fanotify: disallow mount/sb marks on kernel internal pseudo fs
[sfrench/cifs-2.6.git] / arch / arm64 / include / asm / kvm_host.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/include/asm/kvm_host.h:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10
11 #ifndef __ARM64_KVM_HOST_H__
12 #define __ARM64_KVM_HOST_H__
13
14 #include <linux/arm-smccc.h>
15 #include <linux/bitmap.h>
16 #include <linux/types.h>
17 #include <linux/jump_label.h>
18 #include <linux/kvm_types.h>
19 #include <linux/maple_tree.h>
20 #include <linux/percpu.h>
21 #include <linux/psci.h>
22 #include <asm/arch_gicv3.h>
23 #include <asm/barrier.h>
24 #include <asm/cpufeature.h>
25 #include <asm/cputype.h>
26 #include <asm/daifflags.h>
27 #include <asm/fpsimd.h>
28 #include <asm/kvm.h>
29 #include <asm/kvm_asm.h>
30
31 #define __KVM_HAVE_ARCH_INTC_INITIALIZED
32
33 #define KVM_HALT_POLL_NS_DEFAULT 500000
34
35 #include <kvm/arm_vgic.h>
36 #include <kvm/arm_arch_timer.h>
37 #include <kvm/arm_pmu.h>
38
39 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
40
41 #define KVM_VCPU_MAX_FEATURES 7
42
43 #define KVM_REQ_SLEEP \
44         KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
45 #define KVM_REQ_IRQ_PENDING     KVM_ARCH_REQ(1)
46 #define KVM_REQ_VCPU_RESET      KVM_ARCH_REQ(2)
47 #define KVM_REQ_RECORD_STEAL    KVM_ARCH_REQ(3)
48 #define KVM_REQ_RELOAD_GICv4    KVM_ARCH_REQ(4)
49 #define KVM_REQ_RELOAD_PMU      KVM_ARCH_REQ(5)
50 #define KVM_REQ_SUSPEND         KVM_ARCH_REQ(6)
51
52 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
53                                      KVM_DIRTY_LOG_INITIALLY_SET)
54
55 #define KVM_HAVE_MMU_RWLOCK
56
57 /*
58  * Mode of operation configurable with kvm-arm.mode early param.
59  * See Documentation/admin-guide/kernel-parameters.txt for more information.
60  */
61 enum kvm_mode {
62         KVM_MODE_DEFAULT,
63         KVM_MODE_PROTECTED,
64         KVM_MODE_NV,
65         KVM_MODE_NONE,
66 };
67 #ifdef CONFIG_KVM
68 enum kvm_mode kvm_get_mode(void);
69 #else
70 static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
71 #endif
72
73 DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
74
75 extern unsigned int __ro_after_init kvm_sve_max_vl;
76 int __init kvm_arm_init_sve(void);
77
78 u32 __attribute_const__ kvm_target_cpu(void);
79 int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
80 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
81
82 struct kvm_hyp_memcache {
83         phys_addr_t head;
84         unsigned long nr_pages;
85 };
86
87 static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
88                                      phys_addr_t *p,
89                                      phys_addr_t (*to_pa)(void *virt))
90 {
91         *p = mc->head;
92         mc->head = to_pa(p);
93         mc->nr_pages++;
94 }
95
96 static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
97                                      void *(*to_va)(phys_addr_t phys))
98 {
99         phys_addr_t *p = to_va(mc->head);
100
101         if (!mc->nr_pages)
102                 return NULL;
103
104         mc->head = *p;
105         mc->nr_pages--;
106
107         return p;
108 }
109
110 static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
111                                        unsigned long min_pages,
112                                        void *(*alloc_fn)(void *arg),
113                                        phys_addr_t (*to_pa)(void *virt),
114                                        void *arg)
115 {
116         while (mc->nr_pages < min_pages) {
117                 phys_addr_t *p = alloc_fn(arg);
118
119                 if (!p)
120                         return -ENOMEM;
121                 push_hyp_memcache(mc, p, to_pa);
122         }
123
124         return 0;
125 }
126
127 static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
128                                        void (*free_fn)(void *virt, void *arg),
129                                        void *(*to_va)(phys_addr_t phys),
130                                        void *arg)
131 {
132         while (mc->nr_pages)
133                 free_fn(pop_hyp_memcache(mc, to_va), arg);
134 }
135
136 void free_hyp_memcache(struct kvm_hyp_memcache *mc);
137 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
138
139 struct kvm_vmid {
140         atomic64_t id;
141 };
142
143 struct kvm_s2_mmu {
144         struct kvm_vmid vmid;
145
146         /*
147          * stage2 entry level table
148          *
149          * Two kvm_s2_mmu structures in the same VM can point to the same
150          * pgd here.  This happens when running a guest using a
151          * translation regime that isn't affected by its own stage-2
152          * translation, such as a non-VHE hypervisor running at vEL2, or
153          * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
154          * canonical stage-2 page tables.
155          */
156         phys_addr_t     pgd_phys;
157         struct kvm_pgtable *pgt;
158
159         /* The last vcpu id that ran on each physical CPU */
160         int __percpu *last_vcpu_ran;
161
162         struct kvm_arch *arch;
163 };
164
165 struct kvm_arch_memory_slot {
166 };
167
168 /**
169  * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
170  *
171  * @std_bmap: Bitmap of standard secure service calls
172  * @std_hyp_bmap: Bitmap of standard hypervisor service calls
173  * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
174  */
175 struct kvm_smccc_features {
176         unsigned long std_bmap;
177         unsigned long std_hyp_bmap;
178         unsigned long vendor_hyp_bmap;
179 };
180
181 typedef unsigned int pkvm_handle_t;
182
183 struct kvm_protected_vm {
184         pkvm_handle_t handle;
185         struct kvm_hyp_memcache teardown_mc;
186 };
187
188 struct kvm_arch {
189         struct kvm_s2_mmu mmu;
190
191         /* VTCR_EL2 value for this VM */
192         u64    vtcr;
193
194         /* Interrupt controller */
195         struct vgic_dist        vgic;
196
197         /* Timers */
198         struct arch_timer_vm_data timer_data;
199
200         /* Mandated version of PSCI */
201         u32 psci_version;
202
203         /* Protects VM-scoped configuration data */
204         struct mutex config_lock;
205
206         /*
207          * If we encounter a data abort without valid instruction syndrome
208          * information, report this to user space.  User space can (and
209          * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
210          * supported.
211          */
212 #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER      0
213         /* Memory Tagging Extension enabled for the guest */
214 #define KVM_ARCH_FLAG_MTE_ENABLED                       1
215         /* At least one vCPU has ran in the VM */
216 #define KVM_ARCH_FLAG_HAS_RAN_ONCE                      2
217         /*
218          * The following two bits are used to indicate the guest's EL1
219          * register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
220          * bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
221          * Otherwise, the guest's EL1 register width has not yet been
222          * determined yet.
223          */
224 #define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED              3
225 #define KVM_ARCH_FLAG_EL1_32BIT                         4
226         /* PSCI SYSTEM_SUSPEND enabled for the guest */
227 #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED            5
228         /* VM counter offset */
229 #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET                 6
230         /* Timer PPIs made immutable */
231 #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE              7
232         /* SMCCC filter initialized for the VM */
233 #define KVM_ARCH_FLAG_SMCCC_FILTER_CONFIGURED           8
234         unsigned long flags;
235
236         /*
237          * VM-wide PMU filter, implemented as a bitmap and big enough for
238          * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
239          */
240         unsigned long *pmu_filter;
241         struct arm_pmu *arm_pmu;
242
243         cpumask_var_t supported_cpus;
244
245         u8 pfr0_csv2;
246         u8 pfr0_csv3;
247         struct {
248                 u8 imp:4;
249                 u8 unimp:4;
250         } dfr0_pmuver;
251
252         /* Hypercall features firmware registers' descriptor */
253         struct kvm_smccc_features smccc_feat;
254         struct maple_tree smccc_filter;
255
256         /*
257          * For an untrusted host VM, 'pkvm.handle' is used to lookup
258          * the associated pKVM instance in the hypervisor.
259          */
260         struct kvm_protected_vm pkvm;
261 };
262
263 struct kvm_vcpu_fault_info {
264         u64 esr_el2;            /* Hyp Syndrom Register */
265         u64 far_el2;            /* Hyp Fault Address Register */
266         u64 hpfar_el2;          /* Hyp IPA Fault Address Register */
267         u64 disr_el1;           /* Deferred [SError] Status Register */
268 };
269
270 enum vcpu_sysreg {
271         __INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
272         MPIDR_EL1,      /* MultiProcessor Affinity Register */
273         CLIDR_EL1,      /* Cache Level ID Register */
274         CSSELR_EL1,     /* Cache Size Selection Register */
275         SCTLR_EL1,      /* System Control Register */
276         ACTLR_EL1,      /* Auxiliary Control Register */
277         CPACR_EL1,      /* Coprocessor Access Control */
278         ZCR_EL1,        /* SVE Control */
279         TTBR0_EL1,      /* Translation Table Base Register 0 */
280         TTBR1_EL1,      /* Translation Table Base Register 1 */
281         TCR_EL1,        /* Translation Control Register */
282         TCR2_EL1,       /* Extended Translation Control Register */
283         ESR_EL1,        /* Exception Syndrome Register */
284         AFSR0_EL1,      /* Auxiliary Fault Status Register 0 */
285         AFSR1_EL1,      /* Auxiliary Fault Status Register 1 */
286         FAR_EL1,        /* Fault Address Register */
287         MAIR_EL1,       /* Memory Attribute Indirection Register */
288         VBAR_EL1,       /* Vector Base Address Register */
289         CONTEXTIDR_EL1, /* Context ID Register */
290         TPIDR_EL0,      /* Thread ID, User R/W */
291         TPIDRRO_EL0,    /* Thread ID, User R/O */
292         TPIDR_EL1,      /* Thread ID, Privileged */
293         AMAIR_EL1,      /* Aux Memory Attribute Indirection Register */
294         CNTKCTL_EL1,    /* Timer Control Register (EL1) */
295         PAR_EL1,        /* Physical Address Register */
296         MDSCR_EL1,      /* Monitor Debug System Control Register */
297         MDCCINT_EL1,    /* Monitor Debug Comms Channel Interrupt Enable Reg */
298         OSLSR_EL1,      /* OS Lock Status Register */
299         DISR_EL1,       /* Deferred Interrupt Status Register */
300
301         /* Performance Monitors Registers */
302         PMCR_EL0,       /* Control Register */
303         PMSELR_EL0,     /* Event Counter Selection Register */
304         PMEVCNTR0_EL0,  /* Event Counter Register (0-30) */
305         PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
306         PMCCNTR_EL0,    /* Cycle Counter Register */
307         PMEVTYPER0_EL0, /* Event Type Register (0-30) */
308         PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
309         PMCCFILTR_EL0,  /* Cycle Count Filter Register */
310         PMCNTENSET_EL0, /* Count Enable Set Register */
311         PMINTENSET_EL1, /* Interrupt Enable Set Register */
312         PMOVSSET_EL0,   /* Overflow Flag Status Set Register */
313         PMUSERENR_EL0,  /* User Enable Register */
314
315         /* Pointer Authentication Registers in a strict increasing order. */
316         APIAKEYLO_EL1,
317         APIAKEYHI_EL1,
318         APIBKEYLO_EL1,
319         APIBKEYHI_EL1,
320         APDAKEYLO_EL1,
321         APDAKEYHI_EL1,
322         APDBKEYLO_EL1,
323         APDBKEYHI_EL1,
324         APGAKEYLO_EL1,
325         APGAKEYHI_EL1,
326
327         ELR_EL1,
328         SP_EL1,
329         SPSR_EL1,
330
331         CNTVOFF_EL2,
332         CNTV_CVAL_EL0,
333         CNTV_CTL_EL0,
334         CNTP_CVAL_EL0,
335         CNTP_CTL_EL0,
336
337         /* Memory Tagging Extension registers */
338         RGSR_EL1,       /* Random Allocation Tag Seed Register */
339         GCR_EL1,        /* Tag Control Register */
340         TFSR_EL1,       /* Tag Fault Status Register (EL1) */
341         TFSRE0_EL1,     /* Tag Fault Status Register (EL0) */
342
343         /* Permission Indirection Extension registers */
344         PIR_EL1,       /* Permission Indirection Register 1 (EL1) */
345         PIRE0_EL1,     /*  Permission Indirection Register 0 (EL1) */
346
347         /* 32bit specific registers. */
348         DACR32_EL2,     /* Domain Access Control Register */
349         IFSR32_EL2,     /* Instruction Fault Status Register */
350         FPEXC32_EL2,    /* Floating-Point Exception Control Register */
351         DBGVCR32_EL2,   /* Debug Vector Catch Register */
352
353         /* EL2 registers */
354         VPIDR_EL2,      /* Virtualization Processor ID Register */
355         VMPIDR_EL2,     /* Virtualization Multiprocessor ID Register */
356         SCTLR_EL2,      /* System Control Register (EL2) */
357         ACTLR_EL2,      /* Auxiliary Control Register (EL2) */
358         HCR_EL2,        /* Hypervisor Configuration Register */
359         MDCR_EL2,       /* Monitor Debug Configuration Register (EL2) */
360         CPTR_EL2,       /* Architectural Feature Trap Register (EL2) */
361         HSTR_EL2,       /* Hypervisor System Trap Register */
362         HACR_EL2,       /* Hypervisor Auxiliary Control Register */
363         TTBR0_EL2,      /* Translation Table Base Register 0 (EL2) */
364         TTBR1_EL2,      /* Translation Table Base Register 1 (EL2) */
365         TCR_EL2,        /* Translation Control Register (EL2) */
366         VTTBR_EL2,      /* Virtualization Translation Table Base Register */
367         VTCR_EL2,       /* Virtualization Translation Control Register */
368         SPSR_EL2,       /* EL2 saved program status register */
369         ELR_EL2,        /* EL2 exception link register */
370         AFSR0_EL2,      /* Auxiliary Fault Status Register 0 (EL2) */
371         AFSR1_EL2,      /* Auxiliary Fault Status Register 1 (EL2) */
372         ESR_EL2,        /* Exception Syndrome Register (EL2) */
373         FAR_EL2,        /* Fault Address Register (EL2) */
374         HPFAR_EL2,      /* Hypervisor IPA Fault Address Register */
375         MAIR_EL2,       /* Memory Attribute Indirection Register (EL2) */
376         AMAIR_EL2,      /* Auxiliary Memory Attribute Indirection Register (EL2) */
377         VBAR_EL2,       /* Vector Base Address Register (EL2) */
378         RVBAR_EL2,      /* Reset Vector Base Address Register */
379         CONTEXTIDR_EL2, /* Context ID Register (EL2) */
380         TPIDR_EL2,      /* EL2 Software Thread ID Register */
381         CNTHCTL_EL2,    /* Counter-timer Hypervisor Control register */
382         SP_EL2,         /* EL2 Stack Pointer */
383         CNTHP_CTL_EL2,
384         CNTHP_CVAL_EL2,
385         CNTHV_CTL_EL2,
386         CNTHV_CVAL_EL2,
387
388         NR_SYS_REGS     /* Nothing after this line! */
389 };
390
391 struct kvm_cpu_context {
392         struct user_pt_regs regs;       /* sp = sp_el0 */
393
394         u64     spsr_abt;
395         u64     spsr_und;
396         u64     spsr_irq;
397         u64     spsr_fiq;
398
399         struct user_fpsimd_state fp_regs;
400
401         u64 sys_regs[NR_SYS_REGS];
402
403         struct kvm_vcpu *__hyp_running_vcpu;
404 };
405
406 struct kvm_host_data {
407         struct kvm_cpu_context host_ctxt;
408 };
409
410 struct kvm_host_psci_config {
411         /* PSCI version used by host. */
412         u32 version;
413
414         /* Function IDs used by host if version is v0.1. */
415         struct psci_0_1_function_ids function_ids_0_1;
416
417         bool psci_0_1_cpu_suspend_implemented;
418         bool psci_0_1_cpu_on_implemented;
419         bool psci_0_1_cpu_off_implemented;
420         bool psci_0_1_migrate_implemented;
421 };
422
423 extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
424 #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
425
426 extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
427 #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
428
429 extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
430 #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
431
432 struct vcpu_reset_state {
433         unsigned long   pc;
434         unsigned long   r0;
435         bool            be;
436         bool            reset;
437 };
438
439 struct kvm_vcpu_arch {
440         struct kvm_cpu_context ctxt;
441
442         /*
443          * Guest floating point state
444          *
445          * The architecture has two main floating point extensions,
446          * the original FPSIMD and SVE.  These have overlapping
447          * register views, with the FPSIMD V registers occupying the
448          * low 128 bits of the SVE Z registers.  When the core
449          * floating point code saves the register state of a task it
450          * records which view it saved in fp_type.
451          */
452         void *sve_state;
453         enum fp_type fp_type;
454         unsigned int sve_max_vl;
455         u64 svcr;
456
457         /* Stage 2 paging state used by the hardware on next switch */
458         struct kvm_s2_mmu *hw_mmu;
459
460         /* Values of trap registers for the guest. */
461         u64 hcr_el2;
462         u64 mdcr_el2;
463         u64 cptr_el2;
464
465         /* Values of trap registers for the host before guest entry. */
466         u64 mdcr_el2_host;
467
468         /* Exception Information */
469         struct kvm_vcpu_fault_info fault;
470
471         /* Ownership of the FP regs */
472         enum {
473                 FP_STATE_FREE,
474                 FP_STATE_HOST_OWNED,
475                 FP_STATE_GUEST_OWNED,
476         } fp_state;
477
478         /* Configuration flags, set once and for all before the vcpu can run */
479         u8 cflags;
480
481         /* Input flags to the hypervisor code, potentially cleared after use */
482         u8 iflags;
483
484         /* State flags for kernel bookkeeping, unused by the hypervisor code */
485         u8 sflags;
486
487         /*
488          * Don't run the guest (internal implementation need).
489          *
490          * Contrary to the flags above, this is set/cleared outside of
491          * a vcpu context, and thus cannot be mixed with the flags
492          * themselves (or the flag accesses need to be made atomic).
493          */
494         bool pause;
495
496         /*
497          * We maintain more than a single set of debug registers to support
498          * debugging the guest from the host and to maintain separate host and
499          * guest state during world switches. vcpu_debug_state are the debug
500          * registers of the vcpu as the guest sees them.  host_debug_state are
501          * the host registers which are saved and restored during
502          * world switches. external_debug_state contains the debug
503          * values we want to debug the guest. This is set via the
504          * KVM_SET_GUEST_DEBUG ioctl.
505          *
506          * debug_ptr points to the set of debug registers that should be loaded
507          * onto the hardware when running the guest.
508          */
509         struct kvm_guest_debug_arch *debug_ptr;
510         struct kvm_guest_debug_arch vcpu_debug_state;
511         struct kvm_guest_debug_arch external_debug_state;
512
513         struct user_fpsimd_state *host_fpsimd_state;    /* hyp VA */
514         struct task_struct *parent_task;
515
516         struct {
517                 /* {Break,watch}point registers */
518                 struct kvm_guest_debug_arch regs;
519                 /* Statistical profiling extension */
520                 u64 pmscr_el1;
521                 /* Self-hosted trace */
522                 u64 trfcr_el1;
523         } host_debug_state;
524
525         /* VGIC state */
526         struct vgic_cpu vgic_cpu;
527         struct arch_timer_cpu timer_cpu;
528         struct kvm_pmu pmu;
529
530         /*
531          * Guest registers we preserve during guest debugging.
532          *
533          * These shadow registers are updated by the kvm_handle_sys_reg
534          * trap handler if the guest accesses or updates them while we
535          * are using guest debug.
536          */
537         struct {
538                 u32     mdscr_el1;
539                 bool    pstate_ss;
540         } guest_debug_preserved;
541
542         /* vcpu power state */
543         struct kvm_mp_state mp_state;
544         spinlock_t mp_state_lock;
545
546         /* Cache some mmu pages needed inside spinlock regions */
547         struct kvm_mmu_memory_cache mmu_page_cache;
548
549         /* Target CPU and feature flags */
550         int target;
551         DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
552
553         /* Virtual SError ESR to restore when HCR_EL2.VSE is set */
554         u64 vsesr_el2;
555
556         /* Additional reset state */
557         struct vcpu_reset_state reset_state;
558
559         /* Guest PV state */
560         struct {
561                 u64 last_steal;
562                 gpa_t base;
563         } steal;
564
565         /* Per-vcpu CCSIDR override or NULL */
566         u32 *ccsidr;
567 };
568
569 /*
570  * Each 'flag' is composed of a comma-separated triplet:
571  *
572  * - the flag-set it belongs to in the vcpu->arch structure
573  * - the value for that flag
574  * - the mask for that flag
575  *
576  *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
577  * unpack_vcpu_flag() extract the flag value from the triplet for
578  * direct use outside of the flag accessors.
579  */
580 #define __vcpu_single_flag(_set, _f)    _set, (_f), (_f)
581
582 #define __unpack_flag(_set, _f, _m)     _f
583 #define unpack_vcpu_flag(...)           __unpack_flag(__VA_ARGS__)
584
585 #define __build_check_flag(v, flagset, f, m)                    \
586         do {                                                    \
587                 typeof(v->arch.flagset) *_fset;                 \
588                                                                 \
589                 /* Check that the flags fit in the mask */      \
590                 BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
591                 /* Check that the flags fit in the type */      \
592                 BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
593         } while (0)
594
595 #define __vcpu_get_flag(v, flagset, f, m)                       \
596         ({                                                      \
597                 __build_check_flag(v, flagset, f, m);           \
598                                                                 \
599                 READ_ONCE(v->arch.flagset) & (m);               \
600         })
601
602 /*
603  * Note that the set/clear accessors must be preempt-safe in order to
604  * avoid nesting them with load/put which also manipulate flags...
605  */
606 #ifdef __KVM_NVHE_HYPERVISOR__
607 /* the nVHE hypervisor is always non-preemptible */
608 #define __vcpu_flags_preempt_disable()
609 #define __vcpu_flags_preempt_enable()
610 #else
611 #define __vcpu_flags_preempt_disable()  preempt_disable()
612 #define __vcpu_flags_preempt_enable()   preempt_enable()
613 #endif
614
615 #define __vcpu_set_flag(v, flagset, f, m)                       \
616         do {                                                    \
617                 typeof(v->arch.flagset) *fset;                  \
618                                                                 \
619                 __build_check_flag(v, flagset, f, m);           \
620                                                                 \
621                 fset = &v->arch.flagset;                        \
622                 __vcpu_flags_preempt_disable();                 \
623                 if (HWEIGHT(m) > 1)                             \
624                         *fset &= ~(m);                          \
625                 *fset |= (f);                                   \
626                 __vcpu_flags_preempt_enable();                  \
627         } while (0)
628
629 #define __vcpu_clear_flag(v, flagset, f, m)                     \
630         do {                                                    \
631                 typeof(v->arch.flagset) *fset;                  \
632                                                                 \
633                 __build_check_flag(v, flagset, f, m);           \
634                                                                 \
635                 fset = &v->arch.flagset;                        \
636                 __vcpu_flags_preempt_disable();                 \
637                 *fset &= ~(m);                                  \
638                 __vcpu_flags_preempt_enable();                  \
639         } while (0)
640
641 #define vcpu_get_flag(v, ...)   __vcpu_get_flag((v), __VA_ARGS__)
642 #define vcpu_set_flag(v, ...)   __vcpu_set_flag((v), __VA_ARGS__)
643 #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
644
645 /* SVE exposed to guest */
646 #define GUEST_HAS_SVE           __vcpu_single_flag(cflags, BIT(0))
647 /* SVE config completed */
648 #define VCPU_SVE_FINALIZED      __vcpu_single_flag(cflags, BIT(1))
649 /* PTRAUTH exposed to guest */
650 #define GUEST_HAS_PTRAUTH       __vcpu_single_flag(cflags, BIT(2))
651
652 /* Exception pending */
653 #define PENDING_EXCEPTION       __vcpu_single_flag(iflags, BIT(0))
654 /*
655  * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
656  * be set together with an exception...
657  */
658 #define INCREMENT_PC            __vcpu_single_flag(iflags, BIT(1))
659 /* Target EL/MODE (not a single flag, but let's abuse the macro) */
660 #define EXCEPT_MASK             __vcpu_single_flag(iflags, GENMASK(3, 1))
661
662 /* Helpers to encode exceptions with minimum fuss */
663 #define __EXCEPT_MASK_VAL       unpack_vcpu_flag(EXCEPT_MASK)
664 #define __EXCEPT_SHIFT          __builtin_ctzl(__EXCEPT_MASK_VAL)
665 #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
666
667 /*
668  * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
669  * values:
670  *
671  * For AArch32 EL1:
672  */
673 #define EXCEPT_AA32_UND         __vcpu_except_flags(0)
674 #define EXCEPT_AA32_IABT        __vcpu_except_flags(1)
675 #define EXCEPT_AA32_DABT        __vcpu_except_flags(2)
676 /* For AArch64: */
677 #define EXCEPT_AA64_EL1_SYNC    __vcpu_except_flags(0)
678 #define EXCEPT_AA64_EL1_IRQ     __vcpu_except_flags(1)
679 #define EXCEPT_AA64_EL1_FIQ     __vcpu_except_flags(2)
680 #define EXCEPT_AA64_EL1_SERR    __vcpu_except_flags(3)
681 /* For AArch64 with NV: */
682 #define EXCEPT_AA64_EL2_SYNC    __vcpu_except_flags(4)
683 #define EXCEPT_AA64_EL2_IRQ     __vcpu_except_flags(5)
684 #define EXCEPT_AA64_EL2_FIQ     __vcpu_except_flags(6)
685 #define EXCEPT_AA64_EL2_SERR    __vcpu_except_flags(7)
686 /* Guest debug is live */
687 #define DEBUG_DIRTY             __vcpu_single_flag(iflags, BIT(4))
688 /* Save SPE context if active  */
689 #define DEBUG_STATE_SAVE_SPE    __vcpu_single_flag(iflags, BIT(5))
690 /* Save TRBE context if active  */
691 #define DEBUG_STATE_SAVE_TRBE   __vcpu_single_flag(iflags, BIT(6))
692 /* vcpu running in HYP context */
693 #define VCPU_HYP_CONTEXT        __vcpu_single_flag(iflags, BIT(7))
694
695 /* SVE enabled for host EL0 */
696 #define HOST_SVE_ENABLED        __vcpu_single_flag(sflags, BIT(0))
697 /* SME enabled for EL0 */
698 #define HOST_SME_ENABLED        __vcpu_single_flag(sflags, BIT(1))
699 /* Physical CPU not in supported_cpus */
700 #define ON_UNSUPPORTED_CPU      __vcpu_single_flag(sflags, BIT(2))
701 /* WFIT instruction trapped */
702 #define IN_WFIT                 __vcpu_single_flag(sflags, BIT(3))
703 /* vcpu system registers loaded on physical CPU */
704 #define SYSREGS_ON_CPU          __vcpu_single_flag(sflags, BIT(4))
705 /* Software step state is Active-pending */
706 #define DBG_SS_ACTIVE_PENDING   __vcpu_single_flag(sflags, BIT(5))
707 /* PMUSERENR for the guest EL0 is on physical CPU */
708 #define PMUSERENR_ON_CPU        __vcpu_single_flag(sflags, BIT(6))
709
710
711 /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
712 #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +      \
713                              sve_ffr_offset((vcpu)->arch.sve_max_vl))
714
715 #define vcpu_sve_max_vq(vcpu)   sve_vq_from_vl((vcpu)->arch.sve_max_vl)
716
717 #define vcpu_sve_state_size(vcpu) ({                                    \
718         size_t __size_ret;                                              \
719         unsigned int __vcpu_vq;                                         \
720                                                                         \
721         if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {          \
722                 __size_ret = 0;                                         \
723         } else {                                                        \
724                 __vcpu_vq = vcpu_sve_max_vq(vcpu);                      \
725                 __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);              \
726         }                                                               \
727                                                                         \
728         __size_ret;                                                     \
729 })
730
731 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
732                                  KVM_GUESTDBG_USE_SW_BP | \
733                                  KVM_GUESTDBG_USE_HW | \
734                                  KVM_GUESTDBG_SINGLESTEP)
735
736 #define vcpu_has_sve(vcpu) (system_supports_sve() &&                    \
737                             vcpu_get_flag(vcpu, GUEST_HAS_SVE))
738
739 #ifdef CONFIG_ARM64_PTR_AUTH
740 #define vcpu_has_ptrauth(vcpu)                                          \
741         ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||                \
742           cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&               \
743           vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
744 #else
745 #define vcpu_has_ptrauth(vcpu)          false
746 #endif
747
748 #define vcpu_on_unsupported_cpu(vcpu)                                   \
749         vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
750
751 #define vcpu_set_on_unsupported_cpu(vcpu)                               \
752         vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
753
754 #define vcpu_clear_on_unsupported_cpu(vcpu)                             \
755         vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
756
757 #define vcpu_gp_regs(v)         (&(v)->arch.ctxt.regs)
758
759 /*
760  * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
761  * memory backed version of a register, and not the one most recently
762  * accessed by a running VCPU.  For example, for userspace access or
763  * for system registers that are never context switched, but only
764  * emulated.
765  */
766 #define __ctxt_sys_reg(c,r)     (&(c)->sys_regs[(r)])
767
768 #define ctxt_sys_reg(c,r)       (*__ctxt_sys_reg(c,r))
769
770 #define __vcpu_sys_reg(v,r)     (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
771
772 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
773 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
774
775 static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
776 {
777         /*
778          * *** VHE ONLY ***
779          *
780          * System registers listed in the switch are not saved on every
781          * exit from the guest but are only saved on vcpu_put.
782          *
783          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
784          * should never be listed below, because the guest cannot modify its
785          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
786          * thread when emulating cross-VCPU communication.
787          */
788         if (!has_vhe())
789                 return false;
790
791         switch (reg) {
792         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
793         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
794         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
795         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
796         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
797         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
798         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
799         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
800         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
801         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
802         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
803         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
804         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
805         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
806         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
807         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
808         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
809         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
810         case PAR_EL1:           *val = read_sysreg_par();               break;
811         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
812         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
813         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
814         default:                return false;
815         }
816
817         return true;
818 }
819
820 static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
821 {
822         /*
823          * *** VHE ONLY ***
824          *
825          * System registers listed in the switch are not restored on every
826          * entry to the guest but are only restored on vcpu_load.
827          *
828          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
829          * should never be listed below, because the MPIDR should only be set
830          * once, before running the VCPU, and never changed later.
831          */
832         if (!has_vhe())
833                 return false;
834
835         switch (reg) {
836         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
837         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
838         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
839         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
840         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
841         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
842         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
843         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
844         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
845         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
846         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
847         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
848         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
849         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
850         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
851         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
852         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
853         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
854         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
855         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
856         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
857         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
858         default:                return false;
859         }
860
861         return true;
862 }
863
864 struct kvm_vm_stat {
865         struct kvm_vm_stat_generic generic;
866 };
867
868 struct kvm_vcpu_stat {
869         struct kvm_vcpu_stat_generic generic;
870         u64 hvc_exit_stat;
871         u64 wfe_exit_stat;
872         u64 wfi_exit_stat;
873         u64 mmio_exit_user;
874         u64 mmio_exit_kernel;
875         u64 signal_exits;
876         u64 exits;
877 };
878
879 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
880 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
881 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
882 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
883 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
884
885 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
886 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
887
888 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
889                               struct kvm_vcpu_events *events);
890
891 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
892                               struct kvm_vcpu_events *events);
893
894 #define KVM_ARCH_WANT_MMU_NOTIFIER
895
896 void kvm_arm_halt_guest(struct kvm *kvm);
897 void kvm_arm_resume_guest(struct kvm *kvm);
898
899 #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
900
901 #ifndef __KVM_NVHE_HYPERVISOR__
902 #define kvm_call_hyp_nvhe(f, ...)                                               \
903         ({                                                              \
904                 struct arm_smccc_res res;                               \
905                                                                         \
906                 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),               \
907                                   ##__VA_ARGS__, &res);                 \
908                 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);                   \
909                                                                         \
910                 res.a1;                                                 \
911         })
912
913 /*
914  * The couple of isb() below are there to guarantee the same behaviour
915  * on VHE as on !VHE, where the eret to EL1 acts as a context
916  * synchronization event.
917  */
918 #define kvm_call_hyp(f, ...)                                            \
919         do {                                                            \
920                 if (has_vhe()) {                                        \
921                         f(__VA_ARGS__);                                 \
922                         isb();                                          \
923                 } else {                                                \
924                         kvm_call_hyp_nvhe(f, ##__VA_ARGS__);            \
925                 }                                                       \
926         } while(0)
927
928 #define kvm_call_hyp_ret(f, ...)                                        \
929         ({                                                              \
930                 typeof(f(__VA_ARGS__)) ret;                             \
931                                                                         \
932                 if (has_vhe()) {                                        \
933                         ret = f(__VA_ARGS__);                           \
934                         isb();                                          \
935                 } else {                                                \
936                         ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);      \
937                 }                                                       \
938                                                                         \
939                 ret;                                                    \
940         })
941 #else /* __KVM_NVHE_HYPERVISOR__ */
942 #define kvm_call_hyp(f, ...) f(__VA_ARGS__)
943 #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
944 #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
945 #endif /* __KVM_NVHE_HYPERVISOR__ */
946
947 void force_vm_exit(const cpumask_t *mask);
948
949 int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
950 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
951
952 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
953 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
954 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
955 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
956 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
957 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
958 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
959
960 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
961
962 int __init kvm_sys_reg_table_init(void);
963
964 bool lock_all_vcpus(struct kvm *kvm);
965 void unlock_all_vcpus(struct kvm *kvm);
966
967 /* MMIO helpers */
968 void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
969 unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
970
971 int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
972 int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
973
974 /*
975  * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
976  * arrived in guest context.  For arm64, any event that arrives while a vCPU is
977  * loaded is considered to be "in guest".
978  */
979 static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
980 {
981         return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
982 }
983
984 long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
985 gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
986 void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
987
988 bool kvm_arm_pvtime_supported(void);
989 int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
990                             struct kvm_device_attr *attr);
991 int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
992                             struct kvm_device_attr *attr);
993 int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
994                             struct kvm_device_attr *attr);
995
996 extern unsigned int __ro_after_init kvm_arm_vmid_bits;
997 int __init kvm_arm_vmid_alloc_init(void);
998 void __init kvm_arm_vmid_alloc_free(void);
999 void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1000 void kvm_arm_vmid_clear_active(void);
1001
1002 static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1003 {
1004         vcpu_arch->steal.base = INVALID_GPA;
1005 }
1006
1007 static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1008 {
1009         return (vcpu_arch->steal.base != INVALID_GPA);
1010 }
1011
1012 void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1013
1014 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1015
1016 DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1017
1018 static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1019 {
1020         /* The host's MPIDR is immutable, so let's set it up at boot time */
1021         ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1022 }
1023
1024 static inline bool kvm_system_needs_idmapped_vectors(void)
1025 {
1026         return cpus_have_const_cap(ARM64_SPECTRE_V3A);
1027 }
1028
1029 void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
1030
1031 static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1032 static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1033
1034 void kvm_arm_init_debug(void);
1035 void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1036 void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1037 void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1038 void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1039
1040 #define kvm_vcpu_os_lock_enabled(vcpu)          \
1041         (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1042
1043 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1044                                struct kvm_device_attr *attr);
1045 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1046                                struct kvm_device_attr *attr);
1047 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1048                                struct kvm_device_attr *attr);
1049
1050 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1051                                struct kvm_arm_copy_mte_tags *copy_tags);
1052 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1053                                     struct kvm_arm_counter_offset *offset);
1054
1055 /* Guest/host FPSIMD coordination helpers */
1056 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1057 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1058 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1059 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1060 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1061 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1062
1063 static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1064 {
1065         return (!has_vhe() && attr->exclude_host);
1066 }
1067
1068 /* Flags for host debug state */
1069 void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1070 void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1071
1072 #ifdef CONFIG_KVM
1073 void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1074 void kvm_clr_pmu_events(u32 clr);
1075 bool kvm_set_pmuserenr(u64 val);
1076 #else
1077 static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1078 static inline void kvm_clr_pmu_events(u32 clr) {}
1079 static inline bool kvm_set_pmuserenr(u64 val)
1080 {
1081         return false;
1082 }
1083 #endif
1084
1085 void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
1086 void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
1087
1088 int __init kvm_set_ipa_limit(void);
1089
1090 #define __KVM_HAVE_ARCH_VM_ALLOC
1091 struct kvm *kvm_arch_alloc_vm(void);
1092
1093 static inline bool kvm_vm_is_protected(struct kvm *kvm)
1094 {
1095         return false;
1096 }
1097
1098 void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
1099
1100 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1101 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1102
1103 #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1104
1105 #define kvm_has_mte(kvm)                                        \
1106         (system_supports_mte() &&                               \
1107          test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1108
1109 #define kvm_supports_32bit_el0()                                \
1110         (system_supports_32bit_el0() &&                         \
1111          !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1112
1113 #define kvm_vm_has_ran_once(kvm)                                        \
1114         (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1115
1116 int kvm_trng_call(struct kvm_vcpu *vcpu);
1117 #ifdef CONFIG_KVM
1118 extern phys_addr_t hyp_mem_base;
1119 extern phys_addr_t hyp_mem_size;
1120 void __init kvm_hyp_reserve(void);
1121 #else
1122 static inline void kvm_hyp_reserve(void) { }
1123 #endif
1124
1125 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1126 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1127
1128 #endif /* __ARM64_KVM_HOST_H__ */