Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[sfrench/cifs-2.6.git] / arch / arm / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29
30 #include <linux/atomic.h>
31 #include <asm/bugs.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/procinfo.h>
43 #include <asm/processor.h>
44 #include <asm/sections.h>
45 #include <asm/tlbflush.h>
46 #include <asm/ptrace.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mpu.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ipi.h>
54
55 /*
56  * as from 2.5, kernels no longer have an init_tasks structure
57  * so we need some other way of telling a new secondary core
58  * where to place its SVC stack
59  */
60 struct secondary_data secondary_data;
61
62 enum ipi_msg_type {
63         IPI_WAKEUP,
64         IPI_TIMER,
65         IPI_RESCHEDULE,
66         IPI_CALL_FUNC,
67         IPI_CPU_STOP,
68         IPI_IRQ_WORK,
69         IPI_COMPLETION,
70         /*
71          * CPU_BACKTRACE is special and not included in NR_IPI
72          * or tracable with trace_ipi_*
73          */
74         IPI_CPU_BACKTRACE,
75         /*
76          * SGI8-15 can be reserved by secure firmware, and thus may
77          * not be usable by the kernel. Please keep the above limited
78          * to at most 8 entries.
79          */
80 };
81
82 static DECLARE_COMPLETION(cpu_running);
83
84 static struct smp_operations smp_ops __ro_after_init;
85
86 void __init smp_set_ops(const struct smp_operations *ops)
87 {
88         if (ops)
89                 smp_ops = *ops;
90 };
91
92 static unsigned long get_arch_pgd(pgd_t *pgd)
93 {
94 #ifdef CONFIG_ARM_LPAE
95         return __phys_to_pfn(virt_to_phys(pgd));
96 #else
97         return virt_to_phys(pgd);
98 #endif
99 }
100
101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102 static int secondary_biglittle_prepare(unsigned int cpu)
103 {
104         if (!cpu_vtable[cpu])
105                 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106
107         return cpu_vtable[cpu] ? 0 : -ENOMEM;
108 }
109
110 static void secondary_biglittle_init(void)
111 {
112         init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113 }
114 #else
115 static int secondary_biglittle_prepare(unsigned int cpu)
116 {
117         return 0;
118 }
119
120 static void secondary_biglittle_init(void)
121 {
122 }
123 #endif
124
125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
126 {
127         int ret;
128
129         if (!smp_ops.smp_boot_secondary)
130                 return -ENOSYS;
131
132         ret = secondary_biglittle_prepare(cpu);
133         if (ret)
134                 return ret;
135
136         /*
137          * We need to tell the secondary core where to find
138          * its stack and the page tables.
139          */
140         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141 #ifdef CONFIG_ARM_MPU
142         secondary_data.mpu_rgn_info = &mpu_rgn_info;
143 #endif
144
145 #ifdef CONFIG_MMU
146         secondary_data.pgdir = virt_to_phys(idmap_pgd);
147         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148 #endif
149         sync_cache_w(&secondary_data);
150
151         /*
152          * Now bring the CPU into our world.
153          */
154         ret = smp_ops.smp_boot_secondary(cpu, idle);
155         if (ret == 0) {
156                 /*
157                  * CPU was successfully started, wait for it
158                  * to come online or time out.
159                  */
160                 wait_for_completion_timeout(&cpu_running,
161                                                  msecs_to_jiffies(1000));
162
163                 if (!cpu_online(cpu)) {
164                         pr_crit("CPU%u: failed to come online\n", cpu);
165                         ret = -EIO;
166                 }
167         } else {
168                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169         }
170
171
172         memset(&secondary_data, 0, sizeof(secondary_data));
173         return ret;
174 }
175
176 /* platform specific SMP operations */
177 void __init smp_init_cpus(void)
178 {
179         if (smp_ops.smp_init_cpus)
180                 smp_ops.smp_init_cpus();
181 }
182
183 int platform_can_secondary_boot(void)
184 {
185         return !!smp_ops.smp_boot_secondary;
186 }
187
188 int platform_can_cpu_hotplug(void)
189 {
190 #ifdef CONFIG_HOTPLUG_CPU
191         if (smp_ops.cpu_kill)
192                 return 1;
193 #endif
194
195         return 0;
196 }
197
198 #ifdef CONFIG_HOTPLUG_CPU
199 static int platform_cpu_kill(unsigned int cpu)
200 {
201         if (smp_ops.cpu_kill)
202                 return smp_ops.cpu_kill(cpu);
203         return 1;
204 }
205
206 static int platform_cpu_disable(unsigned int cpu)
207 {
208         if (smp_ops.cpu_disable)
209                 return smp_ops.cpu_disable(cpu);
210
211         return 0;
212 }
213
214 int platform_can_hotplug_cpu(unsigned int cpu)
215 {
216         /* cpu_die must be specified to support hotplug */
217         if (!smp_ops.cpu_die)
218                 return 0;
219
220         if (smp_ops.cpu_can_disable)
221                 return smp_ops.cpu_can_disable(cpu);
222
223         /*
224          * By default, allow disabling all CPUs except the first one,
225          * since this is special on a lot of platforms, e.g. because
226          * of clock tick interrupts.
227          */
228         return cpu != 0;
229 }
230
231 /*
232  * __cpu_disable runs on the processor to be shutdown.
233  */
234 int __cpu_disable(void)
235 {
236         unsigned int cpu = smp_processor_id();
237         int ret;
238
239         ret = platform_cpu_disable(cpu);
240         if (ret)
241                 return ret;
242
243         /*
244          * Take this CPU offline.  Once we clear this, we can't return,
245          * and we must not schedule until we're ready to give up the cpu.
246          */
247         set_cpu_online(cpu, false);
248
249         /*
250          * OK - migrate IRQs away from this CPU
251          */
252         irq_migrate_all_off_this_cpu();
253
254         /*
255          * Flush user cache and TLB mappings, and then remove this CPU
256          * from the vm mask set of all processes.
257          *
258          * Caches are flushed to the Level of Unification Inner Shareable
259          * to write-back dirty lines to unified caches shared by all CPUs.
260          */
261         flush_cache_louis();
262         local_flush_tlb_all();
263
264         return 0;
265 }
266
267 static DECLARE_COMPLETION(cpu_died);
268
269 /*
270  * called on the thread which is asking for a CPU to be shutdown -
271  * waits until shutdown has completed, or it is timed out.
272  */
273 void __cpu_die(unsigned int cpu)
274 {
275         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
276                 pr_err("CPU%u: cpu didn't die\n", cpu);
277                 return;
278         }
279         pr_debug("CPU%u: shutdown\n", cpu);
280
281         clear_tasks_mm_cpumask(cpu);
282         /*
283          * platform_cpu_kill() is generally expected to do the powering off
284          * and/or cutting of clocks to the dying CPU.  Optionally, this may
285          * be done by the CPU which is dying in preference to supporting
286          * this call, but that means there is _no_ synchronisation between
287          * the requesting CPU and the dying CPU actually losing power.
288          */
289         if (!platform_cpu_kill(cpu))
290                 pr_err("CPU%u: unable to kill\n", cpu);
291 }
292
293 /*
294  * Called from the idle thread for the CPU which has been shutdown.
295  *
296  * Note that we disable IRQs here, but do not re-enable them
297  * before returning to the caller. This is also the behaviour
298  * of the other hotplug-cpu capable cores, so presumably coming
299  * out of idle fixes this.
300  */
301 void arch_cpu_idle_dead(void)
302 {
303         unsigned int cpu = smp_processor_id();
304
305         idle_task_exit();
306
307         local_irq_disable();
308
309         /*
310          * Flush the data out of the L1 cache for this CPU.  This must be
311          * before the completion to ensure that data is safely written out
312          * before platform_cpu_kill() gets called - which may disable
313          * *this* CPU and power down its cache.
314          */
315         flush_cache_louis();
316
317         /*
318          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
319          * this returns, power and/or clocks can be removed at any point
320          * from this CPU and its cache by platform_cpu_kill().
321          */
322         complete(&cpu_died);
323
324         /*
325          * Ensure that the cache lines associated with that completion are
326          * written out.  This covers the case where _this_ CPU is doing the
327          * powering down, to ensure that the completion is visible to the
328          * CPU waiting for this one.
329          */
330         flush_cache_louis();
331
332         /*
333          * The actual CPU shutdown procedure is at least platform (if not
334          * CPU) specific.  This may remove power, or it may simply spin.
335          *
336          * Platforms are generally expected *NOT* to return from this call,
337          * although there are some which do because they have no way to
338          * power down the CPU.  These platforms are the _only_ reason we
339          * have a return path which uses the fragment of assembly below.
340          *
341          * The return path should not be used for platforms which can
342          * power off the CPU.
343          */
344         if (smp_ops.cpu_die)
345                 smp_ops.cpu_die(cpu);
346
347         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
348                 cpu);
349
350         /*
351          * Do not return to the idle loop - jump back to the secondary
352          * cpu initialisation.  There's some initialisation which needs
353          * to be repeated to undo the effects of taking the CPU offline.
354          */
355         __asm__("mov    sp, %0\n"
356         "       mov     fp, #0\n"
357         "       b       secondary_start_kernel"
358                 :
359                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
360 }
361 #endif /* CONFIG_HOTPLUG_CPU */
362
363 /*
364  * Called by both boot and secondaries to move global data into
365  * per-processor storage.
366  */
367 static void smp_store_cpu_info(unsigned int cpuid)
368 {
369         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
370
371         cpu_info->loops_per_jiffy = loops_per_jiffy;
372         cpu_info->cpuid = read_cpuid_id();
373
374         store_cpu_topology(cpuid);
375 }
376
377 /*
378  * This is the secondary CPU boot entry.  We're using this CPUs
379  * idle thread stack, but a set of temporary page tables.
380  */
381 asmlinkage void secondary_start_kernel(void)
382 {
383         struct mm_struct *mm = &init_mm;
384         unsigned int cpu;
385
386         secondary_biglittle_init();
387
388         /*
389          * The identity mapping is uncached (strongly ordered), so
390          * switch away from it before attempting any exclusive accesses.
391          */
392         cpu_switch_mm(mm->pgd, mm);
393         local_flush_bp_all();
394         enter_lazy_tlb(mm, current);
395         local_flush_tlb_all();
396
397         /*
398          * All kernel threads share the same mm context; grab a
399          * reference and switch to it.
400          */
401         cpu = smp_processor_id();
402         mmgrab(mm);
403         current->active_mm = mm;
404         cpumask_set_cpu(cpu, mm_cpumask(mm));
405
406         cpu_init();
407
408 #ifndef CONFIG_MMU
409         setup_vectors_base();
410 #endif
411         pr_debug("CPU%u: Booted secondary processor\n", cpu);
412
413         preempt_disable();
414         trace_hardirqs_off();
415
416         /*
417          * Give the platform a chance to do its own initialisation.
418          */
419         if (smp_ops.smp_secondary_init)
420                 smp_ops.smp_secondary_init(cpu);
421
422         notify_cpu_starting(cpu);
423
424         calibrate_delay();
425
426         smp_store_cpu_info(cpu);
427
428         /*
429          * OK, now it's safe to let the boot CPU continue.  Wait for
430          * the CPU migration code to notice that the CPU is online
431          * before we continue - which happens after __cpu_up returns.
432          */
433         set_cpu_online(cpu, true);
434
435         check_other_bugs();
436
437         complete(&cpu_running);
438
439         local_irq_enable();
440         local_fiq_enable();
441         local_abt_enable();
442
443         /*
444          * OK, it's off to the idle thread for us
445          */
446         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
447 }
448
449 void __init smp_cpus_done(unsigned int max_cpus)
450 {
451         int cpu;
452         unsigned long bogosum = 0;
453
454         for_each_online_cpu(cpu)
455                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
456
457         printk(KERN_INFO "SMP: Total of %d processors activated "
458                "(%lu.%02lu BogoMIPS).\n",
459                num_online_cpus(),
460                bogosum / (500000/HZ),
461                (bogosum / (5000/HZ)) % 100);
462
463         hyp_mode_check();
464 }
465
466 void __init smp_prepare_boot_cpu(void)
467 {
468         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
469 }
470
471 void __init smp_prepare_cpus(unsigned int max_cpus)
472 {
473         unsigned int ncores = num_possible_cpus();
474
475         init_cpu_topology();
476
477         smp_store_cpu_info(smp_processor_id());
478
479         /*
480          * are we trying to boot more cores than exist?
481          */
482         if (max_cpus > ncores)
483                 max_cpus = ncores;
484         if (ncores > 1 && max_cpus) {
485                 /*
486                  * Initialise the present map, which describes the set of CPUs
487                  * actually populated at the present time. A platform should
488                  * re-initialize the map in the platforms smp_prepare_cpus()
489                  * if present != possible (e.g. physical hotplug).
490                  */
491                 init_cpu_present(cpu_possible_mask);
492
493                 /*
494                  * Initialise the SCU if there are more than one CPU
495                  * and let them know where to start.
496                  */
497                 if (smp_ops.smp_prepare_cpus)
498                         smp_ops.smp_prepare_cpus(max_cpus);
499         }
500 }
501
502 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
503
504 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
505 {
506         if (!__smp_cross_call)
507                 __smp_cross_call = fn;
508 }
509
510 static const char *ipi_types[NR_IPI] __tracepoint_string = {
511 #define S(x,s)  [x] = s
512         S(IPI_WAKEUP, "CPU wakeup interrupts"),
513         S(IPI_TIMER, "Timer broadcast interrupts"),
514         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
515         S(IPI_CALL_FUNC, "Function call interrupts"),
516         S(IPI_CPU_STOP, "CPU stop interrupts"),
517         S(IPI_IRQ_WORK, "IRQ work interrupts"),
518         S(IPI_COMPLETION, "completion interrupts"),
519 };
520
521 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
522 {
523         trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
524         __smp_cross_call(target, ipinr);
525 }
526
527 void show_ipi_list(struct seq_file *p, int prec)
528 {
529         unsigned int cpu, i;
530
531         for (i = 0; i < NR_IPI; i++) {
532                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
533
534                 for_each_online_cpu(cpu)
535                         seq_printf(p, "%10u ",
536                                    __get_irq_stat(cpu, ipi_irqs[i]));
537
538                 seq_printf(p, " %s\n", ipi_types[i]);
539         }
540 }
541
542 u64 smp_irq_stat_cpu(unsigned int cpu)
543 {
544         u64 sum = 0;
545         int i;
546
547         for (i = 0; i < NR_IPI; i++)
548                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
549
550         return sum;
551 }
552
553 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
554 {
555         smp_cross_call(mask, IPI_CALL_FUNC);
556 }
557
558 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
559 {
560         smp_cross_call(mask, IPI_WAKEUP);
561 }
562
563 void arch_send_call_function_single_ipi(int cpu)
564 {
565         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
566 }
567
568 #ifdef CONFIG_IRQ_WORK
569 void arch_irq_work_raise(void)
570 {
571         if (arch_irq_work_has_interrupt())
572                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
573 }
574 #endif
575
576 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
577 void tick_broadcast(const struct cpumask *mask)
578 {
579         smp_cross_call(mask, IPI_TIMER);
580 }
581 #endif
582
583 static DEFINE_RAW_SPINLOCK(stop_lock);
584
585 /*
586  * ipi_cpu_stop - handle IPI from smp_send_stop()
587  */
588 static void ipi_cpu_stop(unsigned int cpu)
589 {
590         if (system_state <= SYSTEM_RUNNING) {
591                 raw_spin_lock(&stop_lock);
592                 pr_crit("CPU%u: stopping\n", cpu);
593                 dump_stack();
594                 raw_spin_unlock(&stop_lock);
595         }
596
597         set_cpu_online(cpu, false);
598
599         local_fiq_disable();
600         local_irq_disable();
601
602         while (1) {
603                 cpu_relax();
604                 wfe();
605         }
606 }
607
608 static DEFINE_PER_CPU(struct completion *, cpu_completion);
609
610 int register_ipi_completion(struct completion *completion, int cpu)
611 {
612         per_cpu(cpu_completion, cpu) = completion;
613         return IPI_COMPLETION;
614 }
615
616 static void ipi_complete(unsigned int cpu)
617 {
618         complete(per_cpu(cpu_completion, cpu));
619 }
620
621 /*
622  * Main handler for inter-processor interrupts
623  */
624 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
625 {
626         handle_IPI(ipinr, regs);
627 }
628
629 void handle_IPI(int ipinr, struct pt_regs *regs)
630 {
631         unsigned int cpu = smp_processor_id();
632         struct pt_regs *old_regs = set_irq_regs(regs);
633
634         if ((unsigned)ipinr < NR_IPI) {
635                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
636                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
637         }
638
639         switch (ipinr) {
640         case IPI_WAKEUP:
641                 break;
642
643 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
644         case IPI_TIMER:
645                 irq_enter();
646                 tick_receive_broadcast();
647                 irq_exit();
648                 break;
649 #endif
650
651         case IPI_RESCHEDULE:
652                 scheduler_ipi();
653                 break;
654
655         case IPI_CALL_FUNC:
656                 irq_enter();
657                 generic_smp_call_function_interrupt();
658                 irq_exit();
659                 break;
660
661         case IPI_CPU_STOP:
662                 irq_enter();
663                 ipi_cpu_stop(cpu);
664                 irq_exit();
665                 break;
666
667 #ifdef CONFIG_IRQ_WORK
668         case IPI_IRQ_WORK:
669                 irq_enter();
670                 irq_work_run();
671                 irq_exit();
672                 break;
673 #endif
674
675         case IPI_COMPLETION:
676                 irq_enter();
677                 ipi_complete(cpu);
678                 irq_exit();
679                 break;
680
681         case IPI_CPU_BACKTRACE:
682                 printk_nmi_enter();
683                 irq_enter();
684                 nmi_cpu_backtrace(regs);
685                 irq_exit();
686                 printk_nmi_exit();
687                 break;
688
689         default:
690                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
691                         cpu, ipinr);
692                 break;
693         }
694
695         if ((unsigned)ipinr < NR_IPI)
696                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
697         set_irq_regs(old_regs);
698 }
699
700 void smp_send_reschedule(int cpu)
701 {
702         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
703 }
704
705 void smp_send_stop(void)
706 {
707         unsigned long timeout;
708         struct cpumask mask;
709
710         cpumask_copy(&mask, cpu_online_mask);
711         cpumask_clear_cpu(smp_processor_id(), &mask);
712         if (!cpumask_empty(&mask))
713                 smp_cross_call(&mask, IPI_CPU_STOP);
714
715         /* Wait up to one second for other CPUs to stop */
716         timeout = USEC_PER_SEC;
717         while (num_online_cpus() > 1 && timeout--)
718                 udelay(1);
719
720         if (num_online_cpus() > 1)
721                 pr_warn("SMP: failed to stop secondary CPUs\n");
722 }
723
724 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
725  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
726  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
727  * kdump fails. So split out the panic_smp_self_stop() and add
728  * set_cpu_online(smp_processor_id(), false).
729  */
730 void panic_smp_self_stop(void)
731 {
732         pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
733                  smp_processor_id());
734         set_cpu_online(smp_processor_id(), false);
735         while (1)
736                 cpu_relax();
737 }
738
739 /*
740  * not supported here
741  */
742 int setup_profiling_timer(unsigned int multiplier)
743 {
744         return -EINVAL;
745 }
746
747 #ifdef CONFIG_CPU_FREQ
748
749 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
750 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
751 static unsigned long global_l_p_j_ref;
752 static unsigned long global_l_p_j_ref_freq;
753
754 static int cpufreq_callback(struct notifier_block *nb,
755                                         unsigned long val, void *data)
756 {
757         struct cpufreq_freqs *freq = data;
758         struct cpumask *cpus = freq->policy->cpus;
759         int cpu, first = cpumask_first(cpus);
760         unsigned int lpj;
761
762         if (freq->flags & CPUFREQ_CONST_LOOPS)
763                 return NOTIFY_OK;
764
765         if (!per_cpu(l_p_j_ref, first)) {
766                 for_each_cpu(cpu, cpus) {
767                         per_cpu(l_p_j_ref, cpu) =
768                                 per_cpu(cpu_data, cpu).loops_per_jiffy;
769                         per_cpu(l_p_j_ref_freq, cpu) = freq->old;
770                 }
771
772                 if (!global_l_p_j_ref) {
773                         global_l_p_j_ref = loops_per_jiffy;
774                         global_l_p_j_ref_freq = freq->old;
775                 }
776         }
777
778         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
779             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
780                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
781                                                 global_l_p_j_ref_freq,
782                                                 freq->new);
783
784                 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
785                                     per_cpu(l_p_j_ref_freq, first), freq->new);
786                 for_each_cpu(cpu, cpus)
787                         per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
788         }
789         return NOTIFY_OK;
790 }
791
792 static struct notifier_block cpufreq_notifier = {
793         .notifier_call  = cpufreq_callback,
794 };
795
796 static int __init register_cpufreq_notifier(void)
797 {
798         return cpufreq_register_notifier(&cpufreq_notifier,
799                                                 CPUFREQ_TRANSITION_NOTIFIER);
800 }
801 core_initcall(register_cpufreq_notifier);
802
803 #endif
804
805 static void raise_nmi(cpumask_t *mask)
806 {
807         __smp_cross_call(mask, IPI_CPU_BACKTRACE);
808 }
809
810 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
811 {
812         nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
813 }