rust: upgrade to Rust 1.76.0
[sfrench/cifs-2.6.git] / arch / arm64 / include / asm / cpufeature.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8
9 #include <asm/alternative-macros.h>
10 #include <asm/cpucaps.h>
11 #include <asm/cputype.h>
12 #include <asm/hwcap.h>
13 #include <asm/sysreg.h>
14
15 #define MAX_CPU_FEATURES        128
16 #define cpu_feature(x)          KERNEL_HWCAP_ ## x
17
18 #define ARM64_SW_FEATURE_OVERRIDE_NOKASLR       0
19 #define ARM64_SW_FEATURE_OVERRIDE_HVHE          4
20
21 #ifndef __ASSEMBLY__
22
23 #include <linux/bug.h>
24 #include <linux/jump_label.h>
25 #include <linux/kernel.h>
26 #include <linux/cpumask.h>
27
28 /*
29  * CPU feature register tracking
30  *
31  * The safe value of a CPUID feature field is dependent on the implications
32  * of the values assigned to it by the architecture. Based on the relationship
33  * between the values, the features are classified into 3 types - LOWER_SAFE,
34  * HIGHER_SAFE and EXACT.
35  *
36  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
37  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
38  * a field when EXACT is specified, failing which, the safe value specified
39  * in the table is chosen.
40  */
41
42 enum ftr_type {
43         FTR_EXACT,                      /* Use a predefined safe value */
44         FTR_LOWER_SAFE,                 /* Smaller value is safe */
45         FTR_HIGHER_SAFE,                /* Bigger value is safe */
46         FTR_HIGHER_OR_ZERO_SAFE,        /* Bigger value is safe, but 0 is biggest */
47 };
48
49 #define FTR_STRICT      true    /* SANITY check strict matching required */
50 #define FTR_NONSTRICT   false   /* SANITY check ignored */
51
52 #define FTR_SIGNED      true    /* Value should be treated as signed */
53 #define FTR_UNSIGNED    false   /* Value should be treated as unsigned */
54
55 #define FTR_VISIBLE     true    /* Feature visible to the user space */
56 #define FTR_HIDDEN      false   /* Feature is hidden from the user */
57
58 #define FTR_VISIBLE_IF_IS_ENABLED(config)               \
59         (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
60
61 struct arm64_ftr_bits {
62         bool            sign;   /* Value is signed ? */
63         bool            visible;
64         bool            strict; /* CPU Sanity check: strict matching required ? */
65         enum ftr_type   type;
66         u8              shift;
67         u8              width;
68         s64             safe_val; /* safe value for FTR_EXACT features */
69 };
70
71 /*
72  * Describe the early feature override to the core override code:
73  *
74  * @val                 Values that are to be merged into the final
75  *                      sanitised value of the register. Only the bitfields
76  *                      set to 1 in @mask are valid
77  * @mask                Mask of the features that are overridden by @val
78  *
79  * A @mask field set to full-1 indicates that the corresponding field
80  * in @val is a valid override.
81  *
82  * A @mask field set to full-0 with the corresponding @val field set
83  * to full-0 denotes that this field has no override
84  *
85  * A @mask field set to full-0 with the corresponding @val field set
86  * to full-1 denotes thath this field has an invalid override.
87  */
88 struct arm64_ftr_override {
89         u64             val;
90         u64             mask;
91 };
92
93 /*
94  * @arm64_ftr_reg - Feature register
95  * @strict_mask         Bits which should match across all CPUs for sanity.
96  * @sys_val             Safe value across the CPUs (system view)
97  */
98 struct arm64_ftr_reg {
99         const char                      *name;
100         u64                             strict_mask;
101         u64                             user_mask;
102         u64                             sys_val;
103         u64                             user_val;
104         struct arm64_ftr_override       *override;
105         const struct arm64_ftr_bits     *ftr_bits;
106 };
107
108 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
109
110 /*
111  * CPU capabilities:
112  *
113  * We use arm64_cpu_capabilities to represent system features, errata work
114  * arounds (both used internally by kernel and tracked in system_cpucaps) and
115  * ELF HWCAPs (which are exposed to user).
116  *
117  * To support systems with heterogeneous CPUs, we need to make sure that we
118  * detect the capabilities correctly on the system and take appropriate
119  * measures to ensure there are no incompatibilities.
120  *
121  * This comment tries to explain how we treat the capabilities.
122  * Each capability has the following list of attributes :
123  *
124  * 1) Scope of Detection : The system detects a given capability by
125  *    performing some checks at runtime. This could be, e.g, checking the
126  *    value of a field in CPU ID feature register or checking the cpu
127  *    model. The capability provides a call back ( @matches() ) to
128  *    perform the check. Scope defines how the checks should be performed.
129  *    There are three cases:
130  *
131  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
132  *        matches. This implies, we have to run the check on all the
133  *        booting CPUs, until the system decides that state of the
134  *        capability is finalised. (See section 2 below)
135  *              Or
136  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
137  *        matches. This implies, we run the check only once, when the
138  *        system decides to finalise the state of the capability. If the
139  *        capability relies on a field in one of the CPU ID feature
140  *        registers, we use the sanitised value of the register from the
141  *        CPU feature infrastructure to make the decision.
142  *              Or
143  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
144  *        feature. This category is for features that are "finalised"
145  *        (or used) by the kernel very early even before the SMP cpus
146  *        are brought up.
147  *
148  *    The process of detection is usually denoted by "update" capability
149  *    state in the code.
150  *
151  * 2) Finalise the state : The kernel should finalise the state of a
152  *    capability at some point during its execution and take necessary
153  *    actions if any. Usually, this is done, after all the boot-time
154  *    enabled CPUs are brought up by the kernel, so that it can make
155  *    better decision based on the available set of CPUs. However, there
156  *    are some special cases, where the action is taken during the early
157  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
158  *    Virtualisation Host Extensions). The kernel usually disallows any
159  *    changes to the state of a capability once it finalises the capability
160  *    and takes any action, as it may be impossible to execute the actions
161  *    safely. A CPU brought up after a capability is "finalised" is
162  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
163  *    CPUs are treated "late CPUs" for capabilities determined by the boot
164  *    CPU.
165  *
166  *    At the moment there are two passes of finalising the capabilities.
167  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
168  *         setup_boot_cpu_capabilities().
169  *      b) Everything except (a) - Run via setup_system_capabilities().
170  *
171  * 3) Verification: When a CPU is brought online (e.g, by user or by the
172  *    kernel), the kernel should make sure that it is safe to use the CPU,
173  *    by verifying that the CPU is compliant with the state of the
174  *    capabilities finalised already. This happens via :
175  *
176  *      secondary_start_kernel()-> check_local_cpu_capabilities()
177  *
178  *    As explained in (2) above, capabilities could be finalised at
179  *    different points in the execution. Each newly booted CPU is verified
180  *    against the capabilities that have been finalised by the time it
181  *    boots.
182  *
183  *      a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
184  *      except for the primary boot CPU.
185  *
186  *      b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
187  *      user after the kernel boot are verified against the capability.
188  *
189  *    If there is a conflict, the kernel takes an action, based on the
190  *    severity (e.g, a CPU could be prevented from booting or cause a
191  *    kernel panic). The CPU is allowed to "affect" the state of the
192  *    capability, if it has not been finalised already. See section 5
193  *    for more details on conflicts.
194  *
195  * 4) Action: As mentioned in (2), the kernel can take an action for each
196  *    detected capability, on all CPUs on the system. Appropriate actions
197  *    include, turning on an architectural feature, modifying the control
198  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
199  *    alternatives. The kernel patching is batched and performed at later
200  *    point. The actions are always initiated only after the capability
201  *    is finalised. This is usally denoted by "enabling" the capability.
202  *    The actions are initiated as follows :
203  *      a) Action is triggered on all online CPUs, after the capability is
204  *      finalised, invoked within the stop_machine() context from
205  *      enable_cpu_capabilitie().
206  *
207  *      b) Any late CPU, brought up after (1), the action is triggered via:
208  *
209  *        check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
210  *
211  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
212  *    the system state, we could have the following combinations :
213  *
214  *              x-----------------------------x
215  *              | Type  | System   | Late CPU |
216  *              |-----------------------------|
217  *              |  a    |   y      |    n     |
218  *              |-----------------------------|
219  *              |  b    |   n      |    y     |
220  *              x-----------------------------x
221  *
222  *     Two separate flag bits are defined to indicate whether each kind of
223  *     conflict can be allowed:
224  *              ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
225  *              ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
226  *
227  *     Case (a) is not permitted for a capability that the system requires
228  *     all CPUs to have in order for the capability to be enabled. This is
229  *     typical for capabilities that represent enhanced functionality.
230  *
231  *     Case (b) is not permitted for a capability that must be enabled
232  *     during boot if any CPU in the system requires it in order to run
233  *     safely. This is typical for erratum work arounds that cannot be
234  *     enabled after the corresponding capability is finalised.
235  *
236  *     In some non-typical cases either both (a) and (b), or neither,
237  *     should be permitted. This can be described by including neither
238  *     or both flags in the capability's type field.
239  *
240  *     In case of a conflict, the CPU is prevented from booting. If the
241  *     ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
242  *     then a kernel panic is triggered.
243  */
244
245
246 /*
247  * Decide how the capability is detected.
248  * On any local CPU vs System wide vs the primary boot CPU
249  */
250 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU            ((u16)BIT(0))
251 #define ARM64_CPUCAP_SCOPE_SYSTEM               ((u16)BIT(1))
252 /*
253  * The capabilitiy is detected on the Boot CPU and is used by kernel
254  * during early boot. i.e, the capability should be "detected" and
255  * "enabled" as early as possibly on all booting CPUs.
256  */
257 #define ARM64_CPUCAP_SCOPE_BOOT_CPU             ((u16)BIT(2))
258 #define ARM64_CPUCAP_SCOPE_MASK                 \
259         (ARM64_CPUCAP_SCOPE_SYSTEM      |       \
260          ARM64_CPUCAP_SCOPE_LOCAL_CPU   |       \
261          ARM64_CPUCAP_SCOPE_BOOT_CPU)
262
263 #define SCOPE_SYSTEM                            ARM64_CPUCAP_SCOPE_SYSTEM
264 #define SCOPE_LOCAL_CPU                         ARM64_CPUCAP_SCOPE_LOCAL_CPU
265 #define SCOPE_BOOT_CPU                          ARM64_CPUCAP_SCOPE_BOOT_CPU
266 #define SCOPE_ALL                               ARM64_CPUCAP_SCOPE_MASK
267
268 /*
269  * Is it permitted for a late CPU to have this capability when system
270  * hasn't already enabled it ?
271  */
272 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU     ((u16)BIT(4))
273 /* Is it safe for a late CPU to miss this capability when system has it */
274 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU      ((u16)BIT(5))
275 /* Panic when a conflict is detected */
276 #define ARM64_CPUCAP_PANIC_ON_CONFLICT          ((u16)BIT(6))
277
278 /*
279  * CPU errata workarounds that need to be enabled at boot time if one or
280  * more CPUs in the system requires it. When one of these capabilities
281  * has been enabled, it is safe to allow any CPU to boot that doesn't
282  * require the workaround. However, it is not safe if a "late" CPU
283  * requires a workaround and the system hasn't enabled it already.
284  */
285 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM          \
286         (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
287 /*
288  * CPU feature detected at boot time based on system-wide value of a
289  * feature. It is safe for a late CPU to have this feature even though
290  * the system hasn't enabled it, although the feature will not be used
291  * by Linux in this case. If the system has enabled this feature already,
292  * then every late CPU must have it.
293  */
294 #define ARM64_CPUCAP_SYSTEM_FEATURE     \
295         (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
296 /*
297  * CPU feature detected at boot time based on feature of one or more CPUs.
298  * All possible conflicts for a late CPU are ignored.
299  * NOTE: this means that a late CPU with the feature will *not* cause the
300  * capability to be advertised by cpus_have_*cap()!
301  */
302 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE             \
303         (ARM64_CPUCAP_SCOPE_LOCAL_CPU           |       \
304          ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU     |       \
305          ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
306
307 /*
308  * CPU feature detected at boot time, on one or more CPUs. A late CPU
309  * is not allowed to have the capability when the system doesn't have it.
310  * It is Ok for a late CPU to miss the feature.
311  */
312 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE  \
313         (ARM64_CPUCAP_SCOPE_LOCAL_CPU           |       \
314          ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
315
316 /*
317  * CPU feature used early in the boot based on the boot CPU. All secondary
318  * CPUs must match the state of the capability as detected by the boot CPU. In
319  * case of a conflict, a kernel panic is triggered.
320  */
321 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE            \
322         (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
323
324 /*
325  * CPU feature used early in the boot based on the boot CPU. It is safe for a
326  * late CPU to have this feature even though the boot CPU hasn't enabled it,
327  * although the feature will not be used by Linux in this case. If the boot CPU
328  * has enabled this feature already, then every late CPU must have it.
329  */
330 #define ARM64_CPUCAP_BOOT_CPU_FEATURE                  \
331         (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
332
333 struct arm64_cpu_capabilities {
334         const char *desc;
335         u16 capability;
336         u16 type;
337         bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
338         /*
339          * Take the appropriate actions to configure this capability
340          * for this CPU. If the capability is detected by the kernel
341          * this will be called on all the CPUs in the system,
342          * including the hotplugged CPUs, regardless of whether the
343          * capability is available on that specific CPU. This is
344          * useful for some capabilities (e.g, working around CPU
345          * errata), where all the CPUs must take some action (e.g,
346          * changing system control/configuration). Thus, if an action
347          * is required only if the CPU has the capability, then the
348          * routine must check it before taking any action.
349          */
350         void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
351         union {
352                 struct {        /* To be used for erratum handling only */
353                         struct midr_range midr_range;
354                         const struct arm64_midr_revidr {
355                                 u32 midr_rv;            /* revision/variant */
356                                 u32 revidr_mask;
357                         } * const fixed_revs;
358                 };
359
360                 const struct midr_range *midr_range_list;
361                 struct {        /* Feature register checking */
362                         u32 sys_reg;
363                         u8 field_pos;
364                         u8 field_width;
365                         u8 min_field_value;
366                         u8 hwcap_type;
367                         bool sign;
368                         unsigned long hwcap;
369                 };
370         };
371
372         /*
373          * An optional list of "matches/cpu_enable" pair for the same
374          * "capability" of the same "type" as described by the parent.
375          * Only matches(), cpu_enable() and fields relevant to these
376          * methods are significant in the list. The cpu_enable is
377          * invoked only if the corresponding entry "matches()".
378          * However, if a cpu_enable() method is associated
379          * with multiple matches(), care should be taken that either
380          * the match criteria are mutually exclusive, or that the
381          * method is robust against being called multiple times.
382          */
383         const struct arm64_cpu_capabilities *match_list;
384         const struct cpumask *cpus;
385 };
386
387 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
388 {
389         return cap->type & ARM64_CPUCAP_SCOPE_MASK;
390 }
391
392 /*
393  * Generic helper for handling capabilities with multiple (match,enable) pairs
394  * of call backs, sharing the same capability bit.
395  * Iterate over each entry to see if at least one matches.
396  */
397 static inline bool
398 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
399                                int scope)
400 {
401         const struct arm64_cpu_capabilities *caps;
402
403         for (caps = entry->match_list; caps->matches; caps++)
404                 if (caps->matches(caps, scope))
405                         return true;
406
407         return false;
408 }
409
410 static __always_inline bool is_vhe_hyp_code(void)
411 {
412         /* Only defined for code run in VHE hyp context */
413         return __is_defined(__KVM_VHE_HYPERVISOR__);
414 }
415
416 static __always_inline bool is_nvhe_hyp_code(void)
417 {
418         /* Only defined for code run in NVHE hyp context */
419         return __is_defined(__KVM_NVHE_HYPERVISOR__);
420 }
421
422 static __always_inline bool is_hyp_code(void)
423 {
424         return is_vhe_hyp_code() || is_nvhe_hyp_code();
425 }
426
427 extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
428
429 extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
430
431 #define for_each_available_cap(cap)             \
432         for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS)
433
434 bool this_cpu_has_cap(unsigned int cap);
435 void cpu_set_feature(unsigned int num);
436 bool cpu_have_feature(unsigned int num);
437 unsigned long cpu_get_elf_hwcap(void);
438 unsigned long cpu_get_elf_hwcap2(void);
439
440 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
441 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
442
443 static __always_inline bool boot_capabilities_finalized(void)
444 {
445         return alternative_has_cap_likely(ARM64_ALWAYS_BOOT);
446 }
447
448 static __always_inline bool system_capabilities_finalized(void)
449 {
450         return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM);
451 }
452
453 /*
454  * Test for a capability with a runtime check.
455  *
456  * Before the capability is detected, this returns false.
457  */
458 static __always_inline bool cpus_have_cap(unsigned int num)
459 {
460         if (__builtin_constant_p(num) && !cpucap_is_possible(num))
461                 return false;
462         if (num >= ARM64_NCAPS)
463                 return false;
464         return arch_test_bit(num, system_cpucaps);
465 }
466
467 /*
468  * Test for a capability without a runtime check.
469  *
470  * Before boot capabilities are finalized, this will BUG().
471  * After boot capabilities are finalized, this is patched to avoid a runtime
472  * check.
473  *
474  * @num must be a compile-time constant.
475  */
476 static __always_inline bool cpus_have_final_boot_cap(int num)
477 {
478         if (boot_capabilities_finalized())
479                 return alternative_has_cap_unlikely(num);
480         else
481                 BUG();
482 }
483
484 /*
485  * Test for a capability without a runtime check.
486  *
487  * Before system capabilities are finalized, this will BUG().
488  * After system capabilities are finalized, this is patched to avoid a runtime
489  * check.
490  *
491  * @num must be a compile-time constant.
492  */
493 static __always_inline bool cpus_have_final_cap(int num)
494 {
495         if (system_capabilities_finalized())
496                 return alternative_has_cap_unlikely(num);
497         else
498                 BUG();
499 }
500
501 static inline int __attribute_const__
502 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
503 {
504         return (s64)(features << (64 - width - field)) >> (64 - width);
505 }
506
507 static inline int __attribute_const__
508 cpuid_feature_extract_signed_field(u64 features, int field)
509 {
510         return cpuid_feature_extract_signed_field_width(features, field, 4);
511 }
512
513 static __always_inline unsigned int __attribute_const__
514 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
515 {
516         return (u64)(features << (64 - width - field)) >> (64 - width);
517 }
518
519 static __always_inline unsigned int __attribute_const__
520 cpuid_feature_extract_unsigned_field(u64 features, int field)
521 {
522         return cpuid_feature_extract_unsigned_field_width(features, field, 4);
523 }
524
525 /*
526  * Fields that identify the version of the Performance Monitors Extension do
527  * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
528  * "Alternative ID scheme used for the Performance Monitors Extension version".
529  */
530 static inline u64 __attribute_const__
531 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
532 {
533         u64 val = cpuid_feature_extract_unsigned_field(features, field);
534         u64 mask = GENMASK_ULL(field + 3, field);
535
536         /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
537         if (val == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
538                 val = 0;
539
540         if (val > cap) {
541                 features &= ~mask;
542                 features |= (cap << field) & mask;
543         }
544
545         return features;
546 }
547
548 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
549 {
550         return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
551 }
552
553 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
554 {
555         return (reg->user_val | (reg->sys_val & reg->user_mask));
556 }
557
558 static inline int __attribute_const__
559 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
560 {
561         if (WARN_ON_ONCE(!width))
562                 width = 4;
563         return (sign) ?
564                 cpuid_feature_extract_signed_field_width(features, field, width) :
565                 cpuid_feature_extract_unsigned_field_width(features, field, width);
566 }
567
568 static inline int __attribute_const__
569 cpuid_feature_extract_field(u64 features, int field, bool sign)
570 {
571         return cpuid_feature_extract_field_width(features, field, 4, sign);
572 }
573
574 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
575 {
576         return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
577 }
578
579 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
580 {
581         return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 ||
582                 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1;
583 }
584
585 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
586 {
587         u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT);
588
589         return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
590 }
591
592 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
593 {
594         u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT);
595
596         return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
597 }
598
599 static inline bool id_aa64pfr0_sve(u64 pfr0)
600 {
601         u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT);
602
603         return val > 0;
604 }
605
606 static inline bool id_aa64pfr1_sme(u64 pfr1)
607 {
608         u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT);
609
610         return val > 0;
611 }
612
613 static inline bool id_aa64pfr1_mte(u64 pfr1)
614 {
615         u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT);
616
617         return val >= ID_AA64PFR1_EL1_MTE_MTE2;
618 }
619
620 void __init setup_boot_cpu_features(void);
621 void __init setup_system_features(void);
622 void __init setup_user_features(void);
623
624 void check_local_cpu_capabilities(void);
625
626 u64 read_sanitised_ftr_reg(u32 id);
627 u64 __read_sysreg_by_encoding(u32 sys_id);
628
629 static inline bool cpu_supports_mixed_endian_el0(void)
630 {
631         return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
632 }
633
634
635 static inline bool supports_csv2p3(int scope)
636 {
637         u64 pfr0;
638         u8 csv2_val;
639
640         if (scope == SCOPE_LOCAL_CPU)
641                 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
642         else
643                 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
644
645         csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
646                                                         ID_AA64PFR0_EL1_CSV2_SHIFT);
647         return csv2_val == 3;
648 }
649
650 static inline bool supports_clearbhb(int scope)
651 {
652         u64 isar2;
653
654         if (scope == SCOPE_LOCAL_CPU)
655                 isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
656         else
657                 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
658
659         return cpuid_feature_extract_unsigned_field(isar2,
660                                                     ID_AA64ISAR2_EL1_CLRBHB_SHIFT);
661 }
662
663 const struct cpumask *system_32bit_el0_cpumask(void);
664 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
665
666 static inline bool system_supports_32bit_el0(void)
667 {
668         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
669
670         return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
671                id_aa64pfr0_32bit_el0(pfr0);
672 }
673
674 static inline bool system_supports_4kb_granule(void)
675 {
676         u64 mmfr0;
677         u32 val;
678
679         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
680         val = cpuid_feature_extract_unsigned_field(mmfr0,
681                                                 ID_AA64MMFR0_EL1_TGRAN4_SHIFT);
682
683         return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) &&
684                (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX);
685 }
686
687 static inline bool system_supports_64kb_granule(void)
688 {
689         u64 mmfr0;
690         u32 val;
691
692         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
693         val = cpuid_feature_extract_unsigned_field(mmfr0,
694                                                 ID_AA64MMFR0_EL1_TGRAN64_SHIFT);
695
696         return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) &&
697                (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX);
698 }
699
700 static inline bool system_supports_16kb_granule(void)
701 {
702         u64 mmfr0;
703         u32 val;
704
705         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
706         val = cpuid_feature_extract_unsigned_field(mmfr0,
707                                                 ID_AA64MMFR0_EL1_TGRAN16_SHIFT);
708
709         return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) &&
710                (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX);
711 }
712
713 static inline bool system_supports_mixed_endian_el0(void)
714 {
715         return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
716 }
717
718 static inline bool system_supports_mixed_endian(void)
719 {
720         u64 mmfr0;
721         u32 val;
722
723         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
724         val = cpuid_feature_extract_unsigned_field(mmfr0,
725                                                 ID_AA64MMFR0_EL1_BIGEND_SHIFT);
726
727         return val == 0x1;
728 }
729
730 static __always_inline bool system_supports_fpsimd(void)
731 {
732         return alternative_has_cap_likely(ARM64_HAS_FPSIMD);
733 }
734
735 static inline bool system_uses_hw_pan(void)
736 {
737         return alternative_has_cap_unlikely(ARM64_HAS_PAN);
738 }
739
740 static inline bool system_uses_ttbr0_pan(void)
741 {
742         return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
743                 !system_uses_hw_pan();
744 }
745
746 static __always_inline bool system_supports_sve(void)
747 {
748         return alternative_has_cap_unlikely(ARM64_SVE);
749 }
750
751 static __always_inline bool system_supports_sme(void)
752 {
753         return alternative_has_cap_unlikely(ARM64_SME);
754 }
755
756 static __always_inline bool system_supports_sme2(void)
757 {
758         return alternative_has_cap_unlikely(ARM64_SME2);
759 }
760
761 static __always_inline bool system_supports_fa64(void)
762 {
763         return alternative_has_cap_unlikely(ARM64_SME_FA64);
764 }
765
766 static __always_inline bool system_supports_tpidr2(void)
767 {
768         return system_supports_sme();
769 }
770
771 static __always_inline bool system_supports_cnp(void)
772 {
773         return alternative_has_cap_unlikely(ARM64_HAS_CNP);
774 }
775
776 static inline bool system_supports_address_auth(void)
777 {
778         return cpus_have_final_boot_cap(ARM64_HAS_ADDRESS_AUTH);
779 }
780
781 static inline bool system_supports_generic_auth(void)
782 {
783         return alternative_has_cap_unlikely(ARM64_HAS_GENERIC_AUTH);
784 }
785
786 static inline bool system_has_full_ptr_auth(void)
787 {
788         return system_supports_address_auth() && system_supports_generic_auth();
789 }
790
791 static __always_inline bool system_uses_irq_prio_masking(void)
792 {
793         return alternative_has_cap_unlikely(ARM64_HAS_GIC_PRIO_MASKING);
794 }
795
796 static inline bool system_supports_mte(void)
797 {
798         return alternative_has_cap_unlikely(ARM64_MTE);
799 }
800
801 static inline bool system_has_prio_mask_debugging(void)
802 {
803         return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
804                system_uses_irq_prio_masking();
805 }
806
807 static inline bool system_supports_bti(void)
808 {
809         return cpus_have_final_cap(ARM64_BTI);
810 }
811
812 static inline bool system_supports_bti_kernel(void)
813 {
814         return IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) &&
815                 cpus_have_final_boot_cap(ARM64_BTI);
816 }
817
818 static inline bool system_supports_tlb_range(void)
819 {
820         return alternative_has_cap_unlikely(ARM64_HAS_TLB_RANGE);
821 }
822
823 static inline bool system_supports_lpa2(void)
824 {
825         return cpus_have_final_cap(ARM64_HAS_LPA2);
826 }
827
828 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
829 bool try_emulate_mrs(struct pt_regs *regs, u32 isn);
830
831 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
832 {
833         switch (parange) {
834         case ID_AA64MMFR0_EL1_PARANGE_32: return 32;
835         case ID_AA64MMFR0_EL1_PARANGE_36: return 36;
836         case ID_AA64MMFR0_EL1_PARANGE_40: return 40;
837         case ID_AA64MMFR0_EL1_PARANGE_42: return 42;
838         case ID_AA64MMFR0_EL1_PARANGE_44: return 44;
839         case ID_AA64MMFR0_EL1_PARANGE_48: return 48;
840         case ID_AA64MMFR0_EL1_PARANGE_52: return 52;
841         /*
842          * A future PE could use a value unknown to the kernel.
843          * However, by the "D10.1.4 Principles of the ID scheme
844          * for fields in ID registers", ARM DDI 0487C.a, any new
845          * value is guaranteed to be higher than what we know already.
846          * As a safe limit, we return the limit supported by the kernel.
847          */
848         default: return CONFIG_ARM64_PA_BITS;
849         }
850 }
851
852 /* Check whether hardware update of the Access flag is supported */
853 static inline bool cpu_has_hw_af(void)
854 {
855         u64 mmfr1;
856
857         if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
858                 return false;
859
860         /*
861          * Use cached version to avoid emulated msr operation on KVM
862          * guests.
863          */
864         mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
865         return cpuid_feature_extract_unsigned_field(mmfr1,
866                                                 ID_AA64MMFR1_EL1_HAFDBS_SHIFT);
867 }
868
869 static inline bool cpu_has_pan(void)
870 {
871         u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
872         return cpuid_feature_extract_unsigned_field(mmfr1,
873                                                     ID_AA64MMFR1_EL1_PAN_SHIFT);
874 }
875
876 #ifdef CONFIG_ARM64_AMU_EXTN
877 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
878 extern bool cpu_has_amu_feat(int cpu);
879 #else
880 static inline bool cpu_has_amu_feat(int cpu)
881 {
882         return false;
883 }
884 #endif
885
886 /* Get a cpu that supports the Activity Monitors Unit (AMU) */
887 extern int get_cpu_with_amu_feat(void);
888
889 static inline unsigned int get_vmid_bits(u64 mmfr1)
890 {
891         int vmid_bits;
892
893         vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
894                                                 ID_AA64MMFR1_EL1_VMIDBits_SHIFT);
895         if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16)
896                 return 16;
897
898         /*
899          * Return the default here even if any reserved
900          * value is fetched from the system register.
901          */
902         return 8;
903 }
904
905 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur);
906 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);
907
908 extern struct arm64_ftr_override id_aa64mmfr1_override;
909 extern struct arm64_ftr_override id_aa64pfr0_override;
910 extern struct arm64_ftr_override id_aa64pfr1_override;
911 extern struct arm64_ftr_override id_aa64zfr0_override;
912 extern struct arm64_ftr_override id_aa64smfr0_override;
913 extern struct arm64_ftr_override id_aa64isar1_override;
914 extern struct arm64_ftr_override id_aa64isar2_override;
915
916 extern struct arm64_ftr_override arm64_sw_feature_override;
917
918 u32 get_kvm_ipa_limit(void);
919 void dump_cpu_features(void);
920
921 #endif /* __ASSEMBLY__ */
922
923 #endif