switch to non-global
1630  * mappings if required.
1631  */
1632 bool kaslr_requires_kpti(void)
1633 {
1634         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1635                 return false;
1636
1637         /*
1638          * E0PD does a similar job to KPTI so can be used instead
1639          * where available.
1640          */
1641         if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1642                 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1643                 if (cpuid_feature_extract_unsigned_field(mmfr2,
1644                                                 ID_AA64MMFR2_EL1_E0PD_SHIFT))
1645                         return false;
1646         }
1647
1648         /*
1649          * Systems affected by Cavium erratum 24756 are incompatible
1650          * with KPTI.
1651          */
1652         if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1653                 extern const struct midr_range cavium_erratum_27456_cpus[];
1654
1655                 if (is_midr_in_range_list(read_cpuid_id(),
1656                                           cavium_erratum_27456_cpus))
1657                         return false;
1658         }
1659
1660         return kaslr_enabled();
1661 }
1662
1663 static bool __meltdown_safe = true;
1664 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1665
1666 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1667                                 int scope)
1668 {
1669         /* List of CPUs that are not vulnerable and don't need KPTI */
1670         static const struct midr_range kpti_safe_list[] = {
1671                 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1672                 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1673                 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1674                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1675                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1676                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1677                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1678                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1679                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1680                 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1681                 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1682                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1683                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1684                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1685                 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1686                 { /* sentinel */ }
1687         };
1688         char const *str = "kpti command line option";
1689         bool meltdown_safe;
1690
1691         meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1692
1693         /* Defer to CPU feature registers */
1694         if (has_cpuid_feature(entry, scope))
1695                 meltdown_safe = true;
1696
1697         if (!meltdown_safe)
1698                 __meltdown_safe = false;
1699
1700         /*
1701          * For reasons that aren't entirely clear, enabling KPTI on Cavium
1702          * ThunderX leads to apparent I-cache corruption of kernel text, which
1703          * ends as well as you might imagine. Don't even try. We cannot rely
1704          * on the cpus_have_*cap() helpers here to detect the CPU erratum
1705          * because cpucap detection order may change. However, since we know
1706          * affected CPUs are always in a homogeneous configuration, it is
1707          * safe to rely on this_cpu_has_cap() here.
1708          */
1709         if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1710                 str = "ARM64_WORKAROUND_CAVIUM_27456";
1711                 __kpti_forced = -1;
1712         }
1713
1714         /* Useful for KASLR robustness */
1715         if (kaslr_requires_kpti()) {
1716                 if (!__kpti_forced) {
1717                         str = "KASLR";
1718                         __kpti_forced = 1;
1719                 }
1720         }
1721
1722         if (cpu_mitigations_off() && !__kpti_forced) {
1723                 str = "mitigations=off";
1724                 __kpti_forced = -1;
1725         }
1726
1727         if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1728                 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1729                 return false;
1730         }
1731
1732         /* Forced? */
1733         if (__kpti_forced) {
1734                 pr_info_once("kernel page table isolation forced %s by %s\n",
1735                              __kpti_forced > 0 ? "ON" : "OFF", str);
1736                 return __kpti_forced > 0;
1737         }
1738
1739         return !meltdown_safe;
1740 }
1741
1742 #if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1743 static bool has_lpa2_at_stage1(u64 mmfr0)
1744 {
1745         unsigned int tgran;
1746
1747         tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1748                                         ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1749         return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1750 }
1751
1752 static bool has_lpa2_at_stage2(u64 mmfr0)
1753 {
1754         unsigned int tgran;
1755
1756         tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1757                                         ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1758         return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1759 }
1760
1761 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1762 {
1763         u64 mmfr0;
1764
1765         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1766         return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1767 }
1768 #else
1769 static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1770 {
1771         return false;
1772 }
1773 #endif
1774
1775 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1776 #define KPTI_NG_TEMP_VA         (-(1UL << PMD_SHIFT))
1777
1778 extern
1779 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1780                              phys_addr_t size, pgprot_t prot,
1781                              phys_addr_t (*pgtable_alloc)(int), int flags);
1782
1783 static phys_addr_t __initdata kpti_ng_temp_alloc;
1784
1785 static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1786 {
1787         kpti_ng_temp_alloc -= PAGE_SIZE;
1788         return kpti_ng_temp_alloc;
1789 }
1790
1791 static int __init __kpti_install_ng_mappings(void *__unused)
1792 {
1793         typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1794         extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1795         kpti_remap_fn *remap_fn;
1796
1797         int cpu = smp_processor_id();
1798         int levels = CONFIG_PGTABLE_LEVELS;
1799         int order = order_base_2(levels);
1800         u64 kpti_ng_temp_pgd_pa = 0;
1801         pgd_t *kpti_ng_temp_pgd;
1802         u64 alloc = 0;
1803
1804         remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1805
1806         if (!cpu) {
1807                 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1808                 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1809                 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1810
1811                 //
1812                 // Create a minimal page table hierarchy that permits us to map
1813                 // the swapper page tables temporarily as we traverse them.
1814                 //
1815                 // The physical pages are laid out as follows:
1816                 //
1817                 // +--------+-/-------+-/------ +-\\--------+
1818                 // :  PTE[] : | PMD[] : | PUD[] : || PGD[]  :
1819                 // +--------+-\-------+-\------ +-//--------+
1820                 //      ^
1821                 // The first page is mapped into this hierarchy at a PMD_SHIFT
1822                 // aligned virtual address, so that we can manipulate the PTE
1823                 // level entries while the mapping is active. The first entry
1824                 // covers the PTE[] page itself, the remaining entries are free
1825                 // to be used as a ad-hoc fixmap.
1826                 //
1827                 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1828                                         KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1829                                         kpti_ng_pgd_alloc, 0);
1830         }
1831
1832         cpu_install_idmap();
1833         remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1834         cpu_uninstall_idmap();
1835
1836         if (!cpu) {
1837                 free_pages(alloc, order);
1838                 arm64_use_ng_mappings = true;
1839         }
1840
1841         return 0;
1842 }
1843
1844 static void __init kpti_install_ng_mappings(void)
1845 {
1846         /* Check whether KPTI is going to be used */
1847         if (!arm64_kernel_unmapped_at_el0())
1848                 return;
1849
1850         /*
1851          * We don't need to rewrite the page-tables if either we've done
1852          * it already or we have KASLR enabled and therefore have not
1853          * created any global mappings at all.
1854          */
1855         if (arm64_use_ng_mappings)
1856                 return;
1857
1858         stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1859 }
1860
1861 #else
1862 static inline void kpti_install_ng_mappings(void)
1863 {
1864 }
1865 #endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1866
1867 static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1868 {
1869         if (__this_cpu_read(this_cpu_vector) == vectors) {
1870                 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1871
1872                 __this_cpu_write(this_cpu_vector, v);
1873         }
1874
1875 }
1876
1877 static int __init parse_kpti(char *str)
1878 {
1879         bool enabled;
1880         int ret = kstrtobool(str, &enabled);
1881
1882         if (ret)
1883                 return ret;
1884
1885         __kpti_forced = enabled ? 1 : -1;
1886         return 0;
1887 }
1888 early_param("kpti", parse_kpti);
1889
1890 #ifdef CONFIG_ARM64_HW_AFDBM
1891 static struct cpumask dbm_cpus __read_mostly;
1892
1893 static inline void __cpu_enable_hw_dbm(void)
1894 {
1895         u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1896
1897         write_sysreg(tcr, tcr_el1);
1898         isb();
1899         local_flush_tlb_all();
1900 }
1901
1902 static bool cpu_has_broken_dbm(void)
1903 {
1904         /* List of CPUs which have broken DBM support. */
1905         static const struct midr_range cpus[] = {
1906 #ifdef CONFIG_ARM64_ERRATUM_1024718
1907                 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1908                 /* Kryo4xx Silver (rdpe => r1p0) */
1909                 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1910 #endif
1911 #ifdef CONFIG_ARM64_ERRATUM_2051678
1912                 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1913 #endif
1914                 {},
1915         };
1916
1917         return is_midr_in_range_list(read_cpuid_id(), cpus);
1918 }
1919
1920 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1921 {
1922         return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1923                !cpu_has_broken_dbm();
1924 }
1925
1926 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1927 {
1928         if (cpu_can_use_dbm(cap)) {
1929                 __cpu_enable_hw_dbm();
1930                 cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
1931         }
1932 }
1933
1934 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1935                        int __unused)
1936 {
1937         /*
1938          * DBM is a non-conflicting feature. i.e, the kernel can safely
1939          * run a mix of CPUs with and without the feature. So, we
1940          * unconditionally enable the capability to allow any late CPU
1941          * to use the feature. We only enable the control bits on the
1942          * CPU, if it is supported.
1943          */
1944
1945         return true;
1946 }
1947
1948 #endif
1949
1950 #ifdef CONFIG_ARM64_AMU_EXTN
1951
1952 /*
1953  * The "amu_cpus" cpumask only signals that the CPU implementation for the
1954  * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1955  * information regarding all the events that it supports. When a CPU bit is
1956  * set in the cpumask, the user of this feature can only rely on the presence
1957  * of the 4 fixed counters for that CPU. But this does not guarantee that the
1958  * counters are enabled or access to these counters is enabled by code
1959  * executed at higher exception levels (firmware).
1960  */
1961 static struct cpumask amu_cpus __read_mostly;
1962
1963 bool cpu_has_amu_feat(int cpu)
1964 {
1965         return cpumask_test_cpu(cpu, &amu_cpus);
1966 }
1967
1968 int get_cpu_with_amu_feat(void)
1969 {
1970         return cpumask_any(&amu_cpus);
1971 }
1972
1973 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1974 {
1975         if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1976                 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1977
1978                 /* 0 reference values signal broken/disabled counters */
1979                 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1980                         update_freq_counters_refs();
1981         }
1982 }
1983
1984 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1985                     int __unused)
1986 {
1987         /*
1988          * The AMU extension is a non-conflicting feature: the kernel can
1989          * safely run a mix of CPUs with and without support for the
1990          * activity monitors extension. Therefore, unconditionally enable
1991          * the capability to allow any late CPU to use the feature.
1992          *
1993          * With this feature unconditionally enabled, the cpu_enable
1994          * function will be called for all CPUs that match the criteria,
1995          * including secondary and hotplugged, marking this feature as
1996          * present on that respective CPU. The enable function will also
1997          * print a detection message.
1998          */
1999
2000         return true;
2001 }
2002 #else
2003 int get_cpu_with_amu_feat(void)
2004 {
2005         return nr_cpu_ids;
2006 }
2007 #endif
2008
2009 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2010 {
2011         return is_kernel_in_hyp_mode();
2012 }
2013
2014 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2015 {
2016         /*
2017          * Copy register values that aren't redirected by hardware.
2018          *
2019          * Before code patching, we only set tpidr_el1, all CPUs need to copy
2020          * this value to tpidr_el2 before we patch the code. Once we've done
2021          * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2022          * do anything here.
2023          */
2024         if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2025                 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2026 }
2027
2028 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2029                                     int scope)
2030 {
2031         if (kvm_get_mode() != KVM_MODE_NV)
2032                 return false;
2033
2034         if (!has_cpuid_feature(cap, scope)) {
2035                 pr_warn("unavailable: %s\n", cap->desc);
2036                 return false;
2037         }
2038
2039         return true;
2040 }
2041
2042 static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2043                           int __unused)
2044 {
2045         u64 val;
2046
2047         val = read_sysreg(id_aa64mmfr1_el1);
2048         if (!cpuid_feature_extract_unsigned_field(val, ID_AA64MMFR1_EL1_VH_SHIFT))
2049                 return false;
2050
2051         val = arm64_sw_feature_override.val & arm64_sw_feature_override.mask;
2052         return cpuid_feature_extract_unsigned_field(val, ARM64_SW_FEATURE_OVERRIDE_HVHE);
2053 }
2054
2055 #ifdef CONFIG_ARM64_PAN
2056 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2057 {
2058         /*
2059          * We modify PSTATE. This won't work from irq context as the PSTATE
2060          * is discarded once we return from the exception.
2061          */
2062         WARN_ON_ONCE(in_interrupt());
2063
2064         sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2065         set_pstate_pan(1);
2066 }
2067 #endif /* CONFIG_ARM64_PAN */
2068
2069 #ifdef CONFIG_ARM64_RAS_EXTN
2070 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2071 {
2072         /* Firmware may have left a deferred SError in this register. */
2073         write_sysreg_s(0, SYS_DISR_EL1);
2074 }
2075 #endif /* CONFIG_ARM64_RAS_EXTN */
2076
2077 #ifdef CONFIG_ARM64_PTR_AUTH
2078 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2079 {
2080         int boot_val, sec_val;
2081
2082         /* We don't expect to be called with SCOPE_SYSTEM */
2083         WARN_ON(scope == SCOPE_SYSTEM);
2084         /*
2085          * The ptr-auth feature levels are not intercompatible with lower
2086          * levels. Hence we must match ptr-auth feature level of the secondary
2087          * CPUs with that of the boot CPU. The level of boot cpu is fetched
2088          * from the sanitised register whereas direct register read is done for
2089          * the secondary CPUs.
2090          * The sanitised feature state is guaranteed to match that of the
2091          * boot CPU as a mismatched secondary CPU is parked before it gets
2092          * a chance to update the state, with the capability.
2093          */
2094         boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2095                                                entry->field_pos, entry->sign);
2096         if (scope & SCOPE_BOOT_CPU)
2097                 return boot_val >= entry->min_field_value;
2098         /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2099         sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2100                                               entry->field_pos, entry->sign);
2101         return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2102 }
2103
2104 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2105                                      int scope)
2106 {
2107         bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2108         bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2109         bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2110
2111         return apa || apa3 || api;
2112 }
2113
2114 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2115                              int __unused)
2116 {
2117         bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2118         bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2119         bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2120
2121         return gpa || gpa3 || gpi;
2122 }
2123 #endif /* CONFIG_ARM64_PTR_AUTH */
2124
2125 #ifdef CONFIG_ARM64_E0PD
2126 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2127 {
2128         if (this_cpu_has_cap(ARM64_HAS_E0PD))
2129                 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2130 }
2131 #endif /* CONFIG_ARM64_E0PD */
2132
2133 #ifdef CONFIG_ARM64_PSEUDO_NMI
2134 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2135                                    int scope)
2136 {
2137         /*
2138          * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2139          * feature, so will be detected earlier.
2140          */
2141         BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2142         if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2143                 return false;
2144
2145         return enable_pseudo_nmi;
2146 }
2147
2148 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2149                                       int scope)
2150 {
2151         /*
2152          * If we're not using priority masking then we won't be poking PMR_EL1,
2153          * and there's no need to relax synchronization of writes to it, and
2154          * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2155          * that.
2156          *
2157          * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2158          * feature, so will be detected earlier.
2159          */
2160         BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2161         if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2162                 return false;
2163
2164         /*
2165          * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2166          * hint for interrupt distribution, a DSB is not necessary when
2167          * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2168          *
2169          * Linux itself doesn't use 1:N distribution, so has no need to
2170          * set PMHE. The only reason to have it set is if EL3 requires it
2171          * (and we can't change it).
2172          */
2173         return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2174 }
2175 #endif
2176
2177 #ifdef CONFIG_ARM64_BTI
2178 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2179 {
2180         /*
2181          * Use of X16/X17 for tail-calls and trampolines that jump to
2182          * function entry points using BR is a requirement for
2183          * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2184          * So, be strict and forbid other BRs using other registers to
2185          * jump onto a PACIxSP instruction:
2186          */
2187         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2188         isb();
2189 }
2190 #endif /* CONFIG_ARM64_BTI */
2191
2192 #ifdef CONFIG_ARM64_MTE
2193 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2194 {
2195         sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2196
2197         mte_cpu_setup();
2198
2199         /*
2200          * Clear the tags in the zero page. This needs to be done via the
2201          * linear map which has the Tagged attribute.
2202          */
2203         if (try_page_mte_tagging(ZERO_PAGE(0))) {
2204                 mte_clear_page_tags(lm_alias(empty_zero_page));
2205                 set_page_mte_tagged(ZERO_PAGE(0));
2206         }
2207
2208         kasan_init_hw_tags_cpu();
2209 }
2210 #endif /* CONFIG_ARM64_MTE */
2211
2212 static void user_feature_fixup(void)
2213 {
2214         if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2215                 struct arm64_ftr_reg *regp;
2216
2217                 regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2218                 if (regp)
2219                         regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2220         }
2221 }
2222
2223 static void elf_hwcap_fixup(void)
2224 {
2225 #ifdef CONFIG_COMPAT
2226         if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2227                 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2228 #endif /* CONFIG_COMPAT */
2229 }
2230
2231 #ifdef CONFIG_KVM
2232 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2233 {
2234         return kvm_get_mode() == KVM_MODE_PROTECTED;
2235 }
2236 #endif /* CONFIG_KVM */
2237
2238 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2239 {
2240         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2241 }
2242
2243 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2244 {
2245         set_pstate_dit(1);
2246 }
2247
2248 static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2249 {
2250         sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2251 }
2252
2253 /* Internal helper functions to match cpu capability type */
2254 static bool
2255 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2256 {
2257         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2258 }
2259
2260 static bool
2261 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2262 {
2263         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2264 }
2265
2266 static bool
2267 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2268 {
2269         return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2270 }
2271
2272 static const struct arm64_cpu_capabilities arm64_features[] = {
2273         {
2274                 .capability = ARM64_ALWAYS_BOOT,
2275                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2276                 .matches = has_always,
2277         },
2278         {
2279                 .capability = ARM64_ALWAYS_SYSTEM,
2280                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2281                 .matches = has_always,
2282         },
2283         {
2284                 .desc = "GIC system register CPU interface",
2285                 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2286                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2287                 .matches = has_useable_gicv3_cpuif,
2288                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2289         },
2290         {
2291                 .desc = "Enhanced Counter Virtualization",
2292                 .capability = ARM64_HAS_ECV,
2293                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2294                 .matches = has_cpuid_feature,
2295                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2296         },
2297         {
2298                 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2299                 .capability = ARM64_HAS_ECV_CNTPOFF,
2300                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2301                 .matches = has_cpuid_feature,
2302                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2303         },
2304 #ifdef CONFIG_ARM64_PAN
2305         {
2306                 .desc = "Privileged Access Never",
2307                 .capability = ARM64_HAS_PAN,
2308                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2309                 .matches = has_cpuid_feature,
2310                 .cpu_enable = cpu_enable_pan,
2311                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2312         },
2313 #endif /* CONFIG_ARM64_PAN */
2314 #ifdef CONFIG_ARM64_EPAN
2315         {
2316                 .desc = "Enhanced Privileged Access Never",
2317                 .capability = ARM64_HAS_EPAN,
2318                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2319                 .matches = has_cpuid_feature,
2320                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2321         },
2322 #endif /* CONFIG_ARM64_EPAN */
2323 #ifdef CONFIG_ARM64_LSE_ATOMICS
2324         {
2325                 .desc = "LSE atomic instructions",
2326                 .capability = ARM64_HAS_LSE_ATOMICS,
2327                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2328                 .matches = has_cpuid_feature,
2329                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2330         },
2331 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2332         {
2333                 .desc = "Virtualization Host Extensions",
2334                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2335                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2336                 .matches = runs_at_el2,
2337                 .cpu_enable = cpu_copy_el2regs,
2338         },
2339         {
2340                 .desc = "Nested Virtualization Support",
2341                 .capability = ARM64_HAS_NESTED_VIRT,
2342                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2343                 .matches = has_nested_virt_support,
2344                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2345         },
2346         {
2347                 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2348                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2349                 .matches = has_32bit_el0,
2350                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2351         },
2352 #ifdef CONFIG_KVM
2353         {
2354                 .desc = "32-bit EL1 Support",
2355                 .capability = ARM64_HAS_32BIT_EL1,
2356                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2357                 .matches = has_cpuid_feature,
2358                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2359         },
2360         {
2361                 .desc = "Protected KVM",
2362                 .capability = ARM64_KVM_PROTECTED_MODE,
2363                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2364                 .matches = is_kvm_protected_mode,
2365         },
2366         {
2367                 .desc = "HCRX_EL2 register",
2368                 .capability = ARM64_HAS_HCX,
2369                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2370                 .matches = has_cpuid_feature,
2371                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2372         },
2373 #endif
2374         {
2375                 .desc = "Kernel page table isolation (KPTI)",
2376                 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2377                 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2378                 .cpu_enable = cpu_enable_kpti,
2379                 .matches = unmap_kernel_at_el0,
2380                 /*
2381                  * The ID feature fields below are used to indicate that
2382                  * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2383                  * more details.
2384                  */
2385                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2386         },
2387         {
2388                 .capability = ARM64_HAS_FPSIMD,
2389                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2390                 .matches = has_cpuid_feature,
2391                 .cpu_enable = cpu_enable_fpsimd,
2392                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2393         },
2394 #ifdef CONFIG_ARM64_PMEM
2395         {
2396                 .desc = "Data cache clean to Point of Persistence",
2397                 .capability = ARM64_HAS_DCPOP,
2398                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2399                 .matches = has_cpuid_feature,
2400                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2401         },
2402         {
2403                 .desc = "Data cache clean to Point of Deep Persistence",
2404                 .capability = ARM64_HAS_DCPODP,
2405                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2406                 .matches = has_cpuid_feature,
2407                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2408         },
2409 #endif
2410 #ifdef CONFIG_ARM64_SVE
2411         {
2412                 .desc = "Scalable Vector Extension",
2413                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2414                 .capability = ARM64_SVE,
2415                 .cpu_enable = cpu_enable_sve,
2416                 .matches = has_cpuid_feature,
2417                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2418         },
2419 #endif /* CONFIG_ARM64_SVE */
2420 #ifdef CONFIG_ARM64_RAS_EXTN
2421         {
2422                 .desc = "RAS Extension Support",
2423                 .capability = ARM64_HAS_RAS_EXTN,
2424                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2425                 .matches = has_cpuid_feature,
2426                 .cpu_enable = cpu_clear_disr,
2427                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2428         },
2429 #endif /* CONFIG_ARM64_RAS_EXTN */
2430 #ifdef CONFIG_ARM64_AMU_EXTN
2431         {
2432                 .desc = "Activity Monitors Unit (AMU)",
2433                 .capability = ARM64_HAS_AMU_EXTN,
2434                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2435                 .matches = has_amu,
2436                 .cpu_enable = cpu_amu_enable,
2437                 .cpus = &amu_cpus,
2438                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2439         },
2440 #endif /* CONFIG_ARM64_AMU_EXTN */
2441         {
2442                 .desc = "Data cache clean to the PoU not required for I/D coherence",
2443                 .capability = ARM64_HAS_CACHE_IDC,
2444                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2445                 .matches = has_cache_idc,
2446                 .cpu_enable = cpu_emulate_effective_ctr,
2447         },
2448         {
2449                 .desc = "Instruction cache invalidation not required for I/D coherence",
2450                 .capability = ARM64_HAS_CACHE_DIC,
2451                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2452                 .matches = has_cache_dic,
2453         },
2454         {
2455                 .desc = "Stage-2 Force Write-Back",
2456                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2457                 .capability = ARM64_HAS_STAGE2_FWB,
2458                 .matches = has_cpuid_feature,
2459                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2460         },
2461         {
2462                 .desc = "ARMv8.4 Translation Table Level",
2463                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2464                 .capability = ARM64_HAS_ARMv8_4_TTL,
2465                 .matches = has_cpuid_feature,
2466                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2467         },
2468         {
2469                 .desc = "TLB range maintenance instructions",
2470                 .capability = ARM64_HAS_TLB_RANGE,
2471                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2472                 .matches = has_cpuid_feature,
2473                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2474         },
2475 #ifdef CONFIG_ARM64_HW_AFDBM
2476         {
2477                 .desc = "Hardware dirty bit management",
2478                 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2479                 .capability = ARM64_HW_DBM,
2480                 .matches = has_hw_dbm,
2481                 .cpu_enable = cpu_enable_hw_dbm,
2482                 .cpus = &dbm_cpus,
2483                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2484         },
2485 #endif
2486         {
2487                 .desc = "CRC32 instructions",
2488                 .capability = ARM64_HAS_CRC32,
2489                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2490                 .matches = has_cpuid_feature,
2491                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2492         },
2493         {
2494                 .desc = "Speculative Store Bypassing Safe (SSBS)",
2495                 .capability = ARM64_SSBS,
2496                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2497                 .matches = has_cpuid_feature,
2498                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2499         },
2500 #ifdef CONFIG_ARM64_CNP
2501         {
2502                 .desc = "Common not Private translations",
2503                 .capability = ARM64_HAS_CNP,
2504                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2505                 .matches = has_useable_cnp,
2506                 .cpu_enable = cpu_enable_cnp,
2507                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2508         },
2509 #endif
2510         {
2511                 .desc = "Speculation barrier (SB)",
2512                 .capability = ARM64_HAS_SB,
2513                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2514                 .matches = has_cpuid_feature,
2515                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2516         },
2517 #ifdef CONFIG_ARM64_PTR_AUTH
2518         {
2519                 .desc = "Address authentication (architected QARMA5 algorithm)",
2520                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2521                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2522                 .matches = has_address_auth_cpucap,
2523                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2524         },
2525         {
2526                 .desc = "Address authentication (architected QARMA3 algorithm)",
2527                 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2528                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2529                 .matches = has_address_auth_cpucap,
2530                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2531         },
2532         {
2533                 .desc = "Address authentication (IMP DEF algorithm)",
2534                 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2535                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2536                 .matches = has_address_auth_cpucap,
2537                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2538         },
2539         {
2540                 .capability = ARM64_HAS_ADDRESS_AUTH,
2541                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2542                 .matches = has_address_auth_metacap,
2543         },
2544         {
2545                 .desc = "Generic authentication (architected QARMA5 algorithm)",
2546                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2547                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2548                 .matches = has_cpuid_feature,
2549                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2550         },
2551         {
2552                 .desc = "Generic authentication (architected QARMA3 algorithm)",
2553                 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2554                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2555                 .matches = has_cpuid_feature,
2556                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2557         },
2558         {
2559                 .desc = "Generic authentication (IMP DEF algorithm)",
2560                 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2561                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2562                 .matches = has_cpuid_feature,
2563                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2564         },
2565         {
2566                 .capability = ARM64_HAS_GENERIC_AUTH,
2567                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2568                 .matches = has_generic_auth,
2569         },
2570 #endif /* CONFIG_ARM64_PTR_AUTH */
2571 #ifdef CONFIG_ARM64_PSEUDO_NMI
2572         {
2573                 /*
2574                  * Depends on having GICv3
2575                  */
2576                 .desc = "IRQ priority masking",
2577                 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2578                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2579                 .matches = can_use_gic_priorities,
2580         },
2581         {
2582                 /*
2583                  * Depends on ARM64_HAS_GIC_PRIO_MASKING
2584                  */
2585                 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2586                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2587                 .matches = has_gic_prio_relaxed_sync,
2588         },
2589 #endif
2590 #ifdef CONFIG_ARM64_E0PD
2591         {
2592                 .desc = "E0PD",
2593                 .capability = ARM64_HAS_E0PD,
2594                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2595                 .cpu_enable = cpu_enable_e0pd,
2596                 .matches = has_cpuid_feature,
2597                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2598         },
2599 #endif
2600         {
2601                 .desc = "Random Number Generator",
2602                 .capability = ARM64_HAS_RNG,
2603                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2604                 .matches = has_cpuid_feature,
2605                 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2606         },
2607 #ifdef CONFIG_ARM64_BTI
2608         {
2609                 .desc = "Branch Target Identification",
2610                 .capability = ARM64_BTI,
2611 #ifdef CONFIG_ARM64_BTI_KERNEL
2612                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2613 #else
2614                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2615 #endif
2616                 .matches = has_cpuid_feature,
2617                 .cpu_enable = bti_enable,
2618                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2619         },
2620 #endif
2621 #ifdef CONFIG_ARM64_MTE
2622         {
2623                 .desc = "Memory Tagging Extension",
2624                 .capability = ARM64_MTE,
2625                 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2626                 .matches = has_cpuid_feature,
2627                 .cpu_enable = cpu_enable_mte,
2628                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2629         },
2630         {
2631                 .desc = "Asymmetric MTE Tag Check Fault",
2632                 .capability = ARM64_MTE_ASYMM,
2633                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2634                 .matches = has_cpuid_feature,
2635                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2636         },
2637 #endif /* CONFIG_ARM64_MTE */
2638         {
2639                 .desc = "RCpc load-acquire (LDAPR)",
2640                 .capability = ARM64_HAS_LDAPR,
2641                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2642                 .matches = has_cpuid_feature,
2643                 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2644         },
2645         {
2646                 .desc = "Fine Grained Traps",
2647                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2648                 .capability = ARM64_HAS_FGT,
2649                 .matches = has_cpuid_feature,
2650                 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2651         },
2652 #ifdef CONFIG_ARM64_SME
2653         {
2654                 .desc = "Scalable Matrix Extension",
2655                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2656                 .capability = ARM64_SME,
2657                 .matches = has_cpuid_feature,
2658                 .cpu_enable = cpu_enable_sme,
2659                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2660         },
2661         /* FA64 should be sorted after the base SME capability */
2662         {
2663                 .desc = "FA64",
2664                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2665                 .capability = ARM64_SME_FA64,
2666                 .matches = has_cpuid_feature,
2667                 .cpu_enable = cpu_enable_fa64,
2668                 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2669         },
2670         {
2671                 .desc = "SME2",
2672                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2673                 .capability = ARM64_SME2,
2674                 .matches = has_cpuid_feature,
2675                 .cpu_enable = cpu_enable_sme2,
2676                 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2677         },
2678 #endif /* CONFIG_ARM64_SME */
2679         {
2680                 .desc = "WFx with timeout",
2681                 .capability = ARM64_HAS_WFXT,
2682                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2683                 .matches = has_cpuid_feature,
2684                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2685         },
2686         {
2687                 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2688                 .capability = ARM64_HAS_TIDCP1,
2689                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2690                 .matches = has_cpuid_feature,
2691                 .cpu_enable = cpu_trap_el0_impdef,
2692                 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2693         },
2694         {
2695                 .desc = "Data independent timing control (DIT)",
2696                 .capability = ARM64_HAS_DIT,
2697                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2698                 .matches = has_cpuid_feature,
2699                 .cpu_enable = cpu_enable_dit,
2700                 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2701         },
2702         {
2703                 .desc = "Memory Copy and Memory Set instructions",
2704                 .capability = ARM64_HAS_MOPS,
2705                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2706                 .matches = has_cpuid_feature,
2707                 .cpu_enable = cpu_enable_mops,
2708                 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2709         },
2710         {
2711                 .capability = ARM64_HAS_TCR2,
2712                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2713                 .matches = has_cpuid_feature,
2714                 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2715         },
2716         {
2717                 .desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2718                 .capability = ARM64_HAS_S1PIE,
2719                 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2720                 .matches = has_cpuid_feature,
2721                 ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2722         },
2723         {
2724                 .desc = "VHE for hypervisor only",
2725                 .capability = ARM64_KVM_HVHE,
2726                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2727                 .matches = hvhe_possible,
2728         },
2729         {
2730                 .desc = "Enhanced Virtualization Traps",
2731                 .capability = ARM64_HAS_EVT,
2732                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2733                 .matches = has_cpuid_feature,
2734                 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2735         },
2736         {
2737                 .desc = "52-bit Virtual Addressing for KVM (LPA2)",
2738                 .capability = ARM64_HAS_LPA2,
2739                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2740                 .matches = has_lpa2,
2741         },
2742         {},
2743 };
2744
2745 #define HWCAP_CPUID_MATCH(reg, field, min_value)                        \
2746                 .matches = has_user_cpuid_feature,                      \
2747                 ARM64_CPUID_FIELDS(reg, field, min_value)
2748
2749 #define __HWCAP_CAP(name, cap_type, cap)                                        \
2750                 .desc = name,                                                   \
2751                 .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2752                 .hwcap_type = cap_type,                                         \
2753                 .hwcap = cap,                                                   \
2754
2755 #define HWCAP_CAP(reg, field, min_value, cap_type, cap)         \
2756         {                                                                       \
2757                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2758                 HWCAP_CPUID_MATCH(reg, field, min_value)                \
2759         }
2760
2761 #define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2762         {                                                                       \
2763                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2764                 .matches = cpucap_multi_entry_cap_matches,                      \
2765                 .match_list = list,                                             \
2766         }
2767
2768 #define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2769         {                                                                       \
2770                 __HWCAP_CAP(#cap, cap_type, cap)                                \
2771                 .matches = match,                                               \
2772         }
2773
2774 #ifdef CONFIG_ARM64_PTR_AUTH
2775 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2776         {
2777                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2778         },
2779         {
2780                 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2781         },
2782         {
2783                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2784         },
2785         {},
2786 };
2787
2788 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2789         {
2790                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2791         },
2792         {
2793                 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2794         },
2795         {
2796                 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2797         },
2798         {},
2799 };
2800 #endif
2801
2802 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2803         HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2804         HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2805         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2806         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2807         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2808         HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2809         HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2810         HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
2811         HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2812         HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2813         HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2814         HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2815         HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2816         HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2817         HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2818         HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2819         HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2820         HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2821         HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2822         HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2823         HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2824         HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2825         HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2826         HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2827         HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2828         HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2829         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2830         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2831         HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
2832         HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2833         HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2834         HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2835         HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2836         HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2837         HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2838         HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2839 #ifdef CONFIG_ARM64_SVE
2840         HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2841         HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2842         HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2843         HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2844         HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2845         HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2846         HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
2847         HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2848         HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2849         HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2850         HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2851         HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2852         HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2853         HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2854 #endif
2855         HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2856 #ifdef CONFIG_ARM64_BTI
2857         HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2858 #endif
2859 #ifdef CONFIG_ARM64_PTR_AUTH
2860         HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2861         HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2862 #endif
2863 #ifdef CONFIG_ARM64_MTE
2864         HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2865         HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2866 #endif /* CONFIG_ARM64_MTE */
2867         HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
2868         HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
2869         HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2870         HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2871         HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2872         HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2873         HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
2874         HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
2875 #ifdef CONFIG_ARM64_SME
2876         HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2877         HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2878         HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
2879         HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
2880         HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2881         HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2882         HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
2883         HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
2884         HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
2885         HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2886         HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2887         HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2888         HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
2889         HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2890 #endif /* CONFIG_ARM64_SME */
2891         {},
2892 };
2893
2894 #ifdef CONFIG_COMPAT
2895 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2896 {
2897         /*
2898          * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2899          * in line with that of arm32 as in vfp_init(). We make sure that the
2900          * check is future proof, by making sure value is non-zero.
2901          */
2902         u32 mvfr1;
2903
2904         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2905         if (scope == SCOPE_SYSTEM)
2906                 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2907         else
2908                 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2909
2910         return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
2911                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
2912                 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
2913 }
2914 #endif
2915
2916 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2917 #ifdef CONFIG_COMPAT
2918         HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2919         HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2920         /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2921         HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2922         HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2923         HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
2924         HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
2925         HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2926         HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2927         HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2928         HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2929         HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2930         HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
2931         HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
2932         HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
2933         HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
2934         HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
2935         HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
2936 #endif
2937         {},
2938 };
2939
2940 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2941 {
2942         switch (cap->hwcap_type) {
2943         case CAP_HWCAP:
2944                 cpu_set_feature(cap->hwcap);
2945                 break;
2946 #ifdef CONFIG_COMPAT
2947         case CAP_COMPAT_HWCAP:
2948                 compat_elf_hwcap |= (u32)cap->hwcap;
2949                 break;
2950         case CAP_COMPAT_HWCAP2:
2951                 compat_elf_hwcap2 |= (u32)cap->hwcap;
2952                 break;
2953 #endif
2954         default:
2955                 WARN_ON(1);
2956                 break;
2957         }
2958 }
2959
2960 /* Check if we have a particular HWCAP enabled */
2961 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2962 {
2963         bool rc;
2964
2965         switch (cap->hwcap_type) {
2966         case CAP_HWCAP:
2967                 rc = cpu_have_feature(cap->hwcap);
2968                 break;
2969 #ifdef CONFIG_COMPAT
2970         case CAP_COMPAT_HWCAP:
2971                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2972                 break;
2973         case CAP_COMPAT_HWCAP2:
2974                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2975                 break;
2976 #endif
2977         default:
2978                 WARN_ON(1);
2979                 rc = false;
2980         }
2981
2982         return rc;
2983 }
2984
2985 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2986 {
2987         /* We support emulation of accesses to CPU ID feature registers */
2988         cpu_set_named_feature(CPUID);
2989         for (; hwcaps->matches; hwcaps++)
2990                 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2991                         cap_set_elf_hwcap(hwcaps);
2992 }
2993
2994 static void update_cpu_capabilities(u16 scope_mask)
2995 {
2996         int i;
2997         const struct arm64_cpu_capabilities *caps;
2998
2999         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3000         for (i = 0; i < ARM64_NCAPS; i++) {
3001                 caps = cpucap_ptrs[i];
3002                 if (!caps || !(caps->type & scope_mask) ||
3003                     cpus_have_cap(caps->capability) ||
3004                     !caps->matches(caps, cpucap_default_scope(caps)))
3005                         continue;
3006
3007                 if (caps->desc && !caps->cpus)
3008                         pr_info("detected: %s\n", caps->desc);
3009
3010                 __set_bit(caps->capability, system_cpucaps);
3011
3012                 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3013                         set_bit(caps->capability, boot_cpucaps);
3014         }
3015 }
3016
3017 /*
3018  * Enable all the available capabilities on this CPU. The capabilities
3019  * with BOOT_CPU scope are handled separately and hence skipped here.
3020  */
3021 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3022 {
3023         int i;
3024         u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3025
3026         for_each_available_cap(i) {
3027                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3028
3029                 if (WARN_ON(!cap))
3030                         continue;
3031
3032                 if (!(cap->type & non_boot_scope))
3033                         continue;
3034
3035                 if (cap->cpu_enable)
3036                         cap->cpu_enable(cap);
3037         }
3038         return 0;
3039 }
3040
3041 /*
3042  * Run through the enabled capabilities and enable() it on all active
3043  * CPUs
3044  */
3045 static void __init enable_cpu_capabilities(u16 scope_mask)
3046 {
3047         int i;
3048         const struct arm64_cpu_capabilities *caps;
3049         bool boot_scope;
3050
3051         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3052         boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3053
3054         for (i = 0; i < ARM64_NCAPS; i++) {
3055                 unsigned int num;
3056
3057                 caps = cpucap_ptrs[i];
3058                 if (!caps || !(caps->type & scope_mask))
3059                         continue;
3060                 num = caps->capability;
3061                 if (!cpus_have_cap(num))
3062                         continue;
3063
3064                 if (boot_scope && caps->cpu_enable)
3065                         /*
3066                          * Capabilities with SCOPE_BOOT_CPU scope are finalised
3067                          * before any secondary CPU boots. Thus, each secondary
3068                          * will enable the capability as appropriate via
3069                          * check_local_cpu_capabilities(). The only exception is
3070                          * the boot CPU, for which the capability must be
3071                          * enabled here. This approach avoids costly
3072                          * stop_machine() calls for this case.
3073                          */
3074                         caps->cpu_enable(caps);
3075         }
3076
3077         /*
3078          * For all non-boot scope capabilities, use stop_machine()
3079          * as it schedules the work allowing us to modify PSTATE,
3080          * instead of on_each_cpu() which uses an IPI, giving us a
3081          * PSTATE that disappears when we return.
3082          */
3083         if (!boot_scope)
3084                 stop_machine(cpu_enable_non_boot_scope_capabilities,
3085                              NULL, cpu_online_mask);
3086 }
3087
3088 /*
3089  * Run through the list of capabilities to check for conflicts.
3090  * If the system has already detected a capability, take necessary
3091  * action on this CPU.
3092  */
3093 static void verify_local_cpu_caps(u16 scope_mask)
3094 {
3095         int i;
3096         bool cpu_has_cap, system_has_cap;
3097         const struct arm64_cpu_capabilities *caps;
3098
3099         scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3100
3101         for (i = 0; i < ARM64_NCAPS; i++) {
3102                 caps = cpucap_ptrs[i];
3103                 if (!caps || !(caps->type & scope_mask))
3104                         continue;
3105
3106                 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3107                 system_has_cap = cpus_have_cap(caps->capability);
3108
3109                 if (system_has_cap) {
3110                         /*
3111                          * Check if the new CPU misses an advertised feature,
3112                          * which is not safe to miss.
3113                          */
3114                         if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3115                                 break;
3116                         /*
3117                          * We have to issue cpu_enable() irrespective of
3118                          * whether the CPU has it or not, as it is enabeld
3119                          * system wide. It is upto the call back to take
3120                          * appropriate action on this CPU.
3121                          */
3122                         if (caps->cpu_enable)
3123                                 caps->cpu_enable(caps);
3124                 } else {
3125                         /*
3126                          * Check if the CPU has this capability if it isn't
3127                          * safe to have when the system doesn't.
3128                          */
3129                         if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3130                                 break;
3131                 }
3132         }
3133
3134         if (i < ARM64_NCAPS) {
3135                 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3136                         smp_processor_id(), caps->capability,
3137                         caps->desc, system_has_cap, cpu_has_cap);
3138
3139                 if (cpucap_panic_on_conflict(caps))
3140                         cpu_panic_kernel();
3141                 else
3142                         cpu_die_early();
3143         }
3144 }
3145
3146 /*
3147  * Check for CPU features that are used in early boot
3148  * based on the Boot CPU value.
3149  */
3150 static void check_early_cpu_features(void)
3151 {
3152         verify_cpu_asid_bits();
3153
3154         verify_local_cpu_caps(SCOPE_BOOT_CPU);
3155 }
3156
3157 static void
3158 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3159 {
3160
3161         for (; caps->matches; caps++)
3162                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3163                         pr_crit("CPU%d: missing HWCAP: %s\n",
3164                                         smp_processor_id(), caps->desc);
3165                         cpu_die_early();
3166                 }
3167 }
3168
3169 static void verify_local_elf_hwcaps(void)
3170 {
3171         __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3172
3173         if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3174                 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3175 }
3176
3177 static void verify_sve_features(void)
3178 {
3179         unsigned long cpacr = cpacr_save_enable_kernel_sve();
3180
3181         if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3182                 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3183                         smp_processor_id());
3184                 cpu_die_early();
3185         }
3186
3187         cpacr_restore(cpacr);
3188 }
3189
3190 static void verify_sme_features(void)
3191 {
3192         unsigned long cpacr = cpacr_save_enable_kernel_sme();
3193
3194         if (vec_verify_vq_map(ARM64_VEC_SME)) {
3195                 pr_crit("CPU%d: SME: vector length support mismatch\n",
3196                         smp_processor_id());
3197                 cpu_die_early();
3198         }
3199
3200         cpacr_restore(cpacr);
3201 }
3202
3203 static void verify_hyp_capabilities(void)
3204 {
3205         u64 safe_mmfr1, mmfr0, mmfr1;
3206         int parange, ipa_max;
3207         unsigned int safe_vmid_bits, vmid_bits;
3208
3209         if (!IS_ENABLED(CONFIG_KVM))
3210                 return;
3211
3212         safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3213         mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3214         mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3215
3216         /* Verify VMID bits */
3217         safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3218         vmid_bits = get_vmid_bits(mmfr1);
3219         if (vmid_bits < safe_vmid_bits) {
3220                 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3221                 cpu_die_early();
3222         }
3223
3224         /* Verify IPA range */
3225         parange = cpuid_feature_extract_unsigned_field(mmfr0,
3226                                 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3227         ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3228         if (ipa_max < get_kvm_ipa_limit()) {
3229                 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3230                 cpu_die_early();
3231         }
3232 }
3233
3234 /*
3235  * Run through the enabled system capabilities and enable() it on this CPU.
3236  * The capabilities were decided based on the available CPUs at the boot time.
3237  * Any new CPU should match the system wide status of the capability. If the
3238  * new CPU doesn't have a capability which the system now has enabled, we
3239  * cannot do anything to fix it up and could cause unexpected failures. So
3240  * we park the CPU.
3241  */
3242 static void verify_local_cpu_capabilities(void)
3243 {
3244         /*
3245          * The capabilities with SCOPE_BOOT_CPU are checked from
3246          * check_early_cpu_features(), as they need to be verified
3247          * on all secondary CPUs.
3248          */
3249         verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3250         verify_local_elf_hwcaps();
3251
3252         if (system_supports_sve())
3253                 verify_sve_features();
3254
3255         if (system_supports_sme())
3256                 verify_sme_features();
3257
3258         if (is_hyp_mode_available())
3259                 verify_hyp_capabilities();
3260 }
3261
3262 void check_local_cpu_capabilities(void)
3263 {
3264         /*
3265          * All secondary CPUs should conform to the early CPU features
3266          * in use by the kernel based on boot CPU.
3267          */
3268         check_early_cpu_features();
3269
3270         /*
3271          * If we haven't finalised the system capabilities, this CPU gets
3272          * a chance to update the errata work arounds and local features.
3273          * Otherwise, this CPU should verify that it has all the system
3274          * advertised capabilities.
3275          */
3276         if (!system_capabilities_finalized())
3277                 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3278         else
3279                 verify_local_cpu_capabilities();
3280 }
3281
3282 bool this_cpu_has_cap(unsigned int n)
3283 {
3284         if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3285                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3286
3287                 if (cap)
3288                         return cap->matches(cap, SCOPE_LOCAL_CPU);
3289         }
3290
3291         return false;
3292 }
3293 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3294
3295 /*
3296  * This helper function is used in a narrow window when,
3297  * - The system wide safe registers are set with all the SMP CPUs and,
3298  * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3299  */
3300 static bool __maybe_unused __system_matches_cap(unsigned int n)
3301 {
3302         if (n < ARM64_NCAPS) {
3303                 const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3304
3305                 if (cap)
3306                         return cap->matches(cap, SCOPE_SYSTEM);
3307         }
3308         return false;
3309 }
3310
3311 void cpu_set_feature(unsigned int num)
3312 {
3313         set_bit(num, elf_hwcap);
3314 }
3315
3316 bool cpu_have_feature(unsigned int num)
3317 {
3318         return test_bit(num, elf_hwcap);
3319 }
3320 EXPORT_SYMBOL_GPL(cpu_have_feature);
3321
3322 unsigned long cpu_get_elf_hwcap(void)
3323 {
3324         /*
3325          * We currently only populate the first 32 bits of AT_HWCAP. Please
3326          * note that for userspace compatibility we guarantee that bits 62
3327          * and 63 will always be returned as 0.
3328          */
3329         return elf_hwcap[0];
3330 }
3331
3332 unsigned long cpu_get_elf_hwcap2(void)
3333 {
3334         return elf_hwcap[1];
3335 }
3336
3337 static void __init setup_boot_cpu_capabilities(void)
3338 {
3339         /*
3340          * The boot CPU's feature register values have been recorded. Detect
3341          * boot cpucaps and local cpucaps for the boot CPU, then enable and
3342          * patch alternatives for the available boot cpucaps.
3343          */
3344         update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3345         enable_cpu_capabilities(SCOPE_BOOT_CPU);
3346         apply_boot_alternatives();
3347 }
3348
3349 void __init setup_boot_cpu_features(void)
3350 {
3351         /*
3352          * Initialize the indirect array of CPU capabilities pointers before we
3353          * handle the boot CPU.
3354          */
3355         init_cpucap_indirect_list();
3356
3357         /*
3358          * Detect broken pseudo-NMI. Must be called _before_ the call to
3359          * setup_boot_cpu_capabilities() since it interacts with
3360          * can_use_gic_priorities().
3361          */
3362         detect_system_supports_pseudo_nmi();
3363
3364         setup_boot_cpu_capabilities();
3365 }
3366
3367 static void __init setup_system_capabilities(void)
3368 {
3369         /*
3370          * The system-wide safe feature register values have been finalized.
3371          * Detect, enable, and patch alternatives for the available system
3372          * cpucaps.
3373          */
3374         update_cpu_capabilities(SCOPE_SYSTEM);
3375         enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3376         apply_alternatives_all();
3377
3378         /*
3379          * Log any cpucaps with a cpumask as these aren't logged by
3380          * update_cpu_capabilities().
3381          */
3382         for (int i = 0; i < ARM64_NCAPS; i++) {
3383                 const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3384
3385                 if (caps && caps->cpus && caps->desc &&
3386                         cpumask_any(caps->cpus) < nr_cpu_ids)
3387                         pr_info("detected: %s on CPU%*pbl\n",
3388                                 caps->desc, cpumask_pr_args(caps->cpus));
3389         }
3390
3391         /*
3392          * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3393          */
3394         if (system_uses_ttbr0_pan())
3395                 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3396 }
3397
3398 void __init setup_system_features(void)
3399 {
3400         setup_system_capabilities();
3401
3402         kpti_install_ng_mappings();
3403
3404         sve_setup();
3405         sme_setup();
3406
3407         /*
3408          * Check for sane CTR_EL0.CWG value.
3409          */
3410         if (!cache_type_cwg())
3411                 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3412                         ARCH_DMA_MINALIGN);
3413 }
3414
3415 void __init setup_user_features(void)
3416 {
3417         user_feature_fixup();
3418
3419         setup_elf_hwcaps(arm64_elf_hwcaps);
3420
3421         if (system_supports_32bit_el0()) {
3422                 setup_elf_hwcaps(compat_elf_hwcaps);
3423                 elf_hwcap_fixup();
3424         }
3425
3426         minsigstksz_setup();
3427 }
3428
3429 static int enable_mismatched_32bit_el0(unsigned int cpu)
3430 {
3431         /*
3432          * The first 32-bit-capable CPU we detected and so can no longer
3433          * be offlined by userspace. -1 indicates we haven't yet onlined
3434          * a 32-bit-capable CPU.
3435          */
3436         static int lucky_winner = -1;
3437
3438         struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3439         bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3440
3441         if (cpu_32bit) {
3442                 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3443                 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3444         }
3445
3446         if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3447                 return 0;
3448
3449         if (lucky_winner >= 0)
3450                 return 0;
3451
3452         /*
3453          * We've detected a mismatch. We need to keep one of our CPUs with
3454          * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3455          * every CPU in the system for a 32-bit task.
3456          */
3457         lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3458                                                          cpu_active_mask);
3459         get_cpu_device(lucky_winner)->offline_disabled = true;
3460         setup_elf_hwcaps(compat_elf_hwcaps);
3461         elf_hwcap_fixup();
3462         pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3463                 cpu, lucky_winner);
3464         return 0;
3465 }
3466
3467 static int __init init_32bit_el0_mask(void)
3468 {
3469         if (!allow_mismatched_32bit_el0)
3470                 return 0;
3471
3472         if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3473                 return -ENOMEM;
3474
3475         return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3476                                  "arm64/mismatched_32bit_el0:online",
3477                                  enable_mismatched_32bit_el0, NULL);
3478 }
3479 subsys_initcall_sync(init_32bit_el0_mask);
3480
3481 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3482 {
3483         cpu_enable_swapper_cnp();
3484 }
3485
3486 /*
3487  * We emulate only the following system register space.
3488  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3489  * See Table C5-6 System instruction encodings for System register accesses,
3490  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3491  */
3492 static inline bool __attribute_const__ is_emulated(u32 id)
3493 {
3494         return (sys_reg_Op0(id) == 0x3 &&
3495                 sys_reg_CRn(id) == 0x0 &&
3496                 sys_reg_Op1(id) == 0x0 &&
3497                 (sys_reg_CRm(id) == 0 ||
3498                  ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3499 }
3500
3501 /*
3502  * With CRm == 0, reg should be one of :
3503  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3504  */
3505 static inline int emulate_id_reg(u32 id, u64 *valp)
3506 {
3507         switch (id) {
3508         case SYS_MIDR_EL1:
3509                 *valp = read_cpuid_id();
3510                 break;
3511         case SYS_MPIDR_EL1:
3512                 *valp = SYS_MPIDR_SAFE_VAL;
3513                 break;
3514         case SYS_REVIDR_EL1:
3515                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3516                 *valp = 0;
3517                 break;
3518         default:
3519                 return -EINVAL;
3520         }
3521
3522         return 0;
3523 }
3524
3525 static int emulate_sys_reg(u32 id, u64 *valp)
3526 {
3527         struct arm64_ftr_reg *regp;
3528
3529         if (!is_emulated(id))
3530                 return -EINVAL;
3531
3532         if (sys_reg_CRm(id) == 0)
3533                 return emulate_id_reg(id, valp);
3534
3535         regp = get_arm64_ftr_reg_nowarn(id);
3536         if (regp)
3537                 *valp = arm64_ftr_reg_user_value(regp);
3538         else
3539                 /*
3540                  * The untracked registers are either IMPLEMENTATION DEFINED
3541                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
3542                  */
3543                 *valp = 0;
3544         return 0;
3545 }
3546
3547 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3548 {
3549         int rc;
3550         u64 val;
3551
3552         rc = emulate_sys_reg(sys_reg, &val);
3553         if (!rc) {
3554                 pt_regs_write_reg(regs, rt, val);
3555                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3556         }
3557         return rc;
3558 }
3559
3560 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3561 {
3562         u32 sys_reg, rt;
3563
3564         if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3565                 return false;
3566
3567         /*
3568          * sys_reg values are defined as used in mrs/msr instruction.
3569          * shift the imm value to get the encoding.
3570          */
3571         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3572         rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3573         return do_emulate_mrs(regs, sys_reg, rt) == 0;
3574 }
3575
3576 enum mitigation_state arm64_get_meltdown_state(void)
3577 {
3578         if (__meltdown_safe)
3579                 return SPECTRE_UNAFFECTED;
3580
3581         if (arm64_kernel_unmapped_at_el0())
3582                 return SPECTRE_MITIGATED;
3583
3584         return SPECTRE_VULNERABLE;
3585 }
3586
3587 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3588                           char *buf)
3589 {
3590         switch (arm64_get_meltdown_state()) {
3591         case SPECTRE_UNAFFECTED:
3592                 return sprintf(buf, "Not affected\n");
3593
3594         case SPECTRE_MITIGATED:
3595                 return sprintf(buf, "Mitigation: PTI\n");
3596
3597         default:
3598                 return sprintf(buf, "Vulnerable\n");
3599         }
3600 }