05371bf54f96d306476bdafe9fa88f2ffb4da785
[sfrench/cifs-2.6.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 {
61         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
62                                 1 << order);
63 }
64 #else
65 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
66 {
67         return false;
68 }
69 #endif
70 static unsigned long hugetlb_cma_size __initdata;
71
72 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
73
74 /* for command line parsing */
75 static struct hstate * __initdata parsed_hstate;
76 static unsigned long __initdata default_hstate_max_huge_pages;
77 static bool __initdata parsed_valid_hugepagesz = true;
78 static bool __initdata parsed_default_hugepagesz;
79 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80
81 /*
82  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83  * free_huge_pages, and surplus_huge_pages.
84  */
85 DEFINE_SPINLOCK(hugetlb_lock);
86
87 /*
88  * Serializes faults on the same logical page.  This is used to
89  * prevent spurious OOMs when the hugepage pool is fully utilized.
90  */
91 static int num_fault_mutexes;
92 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93
94 /* Forward declaration */
95 static int hugetlb_acct_memory(struct hstate *h, long delta);
96 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
98 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
99 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100                 unsigned long start, unsigned long end);
101 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
102
103 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 {
105         if (spool->count)
106                 return false;
107         if (spool->max_hpages != -1)
108                 return spool->used_hpages == 0;
109         if (spool->min_hpages != -1)
110                 return spool->rsv_hpages == spool->min_hpages;
111
112         return true;
113 }
114
115 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116                                                 unsigned long irq_flags)
117 {
118         spin_unlock_irqrestore(&spool->lock, irq_flags);
119
120         /* If no pages are used, and no other handles to the subpool
121          * remain, give up any reservations based on minimum size and
122          * free the subpool */
123         if (subpool_is_free(spool)) {
124                 if (spool->min_hpages != -1)
125                         hugetlb_acct_memory(spool->hstate,
126                                                 -spool->min_hpages);
127                 kfree(spool);
128         }
129 }
130
131 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132                                                 long min_hpages)
133 {
134         struct hugepage_subpool *spool;
135
136         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137         if (!spool)
138                 return NULL;
139
140         spin_lock_init(&spool->lock);
141         spool->count = 1;
142         spool->max_hpages = max_hpages;
143         spool->hstate = h;
144         spool->min_hpages = min_hpages;
145
146         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147                 kfree(spool);
148                 return NULL;
149         }
150         spool->rsv_hpages = min_hpages;
151
152         return spool;
153 }
154
155 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 {
157         unsigned long flags;
158
159         spin_lock_irqsave(&spool->lock, flags);
160         BUG_ON(!spool->count);
161         spool->count--;
162         unlock_or_release_subpool(spool, flags);
163 }
164
165 /*
166  * Subpool accounting for allocating and reserving pages.
167  * Return -ENOMEM if there are not enough resources to satisfy the
168  * request.  Otherwise, return the number of pages by which the
169  * global pools must be adjusted (upward).  The returned value may
170  * only be different than the passed value (delta) in the case where
171  * a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
174                                       long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return ret;
180
181         spin_lock_irq(&spool->lock);
182
183         if (spool->max_hpages != -1) {          /* maximum size accounting */
184                 if ((spool->used_hpages + delta) <= spool->max_hpages)
185                         spool->used_hpages += delta;
186                 else {
187                         ret = -ENOMEM;
188                         goto unlock_ret;
189                 }
190         }
191
192         /* minimum size accounting */
193         if (spool->min_hpages != -1 && spool->rsv_hpages) {
194                 if (delta > spool->rsv_hpages) {
195                         /*
196                          * Asking for more reserves than those already taken on
197                          * behalf of subpool.  Return difference.
198                          */
199                         ret = delta - spool->rsv_hpages;
200                         spool->rsv_hpages = 0;
201                 } else {
202                         ret = 0;        /* reserves already accounted for */
203                         spool->rsv_hpages -= delta;
204                 }
205         }
206
207 unlock_ret:
208         spin_unlock_irq(&spool->lock);
209         return ret;
210 }
211
212 /*
213  * Subpool accounting for freeing and unreserving pages.
214  * Return the number of global page reservations that must be dropped.
215  * The return value may only be different than the passed value (delta)
216  * in the case where a subpool minimum size must be maintained.
217  */
218 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
219                                        long delta)
220 {
221         long ret = delta;
222         unsigned long flags;
223
224         if (!spool)
225                 return delta;
226
227         spin_lock_irqsave(&spool->lock, flags);
228
229         if (spool->max_hpages != -1)            /* maximum size accounting */
230                 spool->used_hpages -= delta;
231
232          /* minimum size accounting */
233         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
234                 if (spool->rsv_hpages + delta <= spool->min_hpages)
235                         ret = 0;
236                 else
237                         ret = spool->rsv_hpages + delta - spool->min_hpages;
238
239                 spool->rsv_hpages += delta;
240                 if (spool->rsv_hpages > spool->min_hpages)
241                         spool->rsv_hpages = spool->min_hpages;
242         }
243
244         /*
245          * If hugetlbfs_put_super couldn't free spool due to an outstanding
246          * quota reference, free it now.
247          */
248         unlock_or_release_subpool(spool, flags);
249
250         return ret;
251 }
252
253 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254 {
255         return HUGETLBFS_SB(inode->i_sb)->spool;
256 }
257
258 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259 {
260         return subpool_inode(file_inode(vma->vm_file));
261 }
262
263 /*
264  * hugetlb vma_lock helper routines
265  */
266 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267 {
268         if (__vma_shareable_lock(vma)) {
269                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270
271                 down_read(&vma_lock->rw_sema);
272         } else if (__vma_private_lock(vma)) {
273                 struct resv_map *resv_map = vma_resv_map(vma);
274
275                 down_read(&resv_map->rw_sema);
276         }
277 }
278
279 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280 {
281         if (__vma_shareable_lock(vma)) {
282                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283
284                 up_read(&vma_lock->rw_sema);
285         } else if (__vma_private_lock(vma)) {
286                 struct resv_map *resv_map = vma_resv_map(vma);
287
288                 up_read(&resv_map->rw_sema);
289         }
290 }
291
292 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293 {
294         if (__vma_shareable_lock(vma)) {
295                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296
297                 down_write(&vma_lock->rw_sema);
298         } else if (__vma_private_lock(vma)) {
299                 struct resv_map *resv_map = vma_resv_map(vma);
300
301                 down_write(&resv_map->rw_sema);
302         }
303 }
304
305 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306 {
307         if (__vma_shareable_lock(vma)) {
308                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309
310                 up_write(&vma_lock->rw_sema);
311         } else if (__vma_private_lock(vma)) {
312                 struct resv_map *resv_map = vma_resv_map(vma);
313
314                 up_write(&resv_map->rw_sema);
315         }
316 }
317
318 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319 {
320
321         if (__vma_shareable_lock(vma)) {
322                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
323
324                 return down_write_trylock(&vma_lock->rw_sema);
325         } else if (__vma_private_lock(vma)) {
326                 struct resv_map *resv_map = vma_resv_map(vma);
327
328                 return down_write_trylock(&resv_map->rw_sema);
329         }
330
331         return 1;
332 }
333
334 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335 {
336         if (__vma_shareable_lock(vma)) {
337                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338
339                 lockdep_assert_held(&vma_lock->rw_sema);
340         } else if (__vma_private_lock(vma)) {
341                 struct resv_map *resv_map = vma_resv_map(vma);
342
343                 lockdep_assert_held(&resv_map->rw_sema);
344         }
345 }
346
347 void hugetlb_vma_lock_release(struct kref *kref)
348 {
349         struct hugetlb_vma_lock *vma_lock = container_of(kref,
350                         struct hugetlb_vma_lock, refs);
351
352         kfree(vma_lock);
353 }
354
355 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356 {
357         struct vm_area_struct *vma = vma_lock->vma;
358
359         /*
360          * vma_lock structure may or not be released as a result of put,
361          * it certainly will no longer be attached to vma so clear pointer.
362          * Semaphore synchronizes access to vma_lock->vma field.
363          */
364         vma_lock->vma = NULL;
365         vma->vm_private_data = NULL;
366         up_write(&vma_lock->rw_sema);
367         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368 }
369
370 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371 {
372         if (__vma_shareable_lock(vma)) {
373                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374
375                 __hugetlb_vma_unlock_write_put(vma_lock);
376         } else if (__vma_private_lock(vma)) {
377                 struct resv_map *resv_map = vma_resv_map(vma);
378
379                 /* no free for anon vmas, but still need to unlock */
380                 up_write(&resv_map->rw_sema);
381         }
382 }
383
384 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385 {
386         /*
387          * Only present in sharable vmas.
388          */
389         if (!vma || !__vma_shareable_lock(vma))
390                 return;
391
392         if (vma->vm_private_data) {
393                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394
395                 down_write(&vma_lock->rw_sema);
396                 __hugetlb_vma_unlock_write_put(vma_lock);
397         }
398 }
399
400 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401 {
402         struct hugetlb_vma_lock *vma_lock;
403
404         /* Only establish in (flags) sharable vmas */
405         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406                 return;
407
408         /* Should never get here with non-NULL vm_private_data */
409         if (vma->vm_private_data)
410                 return;
411
412         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413         if (!vma_lock) {
414                 /*
415                  * If we can not allocate structure, then vma can not
416                  * participate in pmd sharing.  This is only a possible
417                  * performance enhancement and memory saving issue.
418                  * However, the lock is also used to synchronize page
419                  * faults with truncation.  If the lock is not present,
420                  * unlikely races could leave pages in a file past i_size
421                  * until the file is removed.  Warn in the unlikely case of
422                  * allocation failure.
423                  */
424                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425                 return;
426         }
427
428         kref_init(&vma_lock->refs);
429         init_rwsem(&vma_lock->rw_sema);
430         vma_lock->vma = vma;
431         vma->vm_private_data = vma_lock;
432 }
433
434 /* Helper that removes a struct file_region from the resv_map cache and returns
435  * it for use.
436  */
437 static struct file_region *
438 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439 {
440         struct file_region *nrg;
441
442         VM_BUG_ON(resv->region_cache_count <= 0);
443
444         resv->region_cache_count--;
445         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
446         list_del(&nrg->link);
447
448         nrg->from = from;
449         nrg->to = to;
450
451         return nrg;
452 }
453
454 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455                                               struct file_region *rg)
456 {
457 #ifdef CONFIG_CGROUP_HUGETLB
458         nrg->reservation_counter = rg->reservation_counter;
459         nrg->css = rg->css;
460         if (rg->css)
461                 css_get(rg->css);
462 #endif
463 }
464
465 /* Helper that records hugetlb_cgroup uncharge info. */
466 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467                                                 struct hstate *h,
468                                                 struct resv_map *resv,
469                                                 struct file_region *nrg)
470 {
471 #ifdef CONFIG_CGROUP_HUGETLB
472         if (h_cg) {
473                 nrg->reservation_counter =
474                         &h_cg->rsvd_hugepage[hstate_index(h)];
475                 nrg->css = &h_cg->css;
476                 /*
477                  * The caller will hold exactly one h_cg->css reference for the
478                  * whole contiguous reservation region. But this area might be
479                  * scattered when there are already some file_regions reside in
480                  * it. As a result, many file_regions may share only one css
481                  * reference. In order to ensure that one file_region must hold
482                  * exactly one h_cg->css reference, we should do css_get for
483                  * each file_region and leave the reference held by caller
484                  * untouched.
485                  */
486                 css_get(&h_cg->css);
487                 if (!resv->pages_per_hpage)
488                         resv->pages_per_hpage = pages_per_huge_page(h);
489                 /* pages_per_hpage should be the same for all entries in
490                  * a resv_map.
491                  */
492                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493         } else {
494                 nrg->reservation_counter = NULL;
495                 nrg->css = NULL;
496         }
497 #endif
498 }
499
500 static void put_uncharge_info(struct file_region *rg)
501 {
502 #ifdef CONFIG_CGROUP_HUGETLB
503         if (rg->css)
504                 css_put(rg->css);
505 #endif
506 }
507
508 static bool has_same_uncharge_info(struct file_region *rg,
509                                    struct file_region *org)
510 {
511 #ifdef CONFIG_CGROUP_HUGETLB
512         return rg->reservation_counter == org->reservation_counter &&
513                rg->css == org->css;
514
515 #else
516         return true;
517 #endif
518 }
519
520 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521 {
522         struct file_region *nrg, *prg;
523
524         prg = list_prev_entry(rg, link);
525         if (&prg->link != &resv->regions && prg->to == rg->from &&
526             has_same_uncharge_info(prg, rg)) {
527                 prg->to = rg->to;
528
529                 list_del(&rg->link);
530                 put_uncharge_info(rg);
531                 kfree(rg);
532
533                 rg = prg;
534         }
535
536         nrg = list_next_entry(rg, link);
537         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538             has_same_uncharge_info(nrg, rg)) {
539                 nrg->from = rg->from;
540
541                 list_del(&rg->link);
542                 put_uncharge_info(rg);
543                 kfree(rg);
544         }
545 }
546
547 static inline long
548 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
549                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
550                      long *regions_needed)
551 {
552         struct file_region *nrg;
553
554         if (!regions_needed) {
555                 nrg = get_file_region_entry_from_cache(map, from, to);
556                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
557                 list_add(&nrg->link, rg);
558                 coalesce_file_region(map, nrg);
559         } else
560                 *regions_needed += 1;
561
562         return to - from;
563 }
564
565 /*
566  * Must be called with resv->lock held.
567  *
568  * Calling this with regions_needed != NULL will count the number of pages
569  * to be added but will not modify the linked list. And regions_needed will
570  * indicate the number of file_regions needed in the cache to carry out to add
571  * the regions for this range.
572  */
573 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
574                                      struct hugetlb_cgroup *h_cg,
575                                      struct hstate *h, long *regions_needed)
576 {
577         long add = 0;
578         struct list_head *head = &resv->regions;
579         long last_accounted_offset = f;
580         struct file_region *iter, *trg = NULL;
581         struct list_head *rg = NULL;
582
583         if (regions_needed)
584                 *regions_needed = 0;
585
586         /* In this loop, we essentially handle an entry for the range
587          * [last_accounted_offset, iter->from), at every iteration, with some
588          * bounds checking.
589          */
590         list_for_each_entry_safe(iter, trg, head, link) {
591                 /* Skip irrelevant regions that start before our range. */
592                 if (iter->from < f) {
593                         /* If this region ends after the last accounted offset,
594                          * then we need to update last_accounted_offset.
595                          */
596                         if (iter->to > last_accounted_offset)
597                                 last_accounted_offset = iter->to;
598                         continue;
599                 }
600
601                 /* When we find a region that starts beyond our range, we've
602                  * finished.
603                  */
604                 if (iter->from >= t) {
605                         rg = iter->link.prev;
606                         break;
607                 }
608
609                 /* Add an entry for last_accounted_offset -> iter->from, and
610                  * update last_accounted_offset.
611                  */
612                 if (iter->from > last_accounted_offset)
613                         add += hugetlb_resv_map_add(resv, iter->link.prev,
614                                                     last_accounted_offset,
615                                                     iter->from, h, h_cg,
616                                                     regions_needed);
617
618                 last_accounted_offset = iter->to;
619         }
620
621         /* Handle the case where our range extends beyond
622          * last_accounted_offset.
623          */
624         if (!rg)
625                 rg = head->prev;
626         if (last_accounted_offset < t)
627                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628                                             t, h, h_cg, regions_needed);
629
630         return add;
631 }
632
633 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634  */
635 static int allocate_file_region_entries(struct resv_map *resv,
636                                         int regions_needed)
637         __must_hold(&resv->lock)
638 {
639         LIST_HEAD(allocated_regions);
640         int to_allocate = 0, i = 0;
641         struct file_region *trg = NULL, *rg = NULL;
642
643         VM_BUG_ON(regions_needed < 0);
644
645         /*
646          * Check for sufficient descriptors in the cache to accommodate
647          * the number of in progress add operations plus regions_needed.
648          *
649          * This is a while loop because when we drop the lock, some other call
650          * to region_add or region_del may have consumed some region_entries,
651          * so we keep looping here until we finally have enough entries for
652          * (adds_in_progress + regions_needed).
653          */
654         while (resv->region_cache_count <
655                (resv->adds_in_progress + regions_needed)) {
656                 to_allocate = resv->adds_in_progress + regions_needed -
657                               resv->region_cache_count;
658
659                 /* At this point, we should have enough entries in the cache
660                  * for all the existing adds_in_progress. We should only be
661                  * needing to allocate for regions_needed.
662                  */
663                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664
665                 spin_unlock(&resv->lock);
666                 for (i = 0; i < to_allocate; i++) {
667                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668                         if (!trg)
669                                 goto out_of_memory;
670                         list_add(&trg->link, &allocated_regions);
671                 }
672
673                 spin_lock(&resv->lock);
674
675                 list_splice(&allocated_regions, &resv->region_cache);
676                 resv->region_cache_count += to_allocate;
677         }
678
679         return 0;
680
681 out_of_memory:
682         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683                 list_del(&rg->link);
684                 kfree(rg);
685         }
686         return -ENOMEM;
687 }
688
689 /*
690  * Add the huge page range represented by [f, t) to the reserve
691  * map.  Regions will be taken from the cache to fill in this range.
692  * Sufficient regions should exist in the cache due to the previous
693  * call to region_chg with the same range, but in some cases the cache will not
694  * have sufficient entries due to races with other code doing region_add or
695  * region_del.  The extra needed entries will be allocated.
696  *
697  * regions_needed is the out value provided by a previous call to region_chg.
698  *
699  * Return the number of new huge pages added to the map.  This number is greater
700  * than or equal to zero.  If file_region entries needed to be allocated for
701  * this operation and we were not able to allocate, it returns -ENOMEM.
702  * region_add of regions of length 1 never allocate file_regions and cannot
703  * fail; region_chg will always allocate at least 1 entry and a region_add for
704  * 1 page will only require at most 1 entry.
705  */
706 static long region_add(struct resv_map *resv, long f, long t,
707                        long in_regions_needed, struct hstate *h,
708                        struct hugetlb_cgroup *h_cg)
709 {
710         long add = 0, actual_regions_needed = 0;
711
712         spin_lock(&resv->lock);
713 retry:
714
715         /* Count how many regions are actually needed to execute this add. */
716         add_reservation_in_range(resv, f, t, NULL, NULL,
717                                  &actual_regions_needed);
718
719         /*
720          * Check for sufficient descriptors in the cache to accommodate
721          * this add operation. Note that actual_regions_needed may be greater
722          * than in_regions_needed, as the resv_map may have been modified since
723          * the region_chg call. In this case, we need to make sure that we
724          * allocate extra entries, such that we have enough for all the
725          * existing adds_in_progress, plus the excess needed for this
726          * operation.
727          */
728         if (actual_regions_needed > in_regions_needed &&
729             resv->region_cache_count <
730                     resv->adds_in_progress +
731                             (actual_regions_needed - in_regions_needed)) {
732                 /* region_add operation of range 1 should never need to
733                  * allocate file_region entries.
734                  */
735                 VM_BUG_ON(t - f <= 1);
736
737                 if (allocate_file_region_entries(
738                             resv, actual_regions_needed - in_regions_needed)) {
739                         return -ENOMEM;
740                 }
741
742                 goto retry;
743         }
744
745         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
746
747         resv->adds_in_progress -= in_regions_needed;
748
749         spin_unlock(&resv->lock);
750         return add;
751 }
752
753 /*
754  * Examine the existing reserve map and determine how many
755  * huge pages in the specified range [f, t) are NOT currently
756  * represented.  This routine is called before a subsequent
757  * call to region_add that will actually modify the reserve
758  * map to add the specified range [f, t).  region_chg does
759  * not change the number of huge pages represented by the
760  * map.  A number of new file_region structures is added to the cache as a
761  * placeholder, for the subsequent region_add call to use. At least 1
762  * file_region structure is added.
763  *
764  * out_regions_needed is the number of regions added to the
765  * resv->adds_in_progress.  This value needs to be provided to a follow up call
766  * to region_add or region_abort for proper accounting.
767  *
768  * Returns the number of huge pages that need to be added to the existing
769  * reservation map for the range [f, t).  This number is greater or equal to
770  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
771  * is needed and can not be allocated.
772  */
773 static long region_chg(struct resv_map *resv, long f, long t,
774                        long *out_regions_needed)
775 {
776         long chg = 0;
777
778         spin_lock(&resv->lock);
779
780         /* Count how many hugepages in this range are NOT represented. */
781         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
782                                        out_regions_needed);
783
784         if (*out_regions_needed == 0)
785                 *out_regions_needed = 1;
786
787         if (allocate_file_region_entries(resv, *out_regions_needed))
788                 return -ENOMEM;
789
790         resv->adds_in_progress += *out_regions_needed;
791
792         spin_unlock(&resv->lock);
793         return chg;
794 }
795
796 /*
797  * Abort the in progress add operation.  The adds_in_progress field
798  * of the resv_map keeps track of the operations in progress between
799  * calls to region_chg and region_add.  Operations are sometimes
800  * aborted after the call to region_chg.  In such cases, region_abort
801  * is called to decrement the adds_in_progress counter. regions_needed
802  * is the value returned by the region_chg call, it is used to decrement
803  * the adds_in_progress counter.
804  *
805  * NOTE: The range arguments [f, t) are not needed or used in this
806  * routine.  They are kept to make reading the calling code easier as
807  * arguments will match the associated region_chg call.
808  */
809 static void region_abort(struct resv_map *resv, long f, long t,
810                          long regions_needed)
811 {
812         spin_lock(&resv->lock);
813         VM_BUG_ON(!resv->region_cache_count);
814         resv->adds_in_progress -= regions_needed;
815         spin_unlock(&resv->lock);
816 }
817
818 /*
819  * Delete the specified range [f, t) from the reserve map.  If the
820  * t parameter is LONG_MAX, this indicates that ALL regions after f
821  * should be deleted.  Locate the regions which intersect [f, t)
822  * and either trim, delete or split the existing regions.
823  *
824  * Returns the number of huge pages deleted from the reserve map.
825  * In the normal case, the return value is zero or more.  In the
826  * case where a region must be split, a new region descriptor must
827  * be allocated.  If the allocation fails, -ENOMEM will be returned.
828  * NOTE: If the parameter t == LONG_MAX, then we will never split
829  * a region and possibly return -ENOMEM.  Callers specifying
830  * t == LONG_MAX do not need to check for -ENOMEM error.
831  */
832 static long region_del(struct resv_map *resv, long f, long t)
833 {
834         struct list_head *head = &resv->regions;
835         struct file_region *rg, *trg;
836         struct file_region *nrg = NULL;
837         long del = 0;
838
839 retry:
840         spin_lock(&resv->lock);
841         list_for_each_entry_safe(rg, trg, head, link) {
842                 /*
843                  * Skip regions before the range to be deleted.  file_region
844                  * ranges are normally of the form [from, to).  However, there
845                  * may be a "placeholder" entry in the map which is of the form
846                  * (from, to) with from == to.  Check for placeholder entries
847                  * at the beginning of the range to be deleted.
848                  */
849                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
850                         continue;
851
852                 if (rg->from >= t)
853                         break;
854
855                 if (f > rg->from && t < rg->to) { /* Must split region */
856                         /*
857                          * Check for an entry in the cache before dropping
858                          * lock and attempting allocation.
859                          */
860                         if (!nrg &&
861                             resv->region_cache_count > resv->adds_in_progress) {
862                                 nrg = list_first_entry(&resv->region_cache,
863                                                         struct file_region,
864                                                         link);
865                                 list_del(&nrg->link);
866                                 resv->region_cache_count--;
867                         }
868
869                         if (!nrg) {
870                                 spin_unlock(&resv->lock);
871                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872                                 if (!nrg)
873                                         return -ENOMEM;
874                                 goto retry;
875                         }
876
877                         del += t - f;
878                         hugetlb_cgroup_uncharge_file_region(
879                                 resv, rg, t - f, false);
880
881                         /* New entry for end of split region */
882                         nrg->from = t;
883                         nrg->to = rg->to;
884
885                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886
887                         INIT_LIST_HEAD(&nrg->link);
888
889                         /* Original entry is trimmed */
890                         rg->to = f;
891
892                         list_add(&nrg->link, &rg->link);
893                         nrg = NULL;
894                         break;
895                 }
896
897                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898                         del += rg->to - rg->from;
899                         hugetlb_cgroup_uncharge_file_region(resv, rg,
900                                                             rg->to - rg->from, true);
901                         list_del(&rg->link);
902                         kfree(rg);
903                         continue;
904                 }
905
906                 if (f <= rg->from) {    /* Trim beginning of region */
907                         hugetlb_cgroup_uncharge_file_region(resv, rg,
908                                                             t - rg->from, false);
909
910                         del += t - rg->from;
911                         rg->from = t;
912                 } else {                /* Trim end of region */
913                         hugetlb_cgroup_uncharge_file_region(resv, rg,
914                                                             rg->to - f, false);
915
916                         del += rg->to - f;
917                         rg->to = f;
918                 }
919         }
920
921         spin_unlock(&resv->lock);
922         kfree(nrg);
923         return del;
924 }
925
926 /*
927  * A rare out of memory error was encountered which prevented removal of
928  * the reserve map region for a page.  The huge page itself was free'ed
929  * and removed from the page cache.  This routine will adjust the subpool
930  * usage count, and the global reserve count if needed.  By incrementing
931  * these counts, the reserve map entry which could not be deleted will
932  * appear as a "reserved" entry instead of simply dangling with incorrect
933  * counts.
934  */
935 void hugetlb_fix_reserve_counts(struct inode *inode)
936 {
937         struct hugepage_subpool *spool = subpool_inode(inode);
938         long rsv_adjust;
939         bool reserved = false;
940
941         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
942         if (rsv_adjust > 0) {
943                 struct hstate *h = hstate_inode(inode);
944
945                 if (!hugetlb_acct_memory(h, 1))
946                         reserved = true;
947         } else if (!rsv_adjust) {
948                 reserved = true;
949         }
950
951         if (!reserved)
952                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
953 }
954
955 /*
956  * Count and return the number of huge pages in the reserve map
957  * that intersect with the range [f, t).
958  */
959 static long region_count(struct resv_map *resv, long f, long t)
960 {
961         struct list_head *head = &resv->regions;
962         struct file_region *rg;
963         long chg = 0;
964
965         spin_lock(&resv->lock);
966         /* Locate each segment we overlap with, and count that overlap. */
967         list_for_each_entry(rg, head, link) {
968                 long seg_from;
969                 long seg_to;
970
971                 if (rg->to <= f)
972                         continue;
973                 if (rg->from >= t)
974                         break;
975
976                 seg_from = max(rg->from, f);
977                 seg_to = min(rg->to, t);
978
979                 chg += seg_to - seg_from;
980         }
981         spin_unlock(&resv->lock);
982
983         return chg;
984 }
985
986 /*
987  * Convert the address within this vma to the page offset within
988  * the mapping, huge page units here.
989  */
990 static pgoff_t vma_hugecache_offset(struct hstate *h,
991                         struct vm_area_struct *vma, unsigned long address)
992 {
993         return ((address - vma->vm_start) >> huge_page_shift(h)) +
994                         (vma->vm_pgoff >> huge_page_order(h));
995 }
996
997 /**
998  * vma_kernel_pagesize - Page size granularity for this VMA.
999  * @vma: The user mapping.
1000  *
1001  * Folios in this VMA will be aligned to, and at least the size of the
1002  * number of bytes returned by this function.
1003  *
1004  * Return: The default size of the folios allocated when backing a VMA.
1005  */
1006 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007 {
1008         if (vma->vm_ops && vma->vm_ops->pagesize)
1009                 return vma->vm_ops->pagesize(vma);
1010         return PAGE_SIZE;
1011 }
1012 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1013
1014 /*
1015  * Return the page size being used by the MMU to back a VMA. In the majority
1016  * of cases, the page size used by the kernel matches the MMU size. On
1017  * architectures where it differs, an architecture-specific 'strong'
1018  * version of this symbol is required.
1019  */
1020 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1021 {
1022         return vma_kernel_pagesize(vma);
1023 }
1024
1025 /*
1026  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1027  * bits of the reservation map pointer, which are always clear due to
1028  * alignment.
1029  */
1030 #define HPAGE_RESV_OWNER    (1UL << 0)
1031 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1032 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1033
1034 /*
1035  * These helpers are used to track how many pages are reserved for
1036  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037  * is guaranteed to have their future faults succeed.
1038  *
1039  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1040  * the reserve counters are updated with the hugetlb_lock held. It is safe
1041  * to reset the VMA at fork() time as it is not in use yet and there is no
1042  * chance of the global counters getting corrupted as a result of the values.
1043  *
1044  * The private mapping reservation is represented in a subtly different
1045  * manner to a shared mapping.  A shared mapping has a region map associated
1046  * with the underlying file, this region map represents the backing file
1047  * pages which have ever had a reservation assigned which this persists even
1048  * after the page is instantiated.  A private mapping has a region map
1049  * associated with the original mmap which is attached to all VMAs which
1050  * reference it, this region map represents those offsets which have consumed
1051  * reservation ie. where pages have been instantiated.
1052  */
1053 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054 {
1055         return (unsigned long)vma->vm_private_data;
1056 }
1057
1058 static void set_vma_private_data(struct vm_area_struct *vma,
1059                                                         unsigned long value)
1060 {
1061         vma->vm_private_data = (void *)value;
1062 }
1063
1064 static void
1065 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066                                           struct hugetlb_cgroup *h_cg,
1067                                           struct hstate *h)
1068 {
1069 #ifdef CONFIG_CGROUP_HUGETLB
1070         if (!h_cg || !h) {
1071                 resv_map->reservation_counter = NULL;
1072                 resv_map->pages_per_hpage = 0;
1073                 resv_map->css = NULL;
1074         } else {
1075                 resv_map->reservation_counter =
1076                         &h_cg->rsvd_hugepage[hstate_index(h)];
1077                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078                 resv_map->css = &h_cg->css;
1079         }
1080 #endif
1081 }
1082
1083 struct resv_map *resv_map_alloc(void)
1084 {
1085         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1086         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088         if (!resv_map || !rg) {
1089                 kfree(resv_map);
1090                 kfree(rg);
1091                 return NULL;
1092         }
1093
1094         kref_init(&resv_map->refs);
1095         spin_lock_init(&resv_map->lock);
1096         INIT_LIST_HEAD(&resv_map->regions);
1097         init_rwsem(&resv_map->rw_sema);
1098
1099         resv_map->adds_in_progress = 0;
1100         /*
1101          * Initialize these to 0. On shared mappings, 0's here indicate these
1102          * fields don't do cgroup accounting. On private mappings, these will be
1103          * re-initialized to the proper values, to indicate that hugetlb cgroup
1104          * reservations are to be un-charged from here.
1105          */
1106         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1107
1108         INIT_LIST_HEAD(&resv_map->region_cache);
1109         list_add(&rg->link, &resv_map->region_cache);
1110         resv_map->region_cache_count = 1;
1111
1112         return resv_map;
1113 }
1114
1115 void resv_map_release(struct kref *ref)
1116 {
1117         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1118         struct list_head *head = &resv_map->region_cache;
1119         struct file_region *rg, *trg;
1120
1121         /* Clear out any active regions before we release the map. */
1122         region_del(resv_map, 0, LONG_MAX);
1123
1124         /* ... and any entries left in the cache */
1125         list_for_each_entry_safe(rg, trg, head, link) {
1126                 list_del(&rg->link);
1127                 kfree(rg);
1128         }
1129
1130         VM_BUG_ON(resv_map->adds_in_progress);
1131
1132         kfree(resv_map);
1133 }
1134
1135 static inline struct resv_map *inode_resv_map(struct inode *inode)
1136 {
1137         /*
1138          * At inode evict time, i_mapping may not point to the original
1139          * address space within the inode.  This original address space
1140          * contains the pointer to the resv_map.  So, always use the
1141          * address space embedded within the inode.
1142          * The VERY common case is inode->mapping == &inode->i_data but,
1143          * this may not be true for device special inodes.
1144          */
1145         return (struct resv_map *)(&inode->i_data)->i_private_data;
1146 }
1147
1148 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1149 {
1150         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151         if (vma->vm_flags & VM_MAYSHARE) {
1152                 struct address_space *mapping = vma->vm_file->f_mapping;
1153                 struct inode *inode = mapping->host;
1154
1155                 return inode_resv_map(inode);
1156
1157         } else {
1158                 return (struct resv_map *)(get_vma_private_data(vma) &
1159                                                         ~HPAGE_RESV_MASK);
1160         }
1161 }
1162
1163 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1164 {
1165         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1167
1168         set_vma_private_data(vma, (unsigned long)map);
1169 }
1170
1171 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172 {
1173         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1175
1176         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1177 }
1178
1179 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180 {
1181         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1182
1183         return (get_vma_private_data(vma) & flag) != 0;
1184 }
1185
1186 bool __vma_private_lock(struct vm_area_struct *vma)
1187 {
1188         return !(vma->vm_flags & VM_MAYSHARE) &&
1189                 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190                 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191 }
1192
1193 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1194 {
1195         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196         /*
1197          * Clear vm_private_data
1198          * - For shared mappings this is a per-vma semaphore that may be
1199          *   allocated in a subsequent call to hugetlb_vm_op_open.
1200          *   Before clearing, make sure pointer is not associated with vma
1201          *   as this will leak the structure.  This is the case when called
1202          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203          *   been called to allocate a new structure.
1204          * - For MAP_PRIVATE mappings, this is the reserve map which does
1205          *   not apply to children.  Faults generated by the children are
1206          *   not guaranteed to succeed, even if read-only.
1207          */
1208         if (vma->vm_flags & VM_MAYSHARE) {
1209                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211                 if (vma_lock && vma_lock->vma != vma)
1212                         vma->vm_private_data = NULL;
1213         } else
1214                 vma->vm_private_data = NULL;
1215 }
1216
1217 /*
1218  * Reset and decrement one ref on hugepage private reservation.
1219  * Called with mm->mmap_lock writer semaphore held.
1220  * This function should be only used by move_vma() and operate on
1221  * same sized vma. It should never come here with last ref on the
1222  * reservation.
1223  */
1224 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225 {
1226         /*
1227          * Clear the old hugetlb private page reservation.
1228          * It has already been transferred to new_vma.
1229          *
1230          * During a mremap() operation of a hugetlb vma we call move_vma()
1231          * which copies vma into new_vma and unmaps vma. After the copy
1232          * operation both new_vma and vma share a reference to the resv_map
1233          * struct, and at that point vma is about to be unmapped. We don't
1234          * want to return the reservation to the pool at unmap of vma because
1235          * the reservation still lives on in new_vma, so simply decrement the
1236          * ref here and remove the resv_map reference from this vma.
1237          */
1238         struct resv_map *reservations = vma_resv_map(vma);
1239
1240         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1242                 kref_put(&reservations->refs, resv_map_release);
1243         }
1244
1245         hugetlb_dup_vma_private(vma);
1246 }
1247
1248 /* Returns true if the VMA has associated reserve pages */
1249 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1250 {
1251         if (vma->vm_flags & VM_NORESERVE) {
1252                 /*
1253                  * This address is already reserved by other process(chg == 0),
1254                  * so, we should decrement reserved count. Without decrementing,
1255                  * reserve count remains after releasing inode, because this
1256                  * allocated page will go into page cache and is regarded as
1257                  * coming from reserved pool in releasing step.  Currently, we
1258                  * don't have any other solution to deal with this situation
1259                  * properly, so add work-around here.
1260                  */
1261                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1262                         return true;
1263                 else
1264                         return false;
1265         }
1266
1267         /* Shared mappings always use reserves */
1268         if (vma->vm_flags & VM_MAYSHARE) {
1269                 /*
1270                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1271                  * be a region map for all pages.  The only situation where
1272                  * there is no region map is if a hole was punched via
1273                  * fallocate.  In this case, there really are no reserves to
1274                  * use.  This situation is indicated if chg != 0.
1275                  */
1276                 if (chg)
1277                         return false;
1278                 else
1279                         return true;
1280         }
1281
1282         /*
1283          * Only the process that called mmap() has reserves for
1284          * private mappings.
1285          */
1286         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287                 /*
1288                  * Like the shared case above, a hole punch or truncate
1289                  * could have been performed on the private mapping.
1290                  * Examine the value of chg to determine if reserves
1291                  * actually exist or were previously consumed.
1292                  * Very Subtle - The value of chg comes from a previous
1293                  * call to vma_needs_reserves().  The reserve map for
1294                  * private mappings has different (opposite) semantics
1295                  * than that of shared mappings.  vma_needs_reserves()
1296                  * has already taken this difference in semantics into
1297                  * account.  Therefore, the meaning of chg is the same
1298                  * as in the shared case above.  Code could easily be
1299                  * combined, but keeping it separate draws attention to
1300                  * subtle differences.
1301                  */
1302                 if (chg)
1303                         return false;
1304                 else
1305                         return true;
1306         }
1307
1308         return false;
1309 }
1310
1311 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1312 {
1313         int nid = folio_nid(folio);
1314
1315         lockdep_assert_held(&hugetlb_lock);
1316         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1317
1318         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1319         h->free_huge_pages++;
1320         h->free_huge_pages_node[nid]++;
1321         folio_set_hugetlb_freed(folio);
1322 }
1323
1324 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325                                                                 int nid)
1326 {
1327         struct folio *folio;
1328         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1329
1330         lockdep_assert_held(&hugetlb_lock);
1331         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332                 if (pin && !folio_is_longterm_pinnable(folio))
1333                         continue;
1334
1335                 if (folio_test_hwpoison(folio))
1336                         continue;
1337
1338                 list_move(&folio->lru, &h->hugepage_activelist);
1339                 folio_ref_unfreeze(folio, 1);
1340                 folio_clear_hugetlb_freed(folio);
1341                 h->free_huge_pages--;
1342                 h->free_huge_pages_node[nid]--;
1343                 return folio;
1344         }
1345
1346         return NULL;
1347 }
1348
1349 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350                                                         int nid, nodemask_t *nmask)
1351 {
1352         unsigned int cpuset_mems_cookie;
1353         struct zonelist *zonelist;
1354         struct zone *zone;
1355         struct zoneref *z;
1356         int node = NUMA_NO_NODE;
1357
1358         zonelist = node_zonelist(nid, gfp_mask);
1359
1360 retry_cpuset:
1361         cpuset_mems_cookie = read_mems_allowed_begin();
1362         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1363                 struct folio *folio;
1364
1365                 if (!cpuset_zone_allowed(zone, gfp_mask))
1366                         continue;
1367                 /*
1368                  * no need to ask again on the same node. Pool is node rather than
1369                  * zone aware
1370                  */
1371                 if (zone_to_nid(zone) == node)
1372                         continue;
1373                 node = zone_to_nid(zone);
1374
1375                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1376                 if (folio)
1377                         return folio;
1378         }
1379         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380                 goto retry_cpuset;
1381
1382         return NULL;
1383 }
1384
1385 static unsigned long available_huge_pages(struct hstate *h)
1386 {
1387         return h->free_huge_pages - h->resv_huge_pages;
1388 }
1389
1390 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1391                                 struct vm_area_struct *vma,
1392                                 unsigned long address, int avoid_reserve,
1393                                 long chg)
1394 {
1395         struct folio *folio = NULL;
1396         struct mempolicy *mpol;
1397         gfp_t gfp_mask;
1398         nodemask_t *nodemask;
1399         int nid;
1400
1401         /*
1402          * A child process with MAP_PRIVATE mappings created by their parent
1403          * have no page reserves. This check ensures that reservations are
1404          * not "stolen". The child may still get SIGKILLed
1405          */
1406         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1407                 goto err;
1408
1409         /* If reserves cannot be used, ensure enough pages are in the pool */
1410         if (avoid_reserve && !available_huge_pages(h))
1411                 goto err;
1412
1413         gfp_mask = htlb_alloc_mask(h);
1414         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1415
1416         if (mpol_is_preferred_many(mpol)) {
1417                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418                                                         nid, nodemask);
1419
1420                 /* Fallback to all nodes if page==NULL */
1421                 nodemask = NULL;
1422         }
1423
1424         if (!folio)
1425                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426                                                         nid, nodemask);
1427
1428         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429                 folio_set_hugetlb_restore_reserve(folio);
1430                 h->resv_huge_pages--;
1431         }
1432
1433         mpol_cond_put(mpol);
1434         return folio;
1435
1436 err:
1437         return NULL;
1438 }
1439
1440 /*
1441  * common helper functions for hstate_next_node_to_{alloc|free}.
1442  * We may have allocated or freed a huge page based on a different
1443  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444  * be outside of *nodes_allowed.  Ensure that we use an allowed
1445  * node for alloc or free.
1446  */
1447 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448 {
1449         nid = next_node_in(nid, *nodes_allowed);
1450         VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452         return nid;
1453 }
1454
1455 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456 {
1457         if (!node_isset(nid, *nodes_allowed))
1458                 nid = next_node_allowed(nid, nodes_allowed);
1459         return nid;
1460 }
1461
1462 /*
1463  * returns the previously saved node ["this node"] from which to
1464  * allocate a persistent huge page for the pool and advance the
1465  * next node from which to allocate, handling wrap at end of node
1466  * mask.
1467  */
1468 static int hstate_next_node_to_alloc(int *next_node,
1469                                         nodemask_t *nodes_allowed)
1470 {
1471         int nid;
1472
1473         VM_BUG_ON(!nodes_allowed);
1474
1475         nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476         *next_node = next_node_allowed(nid, nodes_allowed);
1477
1478         return nid;
1479 }
1480
1481 /*
1482  * helper for remove_pool_hugetlb_folio() - return the previously saved
1483  * node ["this node"] from which to free a huge page.  Advance the
1484  * next node id whether or not we find a free huge page to free so
1485  * that the next attempt to free addresses the next node.
1486  */
1487 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488 {
1489         int nid;
1490
1491         VM_BUG_ON(!nodes_allowed);
1492
1493         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496         return nid;
1497 }
1498
1499 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)            \
1500         for (nr_nodes = nodes_weight(*mask);                            \
1501                 nr_nodes > 0 &&                                         \
1502                 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1);     \
1503                 nr_nodes--)
1504
1505 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1506         for (nr_nodes = nodes_weight(*mask);                            \
1507                 nr_nodes > 0 &&                                         \
1508                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1509                 nr_nodes--)
1510
1511 /* used to demote non-gigantic_huge pages as well */
1512 static void __destroy_compound_gigantic_folio(struct folio *folio,
1513                                         unsigned int order, bool demote)
1514 {
1515         int i;
1516         int nr_pages = 1 << order;
1517         struct page *p;
1518
1519         atomic_set(&folio->_entire_mapcount, 0);
1520         atomic_set(&folio->_nr_pages_mapped, 0);
1521         atomic_set(&folio->_pincount, 0);
1522
1523         for (i = 1; i < nr_pages; i++) {
1524                 p = folio_page(folio, i);
1525                 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1526                 p->mapping = NULL;
1527                 clear_compound_head(p);
1528                 if (!demote)
1529                         set_page_refcounted(p);
1530         }
1531
1532         __folio_clear_head(folio);
1533 }
1534
1535 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1536                                         unsigned int order)
1537 {
1538         __destroy_compound_gigantic_folio(folio, order, true);
1539 }
1540
1541 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1542 static void destroy_compound_gigantic_folio(struct folio *folio,
1543                                         unsigned int order)
1544 {
1545         __destroy_compound_gigantic_folio(folio, order, false);
1546 }
1547
1548 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1549 {
1550         /*
1551          * If the page isn't allocated using the cma allocator,
1552          * cma_release() returns false.
1553          */
1554 #ifdef CONFIG_CMA
1555         int nid = folio_nid(folio);
1556
1557         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1558                 return;
1559 #endif
1560
1561         free_contig_range(folio_pfn(folio), 1 << order);
1562 }
1563
1564 #ifdef CONFIG_CONTIG_ALLOC
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566                 int nid, nodemask_t *nodemask)
1567 {
1568         struct page *page;
1569         unsigned long nr_pages = pages_per_huge_page(h);
1570         if (nid == NUMA_NO_NODE)
1571                 nid = numa_mem_id();
1572
1573 #ifdef CONFIG_CMA
1574         {
1575                 int node;
1576
1577                 if (hugetlb_cma[nid]) {
1578                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579                                         huge_page_order(h), true);
1580                         if (page)
1581                                 return page_folio(page);
1582                 }
1583
1584                 if (!(gfp_mask & __GFP_THISNODE)) {
1585                         for_each_node_mask(node, *nodemask) {
1586                                 if (node == nid || !hugetlb_cma[node])
1587                                         continue;
1588
1589                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1590                                                 huge_page_order(h), true);
1591                                 if (page)
1592                                         return page_folio(page);
1593                         }
1594                 }
1595         }
1596 #endif
1597
1598         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599         return page ? page_folio(page) : NULL;
1600 }
1601
1602 #else /* !CONFIG_CONTIG_ALLOC */
1603 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1604                                         int nid, nodemask_t *nodemask)
1605 {
1606         return NULL;
1607 }
1608 #endif /* CONFIG_CONTIG_ALLOC */
1609
1610 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1611 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1612                                         int nid, nodemask_t *nodemask)
1613 {
1614         return NULL;
1615 }
1616 static inline void free_gigantic_folio(struct folio *folio,
1617                                                 unsigned int order) { }
1618 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1619                                                 unsigned int order) { }
1620 #endif
1621
1622 static inline void __clear_hugetlb_destructor(struct hstate *h,
1623                                                 struct folio *folio)
1624 {
1625         lockdep_assert_held(&hugetlb_lock);
1626
1627         __folio_clear_hugetlb(folio);
1628 }
1629
1630 /*
1631  * Remove hugetlb folio from lists.
1632  * If vmemmap exists for the folio, update dtor so that the folio appears
1633  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1634  * to update dtor.
1635  *
1636  * A reference is held on the folio, except in the case of demote.
1637  *
1638  * Must be called with hugetlb lock held.
1639  */
1640 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1641                                                         bool adjust_surplus,
1642                                                         bool demote)
1643 {
1644         int nid = folio_nid(folio);
1645
1646         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1647         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1648
1649         lockdep_assert_held(&hugetlb_lock);
1650         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1651                 return;
1652
1653         list_del(&folio->lru);
1654
1655         if (folio_test_hugetlb_freed(folio)) {
1656                 h->free_huge_pages--;
1657                 h->free_huge_pages_node[nid]--;
1658         }
1659         if (adjust_surplus) {
1660                 h->surplus_huge_pages--;
1661                 h->surplus_huge_pages_node[nid]--;
1662         }
1663
1664         /*
1665          * We can only clear the hugetlb destructor after allocating vmemmap
1666          * pages.  Otherwise, someone (memory error handling) may try to write
1667          * to tail struct pages.
1668          */
1669         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1670                 __clear_hugetlb_destructor(h, folio);
1671
1672          /*
1673           * In the case of demote we do not ref count the page as it will soon
1674           * be turned into a page of smaller size.
1675          */
1676         if (!demote)
1677                 folio_ref_unfreeze(folio, 1);
1678
1679         h->nr_huge_pages--;
1680         h->nr_huge_pages_node[nid]--;
1681 }
1682
1683 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1684                                                         bool adjust_surplus)
1685 {
1686         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1687 }
1688
1689 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1690                                                         bool adjust_surplus)
1691 {
1692         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1693 }
1694
1695 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1696                              bool adjust_surplus)
1697 {
1698         int zeroed;
1699         int nid = folio_nid(folio);
1700
1701         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1702
1703         lockdep_assert_held(&hugetlb_lock);
1704
1705         INIT_LIST_HEAD(&folio->lru);
1706         h->nr_huge_pages++;
1707         h->nr_huge_pages_node[nid]++;
1708
1709         if (adjust_surplus) {
1710                 h->surplus_huge_pages++;
1711                 h->surplus_huge_pages_node[nid]++;
1712         }
1713
1714         __folio_set_hugetlb(folio);
1715         folio_change_private(folio, NULL);
1716         /*
1717          * We have to set hugetlb_vmemmap_optimized again as above
1718          * folio_change_private(folio, NULL) cleared it.
1719          */
1720         folio_set_hugetlb_vmemmap_optimized(folio);
1721
1722         /*
1723          * This folio is about to be managed by the hugetlb allocator and
1724          * should have no users.  Drop our reference, and check for others
1725          * just in case.
1726          */
1727         zeroed = folio_put_testzero(folio);
1728         if (unlikely(!zeroed))
1729                 /*
1730                  * It is VERY unlikely soneone else has taken a ref
1731                  * on the folio.  In this case, we simply return as
1732                  * free_huge_folio() will be called when this other ref
1733                  * is dropped.
1734                  */
1735                 return;
1736
1737         arch_clear_hugepage_flags(&folio->page);
1738         enqueue_hugetlb_folio(h, folio);
1739 }
1740
1741 static void __update_and_free_hugetlb_folio(struct hstate *h,
1742                                                 struct folio *folio)
1743 {
1744         bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1745
1746         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1747                 return;
1748
1749         /*
1750          * If we don't know which subpages are hwpoisoned, we can't free
1751          * the hugepage, so it's leaked intentionally.
1752          */
1753         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1754                 return;
1755
1756         /*
1757          * If folio is not vmemmap optimized (!clear_dtor), then the folio
1758          * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1759          * can only be passed hugetlb pages and will BUG otherwise.
1760          */
1761         if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
1762                 spin_lock_irq(&hugetlb_lock);
1763                 /*
1764                  * If we cannot allocate vmemmap pages, just refuse to free the
1765                  * page and put the page back on the hugetlb free list and treat
1766                  * as a surplus page.
1767                  */
1768                 add_hugetlb_folio(h, folio, true);
1769                 spin_unlock_irq(&hugetlb_lock);
1770                 return;
1771         }
1772
1773         /*
1774          * Move PageHWPoison flag from head page to the raw error pages,
1775          * which makes any healthy subpages reusable.
1776          */
1777         if (unlikely(folio_test_hwpoison(folio)))
1778                 folio_clear_hugetlb_hwpoison(folio);
1779
1780         /*
1781          * If vmemmap pages were allocated above, then we need to clear the
1782          * hugetlb destructor under the hugetlb lock.
1783          */
1784         if (clear_dtor) {
1785                 spin_lock_irq(&hugetlb_lock);
1786                 __clear_hugetlb_destructor(h, folio);
1787                 spin_unlock_irq(&hugetlb_lock);
1788         }
1789
1790         /*
1791          * Non-gigantic pages demoted from CMA allocated gigantic pages
1792          * need to be given back to CMA in free_gigantic_folio.
1793          */
1794         if (hstate_is_gigantic(h) ||
1795             hugetlb_cma_folio(folio, huge_page_order(h))) {
1796                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1797                 free_gigantic_folio(folio, huge_page_order(h));
1798         } else {
1799                 __free_pages(&folio->page, huge_page_order(h));
1800         }
1801 }
1802
1803 /*
1804  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1805  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1806  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1807  * the vmemmap pages.
1808  *
1809  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1810  * freed and frees them one-by-one. As the page->mapping pointer is going
1811  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1812  * structure of a lockless linked list of huge pages to be freed.
1813  */
1814 static LLIST_HEAD(hpage_freelist);
1815
1816 static void free_hpage_workfn(struct work_struct *work)
1817 {
1818         struct llist_node *node;
1819
1820         node = llist_del_all(&hpage_freelist);
1821
1822         while (node) {
1823                 struct folio *folio;
1824                 struct hstate *h;
1825
1826                 folio = container_of((struct address_space **)node,
1827                                      struct folio, mapping);
1828                 node = node->next;
1829                 folio->mapping = NULL;
1830                 /*
1831                  * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1832                  * folio_hstate() is going to trigger because a previous call to
1833                  * remove_hugetlb_folio() will clear the hugetlb bit, so do
1834                  * not use folio_hstate() directly.
1835                  */
1836                 h = size_to_hstate(folio_size(folio));
1837
1838                 __update_and_free_hugetlb_folio(h, folio);
1839
1840                 cond_resched();
1841         }
1842 }
1843 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1844
1845 static inline void flush_free_hpage_work(struct hstate *h)
1846 {
1847         if (hugetlb_vmemmap_optimizable(h))
1848                 flush_work(&free_hpage_work);
1849 }
1850
1851 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1852                                  bool atomic)
1853 {
1854         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1855                 __update_and_free_hugetlb_folio(h, folio);
1856                 return;
1857         }
1858
1859         /*
1860          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1861          *
1862          * Only call schedule_work() if hpage_freelist is previously
1863          * empty. Otherwise, schedule_work() had been called but the workfn
1864          * hasn't retrieved the list yet.
1865          */
1866         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1867                 schedule_work(&free_hpage_work);
1868 }
1869
1870 static void bulk_vmemmap_restore_error(struct hstate *h,
1871                                         struct list_head *folio_list,
1872                                         struct list_head *non_hvo_folios)
1873 {
1874         struct folio *folio, *t_folio;
1875
1876         if (!list_empty(non_hvo_folios)) {
1877                 /*
1878                  * Free any restored hugetlb pages so that restore of the
1879                  * entire list can be retried.
1880                  * The idea is that in the common case of ENOMEM errors freeing
1881                  * hugetlb pages with vmemmap we will free up memory so that we
1882                  * can allocate vmemmap for more hugetlb pages.
1883                  */
1884                 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1885                         list_del(&folio->lru);
1886                         spin_lock_irq(&hugetlb_lock);
1887                         __clear_hugetlb_destructor(h, folio);
1888                         spin_unlock_irq(&hugetlb_lock);
1889                         update_and_free_hugetlb_folio(h, folio, false);
1890                         cond_resched();
1891                 }
1892         } else {
1893                 /*
1894                  * In the case where there are no folios which can be
1895                  * immediately freed, we loop through the list trying to restore
1896                  * vmemmap individually in the hope that someone elsewhere may
1897                  * have done something to cause success (such as freeing some
1898                  * memory).  If unable to restore a hugetlb page, the hugetlb
1899                  * page is made a surplus page and removed from the list.
1900                  * If are able to restore vmemmap and free one hugetlb page, we
1901                  * quit processing the list to retry the bulk operation.
1902                  */
1903                 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1904                         if (hugetlb_vmemmap_restore_folio(h, folio)) {
1905                                 list_del(&folio->lru);
1906                                 spin_lock_irq(&hugetlb_lock);
1907                                 add_hugetlb_folio(h, folio, true);
1908                                 spin_unlock_irq(&hugetlb_lock);
1909                         } else {
1910                                 list_del(&folio->lru);
1911                                 spin_lock_irq(&hugetlb_lock);
1912                                 __clear_hugetlb_destructor(h, folio);
1913                                 spin_unlock_irq(&hugetlb_lock);
1914                                 update_and_free_hugetlb_folio(h, folio, false);
1915                                 cond_resched();
1916                                 break;
1917                         }
1918         }
1919 }
1920
1921 static void update_and_free_pages_bulk(struct hstate *h,
1922                                                 struct list_head *folio_list)
1923 {
1924         long ret;
1925         struct folio *folio, *t_folio;
1926         LIST_HEAD(non_hvo_folios);
1927
1928         /*
1929          * First allocate required vmemmmap (if necessary) for all folios.
1930          * Carefully handle errors and free up any available hugetlb pages
1931          * in an effort to make forward progress.
1932          */
1933 retry:
1934         ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1935         if (ret < 0) {
1936                 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1937                 goto retry;
1938         }
1939
1940         /*
1941          * At this point, list should be empty, ret should be >= 0 and there
1942          * should only be pages on the non_hvo_folios list.
1943          * Do note that the non_hvo_folios list could be empty.
1944          * Without HVO enabled, ret will be 0 and there is no need to call
1945          * __clear_hugetlb_destructor as this was done previously.
1946          */
1947         VM_WARN_ON(!list_empty(folio_list));
1948         VM_WARN_ON(ret < 0);
1949         if (!list_empty(&non_hvo_folios) && ret) {
1950                 spin_lock_irq(&hugetlb_lock);
1951                 list_for_each_entry(folio, &non_hvo_folios, lru)
1952                         __clear_hugetlb_destructor(h, folio);
1953                 spin_unlock_irq(&hugetlb_lock);
1954         }
1955
1956         list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1957                 update_and_free_hugetlb_folio(h, folio, false);
1958                 cond_resched();
1959         }
1960 }
1961
1962 struct hstate *size_to_hstate(unsigned long size)
1963 {
1964         struct hstate *h;
1965
1966         for_each_hstate(h) {
1967                 if (huge_page_size(h) == size)
1968                         return h;
1969         }
1970         return NULL;
1971 }
1972
1973 void free_huge_folio(struct folio *folio)
1974 {
1975         /*
1976          * Can't pass hstate in here because it is called from the
1977          * compound page destructor.
1978          */
1979         struct hstate *h = folio_hstate(folio);
1980         int nid = folio_nid(folio);
1981         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1982         bool restore_reserve;
1983         unsigned long flags;
1984
1985         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1986         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1987
1988         hugetlb_set_folio_subpool(folio, NULL);
1989         if (folio_test_anon(folio))
1990                 __ClearPageAnonExclusive(&folio->page);
1991         folio->mapping = NULL;
1992         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1993         folio_clear_hugetlb_restore_reserve(folio);
1994
1995         /*
1996          * If HPageRestoreReserve was set on page, page allocation consumed a
1997          * reservation.  If the page was associated with a subpool, there
1998          * would have been a page reserved in the subpool before allocation
1999          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
2000          * reservation, do not call hugepage_subpool_put_pages() as this will
2001          * remove the reserved page from the subpool.
2002          */
2003         if (!restore_reserve) {
2004                 /*
2005                  * A return code of zero implies that the subpool will be
2006                  * under its minimum size if the reservation is not restored
2007                  * after page is free.  Therefore, force restore_reserve
2008                  * operation.
2009                  */
2010                 if (hugepage_subpool_put_pages(spool, 1) == 0)
2011                         restore_reserve = true;
2012         }
2013
2014         spin_lock_irqsave(&hugetlb_lock, flags);
2015         folio_clear_hugetlb_migratable(folio);
2016         hugetlb_cgroup_uncharge_folio(hstate_index(h),
2017                                      pages_per_huge_page(h), folio);
2018         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2019                                           pages_per_huge_page(h), folio);
2020         mem_cgroup_uncharge(folio);
2021         if (restore_reserve)
2022                 h->resv_huge_pages++;
2023
2024         if (folio_test_hugetlb_temporary(folio)) {
2025                 remove_hugetlb_folio(h, folio, false);
2026                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2027                 update_and_free_hugetlb_folio(h, folio, true);
2028         } else if (h->surplus_huge_pages_node[nid]) {
2029                 /* remove the page from active list */
2030                 remove_hugetlb_folio(h, folio, true);
2031                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2032                 update_and_free_hugetlb_folio(h, folio, true);
2033         } else {
2034                 arch_clear_hugepage_flags(&folio->page);
2035                 enqueue_hugetlb_folio(h, folio);
2036                 spin_unlock_irqrestore(&hugetlb_lock, flags);
2037         }
2038 }
2039
2040 /*
2041  * Must be called with the hugetlb lock held
2042  */
2043 static void __prep_account_new_huge_page(struct hstate *h, int nid)
2044 {
2045         lockdep_assert_held(&hugetlb_lock);
2046         h->nr_huge_pages++;
2047         h->nr_huge_pages_node[nid]++;
2048 }
2049
2050 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2051 {
2052         __folio_set_hugetlb(folio);
2053         INIT_LIST_HEAD(&folio->lru);
2054         hugetlb_set_folio_subpool(folio, NULL);
2055         set_hugetlb_cgroup(folio, NULL);
2056         set_hugetlb_cgroup_rsvd(folio, NULL);
2057 }
2058
2059 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2060 {
2061         init_new_hugetlb_folio(h, folio);
2062         hugetlb_vmemmap_optimize_folio(h, folio);
2063 }
2064
2065 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
2066 {
2067         __prep_new_hugetlb_folio(h, folio);
2068         spin_lock_irq(&hugetlb_lock);
2069         __prep_account_new_huge_page(h, nid);
2070         spin_unlock_irq(&hugetlb_lock);
2071 }
2072
2073 static bool __prep_compound_gigantic_folio(struct folio *folio,
2074                                         unsigned int order, bool demote)
2075 {
2076         int i, j;
2077         int nr_pages = 1 << order;
2078         struct page *p;
2079
2080         __folio_clear_reserved(folio);
2081         for (i = 0; i < nr_pages; i++) {
2082                 p = folio_page(folio, i);
2083
2084                 /*
2085                  * For gigantic hugepages allocated through bootmem at
2086                  * boot, it's safer to be consistent with the not-gigantic
2087                  * hugepages and clear the PG_reserved bit from all tail pages
2088                  * too.  Otherwise drivers using get_user_pages() to access tail
2089                  * pages may get the reference counting wrong if they see
2090                  * PG_reserved set on a tail page (despite the head page not
2091                  * having PG_reserved set).  Enforcing this consistency between
2092                  * head and tail pages allows drivers to optimize away a check
2093                  * on the head page when they need know if put_page() is needed
2094                  * after get_user_pages().
2095                  */
2096                 if (i != 0)     /* head page cleared above */
2097                         __ClearPageReserved(p);
2098                 /*
2099                  * Subtle and very unlikely
2100                  *
2101                  * Gigantic 'page allocators' such as memblock or cma will
2102                  * return a set of pages with each page ref counted.  We need
2103                  * to turn this set of pages into a compound page with tail
2104                  * page ref counts set to zero.  Code such as speculative page
2105                  * cache adding could take a ref on a 'to be' tail page.
2106                  * We need to respect any increased ref count, and only set
2107                  * the ref count to zero if count is currently 1.  If count
2108                  * is not 1, we return an error.  An error return indicates
2109                  * the set of pages can not be converted to a gigantic page.
2110                  * The caller who allocated the pages should then discard the
2111                  * pages using the appropriate free interface.
2112                  *
2113                  * In the case of demote, the ref count will be zero.
2114                  */
2115                 if (!demote) {
2116                         if (!page_ref_freeze(p, 1)) {
2117                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2118                                 goto out_error;
2119                         }
2120                 } else {
2121                         VM_BUG_ON_PAGE(page_count(p), p);
2122                 }
2123                 if (i != 0)
2124                         set_compound_head(p, &folio->page);
2125         }
2126         __folio_set_head(folio);
2127         /* we rely on prep_new_hugetlb_folio to set the destructor */
2128         folio_set_order(folio, order);
2129         atomic_set(&folio->_entire_mapcount, -1);
2130         atomic_set(&folio->_nr_pages_mapped, 0);
2131         atomic_set(&folio->_pincount, 0);
2132         return true;
2133
2134 out_error:
2135         /* undo page modifications made above */
2136         for (j = 0; j < i; j++) {
2137                 p = folio_page(folio, j);
2138                 if (j != 0)
2139                         clear_compound_head(p);
2140                 set_page_refcounted(p);
2141         }
2142         /* need to clear PG_reserved on remaining tail pages  */
2143         for (; j < nr_pages; j++) {
2144                 p = folio_page(folio, j);
2145                 __ClearPageReserved(p);
2146         }
2147         return false;
2148 }
2149
2150 static bool prep_compound_gigantic_folio(struct folio *folio,
2151                                                         unsigned int order)
2152 {
2153         return __prep_compound_gigantic_folio(folio, order, false);
2154 }
2155
2156 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2157                                                         unsigned int order)
2158 {
2159         return __prep_compound_gigantic_folio(folio, order, true);
2160 }
2161
2162 /*
2163  * Find and lock address space (mapping) in write mode.
2164  *
2165  * Upon entry, the page is locked which means that page_mapping() is
2166  * stable.  Due to locking order, we can only trylock_write.  If we can
2167  * not get the lock, simply return NULL to caller.
2168  */
2169 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2170 {
2171         struct address_space *mapping = page_mapping(hpage);
2172
2173         if (!mapping)
2174                 return mapping;
2175
2176         if (i_mmap_trylock_write(mapping))
2177                 return mapping;
2178
2179         return NULL;
2180 }
2181
2182 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2183                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2184                 nodemask_t *node_alloc_noretry)
2185 {
2186         int order = huge_page_order(h);
2187         struct page *page;
2188         bool alloc_try_hard = true;
2189         bool retry = true;
2190
2191         /*
2192          * By default we always try hard to allocate the page with
2193          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2194          * a loop (to adjust global huge page counts) and previous allocation
2195          * failed, do not continue to try hard on the same node.  Use the
2196          * node_alloc_noretry bitmap to manage this state information.
2197          */
2198         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2199                 alloc_try_hard = false;
2200         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2201         if (alloc_try_hard)
2202                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2203         if (nid == NUMA_NO_NODE)
2204                 nid = numa_mem_id();
2205 retry:
2206         page = __alloc_pages(gfp_mask, order, nid, nmask);
2207
2208         /* Freeze head page */
2209         if (page && !page_ref_freeze(page, 1)) {
2210                 __free_pages(page, order);
2211                 if (retry) {    /* retry once */
2212                         retry = false;
2213                         goto retry;
2214                 }
2215                 /* WOW!  twice in a row. */
2216                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2217                 page = NULL;
2218         }
2219
2220         /*
2221          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2222          * indicates an overall state change.  Clear bit so that we resume
2223          * normal 'try hard' allocations.
2224          */
2225         if (node_alloc_noretry && page && !alloc_try_hard)
2226                 node_clear(nid, *node_alloc_noretry);
2227
2228         /*
2229          * If we tried hard to get a page but failed, set bit so that
2230          * subsequent attempts will not try as hard until there is an
2231          * overall state change.
2232          */
2233         if (node_alloc_noretry && !page && alloc_try_hard)
2234                 node_set(nid, *node_alloc_noretry);
2235
2236         if (!page) {
2237                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2238                 return NULL;
2239         }
2240
2241         __count_vm_event(HTLB_BUDDY_PGALLOC);
2242         return page_folio(page);
2243 }
2244
2245 static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2246                                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2247                                 nodemask_t *node_alloc_noretry)
2248 {
2249         struct folio *folio;
2250         bool retry = false;
2251
2252 retry:
2253         if (hstate_is_gigantic(h))
2254                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2255         else
2256                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2257                                 nid, nmask, node_alloc_noretry);
2258         if (!folio)
2259                 return NULL;
2260
2261         if (hstate_is_gigantic(h)) {
2262                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2263                         /*
2264                          * Rare failure to convert pages to compound page.
2265                          * Free pages and try again - ONCE!
2266                          */
2267                         free_gigantic_folio(folio, huge_page_order(h));
2268                         if (!retry) {
2269                                 retry = true;
2270                                 goto retry;
2271                         }
2272                         return NULL;
2273                 }
2274         }
2275
2276         return folio;
2277 }
2278
2279 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2280                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2281                 nodemask_t *node_alloc_noretry)
2282 {
2283         struct folio *folio;
2284
2285         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2286                                                 node_alloc_noretry);
2287         if (folio)
2288                 init_new_hugetlb_folio(h, folio);
2289         return folio;
2290 }
2291
2292 /*
2293  * Common helper to allocate a fresh hugetlb page. All specific allocators
2294  * should use this function to get new hugetlb pages
2295  *
2296  * Note that returned page is 'frozen':  ref count of head page and all tail
2297  * pages is zero.
2298  */
2299 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2300                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2301                 nodemask_t *node_alloc_noretry)
2302 {
2303         struct folio *folio;
2304
2305         folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2306                                                 node_alloc_noretry);
2307         if (!folio)
2308                 return NULL;
2309
2310         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2311         return folio;
2312 }
2313
2314 static void prep_and_add_allocated_folios(struct hstate *h,
2315                                         struct list_head *folio_list)
2316 {
2317         unsigned long flags;
2318         struct folio *folio, *tmp_f;
2319
2320         /* Send list for bulk vmemmap optimization processing */
2321         hugetlb_vmemmap_optimize_folios(h, folio_list);
2322
2323         /* Add all new pool pages to free lists in one lock cycle */
2324         spin_lock_irqsave(&hugetlb_lock, flags);
2325         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2326                 __prep_account_new_huge_page(h, folio_nid(folio));
2327                 enqueue_hugetlb_folio(h, folio);
2328         }
2329         spin_unlock_irqrestore(&hugetlb_lock, flags);
2330 }
2331
2332 /*
2333  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2334  * will later be added to the appropriate hugetlb pool.
2335  */
2336 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2337                                         nodemask_t *nodes_allowed,
2338                                         nodemask_t *node_alloc_noretry,
2339                                         int *next_node)
2340 {
2341         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2342         int nr_nodes, node;
2343
2344         for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2345                 struct folio *folio;
2346
2347                 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2348                                         nodes_allowed, node_alloc_noretry);
2349                 if (folio)
2350                         return folio;
2351         }
2352
2353         return NULL;
2354 }
2355
2356 /*
2357  * Remove huge page from pool from next node to free.  Attempt to keep
2358  * persistent huge pages more or less balanced over allowed nodes.
2359  * This routine only 'removes' the hugetlb page.  The caller must make
2360  * an additional call to free the page to low level allocators.
2361  * Called with hugetlb_lock locked.
2362  */
2363 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2364                 nodemask_t *nodes_allowed, bool acct_surplus)
2365 {
2366         int nr_nodes, node;
2367         struct folio *folio = NULL;
2368
2369         lockdep_assert_held(&hugetlb_lock);
2370         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2371                 /*
2372                  * If we're returning unused surplus pages, only examine
2373                  * nodes with surplus pages.
2374                  */
2375                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2376                     !list_empty(&h->hugepage_freelists[node])) {
2377                         folio = list_entry(h->hugepage_freelists[node].next,
2378                                           struct folio, lru);
2379                         remove_hugetlb_folio(h, folio, acct_surplus);
2380                         break;
2381                 }
2382         }
2383
2384         return folio;
2385 }
2386
2387 /*
2388  * Dissolve a given free hugepage into free buddy pages. This function does
2389  * nothing for in-use hugepages and non-hugepages.
2390  * This function returns values like below:
2391  *
2392  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2393  *           when the system is under memory pressure and the feature of
2394  *           freeing unused vmemmap pages associated with each hugetlb page
2395  *           is enabled.
2396  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2397  *           (allocated or reserved.)
2398  *       0:  successfully dissolved free hugepages or the page is not a
2399  *           hugepage (considered as already dissolved)
2400  */
2401 int dissolve_free_huge_page(struct page *page)
2402 {
2403         int rc = -EBUSY;
2404         struct folio *folio = page_folio(page);
2405
2406 retry:
2407         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2408         if (!folio_test_hugetlb(folio))
2409                 return 0;
2410
2411         spin_lock_irq(&hugetlb_lock);
2412         if (!folio_test_hugetlb(folio)) {
2413                 rc = 0;
2414                 goto out;
2415         }
2416
2417         if (!folio_ref_count(folio)) {
2418                 struct hstate *h = folio_hstate(folio);
2419                 if (!available_huge_pages(h))
2420                         goto out;
2421
2422                 /*
2423                  * We should make sure that the page is already on the free list
2424                  * when it is dissolved.
2425                  */
2426                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2427                         spin_unlock_irq(&hugetlb_lock);
2428                         cond_resched();
2429
2430                         /*
2431                          * Theoretically, we should return -EBUSY when we
2432                          * encounter this race. In fact, we have a chance
2433                          * to successfully dissolve the page if we do a
2434                          * retry. Because the race window is quite small.
2435                          * If we seize this opportunity, it is an optimization
2436                          * for increasing the success rate of dissolving page.
2437                          */
2438                         goto retry;
2439                 }
2440
2441                 remove_hugetlb_folio(h, folio, false);
2442                 h->max_huge_pages--;
2443                 spin_unlock_irq(&hugetlb_lock);
2444
2445                 /*
2446                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2447                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2448                  * free the page if it can not allocate required vmemmap.  We
2449                  * need to adjust max_huge_pages if the page is not freed.
2450                  * Attempt to allocate vmemmmap here so that we can take
2451                  * appropriate action on failure.
2452                  *
2453                  * The folio_test_hugetlb check here is because
2454                  * remove_hugetlb_folio will clear hugetlb folio flag for
2455                  * non-vmemmap optimized hugetlb folios.
2456                  */
2457                 if (folio_test_hugetlb(folio)) {
2458                         rc = hugetlb_vmemmap_restore_folio(h, folio);
2459                         if (rc) {
2460                                 spin_lock_irq(&hugetlb_lock);
2461                                 add_hugetlb_folio(h, folio, false);
2462                                 h->max_huge_pages++;
2463                                 goto out;
2464                         }
2465                 } else
2466                         rc = 0;
2467
2468                 update_and_free_hugetlb_folio(h, folio, false);
2469                 return rc;
2470         }
2471 out:
2472         spin_unlock_irq(&hugetlb_lock);
2473         return rc;
2474 }
2475
2476 /*
2477  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2478  * make specified memory blocks removable from the system.
2479  * Note that this will dissolve a free gigantic hugepage completely, if any
2480  * part of it lies within the given range.
2481  * Also note that if dissolve_free_huge_page() returns with an error, all
2482  * free hugepages that were dissolved before that error are lost.
2483  */
2484 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2485 {
2486         unsigned long pfn;
2487         struct page *page;
2488         int rc = 0;
2489         unsigned int order;
2490         struct hstate *h;
2491
2492         if (!hugepages_supported())
2493                 return rc;
2494
2495         order = huge_page_order(&default_hstate);
2496         for_each_hstate(h)
2497                 order = min(order, huge_page_order(h));
2498
2499         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2500                 page = pfn_to_page(pfn);
2501                 rc = dissolve_free_huge_page(page);
2502                 if (rc)
2503                         break;
2504         }
2505
2506         return rc;
2507 }
2508
2509 /*
2510  * Allocates a fresh surplus page from the page allocator.
2511  */
2512 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2513                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2514 {
2515         struct folio *folio = NULL;
2516
2517         if (hstate_is_gigantic(h))
2518                 return NULL;
2519
2520         spin_lock_irq(&hugetlb_lock);
2521         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2522                 goto out_unlock;
2523         spin_unlock_irq(&hugetlb_lock);
2524
2525         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2526         if (!folio)
2527                 return NULL;
2528
2529         spin_lock_irq(&hugetlb_lock);
2530         /*
2531          * We could have raced with the pool size change.
2532          * Double check that and simply deallocate the new page
2533          * if we would end up overcommiting the surpluses. Abuse
2534          * temporary page to workaround the nasty free_huge_folio
2535          * codeflow
2536          */
2537         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2538                 folio_set_hugetlb_temporary(folio);
2539                 spin_unlock_irq(&hugetlb_lock);
2540                 free_huge_folio(folio);
2541                 return NULL;
2542         }
2543
2544         h->surplus_huge_pages++;
2545         h->surplus_huge_pages_node[folio_nid(folio)]++;
2546
2547 out_unlock:
2548         spin_unlock_irq(&hugetlb_lock);
2549
2550         return folio;
2551 }
2552
2553 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2554                                      int nid, nodemask_t *nmask)
2555 {
2556         struct folio *folio;
2557
2558         if (hstate_is_gigantic(h))
2559                 return NULL;
2560
2561         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2562         if (!folio)
2563                 return NULL;
2564
2565         /* fresh huge pages are frozen */
2566         folio_ref_unfreeze(folio, 1);
2567         /*
2568          * We do not account these pages as surplus because they are only
2569          * temporary and will be released properly on the last reference
2570          */
2571         folio_set_hugetlb_temporary(folio);
2572
2573         return folio;
2574 }
2575
2576 /*
2577  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2578  */
2579 static
2580 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2581                 struct vm_area_struct *vma, unsigned long addr)
2582 {
2583         struct folio *folio = NULL;
2584         struct mempolicy *mpol;
2585         gfp_t gfp_mask = htlb_alloc_mask(h);
2586         int nid;
2587         nodemask_t *nodemask;
2588
2589         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2590         if (mpol_is_preferred_many(mpol)) {
2591                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2592
2593                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2594                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2595
2596                 /* Fallback to all nodes if page==NULL */
2597                 nodemask = NULL;
2598         }
2599
2600         if (!folio)
2601                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2602         mpol_cond_put(mpol);
2603         return folio;
2604 }
2605
2606 /* folio migration callback function */
2607 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2608                 nodemask_t *nmask, gfp_t gfp_mask)
2609 {
2610         spin_lock_irq(&hugetlb_lock);
2611         if (available_huge_pages(h)) {
2612                 struct folio *folio;
2613
2614                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2615                                                 preferred_nid, nmask);
2616                 if (folio) {
2617                         spin_unlock_irq(&hugetlb_lock);
2618                         return folio;
2619                 }
2620         }
2621         spin_unlock_irq(&hugetlb_lock);
2622
2623         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2624 }
2625
2626 /*
2627  * Increase the hugetlb pool such that it can accommodate a reservation
2628  * of size 'delta'.
2629  */
2630 static int gather_surplus_pages(struct hstate *h, long delta)
2631         __must_hold(&hugetlb_lock)
2632 {
2633         LIST_HEAD(surplus_list);
2634         struct folio *folio, *tmp;
2635         int ret;
2636         long i;
2637         long needed, allocated;
2638         bool alloc_ok = true;
2639
2640         lockdep_assert_held(&hugetlb_lock);
2641         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2642         if (needed <= 0) {
2643                 h->resv_huge_pages += delta;
2644                 return 0;
2645         }
2646
2647         allocated = 0;
2648
2649         ret = -ENOMEM;
2650 retry:
2651         spin_unlock_irq(&hugetlb_lock);
2652         for (i = 0; i < needed; i++) {
2653                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2654                                 NUMA_NO_NODE, NULL);
2655                 if (!folio) {
2656                         alloc_ok = false;
2657                         break;
2658                 }
2659                 list_add(&folio->lru, &surplus_list);
2660                 cond_resched();
2661         }
2662         allocated += i;
2663
2664         /*
2665          * After retaking hugetlb_lock, we need to recalculate 'needed'
2666          * because either resv_huge_pages or free_huge_pages may have changed.
2667          */
2668         spin_lock_irq(&hugetlb_lock);
2669         needed = (h->resv_huge_pages + delta) -
2670                         (h->free_huge_pages + allocated);
2671         if (needed > 0) {
2672                 if (alloc_ok)
2673                         goto retry;
2674                 /*
2675                  * We were not able to allocate enough pages to
2676                  * satisfy the entire reservation so we free what
2677                  * we've allocated so far.
2678                  */
2679                 goto free;
2680         }
2681         /*
2682          * The surplus_list now contains _at_least_ the number of extra pages
2683          * needed to accommodate the reservation.  Add the appropriate number
2684          * of pages to the hugetlb pool and free the extras back to the buddy
2685          * allocator.  Commit the entire reservation here to prevent another
2686          * process from stealing the pages as they are added to the pool but
2687          * before they are reserved.
2688          */
2689         needed += allocated;
2690         h->resv_huge_pages += delta;
2691         ret = 0;
2692
2693         /* Free the needed pages to the hugetlb pool */
2694         list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2695                 if ((--needed) < 0)
2696                         break;
2697                 /* Add the page to the hugetlb allocator */
2698                 enqueue_hugetlb_folio(h, folio);
2699         }
2700 free:
2701         spin_unlock_irq(&hugetlb_lock);
2702
2703         /*
2704          * Free unnecessary surplus pages to the buddy allocator.
2705          * Pages have no ref count, call free_huge_folio directly.
2706          */
2707         list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2708                 free_huge_folio(folio);
2709         spin_lock_irq(&hugetlb_lock);
2710
2711         return ret;
2712 }
2713
2714 /*
2715  * This routine has two main purposes:
2716  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2717  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2718  *    to the associated reservation map.
2719  * 2) Free any unused surplus pages that may have been allocated to satisfy
2720  *    the reservation.  As many as unused_resv_pages may be freed.
2721  */
2722 static void return_unused_surplus_pages(struct hstate *h,
2723                                         unsigned long unused_resv_pages)
2724 {
2725         unsigned long nr_pages;
2726         LIST_HEAD(page_list);
2727
2728         lockdep_assert_held(&hugetlb_lock);
2729         /* Uncommit the reservation */
2730         h->resv_huge_pages -= unused_resv_pages;
2731
2732         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2733                 goto out;
2734
2735         /*
2736          * Part (or even all) of the reservation could have been backed
2737          * by pre-allocated pages. Only free surplus pages.
2738          */
2739         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2740
2741         /*
2742          * We want to release as many surplus pages as possible, spread
2743          * evenly across all nodes with memory. Iterate across these nodes
2744          * until we can no longer free unreserved surplus pages. This occurs
2745          * when the nodes with surplus pages have no free pages.
2746          * remove_pool_hugetlb_folio() will balance the freed pages across the
2747          * on-line nodes with memory and will handle the hstate accounting.
2748          */
2749         while (nr_pages--) {
2750                 struct folio *folio;
2751
2752                 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2753                 if (!folio)
2754                         goto out;
2755
2756                 list_add(&folio->lru, &page_list);
2757         }
2758
2759 out:
2760         spin_unlock_irq(&hugetlb_lock);
2761         update_and_free_pages_bulk(h, &page_list);
2762         spin_lock_irq(&hugetlb_lock);
2763 }
2764
2765
2766 /*
2767  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2768  * are used by the huge page allocation routines to manage reservations.
2769  *
2770  * vma_needs_reservation is called to determine if the huge page at addr
2771  * within the vma has an associated reservation.  If a reservation is
2772  * needed, the value 1 is returned.  The caller is then responsible for
2773  * managing the global reservation and subpool usage counts.  After
2774  * the huge page has been allocated, vma_commit_reservation is called
2775  * to add the page to the reservation map.  If the page allocation fails,
2776  * the reservation must be ended instead of committed.  vma_end_reservation
2777  * is called in such cases.
2778  *
2779  * In the normal case, vma_commit_reservation returns the same value
2780  * as the preceding vma_needs_reservation call.  The only time this
2781  * is not the case is if a reserve map was changed between calls.  It
2782  * is the responsibility of the caller to notice the difference and
2783  * take appropriate action.
2784  *
2785  * vma_add_reservation is used in error paths where a reservation must
2786  * be restored when a newly allocated huge page must be freed.  It is
2787  * to be called after calling vma_needs_reservation to determine if a
2788  * reservation exists.
2789  *
2790  * vma_del_reservation is used in error paths where an entry in the reserve
2791  * map was created during huge page allocation and must be removed.  It is to
2792  * be called after calling vma_needs_reservation to determine if a reservation
2793  * exists.
2794  */
2795 enum vma_resv_mode {
2796         VMA_NEEDS_RESV,
2797         VMA_COMMIT_RESV,
2798         VMA_END_RESV,
2799         VMA_ADD_RESV,
2800         VMA_DEL_RESV,
2801 };
2802 static long __vma_reservation_common(struct hstate *h,
2803                                 struct vm_area_struct *vma, unsigned long addr,
2804                                 enum vma_resv_mode mode)
2805 {
2806         struct resv_map *resv;
2807         pgoff_t idx;
2808         long ret;
2809         long dummy_out_regions_needed;
2810
2811         resv = vma_resv_map(vma);
2812         if (!resv)
2813                 return 1;
2814
2815         idx = vma_hugecache_offset(h, vma, addr);
2816         switch (mode) {
2817         case VMA_NEEDS_RESV:
2818                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2819                 /* We assume that vma_reservation_* routines always operate on
2820                  * 1 page, and that adding to resv map a 1 page entry can only
2821                  * ever require 1 region.
2822                  */
2823                 VM_BUG_ON(dummy_out_regions_needed != 1);
2824                 break;
2825         case VMA_COMMIT_RESV:
2826                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2827                 /* region_add calls of range 1 should never fail. */
2828                 VM_BUG_ON(ret < 0);
2829                 break;
2830         case VMA_END_RESV:
2831                 region_abort(resv, idx, idx + 1, 1);
2832                 ret = 0;
2833                 break;
2834         case VMA_ADD_RESV:
2835                 if (vma->vm_flags & VM_MAYSHARE) {
2836                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2837                         /* region_add calls of range 1 should never fail. */
2838                         VM_BUG_ON(ret < 0);
2839                 } else {
2840                         region_abort(resv, idx, idx + 1, 1);
2841                         ret = region_del(resv, idx, idx + 1);
2842                 }
2843                 break;
2844         case VMA_DEL_RESV:
2845                 if (vma->vm_flags & VM_MAYSHARE) {
2846                         region_abort(resv, idx, idx + 1, 1);
2847                         ret = region_del(resv, idx, idx + 1);
2848                 } else {
2849                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2850                         /* region_add calls of range 1 should never fail. */
2851                         VM_BUG_ON(ret < 0);
2852                 }
2853                 break;
2854         default:
2855                 BUG();
2856         }
2857
2858         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2859                 return ret;
2860         /*
2861          * We know private mapping must have HPAGE_RESV_OWNER set.
2862          *
2863          * In most cases, reserves always exist for private mappings.
2864          * However, a file associated with mapping could have been
2865          * hole punched or truncated after reserves were consumed.
2866          * As subsequent fault on such a range will not use reserves.
2867          * Subtle - The reserve map for private mappings has the
2868          * opposite meaning than that of shared mappings.  If NO
2869          * entry is in the reserve map, it means a reservation exists.
2870          * If an entry exists in the reserve map, it means the
2871          * reservation has already been consumed.  As a result, the
2872          * return value of this routine is the opposite of the
2873          * value returned from reserve map manipulation routines above.
2874          */
2875         if (ret > 0)
2876                 return 0;
2877         if (ret == 0)
2878                 return 1;
2879         return ret;
2880 }
2881
2882 static long vma_needs_reservation(struct hstate *h,
2883                         struct vm_area_struct *vma, unsigned long addr)
2884 {
2885         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2886 }
2887
2888 static long vma_commit_reservation(struct hstate *h,
2889                         struct vm_area_struct *vma, unsigned long addr)
2890 {
2891         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2892 }
2893
2894 static void vma_end_reservation(struct hstate *h,
2895                         struct vm_area_struct *vma, unsigned long addr)
2896 {
2897         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2898 }
2899
2900 static long vma_add_reservation(struct hstate *h,
2901                         struct vm_area_struct *vma, unsigned long addr)
2902 {
2903         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2904 }
2905
2906 static long vma_del_reservation(struct hstate *h,
2907                         struct vm_area_struct *vma, unsigned long addr)
2908 {
2909         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2910 }
2911
2912 /*
2913  * This routine is called to restore reservation information on error paths.
2914  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2915  * and the hugetlb mutex should remain held when calling this routine.
2916  *
2917  * It handles two specific cases:
2918  * 1) A reservation was in place and the folio consumed the reservation.
2919  *    hugetlb_restore_reserve is set in the folio.
2920  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2921  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2922  *
2923  * In case 1, free_huge_folio later in the error path will increment the
2924  * global reserve count.  But, free_huge_folio does not have enough context
2925  * to adjust the reservation map.  This case deals primarily with private
2926  * mappings.  Adjust the reserve map here to be consistent with global
2927  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2928  * reserve map indicates there is a reservation present.
2929  *
2930  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2931  */
2932 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2933                         unsigned long address, struct folio *folio)
2934 {
2935         long rc = vma_needs_reservation(h, vma, address);
2936
2937         if (folio_test_hugetlb_restore_reserve(folio)) {
2938                 if (unlikely(rc < 0))
2939                         /*
2940                          * Rare out of memory condition in reserve map
2941                          * manipulation.  Clear hugetlb_restore_reserve so
2942                          * that global reserve count will not be incremented
2943                          * by free_huge_folio.  This will make it appear
2944                          * as though the reservation for this folio was
2945                          * consumed.  This may prevent the task from
2946                          * faulting in the folio at a later time.  This
2947                          * is better than inconsistent global huge page
2948                          * accounting of reserve counts.
2949                          */
2950                         folio_clear_hugetlb_restore_reserve(folio);
2951                 else if (rc)
2952                         (void)vma_add_reservation(h, vma, address);
2953                 else
2954                         vma_end_reservation(h, vma, address);
2955         } else {
2956                 if (!rc) {
2957                         /*
2958                          * This indicates there is an entry in the reserve map
2959                          * not added by alloc_hugetlb_folio.  We know it was added
2960                          * before the alloc_hugetlb_folio call, otherwise
2961                          * hugetlb_restore_reserve would be set on the folio.
2962                          * Remove the entry so that a subsequent allocation
2963                          * does not consume a reservation.
2964                          */
2965                         rc = vma_del_reservation(h, vma, address);
2966                         if (rc < 0)
2967                                 /*
2968                                  * VERY rare out of memory condition.  Since
2969                                  * we can not delete the entry, set
2970                                  * hugetlb_restore_reserve so that the reserve
2971                                  * count will be incremented when the folio
2972                                  * is freed.  This reserve will be consumed
2973                                  * on a subsequent allocation.
2974                                  */
2975                                 folio_set_hugetlb_restore_reserve(folio);
2976                 } else if (rc < 0) {
2977                         /*
2978                          * Rare out of memory condition from
2979                          * vma_needs_reservation call.  Memory allocation is
2980                          * only attempted if a new entry is needed.  Therefore,
2981                          * this implies there is not an entry in the
2982                          * reserve map.
2983                          *
2984                          * For shared mappings, no entry in the map indicates
2985                          * no reservation.  We are done.
2986                          */
2987                         if (!(vma->vm_flags & VM_MAYSHARE))
2988                                 /*
2989                                  * For private mappings, no entry indicates
2990                                  * a reservation is present.  Since we can
2991                                  * not add an entry, set hugetlb_restore_reserve
2992                                  * on the folio so reserve count will be
2993                                  * incremented when freed.  This reserve will
2994                                  * be consumed on a subsequent allocation.
2995                                  */
2996                                 folio_set_hugetlb_restore_reserve(folio);
2997                 } else
2998                         /*
2999                          * No reservation present, do nothing
3000                          */
3001                          vma_end_reservation(h, vma, address);
3002         }
3003 }
3004
3005 /*
3006  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
3007  * the old one
3008  * @h: struct hstate old page belongs to
3009  * @old_folio: Old folio to dissolve
3010  * @list: List to isolate the page in case we need to
3011  * Returns 0 on success, otherwise negated error.
3012  */
3013 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
3014                         struct folio *old_folio, struct list_head *list)
3015 {
3016         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3017         int nid = folio_nid(old_folio);
3018         struct folio *new_folio = NULL;
3019         int ret = 0;
3020
3021 retry:
3022         spin_lock_irq(&hugetlb_lock);
3023         if (!folio_test_hugetlb(old_folio)) {
3024                 /*
3025                  * Freed from under us. Drop new_folio too.
3026                  */
3027                 goto free_new;
3028         } else if (folio_ref_count(old_folio)) {
3029                 bool isolated;
3030
3031                 /*
3032                  * Someone has grabbed the folio, try to isolate it here.
3033                  * Fail with -EBUSY if not possible.
3034                  */
3035                 spin_unlock_irq(&hugetlb_lock);
3036                 isolated = isolate_hugetlb(old_folio, list);
3037                 ret = isolated ? 0 : -EBUSY;
3038                 spin_lock_irq(&hugetlb_lock);
3039                 goto free_new;
3040         } else if (!folio_test_hugetlb_freed(old_folio)) {
3041                 /*
3042                  * Folio's refcount is 0 but it has not been enqueued in the
3043                  * freelist yet. Race window is small, so we can succeed here if
3044                  * we retry.
3045                  */
3046                 spin_unlock_irq(&hugetlb_lock);
3047                 cond_resched();
3048                 goto retry;
3049         } else {
3050                 if (!new_folio) {
3051                         spin_unlock_irq(&hugetlb_lock);
3052                         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3053                                                               NULL, NULL);
3054                         if (!new_folio)
3055                                 return -ENOMEM;
3056                         __prep_new_hugetlb_folio(h, new_folio);
3057                         goto retry;
3058                 }
3059
3060                 /*
3061                  * Ok, old_folio is still a genuine free hugepage. Remove it from
3062                  * the freelist and decrease the counters. These will be
3063                  * incremented again when calling __prep_account_new_huge_page()
3064                  * and enqueue_hugetlb_folio() for new_folio. The counters will
3065                  * remain stable since this happens under the lock.
3066                  */
3067                 remove_hugetlb_folio(h, old_folio, false);
3068
3069                 /*
3070                  * Ref count on new_folio is already zero as it was dropped
3071                  * earlier.  It can be directly added to the pool free list.
3072                  */
3073                 __prep_account_new_huge_page(h, nid);
3074                 enqueue_hugetlb_folio(h, new_folio);
3075
3076                 /*
3077                  * Folio has been replaced, we can safely free the old one.
3078                  */
3079                 spin_unlock_irq(&hugetlb_lock);
3080                 update_and_free_hugetlb_folio(h, old_folio, false);
3081         }
3082
3083         return ret;
3084
3085 free_new:
3086         spin_unlock_irq(&hugetlb_lock);
3087         if (new_folio) {
3088                 /* Folio has a zero ref count, but needs a ref to be freed */
3089                 folio_ref_unfreeze(new_folio, 1);
3090                 update_and_free_hugetlb_folio(h, new_folio, false);
3091         }
3092
3093         return ret;
3094 }
3095
3096 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3097 {
3098         struct hstate *h;
3099         struct folio *folio = page_folio(page);
3100         int ret = -EBUSY;
3101
3102         /*
3103          * The page might have been dissolved from under our feet, so make sure
3104          * to carefully check the state under the lock.
3105          * Return success when racing as if we dissolved the page ourselves.
3106          */
3107         spin_lock_irq(&hugetlb_lock);
3108         if (folio_test_hugetlb(folio)) {
3109                 h = folio_hstate(folio);
3110         } else {
3111                 spin_unlock_irq(&hugetlb_lock);
3112                 return 0;
3113         }
3114         spin_unlock_irq(&hugetlb_lock);
3115
3116         /*
3117          * Fence off gigantic pages as there is a cyclic dependency between
3118          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3119          * of bailing out right away without further retrying.
3120          */
3121         if (hstate_is_gigantic(h))
3122                 return -ENOMEM;
3123
3124         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3125                 ret = 0;
3126         else if (!folio_ref_count(folio))
3127                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3128
3129         return ret;
3130 }
3131
3132 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3133                                     unsigned long addr, int avoid_reserve)
3134 {
3135         struct hugepage_subpool *spool = subpool_vma(vma);
3136         struct hstate *h = hstate_vma(vma);
3137         struct folio *folio;
3138         long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
3139         long gbl_chg;
3140         int memcg_charge_ret, ret, idx;
3141         struct hugetlb_cgroup *h_cg = NULL;
3142         struct mem_cgroup *memcg;
3143         bool deferred_reserve;
3144         gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3145
3146         memcg = get_mem_cgroup_from_current();
3147         memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3148         if (memcg_charge_ret == -ENOMEM) {
3149                 mem_cgroup_put(memcg);
3150                 return ERR_PTR(-ENOMEM);
3151         }
3152
3153         idx = hstate_index(h);
3154         /*
3155          * Examine the region/reserve map to determine if the process
3156          * has a reservation for the page to be allocated.  A return
3157          * code of zero indicates a reservation exists (no change).
3158          */
3159         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3160         if (map_chg < 0) {
3161                 if (!memcg_charge_ret)
3162                         mem_cgroup_cancel_charge(memcg, nr_pages);
3163                 mem_cgroup_put(memcg);
3164                 return ERR_PTR(-ENOMEM);
3165         }
3166
3167         /*
3168          * Processes that did not create the mapping will have no
3169          * reserves as indicated by the region/reserve map. Check
3170          * that the allocation will not exceed the subpool limit.
3171          * Allocations for MAP_NORESERVE mappings also need to be
3172          * checked against any subpool limit.
3173          */
3174         if (map_chg || avoid_reserve) {
3175                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3176                 if (gbl_chg < 0)
3177                         goto out_end_reservation;
3178
3179                 /*
3180                  * Even though there was no reservation in the region/reserve
3181                  * map, there could be reservations associated with the
3182                  * subpool that can be used.  This would be indicated if the
3183                  * return value of hugepage_subpool_get_pages() is zero.
3184                  * However, if avoid_reserve is specified we still avoid even
3185                  * the subpool reservations.
3186                  */
3187                 if (avoid_reserve)
3188                         gbl_chg = 1;
3189         }
3190
3191         /* If this allocation is not consuming a reservation, charge it now.
3192          */
3193         deferred_reserve = map_chg || avoid_reserve;
3194         if (deferred_reserve) {
3195                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3196                         idx, pages_per_huge_page(h), &h_cg);
3197                 if (ret)
3198                         goto out_subpool_put;
3199         }
3200
3201         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3202         if (ret)
3203                 goto out_uncharge_cgroup_reservation;
3204
3205         spin_lock_irq(&hugetlb_lock);
3206         /*
3207          * glb_chg is passed to indicate whether or not a page must be taken
3208          * from the global free pool (global change).  gbl_chg == 0 indicates
3209          * a reservation exists for the allocation.
3210          */
3211         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3212         if (!folio) {
3213                 spin_unlock_irq(&hugetlb_lock);
3214                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3215                 if (!folio)
3216                         goto out_uncharge_cgroup;
3217                 spin_lock_irq(&hugetlb_lock);
3218                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3219                         folio_set_hugetlb_restore_reserve(folio);
3220                         h->resv_huge_pages--;
3221                 }
3222                 list_add(&folio->lru, &h->hugepage_activelist);
3223                 folio_ref_unfreeze(folio, 1);
3224                 /* Fall through */
3225         }
3226
3227         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3228         /* If allocation is not consuming a reservation, also store the
3229          * hugetlb_cgroup pointer on the page.
3230          */
3231         if (deferred_reserve) {
3232                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3233                                                   h_cg, folio);
3234         }
3235
3236         spin_unlock_irq(&hugetlb_lock);
3237
3238         hugetlb_set_folio_subpool(folio, spool);
3239
3240         map_commit = vma_commit_reservation(h, vma, addr);
3241         if (unlikely(map_chg > map_commit)) {
3242                 /*
3243                  * The page was added to the reservation map between
3244                  * vma_needs_reservation and vma_commit_reservation.
3245                  * This indicates a race with hugetlb_reserve_pages.
3246                  * Adjust for the subpool count incremented above AND
3247                  * in hugetlb_reserve_pages for the same page.  Also,
3248                  * the reservation count added in hugetlb_reserve_pages
3249                  * no longer applies.
3250                  */
3251                 long rsv_adjust;
3252
3253                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3254                 hugetlb_acct_memory(h, -rsv_adjust);
3255                 if (deferred_reserve) {
3256                         spin_lock_irq(&hugetlb_lock);
3257                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3258                                         pages_per_huge_page(h), folio);
3259                         spin_unlock_irq(&hugetlb_lock);
3260                 }
3261         }
3262
3263         if (!memcg_charge_ret)
3264                 mem_cgroup_commit_charge(folio, memcg);
3265         mem_cgroup_put(memcg);
3266
3267         return folio;
3268
3269 out_uncharge_cgroup:
3270         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3271 out_uncharge_cgroup_reservation:
3272         if (deferred_reserve)
3273                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3274                                                     h_cg);
3275 out_subpool_put:
3276         if (map_chg || avoid_reserve)
3277                 hugepage_subpool_put_pages(spool, 1);
3278 out_end_reservation:
3279         vma_end_reservation(h, vma, addr);
3280         if (!memcg_charge_ret)
3281                 mem_cgroup_cancel_charge(memcg, nr_pages);
3282         mem_cgroup_put(memcg);
3283         return ERR_PTR(-ENOSPC);
3284 }
3285
3286 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3287         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3288 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3289 {
3290         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3291         int nr_nodes, node = nid;
3292
3293         /* do node specific alloc */
3294         if (nid != NUMA_NO_NODE) {
3295                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3296                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3297                 if (!m)
3298                         return 0;
3299                 goto found;
3300         }
3301         /* allocate from next node when distributing huge pages */
3302         for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3303                 m = memblock_alloc_try_nid_raw(
3304                                 huge_page_size(h), huge_page_size(h),
3305                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3306                 /*
3307                  * Use the beginning of the huge page to store the
3308                  * huge_bootmem_page struct (until gather_bootmem
3309                  * puts them into the mem_map).
3310                  */
3311                 if (!m)
3312                         return 0;
3313                 goto found;
3314         }
3315
3316 found:
3317
3318         /*
3319          * Only initialize the head struct page in memmap_init_reserved_pages,
3320          * rest of the struct pages will be initialized by the HugeTLB
3321          * subsystem itself.
3322          * The head struct page is used to get folio information by the HugeTLB
3323          * subsystem like zone id and node id.
3324          */
3325         memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3326                 huge_page_size(h) - PAGE_SIZE);
3327         /* Put them into a private list first because mem_map is not up yet */
3328         INIT_LIST_HEAD(&m->list);
3329         list_add(&m->list, &huge_boot_pages[node]);
3330         m->hstate = h;
3331         return 1;
3332 }
3333
3334 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3335 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3336                                         unsigned long start_page_number,
3337                                         unsigned long end_page_number)
3338 {
3339         enum zone_type zone = zone_idx(folio_zone(folio));
3340         int nid = folio_nid(folio);
3341         unsigned long head_pfn = folio_pfn(folio);
3342         unsigned long pfn, end_pfn = head_pfn + end_page_number;
3343         int ret;
3344
3345         for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3346                 struct page *page = pfn_to_page(pfn);
3347
3348                 __init_single_page(page, pfn, zone, nid);
3349                 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3350                 ret = page_ref_freeze(page, 1);
3351                 VM_BUG_ON(!ret);
3352         }
3353 }
3354
3355 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3356                                               struct hstate *h,
3357                                               unsigned long nr_pages)
3358 {
3359         int ret;
3360
3361         /* Prepare folio head */
3362         __folio_clear_reserved(folio);
3363         __folio_set_head(folio);
3364         ret = folio_ref_freeze(folio, 1);
3365         VM_BUG_ON(!ret);
3366         /* Initialize the necessary tail struct pages */
3367         hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3368         prep_compound_head((struct page *)folio, huge_page_order(h));
3369 }
3370
3371 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3372                                         struct list_head *folio_list)
3373 {
3374         unsigned long flags;
3375         struct folio *folio, *tmp_f;
3376
3377         /* Send list for bulk vmemmap optimization processing */
3378         hugetlb_vmemmap_optimize_folios(h, folio_list);
3379
3380         list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3381                 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3382                         /*
3383                          * If HVO fails, initialize all tail struct pages
3384                          * We do not worry about potential long lock hold
3385                          * time as this is early in boot and there should
3386                          * be no contention.
3387                          */
3388                         hugetlb_folio_init_tail_vmemmap(folio,
3389                                         HUGETLB_VMEMMAP_RESERVE_PAGES,
3390                                         pages_per_huge_page(h));
3391                 }
3392                 /* Subdivide locks to achieve better parallel performance */
3393                 spin_lock_irqsave(&hugetlb_lock, flags);
3394                 __prep_account_new_huge_page(h, folio_nid(folio));
3395                 enqueue_hugetlb_folio(h, folio);
3396                 spin_unlock_irqrestore(&hugetlb_lock, flags);
3397         }
3398 }
3399
3400 /*
3401  * Put bootmem huge pages into the standard lists after mem_map is up.
3402  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3403  */
3404 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3405 {
3406         LIST_HEAD(folio_list);
3407         struct huge_bootmem_page *m;
3408         struct hstate *h = NULL, *prev_h = NULL;
3409
3410         list_for_each_entry(m, &huge_boot_pages[nid], list) {
3411                 struct page *page = virt_to_page(m);
3412                 struct folio *folio = (void *)page;
3413
3414                 h = m->hstate;
3415                 /*
3416                  * It is possible to have multiple huge page sizes (hstates)
3417                  * in this list.  If so, process each size separately.
3418                  */
3419                 if (h != prev_h && prev_h != NULL)
3420                         prep_and_add_bootmem_folios(prev_h, &folio_list);
3421                 prev_h = h;
3422
3423                 VM_BUG_ON(!hstate_is_gigantic(h));
3424                 WARN_ON(folio_ref_count(folio) != 1);
3425
3426                 hugetlb_folio_init_vmemmap(folio, h,
3427                                            HUGETLB_VMEMMAP_RESERVE_PAGES);
3428                 init_new_hugetlb_folio(h, folio);
3429                 list_add(&folio->lru, &folio_list);
3430
3431                 /*
3432                  * We need to restore the 'stolen' pages to totalram_pages
3433                  * in order to fix confusing memory reports from free(1) and
3434                  * other side-effects, like CommitLimit going negative.
3435                  */
3436                 adjust_managed_page_count(page, pages_per_huge_page(h));
3437                 cond_resched();
3438         }
3439
3440         prep_and_add_bootmem_folios(h, &folio_list);
3441 }
3442
3443 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3444                                                     unsigned long end, void *arg)
3445 {
3446         int nid;
3447
3448         for (nid = start; nid < end; nid++)
3449                 gather_bootmem_prealloc_node(nid);
3450 }
3451
3452 static void __init gather_bootmem_prealloc(void)
3453 {
3454         struct padata_mt_job job = {
3455                 .thread_fn      = gather_bootmem_prealloc_parallel,
3456                 .fn_arg         = NULL,
3457                 .start          = 0,
3458                 .size           = num_node_state(N_MEMORY),
3459                 .align          = 1,
3460                 .min_chunk      = 1,
3461                 .max_threads    = num_node_state(N_MEMORY),
3462                 .numa_aware     = true,
3463         };
3464
3465         padata_do_multithreaded(&job);
3466 }
3467
3468 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3469 {
3470         unsigned long i;
3471         char buf[32];
3472
3473         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3474                 if (hstate_is_gigantic(h)) {
3475                         if (!alloc_bootmem_huge_page(h, nid))
3476                                 break;
3477                 } else {
3478                         struct folio *folio;
3479                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3480
3481                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3482                                         &node_states[N_MEMORY], NULL);
3483                         if (!folio)
3484                                 break;
3485                         free_huge_folio(folio); /* free it into the hugepage allocator */
3486                 }
3487                 cond_resched();
3488         }
3489         if (i == h->max_huge_pages_node[nid])
3490                 return;
3491
3492         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3493         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3494                 h->max_huge_pages_node[nid], buf, nid, i);
3495         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3496         h->max_huge_pages_node[nid] = i;
3497 }
3498
3499 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3500 {
3501         int i;
3502         bool node_specific_alloc = false;
3503
3504         for_each_online_node(i) {
3505                 if (h->max_huge_pages_node[i] > 0) {
3506                         hugetlb_hstate_alloc_pages_onenode(h, i);
3507                         node_specific_alloc = true;
3508                 }
3509         }
3510
3511         return node_specific_alloc;
3512 }
3513
3514 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3515 {
3516         if (allocated < h->max_huge_pages) {
3517                 char buf[32];
3518
3519                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3520                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3521                         h->max_huge_pages, buf, allocated);
3522                 h->max_huge_pages = allocated;
3523         }
3524 }
3525
3526 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3527 {
3528         struct hstate *h = (struct hstate *)arg;
3529         int i, num = end - start;
3530         nodemask_t node_alloc_noretry;
3531         LIST_HEAD(folio_list);
3532         int next_node = first_online_node;
3533
3534         /* Bit mask controlling how hard we retry per-node allocations.*/
3535         nodes_clear(node_alloc_noretry);
3536
3537         for (i = 0; i < num; ++i) {
3538                 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3539                                                 &node_alloc_noretry, &next_node);
3540                 if (!folio)
3541                         break;
3542
3543                 list_move(&folio->lru, &folio_list);
3544                 cond_resched();
3545         }
3546
3547         prep_and_add_allocated_folios(h, &folio_list);
3548 }
3549
3550 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3551 {
3552         unsigned long i;
3553
3554         for (i = 0; i < h->max_huge_pages; ++i) {
3555                 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3556                         break;
3557                 cond_resched();
3558         }
3559
3560         return i;
3561 }
3562
3563 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3564 {
3565         struct padata_mt_job job = {
3566                 .fn_arg         = h,
3567                 .align          = 1,
3568                 .numa_aware     = true
3569         };
3570
3571         job.thread_fn   = hugetlb_pages_alloc_boot_node;
3572         job.start       = 0;
3573         job.size        = h->max_huge_pages;
3574
3575         /*
3576          * job.max_threads is twice the num_node_state(N_MEMORY),
3577          *
3578          * Tests below indicate that a multiplier of 2 significantly improves
3579          * performance, and although larger values also provide improvements,
3580          * the gains are marginal.
3581          *
3582          * Therefore, choosing 2 as the multiplier strikes a good balance between
3583          * enhancing parallel processing capabilities and maintaining efficient
3584          * resource management.
3585          *
3586          * +------------+-------+-------+-------+-------+-------+
3587          * | multiplier |   1   |   2   |   3   |   4   |   5   |
3588          * +------------+-------+-------+-------+-------+-------+
3589          * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3590          * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3591          * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3592          * +------------+-------+-------+-------+-------+-------+
3593          */
3594         job.max_threads = num_node_state(N_MEMORY) * 2;
3595         job.min_chunk   = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3596         padata_do_multithreaded(&job);
3597
3598         return h->nr_huge_pages;
3599 }
3600
3601 /*
3602  * NOTE: this routine is called in different contexts for gigantic and
3603  * non-gigantic pages.
3604  * - For gigantic pages, this is called early in the boot process and
3605  *   pages are allocated from memblock allocated or something similar.
3606  *   Gigantic pages are actually added to pools later with the routine
3607  *   gather_bootmem_prealloc.
3608  * - For non-gigantic pages, this is called later in the boot process after
3609  *   all of mm is up and functional.  Pages are allocated from buddy and
3610  *   then added to hugetlb pools.
3611  */
3612 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3613 {
3614         unsigned long allocated;
3615         static bool initialized __initdata;
3616
3617         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3618         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3619                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3620                 return;
3621         }
3622
3623         /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3624         if (!initialized) {
3625                 int i = 0;
3626
3627                 for (i = 0; i < MAX_NUMNODES; i++)
3628                         INIT_LIST_HEAD(&huge_boot_pages[i]);
3629                 initialized = true;
3630         }
3631
3632         /* do node specific alloc */
3633         if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3634                 return;
3635
3636         /* below will do all node balanced alloc */
3637         if (hstate_is_gigantic(h))
3638                 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3639         else
3640                 allocated = hugetlb_pages_alloc_boot(h);
3641
3642         hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3643 }
3644
3645 static void __init hugetlb_init_hstates(void)
3646 {
3647         struct hstate *h, *h2;
3648
3649         for_each_hstate(h) {
3650                 /* oversize hugepages were init'ed in early boot */
3651                 if (!hstate_is_gigantic(h))
3652                         hugetlb_hstate_alloc_pages(h);
3653
3654                 /*
3655                  * Set demote order for each hstate.  Note that
3656                  * h->demote_order is initially 0.
3657                  * - We can not demote gigantic pages if runtime freeing
3658                  *   is not supported, so skip this.
3659                  * - If CMA allocation is possible, we can not demote
3660                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3661                  */
3662                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3663                         continue;
3664                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3665                         continue;
3666                 for_each_hstate(h2) {
3667                         if (h2 == h)
3668                                 continue;
3669                         if (h2->order < h->order &&
3670                             h2->order > h->demote_order)
3671                                 h->demote_order = h2->order;
3672                 }
3673         }
3674 }
3675
3676 static void __init report_hugepages(void)
3677 {
3678         struct hstate *h;
3679
3680         for_each_hstate(h) {
3681                 char buf[32];
3682
3683                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3684                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3685                         buf, h->free_huge_pages);
3686                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3687                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3688         }
3689 }
3690
3691 #ifdef CONFIG_HIGHMEM
3692 static void try_to_free_low(struct hstate *h, unsigned long count,
3693                                                 nodemask_t *nodes_allowed)
3694 {
3695         int i;
3696         LIST_HEAD(page_list);
3697
3698         lockdep_assert_held(&hugetlb_lock);
3699         if (hstate_is_gigantic(h))
3700                 return;
3701
3702         /*
3703          * Collect pages to be freed on a list, and free after dropping lock
3704          */
3705         for_each_node_mask(i, *nodes_allowed) {
3706                 struct folio *folio, *next;
3707                 struct list_head *freel = &h->hugepage_freelists[i];
3708                 list_for_each_entry_safe(folio, next, freel, lru) {
3709                         if (count >= h->nr_huge_pages)
3710                                 goto out;
3711                         if (folio_test_highmem(folio))
3712                                 continue;
3713                         remove_hugetlb_folio(h, folio, false);
3714                         list_add(&folio->lru, &page_list);
3715                 }
3716         }
3717
3718 out:
3719         spin_unlock_irq(&hugetlb_lock);
3720         update_and_free_pages_bulk(h, &page_list);
3721         spin_lock_irq(&hugetlb_lock);
3722 }
3723 #else
3724 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3725                                                 nodemask_t *nodes_allowed)
3726 {
3727 }
3728 #endif
3729
3730 /*
3731  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3732  * balanced by operating on them in a round-robin fashion.
3733  * Returns 1 if an adjustment was made.
3734  */
3735 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3736                                 int delta)
3737 {
3738         int nr_nodes, node;
3739
3740         lockdep_assert_held(&hugetlb_lock);
3741         VM_BUG_ON(delta != -1 && delta != 1);
3742
3743         if (delta < 0) {
3744                 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3745                         if (h->surplus_huge_pages_node[node])
3746                                 goto found;
3747                 }
3748         } else {
3749                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3750                         if (h->surplus_huge_pages_node[node] <
3751                                         h->nr_huge_pages_node[node])
3752                                 goto found;
3753                 }
3754         }
3755         return 0;
3756
3757 found:
3758         h->surplus_huge_pages += delta;
3759         h->surplus_huge_pages_node[node] += delta;
3760         return 1;
3761 }
3762
3763 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3764 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3765                               nodemask_t *nodes_allowed)
3766 {
3767         unsigned long min_count;
3768         unsigned long allocated;
3769         struct folio *folio;
3770         LIST_HEAD(page_list);
3771         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3772
3773         /*
3774          * Bit mask controlling how hard we retry per-node allocations.
3775          * If we can not allocate the bit mask, do not attempt to allocate
3776          * the requested huge pages.
3777          */
3778         if (node_alloc_noretry)
3779                 nodes_clear(*node_alloc_noretry);
3780         else
3781                 return -ENOMEM;
3782
3783         /*
3784          * resize_lock mutex prevents concurrent adjustments to number of
3785          * pages in hstate via the proc/sysfs interfaces.
3786          */
3787         mutex_lock(&h->resize_lock);
3788         flush_free_hpage_work(h);
3789         spin_lock_irq(&hugetlb_lock);
3790
3791         /*
3792          * Check for a node specific request.
3793          * Changing node specific huge page count may require a corresponding
3794          * change to the global count.  In any case, the passed node mask
3795          * (nodes_allowed) will restrict alloc/free to the specified node.
3796          */
3797         if (nid != NUMA_NO_NODE) {
3798                 unsigned long old_count = count;
3799
3800                 count += persistent_huge_pages(h) -
3801                          (h->nr_huge_pages_node[nid] -
3802                           h->surplus_huge_pages_node[nid]);
3803                 /*
3804                  * User may have specified a large count value which caused the
3805                  * above calculation to overflow.  In this case, they wanted
3806                  * to allocate as many huge pages as possible.  Set count to
3807                  * largest possible value to align with their intention.
3808                  */
3809                 if (count < old_count)
3810                         count = ULONG_MAX;
3811         }
3812
3813         /*
3814          * Gigantic pages runtime allocation depend on the capability for large
3815          * page range allocation.
3816          * If the system does not provide this feature, return an error when
3817          * the user tries to allocate gigantic pages but let the user free the
3818          * boottime allocated gigantic pages.
3819          */
3820         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3821                 if (count > persistent_huge_pages(h)) {
3822                         spin_unlock_irq(&hugetlb_lock);
3823                         mutex_unlock(&h->resize_lock);
3824                         NODEMASK_FREE(node_alloc_noretry);
3825                         return -EINVAL;
3826                 }
3827                 /* Fall through to decrease pool */
3828         }
3829
3830         /*
3831          * Increase the pool size
3832          * First take pages out of surplus state.  Then make up the
3833          * remaining difference by allocating fresh huge pages.
3834          *
3835          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3836          * to convert a surplus huge page to a normal huge page. That is
3837          * not critical, though, it just means the overall size of the
3838          * pool might be one hugepage larger than it needs to be, but
3839          * within all the constraints specified by the sysctls.
3840          */
3841         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3842                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3843                         break;
3844         }
3845
3846         allocated = 0;
3847         while (count > (persistent_huge_pages(h) + allocated)) {
3848                 /*
3849                  * If this allocation races such that we no longer need the
3850                  * page, free_huge_folio will handle it by freeing the page
3851                  * and reducing the surplus.
3852                  */
3853                 spin_unlock_irq(&hugetlb_lock);
3854
3855                 /* yield cpu to avoid soft lockup */
3856                 cond_resched();
3857
3858                 folio = alloc_pool_huge_folio(h, nodes_allowed,
3859                                                 node_alloc_noretry,
3860                                                 &h->next_nid_to_alloc);
3861                 if (!folio) {
3862                         prep_and_add_allocated_folios(h, &page_list);
3863                         spin_lock_irq(&hugetlb_lock);
3864                         goto out;
3865                 }
3866
3867                 list_add(&folio->lru, &page_list);
3868                 allocated++;
3869
3870                 /* Bail for signals. Probably ctrl-c from user */
3871                 if (signal_pending(current)) {
3872                         prep_and_add_allocated_folios(h, &page_list);
3873                         spin_lock_irq(&hugetlb_lock);
3874                         goto out;
3875                 }
3876
3877                 spin_lock_irq(&hugetlb_lock);
3878         }
3879
3880         /* Add allocated pages to the pool */
3881         if (!list_empty(&page_list)) {
3882                 spin_unlock_irq(&hugetlb_lock);
3883                 prep_and_add_allocated_folios(h, &page_list);
3884                 spin_lock_irq(&hugetlb_lock);
3885         }
3886
3887         /*
3888          * Decrease the pool size
3889          * First return free pages to the buddy allocator (being careful
3890          * to keep enough around to satisfy reservations).  Then place
3891          * pages into surplus state as needed so the pool will shrink
3892          * to the desired size as pages become free.
3893          *
3894          * By placing pages into the surplus state independent of the
3895          * overcommit value, we are allowing the surplus pool size to
3896          * exceed overcommit. There are few sane options here. Since
3897          * alloc_surplus_hugetlb_folio() is checking the global counter,
3898          * though, we'll note that we're not allowed to exceed surplus
3899          * and won't grow the pool anywhere else. Not until one of the
3900          * sysctls are changed, or the surplus pages go out of use.
3901          */
3902         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3903         min_count = max(count, min_count);
3904         try_to_free_low(h, min_count, nodes_allowed);
3905
3906         /*
3907          * Collect pages to be removed on list without dropping lock
3908          */
3909         while (min_count < persistent_huge_pages(h)) {
3910                 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3911                 if (!folio)
3912                         break;
3913
3914                 list_add(&folio->lru, &page_list);
3915         }
3916         /* free the pages after dropping lock */
3917         spin_unlock_irq(&hugetlb_lock);
3918         update_and_free_pages_bulk(h, &page_list);
3919         flush_free_hpage_work(h);
3920         spin_lock_irq(&hugetlb_lock);
3921
3922         while (count < persistent_huge_pages(h)) {
3923                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3924                         break;
3925         }
3926 out:
3927         h->max_huge_pages = persistent_huge_pages(h);
3928         spin_unlock_irq(&hugetlb_lock);
3929         mutex_unlock(&h->resize_lock);
3930
3931         NODEMASK_FREE(node_alloc_noretry);
3932
3933         return 0;
3934 }
3935
3936 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3937 {
3938         int i, nid = folio_nid(folio);
3939         struct hstate *target_hstate;
3940         struct page *subpage;
3941         struct folio *inner_folio;
3942         int rc = 0;
3943
3944         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3945
3946         remove_hugetlb_folio_for_demote(h, folio, false);
3947         spin_unlock_irq(&hugetlb_lock);
3948
3949         /*
3950          * If vmemmap already existed for folio, the remove routine above would
3951          * have cleared the hugetlb folio flag.  Hence the folio is technically
3952          * no longer a hugetlb folio.  hugetlb_vmemmap_restore_folio can only be
3953          * passed hugetlb folios and will BUG otherwise.
3954          */
3955         if (folio_test_hugetlb(folio)) {
3956                 rc = hugetlb_vmemmap_restore_folio(h, folio);
3957                 if (rc) {
3958                         /* Allocation of vmemmmap failed, we can not demote folio */
3959                         spin_lock_irq(&hugetlb_lock);
3960                         folio_ref_unfreeze(folio, 1);
3961                         add_hugetlb_folio(h, folio, false);
3962                         return rc;
3963                 }
3964         }
3965
3966         /*
3967          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3968          * sizes as it will not ref count folios.
3969          */
3970         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3971
3972         /*
3973          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3974          * Without the mutex, pages added to target hstate could be marked
3975          * as surplus.
3976          *
3977          * Note that we already hold h->resize_lock.  To prevent deadlock,
3978          * use the convention of always taking larger size hstate mutex first.
3979          */
3980         mutex_lock(&target_hstate->resize_lock);
3981         for (i = 0; i < pages_per_huge_page(h);
3982                                 i += pages_per_huge_page(target_hstate)) {
3983                 subpage = folio_page(folio, i);
3984                 inner_folio = page_folio(subpage);
3985                 if (hstate_is_gigantic(target_hstate))
3986                         prep_compound_gigantic_folio_for_demote(inner_folio,
3987                                                         target_hstate->order);
3988                 else
3989                         prep_compound_page(subpage, target_hstate->order);
3990                 folio_change_private(inner_folio, NULL);
3991                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3992                 free_huge_folio(inner_folio);
3993         }
3994         mutex_unlock(&target_hstate->resize_lock);
3995
3996         spin_lock_irq(&hugetlb_lock);
3997
3998         /*
3999          * Not absolutely necessary, but for consistency update max_huge_pages
4000          * based on pool changes for the demoted page.
4001          */
4002         h->max_huge_pages--;
4003         target_hstate->max_huge_pages +=
4004                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
4005
4006         return rc;
4007 }
4008
4009 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
4010         __must_hold(&hugetlb_lock)
4011 {
4012         int nr_nodes, node;
4013         struct folio *folio;
4014
4015         lockdep_assert_held(&hugetlb_lock);
4016
4017         /* We should never get here if no demote order */
4018         if (!h->demote_order) {
4019                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4020                 return -EINVAL;         /* internal error */
4021         }
4022
4023         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
4024                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
4025                         if (folio_test_hwpoison(folio))
4026                                 continue;
4027                         return demote_free_hugetlb_folio(h, folio);
4028                 }
4029         }
4030
4031         /*
4032          * Only way to get here is if all pages on free lists are poisoned.
4033          * Return -EBUSY so that caller will not retry.
4034          */
4035         return -EBUSY;
4036 }
4037
4038 #define HSTATE_ATTR_RO(_name) \
4039         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4040
4041 #define HSTATE_ATTR_WO(_name) \
4042         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4043
4044 #define HSTATE_ATTR(_name) \
4045         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4046
4047 static struct kobject *hugepages_kobj;
4048 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4049
4050 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4051
4052 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4053 {
4054         int i;
4055
4056         for (i = 0; i < HUGE_MAX_HSTATE; i++)
4057                 if (hstate_kobjs[i] == kobj) {
4058                         if (nidp)
4059                                 *nidp = NUMA_NO_NODE;
4060                         return &hstates[i];
4061                 }
4062
4063         return kobj_to_node_hstate(kobj, nidp);
4064 }
4065
4066 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4067                                         struct kobj_attribute *attr, char *buf)
4068 {
4069         struct hstate *h;
4070         unsigned long nr_huge_pages;
4071         int nid;
4072
4073         h = kobj_to_hstate(kobj, &nid);
4074         if (nid == NUMA_NO_NODE)
4075                 nr_huge_pages = h->nr_huge_pages;
4076         else
4077                 nr_huge_pages = h->nr_huge_pages_node[nid];
4078
4079         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4080 }
4081
4082 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4083                                            struct hstate *h, int nid,
4084                                            unsigned long count, size_t len)
4085 {
4086         int err;
4087         nodemask_t nodes_allowed, *n_mask;
4088
4089         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4090                 return -EINVAL;
4091
4092         if (nid == NUMA_NO_NODE) {
4093                 /*
4094                  * global hstate attribute
4095                  */
4096                 if (!(obey_mempolicy &&
4097                                 init_nodemask_of_mempolicy(&nodes_allowed)))
4098                         n_mask = &node_states[N_MEMORY];
4099                 else
4100                         n_mask = &nodes_allowed;
4101         } else {
4102                 /*
4103                  * Node specific request.  count adjustment happens in
4104                  * set_max_huge_pages() after acquiring hugetlb_lock.
4105                  */
4106                 init_nodemask_of_node(&nodes_allowed, nid);
4107                 n_mask = &nodes_allowed;
4108         }
4109
4110         err = set_max_huge_pages(h, count, nid, n_mask);
4111
4112         return err ? err : len;
4113 }
4114
4115 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4116                                          struct kobject *kobj, const char *buf,
4117                                          size_t len)
4118 {
4119         struct hstate *h;
4120         unsigned long count;
4121         int nid;
4122         int err;
4123
4124         err = kstrtoul(buf, 10, &count);
4125         if (err)
4126                 return err;
4127
4128         h = kobj_to_hstate(kobj, &nid);
4129         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4130 }
4131
4132 static ssize_t nr_hugepages_show(struct kobject *kobj,
4133                                        struct kobj_attribute *attr, char *buf)
4134 {
4135         return nr_hugepages_show_common(kobj, attr, buf);
4136 }
4137
4138 static ssize_t nr_hugepages_store(struct kobject *kobj,
4139                struct kobj_attribute *attr, const char *buf, size_t len)
4140 {
4141         return nr_hugepages_store_common(false, kobj, buf, len);
4142 }
4143 HSTATE_ATTR(nr_hugepages);
4144
4145 #ifdef CONFIG_NUMA
4146
4147 /*
4148  * hstate attribute for optionally mempolicy-based constraint on persistent
4149  * huge page alloc/free.
4150  */
4151 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4152                                            struct kobj_attribute *attr,
4153                                            char *buf)
4154 {
4155         return nr_hugepages_show_common(kobj, attr, buf);
4156 }
4157
4158 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4159                struct kobj_attribute *attr, const char *buf, size_t len)
4160 {
4161         return nr_hugepages_store_common(true, kobj, buf, len);
4162 }
4163 HSTATE_ATTR(nr_hugepages_mempolicy);
4164 #endif
4165
4166
4167 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4168                                         struct kobj_attribute *attr, char *buf)
4169 {
4170         struct hstate *h = kobj_to_hstate(kobj, NULL);
4171         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4172 }
4173
4174 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4175                 struct kobj_attribute *attr, const char *buf, size_t count)
4176 {
4177         int err;
4178         unsigned long input;
4179         struct hstate *h = kobj_to_hstate(kobj, NULL);
4180
4181         if (hstate_is_gigantic(h))
4182                 return -EINVAL;
4183
4184         err = kstrtoul(buf, 10, &input);
4185         if (err)
4186                 return err;
4187
4188         spin_lock_irq(&hugetlb_lock);
4189         h->nr_overcommit_huge_pages = input;
4190         spin_unlock_irq(&hugetlb_lock);
4191
4192         return count;
4193 }
4194 HSTATE_ATTR(nr_overcommit_hugepages);
4195
4196 static ssize_t free_hugepages_show(struct kobject *kobj,
4197                                         struct kobj_attribute *attr, char *buf)
4198 {
4199         struct hstate *h;
4200         unsigned long free_huge_pages;
4201         int nid;
4202
4203         h = kobj_to_hstate(kobj, &nid);
4204         if (nid == NUMA_NO_NODE)
4205                 free_huge_pages = h->free_huge_pages;
4206         else
4207                 free_huge_pages = h->free_huge_pages_node[nid];
4208
4209         return sysfs_emit(buf, "%lu\n", free_huge_pages);
4210 }
4211 HSTATE_ATTR_RO(free_hugepages);
4212
4213 static ssize_t resv_hugepages_show(struct kobject *kobj,
4214                                         struct kobj_attribute *attr, char *buf)
4215 {
4216         struct hstate *h = kobj_to_hstate(kobj, NULL);
4217         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4218 }
4219 HSTATE_ATTR_RO(resv_hugepages);
4220
4221 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4222                                         struct kobj_attribute *attr, char *buf)
4223 {
4224         struct hstate *h;
4225         unsigned long surplus_huge_pages;
4226         int nid;
4227
4228         h = kobj_to_hstate(kobj, &nid);
4229         if (nid == NUMA_NO_NODE)
4230                 surplus_huge_pages = h->surplus_huge_pages;
4231         else
4232                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4233
4234         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4235 }
4236 HSTATE_ATTR_RO(surplus_hugepages);
4237
4238 static ssize_t demote_store(struct kobject *kobj,
4239                struct kobj_attribute *attr, const char *buf, size_t len)
4240 {
4241         unsigned long nr_demote;
4242         unsigned long nr_available;
4243         nodemask_t nodes_allowed, *n_mask;
4244         struct hstate *h;
4245         int err;
4246         int nid;
4247
4248         err = kstrtoul(buf, 10, &nr_demote);
4249         if (err)
4250                 return err;
4251         h = kobj_to_hstate(kobj, &nid);
4252
4253         if (nid != NUMA_NO_NODE) {
4254                 init_nodemask_of_node(&nodes_allowed, nid);
4255                 n_mask = &nodes_allowed;
4256         } else {
4257                 n_mask = &node_states[N_MEMORY];
4258         }
4259
4260         /* Synchronize with other sysfs operations modifying huge pages */
4261         mutex_lock(&h->resize_lock);
4262         spin_lock_irq(&hugetlb_lock);
4263
4264         while (nr_demote) {
4265                 /*
4266                  * Check for available pages to demote each time thorough the
4267                  * loop as demote_pool_huge_page will drop hugetlb_lock.
4268                  */
4269                 if (nid != NUMA_NO_NODE)
4270                         nr_available = h->free_huge_pages_node[nid];
4271                 else
4272                         nr_available = h->free_huge_pages;
4273                 nr_available -= h->resv_huge_pages;
4274                 if (!nr_available)
4275                         break;
4276
4277                 err = demote_pool_huge_page(h, n_mask);
4278                 if (err)
4279                         break;
4280
4281                 nr_demote--;
4282         }
4283
4284         spin_unlock_irq(&hugetlb_lock);
4285         mutex_unlock(&h->resize_lock);
4286
4287         if (err)
4288                 return err;
4289         return len;
4290 }
4291 HSTATE_ATTR_WO(demote);
4292
4293 static ssize_t demote_size_show(struct kobject *kobj,
4294                                         struct kobj_attribute *attr, char *buf)
4295 {
4296         struct hstate *h = kobj_to_hstate(kobj, NULL);
4297         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4298
4299         return sysfs_emit(buf, "%lukB\n", demote_size);
4300 }
4301
4302 static ssize_t demote_size_store(struct kobject *kobj,
4303                                         struct kobj_attribute *attr,
4304                                         const char *buf, size_t count)
4305 {
4306         struct hstate *h, *demote_hstate;
4307         unsigned long demote_size;
4308         unsigned int demote_order;
4309
4310         demote_size = (unsigned long)memparse(buf, NULL);
4311
4312         demote_hstate = size_to_hstate(demote_size);
4313         if (!demote_hstate)
4314                 return -EINVAL;
4315         demote_order = demote_hstate->order;
4316         if (demote_order < HUGETLB_PAGE_ORDER)
4317                 return -EINVAL;
4318
4319         /* demote order must be smaller than hstate order */
4320         h = kobj_to_hstate(kobj, NULL);
4321         if (demote_order >= h->order)
4322                 return -EINVAL;
4323
4324         /* resize_lock synchronizes access to demote size and writes */
4325         mutex_lock(&h->resize_lock);
4326         h->demote_order = demote_order;
4327         mutex_unlock(&h->resize_lock);
4328
4329         return count;
4330 }
4331 HSTATE_ATTR(demote_size);
4332
4333 static struct attribute *hstate_attrs[] = {
4334         &nr_hugepages_attr.attr,
4335         &nr_overcommit_hugepages_attr.attr,
4336         &free_hugepages_attr.attr,
4337         &resv_hugepages_attr.attr,
4338         &surplus_hugepages_attr.attr,
4339 #ifdef CONFIG_NUMA
4340         &nr_hugepages_mempolicy_attr.attr,
4341 #endif
4342         NULL,
4343 };
4344
4345 static const struct attribute_group hstate_attr_group = {
4346         .attrs = hstate_attrs,
4347 };
4348
4349 static struct attribute *hstate_demote_attrs[] = {
4350         &demote_size_attr.attr,
4351         &demote_attr.attr,
4352         NULL,
4353 };
4354
4355 static const struct attribute_group hstate_demote_attr_group = {
4356         .attrs = hstate_demote_attrs,
4357 };
4358
4359 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4360                                     struct kobject **hstate_kobjs,
4361                                     const struct attribute_group *hstate_attr_group)
4362 {
4363         int retval;
4364         int hi = hstate_index(h);
4365
4366         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4367         if (!hstate_kobjs[hi])
4368                 return -ENOMEM;
4369
4370         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4371         if (retval) {
4372                 kobject_put(hstate_kobjs[hi]);
4373                 hstate_kobjs[hi] = NULL;
4374                 return retval;
4375         }
4376
4377         if (h->demote_order) {
4378                 retval = sysfs_create_group(hstate_kobjs[hi],
4379                                             &hstate_demote_attr_group);
4380                 if (retval) {
4381                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4382                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4383                         kobject_put(hstate_kobjs[hi]);
4384                         hstate_kobjs[hi] = NULL;
4385                         return retval;
4386                 }
4387         }
4388
4389         return 0;
4390 }
4391
4392 #ifdef CONFIG_NUMA
4393 static bool hugetlb_sysfs_initialized __ro_after_init;
4394
4395 /*
4396  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4397  * with node devices in node_devices[] using a parallel array.  The array
4398  * index of a node device or _hstate == node id.
4399  * This is here to avoid any static dependency of the node device driver, in
4400  * the base kernel, on the hugetlb module.
4401  */
4402 struct node_hstate {
4403         struct kobject          *hugepages_kobj;
4404         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4405 };
4406 static struct node_hstate node_hstates[MAX_NUMNODES];
4407
4408 /*
4409  * A subset of global hstate attributes for node devices
4410  */
4411 static struct attribute *per_node_hstate_attrs[] = {
4412         &nr_hugepages_attr.attr,
4413         &free_hugepages_attr.attr,
4414         &surplus_hugepages_attr.attr,
4415         NULL,
4416 };
4417
4418 static const struct attribute_group per_node_hstate_attr_group = {
4419         .attrs = per_node_hstate_attrs,
4420 };
4421
4422 /*
4423  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4424  * Returns node id via non-NULL nidp.
4425  */
4426 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4427 {
4428         int nid;
4429
4430         for (nid = 0; nid < nr_node_ids; nid++) {
4431                 struct node_hstate *nhs = &node_hstates[nid];
4432                 int i;
4433                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4434                         if (nhs->hstate_kobjs[i] == kobj) {
4435                                 if (nidp)
4436                                         *nidp = nid;
4437                                 return &hstates[i];
4438                         }
4439         }
4440
4441         BUG();
4442         return NULL;
4443 }
4444
4445 /*
4446  * Unregister hstate attributes from a single node device.
4447  * No-op if no hstate attributes attached.
4448  */
4449 void hugetlb_unregister_node(struct node *node)
4450 {
4451         struct hstate *h;
4452         struct node_hstate *nhs = &node_hstates[node->dev.id];
4453
4454         if (!nhs->hugepages_kobj)
4455                 return;         /* no hstate attributes */
4456
4457         for_each_hstate(h) {
4458                 int idx = hstate_index(h);
4459                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4460
4461                 if (!hstate_kobj)
4462                         continue;
4463                 if (h->demote_order)
4464                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4465                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4466                 kobject_put(hstate_kobj);
4467                 nhs->hstate_kobjs[idx] = NULL;
4468         }
4469
4470         kobject_put(nhs->hugepages_kobj);
4471         nhs->hugepages_kobj = NULL;
4472 }
4473
4474
4475 /*
4476  * Register hstate attributes for a single node device.
4477  * No-op if attributes already registered.
4478  */
4479 void hugetlb_register_node(struct node *node)
4480 {
4481         struct hstate *h;
4482         struct node_hstate *nhs = &node_hstates[node->dev.id];
4483         int err;
4484
4485         if (!hugetlb_sysfs_initialized)
4486                 return;
4487
4488         if (nhs->hugepages_kobj)
4489                 return;         /* already allocated */
4490
4491         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4492                                                         &node->dev.kobj);
4493         if (!nhs->hugepages_kobj)
4494                 return;
4495
4496         for_each_hstate(h) {
4497                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4498                                                 nhs->hstate_kobjs,
4499                                                 &per_node_hstate_attr_group);
4500                 if (err) {
4501                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4502                                 h->name, node->dev.id);
4503                         hugetlb_unregister_node(node);
4504                         break;
4505                 }
4506         }
4507 }
4508
4509 /*
4510  * hugetlb init time:  register hstate attributes for all registered node
4511  * devices of nodes that have memory.  All on-line nodes should have
4512  * registered their associated device by this time.
4513  */
4514 static void __init hugetlb_register_all_nodes(void)
4515 {
4516         int nid;
4517
4518         for_each_online_node(nid)
4519                 hugetlb_register_node(node_devices[nid]);
4520 }
4521 #else   /* !CONFIG_NUMA */
4522
4523 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4524 {
4525         BUG();
4526         if (nidp)
4527                 *nidp = -1;
4528         return NULL;
4529 }
4530
4531 static void hugetlb_register_all_nodes(void) { }
4532
4533 #endif
4534
4535 #ifdef CONFIG_CMA
4536 static void __init hugetlb_cma_check(void);
4537 #else
4538 static inline __init void hugetlb_cma_check(void)
4539 {
4540 }
4541 #endif
4542
4543 static void __init hugetlb_sysfs_init(void)
4544 {
4545         struct hstate *h;
4546         int err;
4547
4548         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4549         if (!hugepages_kobj)
4550                 return;
4551
4552         for_each_hstate(h) {
4553                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4554                                          hstate_kobjs, &hstate_attr_group);
4555                 if (err)
4556                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4557         }
4558
4559 #ifdef CONFIG_NUMA
4560         hugetlb_sysfs_initialized = true;
4561 #endif
4562         hugetlb_register_all_nodes();
4563 }
4564
4565 #ifdef CONFIG_SYSCTL
4566 static void hugetlb_sysctl_init(void);
4567 #else
4568 static inline void hugetlb_sysctl_init(void) { }
4569 #endif
4570
4571 static int __init hugetlb_init(void)
4572 {
4573         int i;
4574
4575         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4576                         __NR_HPAGEFLAGS);
4577
4578         if (!hugepages_supported()) {
4579                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4580                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4581                 return 0;
4582         }
4583
4584         /*
4585          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4586          * architectures depend on setup being done here.
4587          */
4588         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4589         if (!parsed_default_hugepagesz) {
4590                 /*
4591                  * If we did not parse a default huge page size, set
4592                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4593                  * number of huge pages for this default size was implicitly
4594                  * specified, set that here as well.
4595                  * Note that the implicit setting will overwrite an explicit
4596                  * setting.  A warning will be printed in this case.
4597                  */
4598                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4599                 if (default_hstate_max_huge_pages) {
4600                         if (default_hstate.max_huge_pages) {
4601                                 char buf[32];
4602
4603                                 string_get_size(huge_page_size(&default_hstate),
4604                                         1, STRING_UNITS_2, buf, 32);
4605                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4606                                         default_hstate.max_huge_pages, buf);
4607                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4608                                         default_hstate_max_huge_pages);
4609                         }
4610                         default_hstate.max_huge_pages =
4611                                 default_hstate_max_huge_pages;
4612
4613                         for_each_online_node(i)
4614                                 default_hstate.max_huge_pages_node[i] =
4615                                         default_hugepages_in_node[i];
4616                 }
4617         }
4618
4619         hugetlb_cma_check();
4620         hugetlb_init_hstates();
4621         gather_bootmem_prealloc();
4622         report_hugepages();
4623
4624         hugetlb_sysfs_init();
4625         hugetlb_cgroup_file_init();
4626         hugetlb_sysctl_init();
4627
4628 #ifdef CONFIG_SMP
4629         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4630 #else
4631         num_fault_mutexes = 1;
4632 #endif
4633         hugetlb_fault_mutex_table =
4634                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4635                               GFP_KERNEL);
4636         BUG_ON(!hugetlb_fault_mutex_table);
4637
4638         for (i = 0; i < num_fault_mutexes; i++)
4639                 mutex_init(&hugetlb_fault_mutex_table[i]);
4640         return 0;
4641 }
4642 subsys_initcall(hugetlb_init);
4643
4644 /* Overwritten by architectures with more huge page sizes */
4645 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4646 {
4647         return size == HPAGE_SIZE;
4648 }
4649
4650 void __init hugetlb_add_hstate(unsigned int order)
4651 {
4652         struct hstate *h;
4653         unsigned long i;
4654
4655         if (size_to_hstate(PAGE_SIZE << order)) {
4656                 return;
4657         }
4658         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4659         BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4660         h = &hstates[hugetlb_max_hstate++];
4661         mutex_init(&h->resize_lock);
4662         h->order = order;
4663         h->mask = ~(huge_page_size(h) - 1);
4664         for (i = 0; i < MAX_NUMNODES; ++i)
4665                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4666         INIT_LIST_HEAD(&h->hugepage_activelist);
4667         h->next_nid_to_alloc = first_memory_node;
4668         h->next_nid_to_free = first_memory_node;
4669         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4670                                         huge_page_size(h)/SZ_1K);
4671
4672         parsed_hstate = h;
4673 }
4674
4675 bool __init __weak hugetlb_node_alloc_supported(void)
4676 {
4677         return true;
4678 }
4679
4680 static void __init hugepages_clear_pages_in_node(void)
4681 {
4682         if (!hugetlb_max_hstate) {
4683                 default_hstate_max_huge_pages = 0;
4684                 memset(default_hugepages_in_node, 0,
4685                         sizeof(default_hugepages_in_node));
4686         } else {
4687                 parsed_hstate->max_huge_pages = 0;
4688                 memset(parsed_hstate->max_huge_pages_node, 0,
4689                         sizeof(parsed_hstate->max_huge_pages_node));
4690         }
4691 }
4692
4693 /*
4694  * hugepages command line processing
4695  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4696  * specification.  If not, ignore the hugepages value.  hugepages can also
4697  * be the first huge page command line  option in which case it implicitly
4698  * specifies the number of huge pages for the default size.
4699  */
4700 static int __init hugepages_setup(char *s)
4701 {
4702         unsigned long *mhp;
4703         static unsigned long *last_mhp;
4704         int node = NUMA_NO_NODE;
4705         int count;
4706         unsigned long tmp;
4707         char *p = s;
4708
4709         if (!parsed_valid_hugepagesz) {
4710                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4711                 parsed_valid_hugepagesz = true;
4712                 return 1;
4713         }
4714
4715         /*
4716          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4717          * yet, so this hugepages= parameter goes to the "default hstate".
4718          * Otherwise, it goes with the previously parsed hugepagesz or
4719          * default_hugepagesz.
4720          */
4721         else if (!hugetlb_max_hstate)
4722                 mhp = &default_hstate_max_huge_pages;
4723         else
4724                 mhp = &parsed_hstate->max_huge_pages;
4725
4726         if (mhp == last_mhp) {
4727                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4728                 return 1;
4729         }
4730
4731         while (*p) {
4732                 count = 0;
4733                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4734                         goto invalid;
4735                 /* Parameter is node format */
4736                 if (p[count] == ':') {
4737                         if (!hugetlb_node_alloc_supported()) {
4738                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4739                                 return 1;
4740                         }
4741                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4742                                 goto invalid;
4743                         node = array_index_nospec(tmp, MAX_NUMNODES);
4744                         p += count + 1;
4745                         /* Parse hugepages */
4746                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4747                                 goto invalid;
4748                         if (!hugetlb_max_hstate)
4749                                 default_hugepages_in_node[node] = tmp;
4750                         else
4751                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4752                         *mhp += tmp;
4753                         /* Go to parse next node*/
4754                         if (p[count] == ',')
4755                                 p += count + 1;
4756                         else
4757                                 break;
4758                 } else {
4759                         if (p != s)
4760                                 goto invalid;
4761                         *mhp = tmp;
4762                         break;
4763                 }
4764         }
4765
4766         /*
4767          * Global state is always initialized later in hugetlb_init.
4768          * But we need to allocate gigantic hstates here early to still
4769          * use the bootmem allocator.
4770          */
4771         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4772                 hugetlb_hstate_alloc_pages(parsed_hstate);
4773
4774         last_mhp = mhp;
4775
4776         return 1;
4777
4778 invalid:
4779         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4780         hugepages_clear_pages_in_node();
4781         return 1;
4782 }
4783 __setup("hugepages=", hugepages_setup);
4784
4785 /*
4786  * hugepagesz command line processing
4787  * A specific huge page size can only be specified once with hugepagesz.
4788  * hugepagesz is followed by hugepages on the command line.  The global
4789  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4790  * hugepagesz argument was valid.
4791  */
4792 static int __init hugepagesz_setup(char *s)
4793 {
4794         unsigned long size;
4795         struct hstate *h;
4796
4797         parsed_valid_hugepagesz = false;
4798         size = (unsigned long)memparse(s, NULL);
4799
4800         if (!arch_hugetlb_valid_size(size)) {
4801                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4802                 return 1;
4803         }
4804
4805         h = size_to_hstate(size);
4806         if (h) {
4807                 /*
4808                  * hstate for this size already exists.  This is normally
4809                  * an error, but is allowed if the existing hstate is the
4810                  * default hstate.  More specifically, it is only allowed if
4811                  * the number of huge pages for the default hstate was not
4812                  * previously specified.
4813                  */
4814                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4815                     default_hstate.max_huge_pages) {
4816                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4817                         return 1;
4818                 }
4819
4820                 /*
4821                  * No need to call hugetlb_add_hstate() as hstate already
4822                  * exists.  But, do set parsed_hstate so that a following
4823                  * hugepages= parameter will be applied to this hstate.
4824                  */
4825                 parsed_hstate = h;
4826                 parsed_valid_hugepagesz = true;
4827                 return 1;
4828         }
4829
4830         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4831         parsed_valid_hugepagesz = true;
4832         return 1;
4833 }
4834 __setup("hugepagesz=", hugepagesz_setup);
4835
4836 /*
4837  * default_hugepagesz command line input
4838  * Only one instance of default_hugepagesz allowed on command line.
4839  */
4840 static int __init default_hugepagesz_setup(char *s)
4841 {
4842         unsigned long size;
4843         int i;
4844
4845         parsed_valid_hugepagesz = false;
4846         if (parsed_default_hugepagesz) {
4847                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4848                 return 1;
4849         }
4850
4851         size = (unsigned long)memparse(s, NULL);
4852
4853         if (!arch_hugetlb_valid_size(size)) {
4854                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4855                 return 1;
4856         }
4857
4858         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4859         parsed_valid_hugepagesz = true;
4860         parsed_default_hugepagesz = true;
4861         default_hstate_idx = hstate_index(size_to_hstate(size));
4862
4863         /*
4864          * The number of default huge pages (for this size) could have been
4865          * specified as the first hugetlb parameter: hugepages=X.  If so,
4866          * then default_hstate_max_huge_pages is set.  If the default huge
4867          * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4868          * allocated here from bootmem allocator.
4869          */
4870         if (default_hstate_max_huge_pages) {
4871                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4872                 for_each_online_node(i)
4873                         default_hstate.max_huge_pages_node[i] =
4874                                 default_hugepages_in_node[i];
4875                 if (hstate_is_gigantic(&default_hstate))
4876                         hugetlb_hstate_alloc_pages(&default_hstate);
4877                 default_hstate_max_huge_pages = 0;
4878         }
4879
4880         return 1;
4881 }
4882 __setup("default_hugepagesz=", default_hugepagesz_setup);
4883
4884 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4885 {
4886 #ifdef CONFIG_NUMA
4887         struct mempolicy *mpol = get_task_policy(current);
4888
4889         /*
4890          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4891          * (from policy_nodemask) specifically for hugetlb case
4892          */
4893         if (mpol->mode == MPOL_BIND &&
4894                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4895                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4896                 return &mpol->nodes;
4897 #endif
4898         return NULL;
4899 }
4900
4901 static unsigned int allowed_mems_nr(struct hstate *h)
4902 {
4903         int node;
4904         unsigned int nr = 0;
4905         nodemask_t *mbind_nodemask;
4906         unsigned int *array = h->free_huge_pages_node;
4907         gfp_t gfp_mask = htlb_alloc_mask(h);
4908
4909         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4910         for_each_node_mask(node, cpuset_current_mems_allowed) {
4911                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4912                         nr += array[node];
4913         }
4914
4915         return nr;
4916 }
4917
4918 #ifdef CONFIG_SYSCTL
4919 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4920                                           void *buffer, size_t *length,
4921                                           loff_t *ppos, unsigned long *out)
4922 {
4923         struct ctl_table dup_table;
4924
4925         /*
4926          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4927          * can duplicate the @table and alter the duplicate of it.
4928          */
4929         dup_table = *table;
4930         dup_table.data = out;
4931
4932         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4933 }
4934
4935 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4936                          struct ctl_table *table, int write,
4937                          void *buffer, size_t *length, loff_t *ppos)
4938 {
4939         struct hstate *h = &default_hstate;
4940         unsigned long tmp = h->max_huge_pages;
4941         int ret;
4942
4943         if (!hugepages_supported())
4944                 return -EOPNOTSUPP;
4945
4946         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4947                                              &tmp);
4948         if (ret)
4949                 goto out;
4950
4951         if (write)
4952                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4953                                                   NUMA_NO_NODE, tmp, *length);
4954 out:
4955         return ret;
4956 }
4957
4958 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4959                           void *buffer, size_t *length, loff_t *ppos)
4960 {
4961
4962         return hugetlb_sysctl_handler_common(false, table, write,
4963                                                         buffer, length, ppos);
4964 }
4965
4966 #ifdef CONFIG_NUMA
4967 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4968                           void *buffer, size_t *length, loff_t *ppos)
4969 {
4970         return hugetlb_sysctl_handler_common(true, table, write,
4971                                                         buffer, length, ppos);
4972 }
4973 #endif /* CONFIG_NUMA */
4974
4975 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4976                 void *buffer, size_t *length, loff_t *ppos)
4977 {
4978         struct hstate *h = &default_hstate;
4979         unsigned long tmp;
4980         int ret;
4981
4982         if (!hugepages_supported())
4983                 return -EOPNOTSUPP;
4984
4985         tmp = h->nr_overcommit_huge_pages;
4986
4987         if (write && hstate_is_gigantic(h))
4988                 return -EINVAL;
4989
4990         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4991                                              &tmp);
4992         if (ret)
4993                 goto out;
4994
4995         if (write) {
4996                 spin_lock_irq(&hugetlb_lock);
4997                 h->nr_overcommit_huge_pages = tmp;
4998                 spin_unlock_irq(&hugetlb_lock);
4999         }
5000 out:
5001         return ret;
5002 }
5003
5004 static struct ctl_table hugetlb_table[] = {
5005         {
5006                 .procname       = "nr_hugepages",
5007                 .data           = NULL,
5008                 .maxlen         = sizeof(unsigned long),
5009                 .mode           = 0644,
5010                 .proc_handler   = hugetlb_sysctl_handler,
5011         },
5012 #ifdef CONFIG_NUMA
5013         {
5014                 .procname       = "nr_hugepages_mempolicy",
5015                 .data           = NULL,
5016                 .maxlen         = sizeof(unsigned long),
5017                 .mode           = 0644,
5018                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
5019         },
5020 #endif
5021         {
5022                 .procname       = "hugetlb_shm_group",
5023                 .data           = &sysctl_hugetlb_shm_group,
5024                 .maxlen         = sizeof(gid_t),
5025                 .mode           = 0644,
5026                 .proc_handler   = proc_dointvec,
5027         },
5028         {
5029                 .procname       = "nr_overcommit_hugepages",
5030                 .data           = NULL,
5031                 .maxlen         = sizeof(unsigned long),
5032                 .mode           = 0644,
5033                 .proc_handler   = hugetlb_overcommit_handler,
5034         },
5035         { }
5036 };
5037
5038 static void hugetlb_sysctl_init(void)
5039 {
5040         register_sysctl_init("vm", hugetlb_table);
5041 }
5042 #endif /* CONFIG_SYSCTL */
5043
5044 void hugetlb_report_meminfo(struct seq_file *m)
5045 {
5046         struct hstate *h;
5047         unsigned long total = 0;
5048
5049         if (!hugepages_supported())
5050                 return;
5051
5052         for_each_hstate(h) {
5053                 unsigned long count = h->nr_huge_pages;
5054
5055                 total += huge_page_size(h) * count;
5056
5057                 if (h == &default_hstate)
5058                         seq_printf(m,
5059                                    "HugePages_Total:   %5lu\n"
5060                                    "HugePages_Free:    %5lu\n"
5061                                    "HugePages_Rsvd:    %5lu\n"
5062                                    "HugePages_Surp:    %5lu\n"
5063                                    "Hugepagesize:   %8lu kB\n",
5064                                    count,
5065                                    h->free_huge_pages,
5066                                    h->resv_huge_pages,
5067                                    h->surplus_huge_pages,
5068                                    huge_page_size(h) / SZ_1K);
5069         }
5070
5071         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
5072 }
5073
5074 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5075 {
5076         struct hstate *h = &default_hstate;
5077
5078         if (!hugepages_supported())
5079                 return 0;
5080
5081         return sysfs_emit_at(buf, len,
5082                              "Node %d HugePages_Total: %5u\n"
5083                              "Node %d HugePages_Free:  %5u\n"
5084                              "Node %d HugePages_Surp:  %5u\n",
5085                              nid, h->nr_huge_pages_node[nid],
5086                              nid, h->free_huge_pages_node[nid],
5087                              nid, h->surplus_huge_pages_node[nid]);
5088 }
5089
5090 void hugetlb_show_meminfo_node(int nid)
5091 {
5092         struct hstate *h;
5093
5094         if (!hugepages_supported())
5095                 return;
5096
5097         for_each_hstate(h)
5098                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5099                         nid,
5100                         h->nr_huge_pages_node[nid],
5101                         h->free_huge_pages_node[nid],
5102                         h->surplus_huge_pages_node[nid],
5103                         huge_page_size(h) / SZ_1K);
5104 }
5105
5106 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5107 {
5108         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5109                    K(atomic_long_read(&mm->hugetlb_usage)));
5110 }
5111
5112 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5113 unsigned long hugetlb_total_pages(void)
5114 {
5115         struct hstate *h;
5116         unsigned long nr_total_pages = 0;
5117
5118         for_each_hstate(h)
5119                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5120         return nr_total_pages;
5121 }
5122
5123 static int hugetlb_acct_memory(struct hstate *h, long delta)
5124 {
5125         int ret = -ENOMEM;
5126
5127         if (!delta)
5128                 return 0;
5129
5130         spin_lock_irq(&hugetlb_lock);
5131         /*
5132          * When cpuset is configured, it breaks the strict hugetlb page
5133          * reservation as the accounting is done on a global variable. Such
5134          * reservation is completely rubbish in the presence of cpuset because
5135          * the reservation is not checked against page availability for the
5136          * current cpuset. Application can still potentially OOM'ed by kernel
5137          * with lack of free htlb page in cpuset that the task is in.
5138          * Attempt to enforce strict accounting with cpuset is almost
5139          * impossible (or too ugly) because cpuset is too fluid that
5140          * task or memory node can be dynamically moved between cpusets.
5141          *
5142          * The change of semantics for shared hugetlb mapping with cpuset is
5143          * undesirable. However, in order to preserve some of the semantics,
5144          * we fall back to check against current free page availability as
5145          * a best attempt and hopefully to minimize the impact of changing
5146          * semantics that cpuset has.
5147          *
5148          * Apart from cpuset, we also have memory policy mechanism that
5149          * also determines from which node the kernel will allocate memory
5150          * in a NUMA system. So similar to cpuset, we also should consider
5151          * the memory policy of the current task. Similar to the description
5152          * above.
5153          */
5154         if (delta > 0) {
5155                 if (gather_surplus_pages(h, delta) < 0)
5156                         goto out;
5157
5158                 if (delta > allowed_mems_nr(h)) {
5159                         return_unused_surplus_pages(h, delta);
5160                         goto out;
5161                 }
5162         }
5163
5164         ret = 0;
5165         if (delta < 0)
5166                 return_unused_surplus_pages(h, (unsigned long) -delta);
5167
5168 out:
5169         spin_unlock_irq(&hugetlb_lock);
5170         return ret;
5171 }
5172
5173 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5174 {
5175         struct resv_map *resv = vma_resv_map(vma);
5176
5177         /*
5178          * HPAGE_RESV_OWNER indicates a private mapping.
5179          * This new VMA should share its siblings reservation map if present.
5180          * The VMA will only ever have a valid reservation map pointer where
5181          * it is being copied for another still existing VMA.  As that VMA
5182          * has a reference to the reservation map it cannot disappear until
5183          * after this open call completes.  It is therefore safe to take a
5184          * new reference here without additional locking.
5185          */
5186         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5187                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5188                 kref_get(&resv->refs);
5189         }
5190
5191         /*
5192          * vma_lock structure for sharable mappings is vma specific.
5193          * Clear old pointer (if copied via vm_area_dup) and allocate
5194          * new structure.  Before clearing, make sure vma_lock is not
5195          * for this vma.
5196          */
5197         if (vma->vm_flags & VM_MAYSHARE) {
5198                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5199
5200                 if (vma_lock) {
5201                         if (vma_lock->vma != vma) {
5202                                 vma->vm_private_data = NULL;
5203                                 hugetlb_vma_lock_alloc(vma);
5204                         } else
5205                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5206                 } else
5207                         hugetlb_vma_lock_alloc(vma);
5208         }
5209 }
5210
5211 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5212 {
5213         struct hstate *h = hstate_vma(vma);
5214         struct resv_map *resv;
5215         struct hugepage_subpool *spool = subpool_vma(vma);
5216         unsigned long reserve, start, end;
5217         long gbl_reserve;
5218
5219         hugetlb_vma_lock_free(vma);
5220
5221         resv = vma_resv_map(vma);
5222         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5223                 return;
5224
5225         start = vma_hugecache_offset(h, vma, vma->vm_start);
5226         end = vma_hugecache_offset(h, vma, vma->vm_end);
5227
5228         reserve = (end - start) - region_count(resv, start, end);
5229         hugetlb_cgroup_uncharge_counter(resv, start, end);
5230         if (reserve) {
5231                 /*
5232                  * Decrement reserve counts.  The global reserve count may be
5233                  * adjusted if the subpool has a minimum size.
5234                  */
5235                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5236                 hugetlb_acct_memory(h, -gbl_reserve);
5237         }
5238
5239         kref_put(&resv->refs, resv_map_release);
5240 }
5241
5242 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5243 {
5244         if (addr & ~(huge_page_mask(hstate_vma(vma))))
5245                 return -EINVAL;
5246
5247         /*
5248          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5249          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5250          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5251          */
5252         if (addr & ~PUD_MASK) {
5253                 /*
5254                  * hugetlb_vm_op_split is called right before we attempt to
5255                  * split the VMA. We will need to unshare PMDs in the old and
5256                  * new VMAs, so let's unshare before we split.
5257                  */
5258                 unsigned long floor = addr & PUD_MASK;
5259                 unsigned long ceil = floor + PUD_SIZE;
5260
5261                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5262                         hugetlb_unshare_pmds(vma, floor, ceil);
5263         }
5264
5265         return 0;
5266 }
5267
5268 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5269 {
5270         return huge_page_size(hstate_vma(vma));
5271 }
5272
5273 /*
5274  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5275  * handle_mm_fault() to try to instantiate regular-sized pages in the
5276  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5277  * this far.
5278  */
5279 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5280 {
5281         BUG();
5282         return 0;
5283 }
5284
5285 /*
5286  * When a new function is introduced to vm_operations_struct and added
5287  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5288  * This is because under System V memory model, mappings created via
5289  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5290  * their original vm_ops are overwritten with shm_vm_ops.
5291  */
5292 const struct vm_operations_struct hugetlb_vm_ops = {
5293         .fault = hugetlb_vm_op_fault,
5294         .open = hugetlb_vm_op_open,
5295         .close = hugetlb_vm_op_close,
5296         .may_split = hugetlb_vm_op_split,
5297         .pagesize = hugetlb_vm_op_pagesize,
5298 };
5299
5300 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5301                                 int writable)
5302 {
5303         pte_t entry;
5304         unsigned int shift = huge_page_shift(hstate_vma(vma));
5305
5306         if (writable) {
5307                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5308                                          vma->vm_page_prot)));
5309         } else {
5310                 entry = huge_pte_wrprotect(mk_huge_pte(page,
5311                                            vma->vm_page_prot));
5312         }
5313         entry = pte_mkyoung(entry);
5314         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5315
5316         return entry;
5317 }
5318
5319 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5320                                    unsigned long address, pte_t *ptep)
5321 {
5322         pte_t entry;
5323
5324         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
5325         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5326                 update_mmu_cache(vma, address, ptep);
5327 }
5328
5329 bool is_hugetlb_entry_migration(pte_t pte)
5330 {
5331         swp_entry_t swp;
5332
5333         if (huge_pte_none(pte) || pte_present(pte))
5334                 return false;
5335         swp = pte_to_swp_entry(pte);
5336         if (is_migration_entry(swp))
5337                 return true;
5338         else
5339                 return false;
5340 }
5341
5342 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5343 {
5344         swp_entry_t swp;
5345
5346         if (huge_pte_none(pte) || pte_present(pte))
5347                 return false;
5348         swp = pte_to_swp_entry(pte);
5349         if (is_hwpoison_entry(swp))
5350                 return true;
5351         else
5352                 return false;
5353 }
5354
5355 static void
5356 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5357                       struct folio *new_folio, pte_t old, unsigned long sz)
5358 {
5359         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5360
5361         __folio_mark_uptodate(new_folio);
5362         hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5363         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5364                 newpte = huge_pte_mkuffd_wp(newpte);
5365         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5366         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5367         folio_set_hugetlb_migratable(new_folio);
5368 }
5369
5370 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5371                             struct vm_area_struct *dst_vma,
5372                             struct vm_area_struct *src_vma)
5373 {
5374         pte_t *src_pte, *dst_pte, entry;
5375         struct folio *pte_folio;
5376         unsigned long addr;
5377         bool cow = is_cow_mapping(src_vma->vm_flags);
5378         struct hstate *h = hstate_vma(src_vma);
5379         unsigned long sz = huge_page_size(h);
5380         unsigned long npages = pages_per_huge_page(h);
5381         struct mmu_notifier_range range;
5382         unsigned long last_addr_mask;
5383         int ret = 0;
5384
5385         if (cow) {
5386                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5387                                         src_vma->vm_start,
5388                                         src_vma->vm_end);
5389                 mmu_notifier_invalidate_range_start(&range);
5390                 vma_assert_write_locked(src_vma);
5391                 raw_write_seqcount_begin(&src->write_protect_seq);
5392         } else {
5393                 /*
5394                  * For shared mappings the vma lock must be held before
5395                  * calling hugetlb_walk() in the src vma. Otherwise, the
5396                  * returned ptep could go away if part of a shared pmd and
5397                  * another thread calls huge_pmd_unshare.
5398                  */
5399                 hugetlb_vma_lock_read(src_vma);
5400         }
5401
5402         last_addr_mask = hugetlb_mask_last_page(h);
5403         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5404                 spinlock_t *src_ptl, *dst_ptl;
5405                 src_pte = hugetlb_walk(src_vma, addr, sz);
5406                 if (!src_pte) {
5407                         addr |= last_addr_mask;
5408                         continue;
5409                 }
5410                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5411                 if (!dst_pte) {
5412                         ret = -ENOMEM;
5413                         break;
5414                 }
5415
5416                 /*
5417                  * If the pagetables are shared don't copy or take references.
5418                  *
5419                  * dst_pte == src_pte is the common case of src/dest sharing.
5420                  * However, src could have 'unshared' and dst shares with
5421                  * another vma. So page_count of ptep page is checked instead
5422                  * to reliably determine whether pte is shared.
5423                  */
5424                 if (page_count(virt_to_page(dst_pte)) > 1) {
5425                         addr |= last_addr_mask;
5426                         continue;
5427                 }
5428
5429                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5430                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5431                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5432                 entry = huge_ptep_get(src_pte);
5433 again:
5434                 if (huge_pte_none(entry)) {
5435                         /*
5436                          * Skip if src entry none.
5437                          */
5438                         ;
5439                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5440                         if (!userfaultfd_wp(dst_vma))
5441                                 entry = huge_pte_clear_uffd_wp(entry);
5442                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5443                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5444                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5445                         bool uffd_wp = pte_swp_uffd_wp(entry);
5446
5447                         if (!is_readable_migration_entry(swp_entry) && cow) {
5448                                 /*
5449                                  * COW mappings require pages in both
5450                                  * parent and child to be set to read.
5451                                  */
5452                                 swp_entry = make_readable_migration_entry(
5453                                                         swp_offset(swp_entry));
5454                                 entry = swp_entry_to_pte(swp_entry);
5455                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5456                                         entry = pte_swp_mkuffd_wp(entry);
5457                                 set_huge_pte_at(src, addr, src_pte, entry, sz);
5458                         }
5459                         if (!userfaultfd_wp(dst_vma))
5460                                 entry = huge_pte_clear_uffd_wp(entry);
5461                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5462                 } else if (unlikely(is_pte_marker(entry))) {
5463                         pte_marker marker = copy_pte_marker(
5464                                 pte_to_swp_entry(entry), dst_vma);
5465
5466                         if (marker)
5467                                 set_huge_pte_at(dst, addr, dst_pte,
5468                                                 make_pte_marker(marker), sz);
5469                 } else {
5470                         entry = huge_ptep_get(src_pte);
5471                         pte_folio = page_folio(pte_page(entry));
5472                         folio_get(pte_folio);
5473
5474                         /*
5475                          * Failing to duplicate the anon rmap is a rare case
5476                          * where we see pinned hugetlb pages while they're
5477                          * prone to COW. We need to do the COW earlier during
5478                          * fork.
5479                          *
5480                          * When pre-allocating the page or copying data, we
5481                          * need to be without the pgtable locks since we could
5482                          * sleep during the process.
5483                          */
5484                         if (!folio_test_anon(pte_folio)) {
5485                                 hugetlb_add_file_rmap(pte_folio);
5486                         } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5487                                 pte_t src_pte_old = entry;
5488                                 struct folio *new_folio;
5489
5490                                 spin_unlock(src_ptl);
5491                                 spin_unlock(dst_ptl);
5492                                 /* Do not use reserve as it's private owned */
5493                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5494                                 if (IS_ERR(new_folio)) {
5495                                         folio_put(pte_folio);
5496                                         ret = PTR_ERR(new_folio);
5497                                         break;
5498                                 }
5499                                 ret = copy_user_large_folio(new_folio,
5500                                                             pte_folio,
5501                                                             addr, dst_vma);
5502                                 folio_put(pte_folio);
5503                                 if (ret) {
5504                                         folio_put(new_folio);
5505                                         break;
5506                                 }
5507
5508                                 /* Install the new hugetlb folio if src pte stable */
5509                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5510                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5511                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5512                                 entry = huge_ptep_get(src_pte);
5513                                 if (!pte_same(src_pte_old, entry)) {
5514                                         restore_reserve_on_error(h, dst_vma, addr,
5515                                                                 new_folio);
5516                                         folio_put(new_folio);
5517                                         /* huge_ptep of dst_pte won't change as in child */
5518                                         goto again;
5519                                 }
5520                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5521                                                       new_folio, src_pte_old, sz);
5522                                 spin_unlock(src_ptl);
5523                                 spin_unlock(dst_ptl);
5524                                 continue;
5525                         }
5526
5527                         if (cow) {
5528                                 /*
5529                                  * No need to notify as we are downgrading page
5530                                  * table protection not changing it to point
5531                                  * to a new page.
5532                                  *
5533                                  * See Documentation/mm/mmu_notifier.rst
5534                                  */
5535                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5536                                 entry = huge_pte_wrprotect(entry);
5537                         }
5538
5539                         if (!userfaultfd_wp(dst_vma))
5540                                 entry = huge_pte_clear_uffd_wp(entry);
5541
5542                         set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5543                         hugetlb_count_add(npages, dst);
5544                 }
5545                 spin_unlock(src_ptl);
5546                 spin_unlock(dst_ptl);
5547         }
5548
5549         if (cow) {
5550                 raw_write_seqcount_end(&src->write_protect_seq);
5551                 mmu_notifier_invalidate_range_end(&range);
5552         } else {
5553                 hugetlb_vma_unlock_read(src_vma);
5554         }
5555
5556         return ret;
5557 }
5558
5559 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5560                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5561                           unsigned long sz)
5562 {
5563         struct hstate *h = hstate_vma(vma);
5564         struct mm_struct *mm = vma->vm_mm;
5565         spinlock_t *src_ptl, *dst_ptl;
5566         pte_t pte;
5567
5568         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5569         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5570
5571         /*
5572          * We don't have to worry about the ordering of src and dst ptlocks
5573          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5574          */
5575         if (src_ptl != dst_ptl)
5576                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5577
5578         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5579         set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5580
5581         if (src_ptl != dst_ptl)
5582                 spin_unlock(src_ptl);
5583         spin_unlock(dst_ptl);
5584 }
5585
5586 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5587                              struct vm_area_struct *new_vma,
5588                              unsigned long old_addr, unsigned long new_addr,
5589                              unsigned long len)
5590 {
5591         struct hstate *h = hstate_vma(vma);
5592         struct address_space *mapping = vma->vm_file->f_mapping;
5593         unsigned long sz = huge_page_size(h);
5594         struct mm_struct *mm = vma->vm_mm;
5595         unsigned long old_end = old_addr + len;
5596         unsigned long last_addr_mask;
5597         pte_t *src_pte, *dst_pte;
5598         struct mmu_notifier_range range;
5599         bool shared_pmd = false;
5600
5601         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5602                                 old_end);
5603         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5604         /*
5605          * In case of shared PMDs, we should cover the maximum possible
5606          * range.
5607          */
5608         flush_cache_range(vma, range.start, range.end);
5609
5610         mmu_notifier_invalidate_range_start(&range);
5611         last_addr_mask = hugetlb_mask_last_page(h);
5612         /* Prevent race with file truncation */
5613         hugetlb_vma_lock_write(vma);
5614         i_mmap_lock_write(mapping);
5615         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5616                 src_pte = hugetlb_walk(vma, old_addr, sz);
5617                 if (!src_pte) {
5618                         old_addr |= last_addr_mask;
5619                         new_addr |= last_addr_mask;
5620                         continue;
5621                 }
5622                 if (huge_pte_none(huge_ptep_get(src_pte)))
5623                         continue;
5624
5625                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5626                         shared_pmd = true;
5627                         old_addr |= last_addr_mask;
5628                         new_addr |= last_addr_mask;
5629                         continue;
5630                 }
5631
5632                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5633                 if (!dst_pte)
5634                         break;
5635
5636                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5637         }
5638
5639         if (shared_pmd)
5640                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5641         else
5642                 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5643         mmu_notifier_invalidate_range_end(&range);
5644         i_mmap_unlock_write(mapping);
5645         hugetlb_vma_unlock_write(vma);
5646
5647         return len + old_addr - old_end;
5648 }
5649
5650 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5651                             unsigned long start, unsigned long end,
5652                             struct page *ref_page, zap_flags_t zap_flags)
5653 {
5654         struct mm_struct *mm = vma->vm_mm;
5655         unsigned long address;
5656         pte_t *ptep;
5657         pte_t pte;
5658         spinlock_t *ptl;
5659         struct page *page;
5660         struct hstate *h = hstate_vma(vma);
5661         unsigned long sz = huge_page_size(h);
5662         bool adjust_reservation = false;
5663         unsigned long last_addr_mask;
5664         bool force_flush = false;
5665
5666         WARN_ON(!is_vm_hugetlb_page(vma));
5667         BUG_ON(start & ~huge_page_mask(h));
5668         BUG_ON(end & ~huge_page_mask(h));
5669
5670         /*
5671          * This is a hugetlb vma, all the pte entries should point
5672          * to huge page.
5673          */
5674         tlb_change_page_size(tlb, sz);
5675         tlb_start_vma(tlb, vma);
5676
5677         last_addr_mask = hugetlb_mask_last_page(h);
5678         address = start;
5679         for (; address < end; address += sz) {
5680                 ptep = hugetlb_walk(vma, address, sz);
5681                 if (!ptep) {
5682                         address |= last_addr_mask;
5683                         continue;
5684                 }
5685
5686                 ptl = huge_pte_lock(h, mm, ptep);
5687                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5688                         spin_unlock(ptl);
5689                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5690                         force_flush = true;
5691                         address |= last_addr_mask;
5692                         continue;
5693                 }
5694
5695                 pte = huge_ptep_get(ptep);
5696                 if (huge_pte_none(pte)) {
5697                         spin_unlock(ptl);
5698                         continue;
5699                 }
5700
5701                 /*
5702                  * Migrating hugepage or HWPoisoned hugepage is already
5703                  * unmapped and its refcount is dropped, so just clear pte here.
5704                  */
5705                 if (unlikely(!pte_present(pte))) {
5706                         /*
5707                          * If the pte was wr-protected by uffd-wp in any of the
5708                          * swap forms, meanwhile the caller does not want to
5709                          * drop the uffd-wp bit in this zap, then replace the
5710                          * pte with a marker.
5711                          */
5712                         if (pte_swp_uffd_wp_any(pte) &&
5713                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5714                                 set_huge_pte_at(mm, address, ptep,
5715                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
5716                                                 sz);
5717                         else
5718                                 huge_pte_clear(mm, address, ptep, sz);
5719                         spin_unlock(ptl);
5720                         continue;
5721                 }
5722
5723                 page = pte_page(pte);
5724                 /*
5725                  * If a reference page is supplied, it is because a specific
5726                  * page is being unmapped, not a range. Ensure the page we
5727                  * are about to unmap is the actual page of interest.
5728                  */
5729                 if (ref_page) {
5730                         if (page != ref_page) {
5731                                 spin_unlock(ptl);
5732                                 continue;
5733                         }
5734                         /*
5735                          * Mark the VMA as having unmapped its page so that
5736                          * future faults in this VMA will fail rather than
5737                          * looking like data was lost
5738                          */
5739                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5740                 }
5741
5742                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5743                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5744                 if (huge_pte_dirty(pte))
5745                         set_page_dirty(page);
5746                 /* Leave a uffd-wp pte marker if needed */
5747                 if (huge_pte_uffd_wp(pte) &&
5748                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5749                         set_huge_pte_at(mm, address, ptep,
5750                                         make_pte_marker(PTE_MARKER_UFFD_WP),
5751                                         sz);
5752                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5753                 hugetlb_remove_rmap(page_folio(page));
5754
5755                 /*
5756                  * Restore the reservation for anonymous page, otherwise the
5757                  * backing page could be stolen by someone.
5758                  * If there we are freeing a surplus, do not set the restore
5759                  * reservation bit.
5760                  */
5761                 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5762                     folio_test_anon(page_folio(page))) {
5763                         folio_set_hugetlb_restore_reserve(page_folio(page));
5764                         /* Reservation to be adjusted after the spin lock */
5765                         adjust_reservation = true;
5766                 }
5767
5768                 spin_unlock(ptl);
5769
5770                 /*
5771                  * Adjust the reservation for the region that will have the
5772                  * reserve restored. Keep in mind that vma_needs_reservation() changes
5773                  * resv->adds_in_progress if it succeeds. If this is not done,
5774                  * do_exit() will not see it, and will keep the reservation
5775                  * forever.
5776                  */
5777                 if (adjust_reservation && vma_needs_reservation(h, vma, address))
5778                         vma_add_reservation(h, vma, address);
5779
5780                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5781                 /*
5782                  * Bail out after unmapping reference page if supplied
5783                  */
5784                 if (ref_page)
5785                         break;
5786         }
5787         tlb_end_vma(tlb, vma);
5788
5789         /*
5790          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5791          * could defer the flush until now, since by holding i_mmap_rwsem we
5792          * guaranteed that the last refernece would not be dropped. But we must
5793          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5794          * dropped and the last reference to the shared PMDs page might be
5795          * dropped as well.
5796          *
5797          * In theory we could defer the freeing of the PMD pages as well, but
5798          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5799          * detect sharing, so we cannot defer the release of the page either.
5800          * Instead, do flush now.
5801          */
5802         if (force_flush)
5803                 tlb_flush_mmu_tlbonly(tlb);
5804 }
5805
5806 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5807                          unsigned long *start, unsigned long *end)
5808 {
5809         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5810                 return;
5811
5812         adjust_range_if_pmd_sharing_possible(vma, start, end);
5813         hugetlb_vma_lock_write(vma);
5814         if (vma->vm_file)
5815                 i_mmap_lock_write(vma->vm_file->f_mapping);
5816 }
5817
5818 void __hugetlb_zap_end(struct vm_area_struct *vma,
5819                        struct zap_details *details)
5820 {
5821         zap_flags_t zap_flags = details ? details->zap_flags : 0;
5822
5823         if (!vma->vm_file)      /* hugetlbfs_file_mmap error */
5824                 return;
5825
5826         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5827                 /*
5828                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5829                  * When the vma_lock is freed, this makes the vma ineligible
5830                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5831                  * pmd sharing.  This is important as page tables for this
5832                  * unmapped range will be asynchrously deleted.  If the page
5833                  * tables are shared, there will be issues when accessed by
5834                  * someone else.
5835                  */
5836                 __hugetlb_vma_unlock_write_free(vma);
5837         } else {
5838                 hugetlb_vma_unlock_write(vma);
5839         }
5840
5841         if (vma->vm_file)
5842                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5843 }
5844
5845 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5846                           unsigned long end, struct page *ref_page,
5847                           zap_flags_t zap_flags)
5848 {
5849         struct mmu_notifier_range range;
5850         struct mmu_gather tlb;
5851
5852         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5853                                 start, end);
5854         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5855         mmu_notifier_invalidate_range_start(&range);
5856         tlb_gather_mmu(&tlb, vma->vm_mm);
5857
5858         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5859
5860         mmu_notifier_invalidate_range_end(&range);
5861         tlb_finish_mmu(&tlb);
5862 }
5863
5864 /*
5865  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5866  * mapping it owns the reserve page for. The intention is to unmap the page
5867  * from other VMAs and let the children be SIGKILLed if they are faulting the
5868  * same region.
5869  */
5870 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5871                               struct page *page, unsigned long address)
5872 {
5873         struct hstate *h = hstate_vma(vma);
5874         struct vm_area_struct *iter_vma;
5875         struct address_space *mapping;
5876         pgoff_t pgoff;
5877
5878         /*
5879          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5880          * from page cache lookup which is in HPAGE_SIZE units.
5881          */
5882         address = address & huge_page_mask(h);
5883         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5884                         vma->vm_pgoff;
5885         mapping = vma->vm_file->f_mapping;
5886
5887         /*
5888          * Take the mapping lock for the duration of the table walk. As
5889          * this mapping should be shared between all the VMAs,
5890          * __unmap_hugepage_range() is called as the lock is already held
5891          */
5892         i_mmap_lock_write(mapping);
5893         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5894                 /* Do not unmap the current VMA */
5895                 if (iter_vma == vma)
5896                         continue;
5897
5898                 /*
5899                  * Shared VMAs have their own reserves and do not affect
5900                  * MAP_PRIVATE accounting but it is possible that a shared
5901                  * VMA is using the same page so check and skip such VMAs.
5902                  */
5903                 if (iter_vma->vm_flags & VM_MAYSHARE)
5904                         continue;
5905
5906                 /*
5907                  * Unmap the page from other VMAs without their own reserves.
5908                  * They get marked to be SIGKILLed if they fault in these
5909                  * areas. This is because a future no-page fault on this VMA
5910                  * could insert a zeroed page instead of the data existing
5911                  * from the time of fork. This would look like data corruption
5912                  */
5913                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5914                         unmap_hugepage_range(iter_vma, address,
5915                                              address + huge_page_size(h), page, 0);
5916         }
5917         i_mmap_unlock_write(mapping);
5918 }
5919
5920 /*
5921  * hugetlb_wp() should be called with page lock of the original hugepage held.
5922  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5923  * cannot race with other handlers or page migration.
5924  * Keep the pte_same checks anyway to make transition from the mutex easier.
5925  */
5926 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5927                        unsigned long address, pte_t *ptep, unsigned int flags,
5928                        struct folio *pagecache_folio, spinlock_t *ptl,
5929                        struct vm_fault *vmf)
5930 {
5931         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5932         pte_t pte = huge_ptep_get(ptep);
5933         struct hstate *h = hstate_vma(vma);
5934         struct folio *old_folio;
5935         struct folio *new_folio;
5936         int outside_reserve = 0;
5937         vm_fault_t ret = 0;
5938         unsigned long haddr = address & huge_page_mask(h);
5939         struct mmu_notifier_range range;
5940
5941         /*
5942          * Never handle CoW for uffd-wp protected pages.  It should be only
5943          * handled when the uffd-wp protection is removed.
5944          *
5945          * Note that only the CoW optimization path (in hugetlb_no_page())
5946          * can trigger this, because hugetlb_fault() will always resolve
5947          * uffd-wp bit first.
5948          */
5949         if (!unshare && huge_pte_uffd_wp(pte))
5950                 return 0;
5951
5952         /*
5953          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5954          * PTE mapped R/O such as maybe_mkwrite() would do.
5955          */
5956         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5957                 return VM_FAULT_SIGSEGV;
5958
5959         /* Let's take out MAP_SHARED mappings first. */
5960         if (vma->vm_flags & VM_MAYSHARE) {
5961                 set_huge_ptep_writable(vma, haddr, ptep);
5962                 return 0;
5963         }
5964
5965         old_folio = page_folio(pte_page(pte));
5966
5967         delayacct_wpcopy_start();
5968
5969 retry_avoidcopy:
5970         /*
5971          * If no-one else is actually using this page, we're the exclusive
5972          * owner and can reuse this page.
5973          */
5974         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5975                 if (!PageAnonExclusive(&old_folio->page)) {
5976                         folio_move_anon_rmap(old_folio, vma);
5977                         SetPageAnonExclusive(&old_folio->page);
5978                 }
5979                 if (likely(!unshare))
5980                         set_huge_ptep_writable(vma, haddr, ptep);
5981
5982                 delayacct_wpcopy_end();
5983                 return 0;
5984         }
5985         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5986                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5987
5988         /*
5989          * If the process that created a MAP_PRIVATE mapping is about to
5990          * perform a COW due to a shared page count, attempt to satisfy
5991          * the allocation without using the existing reserves. The pagecache
5992          * page is used to determine if the reserve at this address was
5993          * consumed or not. If reserves were used, a partial faulted mapping
5994          * at the time of fork() could consume its reserves on COW instead
5995          * of the full address range.
5996          */
5997         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5998                         old_folio != pagecache_folio)
5999                 outside_reserve = 1;
6000
6001         folio_get(old_folio);
6002
6003         /*
6004          * Drop page table lock as buddy allocator may be called. It will
6005          * be acquired again before returning to the caller, as expected.
6006          */
6007         spin_unlock(ptl);
6008         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
6009
6010         if (IS_ERR(new_folio)) {
6011                 /*
6012                  * If a process owning a MAP_PRIVATE mapping fails to COW,
6013                  * it is due to references held by a child and an insufficient
6014                  * huge page pool. To guarantee the original mappers
6015                  * reliability, unmap the page from child processes. The child
6016                  * may get SIGKILLed if it later faults.
6017                  */
6018                 if (outside_reserve) {
6019                         struct address_space *mapping = vma->vm_file->f_mapping;
6020                         pgoff_t idx;
6021                         u32 hash;
6022
6023                         folio_put(old_folio);
6024                         /*
6025                          * Drop hugetlb_fault_mutex and vma_lock before
6026                          * unmapping.  unmapping needs to hold vma_lock
6027                          * in write mode.  Dropping vma_lock in read mode
6028                          * here is OK as COW mappings do not interact with
6029                          * PMD sharing.
6030                          *
6031                          * Reacquire both after unmap operation.
6032                          */
6033                         idx = vma_hugecache_offset(h, vma, haddr);
6034                         hash = hugetlb_fault_mutex_hash(mapping, idx);
6035                         hugetlb_vma_unlock_read(vma);
6036                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6037
6038                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
6039
6040                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6041                         hugetlb_vma_lock_read(vma);
6042                         spin_lock(ptl);
6043                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6044                         if (likely(ptep &&
6045                                    pte_same(huge_ptep_get(ptep), pte)))
6046                                 goto retry_avoidcopy;
6047                         /*
6048                          * race occurs while re-acquiring page table
6049                          * lock, and our job is done.
6050                          */
6051                         delayacct_wpcopy_end();
6052                         return 0;
6053                 }
6054
6055                 ret = vmf_error(PTR_ERR(new_folio));
6056                 goto out_release_old;
6057         }
6058
6059         /*
6060          * When the original hugepage is shared one, it does not have
6061          * anon_vma prepared.
6062          */
6063         ret = vmf_anon_prepare(vmf);
6064         if (unlikely(ret))
6065                 goto out_release_all;
6066
6067         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
6068                 ret = VM_FAULT_HWPOISON_LARGE;
6069                 goto out_release_all;
6070         }
6071         __folio_mark_uptodate(new_folio);
6072
6073         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
6074                                 haddr + huge_page_size(h));
6075         mmu_notifier_invalidate_range_start(&range);
6076
6077         /*
6078          * Retake the page table lock to check for racing updates
6079          * before the page tables are altered
6080          */
6081         spin_lock(ptl);
6082         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
6083         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
6084                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6085
6086                 /* Break COW or unshare */
6087                 huge_ptep_clear_flush(vma, haddr, ptep);
6088                 hugetlb_remove_rmap(old_folio);
6089                 hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
6090                 if (huge_pte_uffd_wp(pte))
6091                         newpte = huge_pte_mkuffd_wp(newpte);
6092                 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
6093                 folio_set_hugetlb_migratable(new_folio);
6094                 /* Make the old page be freed below */
6095                 new_folio = old_folio;
6096         }
6097         spin_unlock(ptl);
6098         mmu_notifier_invalidate_range_end(&range);
6099 out_release_all:
6100         /*
6101          * No restore in case of successful pagetable update (Break COW or
6102          * unshare)
6103          */
6104         if (new_folio != old_folio)
6105                 restore_reserve_on_error(h, vma, haddr, new_folio);
6106         folio_put(new_folio);
6107 out_release_old:
6108         folio_put(old_folio);
6109
6110         spin_lock(ptl); /* Caller expects lock to be held */
6111
6112         delayacct_wpcopy_end();
6113         return ret;
6114 }
6115
6116 /*
6117  * Return whether there is a pagecache page to back given address within VMA.
6118  */
6119 static bool hugetlbfs_pagecache_present(struct hstate *h,
6120                         struct vm_area_struct *vma, unsigned long address)
6121 {
6122         struct address_space *mapping = vma->vm_file->f_mapping;
6123         pgoff_t idx = linear_page_index(vma, address);
6124         struct folio *folio;
6125
6126         folio = filemap_get_folio(mapping, idx);
6127         if (IS_ERR(folio))
6128                 return false;
6129         folio_put(folio);
6130         return true;
6131 }
6132
6133 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6134                            pgoff_t idx)
6135 {
6136         struct inode *inode = mapping->host;
6137         struct hstate *h = hstate_inode(inode);
6138         int err;
6139
6140         idx <<= huge_page_order(h);
6141         __folio_set_locked(folio);
6142         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6143
6144         if (unlikely(err)) {
6145                 __folio_clear_locked(folio);
6146                 return err;
6147         }
6148         folio_clear_hugetlb_restore_reserve(folio);
6149
6150         /*
6151          * mark folio dirty so that it will not be removed from cache/file
6152          * by non-hugetlbfs specific code paths.
6153          */
6154         folio_mark_dirty(folio);
6155
6156         spin_lock(&inode->i_lock);
6157         inode->i_blocks += blocks_per_huge_page(h);
6158         spin_unlock(&inode->i_lock);
6159         return 0;
6160 }
6161
6162 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6163                                                   struct address_space *mapping,
6164                                                   unsigned long reason)
6165 {
6166         u32 hash;
6167
6168         /*
6169          * vma_lock and hugetlb_fault_mutex must be dropped before handling
6170          * userfault. Also mmap_lock could be dropped due to handling
6171          * userfault, any vma operation should be careful from here.
6172          */
6173         hugetlb_vma_unlock_read(vmf->vma);
6174         hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6175         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6176         return handle_userfault(vmf, reason);
6177 }
6178
6179 /*
6180  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6181  * false if pte changed or is changing.
6182  */
6183 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6184                                pte_t *ptep, pte_t old_pte)
6185 {
6186         spinlock_t *ptl;
6187         bool same;
6188
6189         ptl = huge_pte_lock(h, mm, ptep);
6190         same = pte_same(huge_ptep_get(ptep), old_pte);
6191         spin_unlock(ptl);
6192
6193         return same;
6194 }
6195
6196 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
6197                         struct vm_area_struct *vma,
6198                         struct address_space *mapping, pgoff_t idx,
6199                         unsigned long address, pte_t *ptep,
6200                         pte_t old_pte, unsigned int flags,
6201                         struct vm_fault *vmf)
6202 {
6203         struct hstate *h = hstate_vma(vma);
6204         vm_fault_t ret = VM_FAULT_SIGBUS;
6205         int anon_rmap = 0;
6206         unsigned long size;
6207         struct folio *folio;
6208         pte_t new_pte;
6209         spinlock_t *ptl;
6210         unsigned long haddr = address & huge_page_mask(h);
6211         bool new_folio, new_pagecache_folio = false;
6212         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
6213
6214         /*
6215          * Currently, we are forced to kill the process in the event the
6216          * original mapper has unmapped pages from the child due to a failed
6217          * COW/unsharing. Warn that such a situation has occurred as it may not
6218          * be obvious.
6219          */
6220         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6221                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6222                            current->pid);
6223                 goto out;
6224         }
6225
6226         /*
6227          * Use page lock to guard against racing truncation
6228          * before we get page_table_lock.
6229          */
6230         new_folio = false;
6231         folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6232         if (IS_ERR(folio)) {
6233                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6234                 if (idx >= size)
6235                         goto out;
6236                 /* Check for page in userfault range */
6237                 if (userfaultfd_missing(vma)) {
6238                         /*
6239                          * Since hugetlb_no_page() was examining pte
6240                          * without pgtable lock, we need to re-test under
6241                          * lock because the pte may not be stable and could
6242                          * have changed from under us.  Try to detect
6243                          * either changed or during-changing ptes and retry
6244                          * properly when needed.
6245                          *
6246                          * Note that userfaultfd is actually fine with
6247                          * false positives (e.g. caused by pte changed),
6248                          * but not wrong logical events (e.g. caused by
6249                          * reading a pte during changing).  The latter can
6250                          * confuse the userspace, so the strictness is very
6251                          * much preferred.  E.g., MISSING event should
6252                          * never happen on the page after UFFDIO_COPY has
6253                          * correctly installed the page and returned.
6254                          */
6255                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6256                                 ret = 0;
6257                                 goto out;
6258                         }
6259
6260                         return hugetlb_handle_userfault(vmf, mapping,
6261                                                         VM_UFFD_MISSING);
6262                 }
6263
6264                 if (!(vma->vm_flags & VM_MAYSHARE)) {
6265                         ret = vmf_anon_prepare(vmf);
6266                         if (unlikely(ret))
6267                                 goto out;
6268                 }
6269
6270                 folio = alloc_hugetlb_folio(vma, haddr, 0);
6271                 if (IS_ERR(folio)) {
6272                         /*
6273                          * Returning error will result in faulting task being
6274                          * sent SIGBUS.  The hugetlb fault mutex prevents two
6275                          * tasks from racing to fault in the same page which
6276                          * could result in false unable to allocate errors.
6277                          * Page migration does not take the fault mutex, but
6278                          * does a clear then write of pte's under page table
6279                          * lock.  Page fault code could race with migration,
6280                          * notice the clear pte and try to allocate a page
6281                          * here.  Before returning error, get ptl and make
6282                          * sure there really is no pte entry.
6283                          */
6284                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
6285                                 ret = vmf_error(PTR_ERR(folio));
6286                         else
6287                                 ret = 0;
6288                         goto out;
6289                 }
6290                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
6291                 __folio_mark_uptodate(folio);
6292                 new_folio = true;
6293
6294                 if (vma->vm_flags & VM_MAYSHARE) {
6295                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
6296                         if (err) {
6297                                 /*
6298                                  * err can't be -EEXIST which implies someone
6299                                  * else consumed the reservation since hugetlb
6300                                  * fault mutex is held when add a hugetlb page
6301                                  * to the page cache. So it's safe to call
6302                                  * restore_reserve_on_error() here.
6303                                  */
6304                                 restore_reserve_on_error(h, vma, haddr, folio);
6305                                 folio_put(folio);
6306                                 ret = VM_FAULT_SIGBUS;
6307                                 goto out;
6308                         }
6309                         new_pagecache_folio = true;
6310                 } else {
6311                         folio_lock(folio);
6312                         anon_rmap = 1;
6313                 }
6314         } else {
6315                 /*
6316                  * If memory error occurs between mmap() and fault, some process
6317                  * don't have hwpoisoned swap entry for errored virtual address.
6318                  * So we need to block hugepage fault by PG_hwpoison bit check.
6319                  */
6320                 if (unlikely(folio_test_hwpoison(folio))) {
6321                         ret = VM_FAULT_HWPOISON_LARGE |
6322                                 VM_FAULT_SET_HINDEX(hstate_index(h));
6323                         goto backout_unlocked;
6324                 }
6325
6326                 /* Check for page in userfault range. */
6327                 if (userfaultfd_minor(vma)) {
6328                         folio_unlock(folio);
6329                         folio_put(folio);
6330                         /* See comment in userfaultfd_missing() block above */
6331                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
6332                                 ret = 0;
6333                                 goto out;
6334                         }
6335                         return hugetlb_handle_userfault(vmf, mapping,
6336                                                         VM_UFFD_MINOR);
6337                 }
6338         }
6339
6340         /*
6341          * If we are going to COW a private mapping later, we examine the
6342          * pending reservations for this page now. This will ensure that
6343          * any allocations necessary to record that reservation occur outside
6344          * the spinlock.
6345          */
6346         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6347                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6348                         ret = VM_FAULT_OOM;
6349                         goto backout_unlocked;
6350                 }
6351                 /* Just decrements count, does not deallocate */
6352                 vma_end_reservation(h, vma, haddr);
6353         }
6354
6355         ptl = huge_pte_lock(h, mm, ptep);
6356         ret = 0;
6357         /* If pte changed from under us, retry */
6358         if (!pte_same(huge_ptep_get(ptep), old_pte))
6359                 goto backout;
6360
6361         if (anon_rmap)
6362                 hugetlb_add_new_anon_rmap(folio, vma, haddr);
6363         else
6364                 hugetlb_add_file_rmap(folio);
6365         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6366                                 && (vma->vm_flags & VM_SHARED)));
6367         /*
6368          * If this pte was previously wr-protected, keep it wr-protected even
6369          * if populated.
6370          */
6371         if (unlikely(pte_marker_uffd_wp(old_pte)))
6372                 new_pte = huge_pte_mkuffd_wp(new_pte);
6373         set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6374
6375         hugetlb_count_add(pages_per_huge_page(h), mm);
6376         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6377                 /* Optimization, do the COW without a second fault */
6378                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf);
6379         }
6380
6381         spin_unlock(ptl);
6382
6383         /*
6384          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6385          * found in the pagecache may not have hugetlb_migratable if they have
6386          * been isolated for migration.
6387          */
6388         if (new_folio)
6389                 folio_set_hugetlb_migratable(folio);
6390
6391         folio_unlock(folio);
6392 out:
6393         hugetlb_vma_unlock_read(vma);
6394         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6395         return ret;
6396
6397 backout:
6398         spin_unlock(ptl);
6399 backout_unlocked:
6400         if (new_folio && !new_pagecache_folio)
6401                 restore_reserve_on_error(h, vma, haddr, folio);
6402
6403         folio_unlock(folio);
6404         folio_put(folio);
6405         goto out;
6406 }
6407
6408 #ifdef CONFIG_SMP
6409 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6410 {
6411         unsigned long key[2];
6412         u32 hash;
6413
6414         key[0] = (unsigned long) mapping;
6415         key[1] = idx;
6416
6417         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6418
6419         return hash & (num_fault_mutexes - 1);
6420 }
6421 #else
6422 /*
6423  * For uniprocessor systems we always use a single mutex, so just
6424  * return 0 and avoid the hashing overhead.
6425  */
6426 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6427 {
6428         return 0;
6429 }
6430 #endif
6431
6432 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6433                         unsigned long address, unsigned int flags)
6434 {
6435         pte_t *ptep, entry;
6436         spinlock_t *ptl;
6437         vm_fault_t ret;
6438         u32 hash;
6439         struct folio *folio = NULL;
6440         struct folio *pagecache_folio = NULL;
6441         struct hstate *h = hstate_vma(vma);
6442         struct address_space *mapping;
6443         int need_wait_lock = 0;
6444         unsigned long haddr = address & huge_page_mask(h);
6445         struct vm_fault vmf = {
6446                 .vma = vma,
6447                 .address = haddr,
6448                 .real_address = address,
6449                 .flags = flags,
6450                 .pgoff = vma_hugecache_offset(h, vma, haddr),
6451                 /* TODO: Track hugetlb faults using vm_fault */
6452
6453                 /*
6454                  * Some fields may not be initialized, be careful as it may
6455                  * be hard to debug if called functions make assumptions
6456                  */
6457         };
6458
6459         /*
6460          * Serialize hugepage allocation and instantiation, so that we don't
6461          * get spurious allocation failures if two CPUs race to instantiate
6462          * the same page in the page cache.
6463          */
6464         mapping = vma->vm_file->f_mapping;
6465         hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6466         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6467
6468         /*
6469          * Acquire vma lock before calling huge_pte_alloc and hold
6470          * until finished with ptep.  This prevents huge_pmd_unshare from
6471          * being called elsewhere and making the ptep no longer valid.
6472          */
6473         hugetlb_vma_lock_read(vma);
6474         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6475         if (!ptep) {
6476                 hugetlb_vma_unlock_read(vma);
6477                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6478                 return VM_FAULT_OOM;
6479         }
6480
6481         entry = huge_ptep_get(ptep);
6482         if (huge_pte_none_mostly(entry)) {
6483                 if (is_pte_marker(entry)) {
6484                         pte_marker marker =
6485                                 pte_marker_get(pte_to_swp_entry(entry));
6486
6487                         if (marker & PTE_MARKER_POISONED) {
6488                                 ret = VM_FAULT_HWPOISON_LARGE;
6489                                 goto out_mutex;
6490                         }
6491                 }
6492
6493                 /*
6494                  * Other PTE markers should be handled the same way as none PTE.
6495                  *
6496                  * hugetlb_no_page will drop vma lock and hugetlb fault
6497                  * mutex internally, which make us return immediately.
6498                  */
6499                 return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address,
6500                                         ptep, entry, flags, &vmf);
6501         }
6502
6503         ret = 0;
6504
6505         /*
6506          * entry could be a migration/hwpoison entry at this point, so this
6507          * check prevents the kernel from going below assuming that we have
6508          * an active hugepage in pagecache. This goto expects the 2nd page
6509          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6510          * properly handle it.
6511          */
6512         if (!pte_present(entry)) {
6513                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6514                         /*
6515                          * Release the hugetlb fault lock now, but retain
6516                          * the vma lock, because it is needed to guard the
6517                          * huge_pte_lockptr() later in
6518                          * migration_entry_wait_huge(). The vma lock will
6519                          * be released there.
6520                          */
6521                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6522                         migration_entry_wait_huge(vma, ptep);
6523                         return 0;
6524                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6525                         ret = VM_FAULT_HWPOISON_LARGE |
6526                             VM_FAULT_SET_HINDEX(hstate_index(h));
6527                 goto out_mutex;
6528         }
6529
6530         /*
6531          * If we are going to COW/unshare the mapping later, we examine the
6532          * pending reservations for this page now. This will ensure that any
6533          * allocations necessary to record that reservation occur outside the
6534          * spinlock. Also lookup the pagecache page now as it is used to
6535          * determine if a reservation has been consumed.
6536          */
6537         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6538             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6539                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6540                         ret = VM_FAULT_OOM;
6541                         goto out_mutex;
6542                 }
6543                 /* Just decrements count, does not deallocate */
6544                 vma_end_reservation(h, vma, haddr);
6545
6546                 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6547                                                              vmf.pgoff);
6548                 if (IS_ERR(pagecache_folio))
6549                         pagecache_folio = NULL;
6550         }
6551
6552         ptl = huge_pte_lock(h, mm, ptep);
6553
6554         /* Check for a racing update before calling hugetlb_wp() */
6555         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6556                 goto out_ptl;
6557
6558         /* Handle userfault-wp first, before trying to lock more pages */
6559         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6560             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6561                 if (!userfaultfd_wp_async(vma)) {
6562                         spin_unlock(ptl);
6563                         if (pagecache_folio) {
6564                                 folio_unlock(pagecache_folio);
6565                                 folio_put(pagecache_folio);
6566                         }
6567                         hugetlb_vma_unlock_read(vma);
6568                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6569                         return handle_userfault(&vmf, VM_UFFD_WP);
6570                 }
6571
6572                 entry = huge_pte_clear_uffd_wp(entry);
6573                 set_huge_pte_at(mm, haddr, ptep, entry,
6574                                 huge_page_size(hstate_vma(vma)));
6575                 /* Fallthrough to CoW */
6576         }
6577
6578         /*
6579          * hugetlb_wp() requires page locks of pte_page(entry) and
6580          * pagecache_folio, so here we need take the former one
6581          * when folio != pagecache_folio or !pagecache_folio.
6582          */
6583         folio = page_folio(pte_page(entry));
6584         if (folio != pagecache_folio)
6585                 if (!folio_trylock(folio)) {
6586                         need_wait_lock = 1;
6587                         goto out_ptl;
6588                 }
6589
6590         folio_get(folio);
6591
6592         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6593                 if (!huge_pte_write(entry)) {
6594                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6595                                          pagecache_folio, ptl, &vmf);
6596                         goto out_put_page;
6597                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6598                         entry = huge_pte_mkdirty(entry);
6599                 }
6600         }
6601         entry = pte_mkyoung(entry);
6602         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6603                                                 flags & FAULT_FLAG_WRITE))
6604                 update_mmu_cache(vma, haddr, ptep);
6605 out_put_page:
6606         if (folio != pagecache_folio)
6607                 folio_unlock(folio);
6608         folio_put(folio);
6609 out_ptl:
6610         spin_unlock(ptl);
6611
6612         if (pagecache_folio) {
6613                 folio_unlock(pagecache_folio);
6614                 folio_put(pagecache_folio);
6615         }
6616 out_mutex:
6617         hugetlb_vma_unlock_read(vma);
6618         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6619         /*
6620          * Generally it's safe to hold refcount during waiting page lock. But
6621          * here we just wait to defer the next page fault to avoid busy loop and
6622          * the page is not used after unlocked before returning from the current
6623          * page fault. So we are safe from accessing freed page, even if we wait
6624          * here without taking refcount.
6625          */
6626         if (need_wait_lock)
6627                 folio_wait_locked(folio);
6628         return ret;
6629 }
6630
6631 #ifdef CONFIG_USERFAULTFD
6632 /*
6633  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6634  */
6635 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6636                 struct vm_area_struct *vma, unsigned long address)
6637 {
6638         struct mempolicy *mpol;
6639         nodemask_t *nodemask;
6640         struct folio *folio;
6641         gfp_t gfp_mask;
6642         int node;
6643
6644         gfp_mask = htlb_alloc_mask(h);
6645         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6646         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
6647         mpol_cond_put(mpol);
6648
6649         return folio;
6650 }
6651
6652 /*
6653  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6654  * with modifications for hugetlb pages.
6655  */
6656 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6657                              struct vm_area_struct *dst_vma,
6658                              unsigned long dst_addr,
6659                              unsigned long src_addr,
6660                              uffd_flags_t flags,
6661                              struct folio **foliop)
6662 {
6663         struct mm_struct *dst_mm = dst_vma->vm_mm;
6664         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6665         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6666         struct hstate *h = hstate_vma(dst_vma);
6667         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6668         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6669         unsigned long size;
6670         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6671         pte_t _dst_pte;
6672         spinlock_t *ptl;
6673         int ret = -ENOMEM;
6674         struct folio *folio;
6675         int writable;
6676         bool folio_in_pagecache = false;
6677
6678         if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6679                 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6680
6681                 /* Don't overwrite any existing PTEs (even markers) */
6682                 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6683                         spin_unlock(ptl);
6684                         return -EEXIST;
6685                 }
6686
6687                 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6688                 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6689                                 huge_page_size(h));
6690
6691                 /* No need to invalidate - it was non-present before */
6692                 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6693
6694                 spin_unlock(ptl);
6695                 return 0;
6696         }
6697
6698         if (is_continue) {
6699                 ret = -EFAULT;
6700                 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6701                 if (IS_ERR(folio))
6702                         goto out;
6703                 folio_in_pagecache = true;
6704         } else if (!*foliop) {
6705                 /* If a folio already exists, then it's UFFDIO_COPY for
6706                  * a non-missing case. Return -EEXIST.
6707                  */
6708                 if (vm_shared &&
6709                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6710                         ret = -EEXIST;
6711                         goto out;
6712                 }
6713
6714                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6715                 if (IS_ERR(folio)) {
6716                         ret = -ENOMEM;
6717                         goto out;
6718                 }
6719
6720                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6721                                            false);
6722
6723                 /* fallback to copy_from_user outside mmap_lock */
6724                 if (unlikely(ret)) {
6725                         ret = -ENOENT;
6726                         /* Free the allocated folio which may have
6727                          * consumed a reservation.
6728                          */
6729                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6730                         folio_put(folio);
6731
6732                         /* Allocate a temporary folio to hold the copied
6733                          * contents.
6734                          */
6735                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6736                         if (!folio) {
6737                                 ret = -ENOMEM;
6738                                 goto out;
6739                         }
6740                         *foliop = folio;
6741                         /* Set the outparam foliop and return to the caller to
6742                          * copy the contents outside the lock. Don't free the
6743                          * folio.
6744                          */
6745                         goto out;
6746                 }
6747         } else {
6748                 if (vm_shared &&
6749                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6750                         folio_put(*foliop);
6751                         ret = -EEXIST;
6752                         *foliop = NULL;
6753                         goto out;
6754                 }
6755
6756                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6757                 if (IS_ERR(folio)) {
6758                         folio_put(*foliop);
6759                         ret = -ENOMEM;
6760                         *foliop = NULL;
6761                         goto out;
6762                 }
6763                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6764                 folio_put(*foliop);
6765                 *foliop = NULL;
6766                 if (ret) {
6767                         folio_put(folio);
6768                         goto out;
6769                 }
6770         }
6771
6772         /*
6773          * If we just allocated a new page, we need a memory barrier to ensure
6774          * that preceding stores to the page become visible before the
6775          * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6776          * is what we need.
6777          *
6778          * In the case where we have not allocated a new page (is_continue),
6779          * the page must already be uptodate. UFFDIO_CONTINUE already includes
6780          * an earlier smp_wmb() to ensure that prior stores will be visible
6781          * before the set_pte_at() write.
6782          */
6783         if (!is_continue)
6784                 __folio_mark_uptodate(folio);
6785         else
6786                 WARN_ON_ONCE(!folio_test_uptodate(folio));
6787
6788         /* Add shared, newly allocated pages to the page cache. */
6789         if (vm_shared && !is_continue) {
6790                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6791                 ret = -EFAULT;
6792                 if (idx >= size)
6793                         goto out_release_nounlock;
6794
6795                 /*
6796                  * Serialization between remove_inode_hugepages() and
6797                  * hugetlb_add_to_page_cache() below happens through the
6798                  * hugetlb_fault_mutex_table that here must be hold by
6799                  * the caller.
6800                  */
6801                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6802                 if (ret)
6803                         goto out_release_nounlock;
6804                 folio_in_pagecache = true;
6805         }
6806
6807         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6808
6809         ret = -EIO;
6810         if (folio_test_hwpoison(folio))
6811                 goto out_release_unlock;
6812
6813         /*
6814          * We allow to overwrite a pte marker: consider when both MISSING|WP
6815          * registered, we firstly wr-protect a none pte which has no page cache
6816          * page backing it, then access the page.
6817          */
6818         ret = -EEXIST;
6819         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6820                 goto out_release_unlock;
6821
6822         if (folio_in_pagecache)
6823                 hugetlb_add_file_rmap(folio);
6824         else
6825                 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6826
6827         /*
6828          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6829          * with wp flag set, don't set pte write bit.
6830          */
6831         if (wp_enabled || (is_continue && !vm_shared))
6832                 writable = 0;
6833         else
6834                 writable = dst_vma->vm_flags & VM_WRITE;
6835
6836         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6837         /*
6838          * Always mark UFFDIO_COPY page dirty; note that this may not be
6839          * extremely important for hugetlbfs for now since swapping is not
6840          * supported, but we should still be clear in that this page cannot be
6841          * thrown away at will, even if write bit not set.
6842          */
6843         _dst_pte = huge_pte_mkdirty(_dst_pte);
6844         _dst_pte = pte_mkyoung(_dst_pte);
6845
6846         if (wp_enabled)
6847                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6848
6849         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6850
6851         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6852
6853         /* No need to invalidate - it was non-present before */
6854         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6855
6856         spin_unlock(ptl);
6857         if (!is_continue)
6858                 folio_set_hugetlb_migratable(folio);
6859         if (vm_shared || is_continue)
6860                 folio_unlock(folio);
6861         ret = 0;
6862 out:
6863         return ret;
6864 out_release_unlock:
6865         spin_unlock(ptl);
6866         if (vm_shared || is_continue)
6867                 folio_unlock(folio);
6868 out_release_nounlock:
6869         if (!folio_in_pagecache)
6870                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6871         folio_put(folio);
6872         goto out;
6873 }
6874 #endif /* CONFIG_USERFAULTFD */
6875
6876 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6877                                       unsigned long address, unsigned int flags,
6878                                       unsigned int *page_mask)
6879 {
6880         struct hstate *h = hstate_vma(vma);
6881         struct mm_struct *mm = vma->vm_mm;
6882         unsigned long haddr = address & huge_page_mask(h);
6883         struct page *page = NULL;
6884         spinlock_t *ptl;
6885         pte_t *pte, entry;
6886         int ret;
6887
6888         hugetlb_vma_lock_read(vma);
6889         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6890         if (!pte)
6891                 goto out_unlock;
6892
6893         ptl = huge_pte_lock(h, mm, pte);
6894         entry = huge_ptep_get(pte);
6895         if (pte_present(entry)) {
6896                 page = pte_page(entry);
6897
6898                 if (!huge_pte_write(entry)) {
6899                         if (flags & FOLL_WRITE) {
6900                                 page = NULL;
6901                                 goto out;
6902                         }
6903
6904                         if (gup_must_unshare(vma, flags, page)) {
6905                                 /* Tell the caller to do unsharing */
6906                                 page = ERR_PTR(-EMLINK);
6907                                 goto out;
6908                         }
6909                 }
6910
6911                 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6912
6913                 /*
6914                  * Note that page may be a sub-page, and with vmemmap
6915                  * optimizations the page struct may be read only.
6916                  * try_grab_page() will increase the ref count on the
6917                  * head page, so this will be OK.
6918                  *
6919                  * try_grab_page() should always be able to get the page here,
6920                  * because we hold the ptl lock and have verified pte_present().
6921                  */
6922                 ret = try_grab_page(page, flags);
6923
6924                 if (WARN_ON_ONCE(ret)) {
6925                         page = ERR_PTR(ret);
6926                         goto out;
6927                 }
6928
6929                 *page_mask = (1U << huge_page_order(h)) - 1;
6930         }
6931 out:
6932         spin_unlock(ptl);
6933 out_unlock:
6934         hugetlb_vma_unlock_read(vma);
6935
6936         /*
6937          * Fixup retval for dump requests: if pagecache doesn't exist,
6938          * don't try to allocate a new page but just skip it.
6939          */
6940         if (!page && (flags & FOLL_DUMP) &&
6941             !hugetlbfs_pagecache_present(h, vma, address))
6942                 page = ERR_PTR(-EFAULT);
6943
6944         return page;
6945 }
6946
6947 long hugetlb_change_protection(struct vm_area_struct *vma,
6948                 unsigned long address, unsigned long end,
6949                 pgprot_t newprot, unsigned long cp_flags)
6950 {
6951         struct mm_struct *mm = vma->vm_mm;
6952         unsigned long start = address;
6953         pte_t *ptep;
6954         pte_t pte;
6955         struct hstate *h = hstate_vma(vma);
6956         long pages = 0, psize = huge_page_size(h);
6957         bool shared_pmd = false;
6958         struct mmu_notifier_range range;
6959         unsigned long last_addr_mask;
6960         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6961         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6962
6963         /*
6964          * In the case of shared PMDs, the area to flush could be beyond
6965          * start/end.  Set range.start/range.end to cover the maximum possible
6966          * range if PMD sharing is possible.
6967          */
6968         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6969                                 0, mm, start, end);
6970         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6971
6972         BUG_ON(address >= end);
6973         flush_cache_range(vma, range.start, range.end);
6974
6975         mmu_notifier_invalidate_range_start(&range);
6976         hugetlb_vma_lock_write(vma);
6977         i_mmap_lock_write(vma->vm_file->f_mapping);
6978         last_addr_mask = hugetlb_mask_last_page(h);
6979         for (; address < end; address += psize) {
6980                 spinlock_t *ptl;
6981                 ptep = hugetlb_walk(vma, address, psize);
6982                 if (!ptep) {
6983                         if (!uffd_wp) {
6984                                 address |= last_addr_mask;
6985                                 continue;
6986                         }
6987                         /*
6988                          * Userfaultfd wr-protect requires pgtable
6989                          * pre-allocations to install pte markers.
6990                          */
6991                         ptep = huge_pte_alloc(mm, vma, address, psize);
6992                         if (!ptep) {
6993                                 pages = -ENOMEM;
6994                                 break;
6995                         }
6996                 }
6997                 ptl = huge_pte_lock(h, mm, ptep);
6998                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6999                         /*
7000                          * When uffd-wp is enabled on the vma, unshare
7001                          * shouldn't happen at all.  Warn about it if it
7002                          * happened due to some reason.
7003                          */
7004                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7005                         pages++;
7006                         spin_unlock(ptl);
7007                         shared_pmd = true;
7008                         address |= last_addr_mask;
7009                         continue;
7010                 }
7011                 pte = huge_ptep_get(ptep);
7012                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7013                         /* Nothing to do. */
7014                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7015                         swp_entry_t entry = pte_to_swp_entry(pte);
7016                         struct page *page = pfn_swap_entry_to_page(entry);
7017                         pte_t newpte = pte;
7018
7019                         if (is_writable_migration_entry(entry)) {
7020                                 if (PageAnon(page))
7021                                         entry = make_readable_exclusive_migration_entry(
7022                                                                 swp_offset(entry));
7023                                 else
7024                                         entry = make_readable_migration_entry(
7025                                                                 swp_offset(entry));
7026                                 newpte = swp_entry_to_pte(entry);
7027                                 pages++;
7028                         }
7029
7030                         if (uffd_wp)
7031                                 newpte = pte_swp_mkuffd_wp(newpte);
7032                         else if (uffd_wp_resolve)
7033                                 newpte = pte_swp_clear_uffd_wp(newpte);
7034                         if (!pte_same(pte, newpte))
7035                                 set_huge_pte_at(mm, address, ptep, newpte, psize);
7036                 } else if (unlikely(is_pte_marker(pte))) {
7037                         /*
7038                          * Do nothing on a poison marker; page is
7039                          * corrupted, permissons do not apply.  Here
7040                          * pte_marker_uffd_wp()==true implies !poison
7041                          * because they're mutual exclusive.
7042                          */
7043                         if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7044                                 /* Safe to modify directly (non-present->none). */
7045                                 huge_pte_clear(mm, address, ptep, psize);
7046                 } else if (!huge_pte_none(pte)) {
7047                         pte_t old_pte;
7048                         unsigned int shift = huge_page_shift(hstate_vma(vma));
7049
7050                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7051                         pte = huge_pte_modify(old_pte, newprot);
7052                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7053                         if (uffd_wp)
7054                                 pte = huge_pte_mkuffd_wp(pte);
7055                         else if (uffd_wp_resolve)
7056                                 pte = huge_pte_clear_uffd_wp(pte);
7057                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7058                         pages++;
7059                 } else {
7060                         /* None pte */
7061                         if (unlikely(uffd_wp))
7062                                 /* Safe to modify directly (none->non-present). */
7063                                 set_huge_pte_at(mm, address, ptep,
7064                                                 make_pte_marker(PTE_MARKER_UFFD_WP),
7065                                                 psize);
7066                 }
7067                 spin_unlock(ptl);
7068         }
7069         /*
7070          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7071          * may have cleared our pud entry and done put_page on the page table:
7072          * once we release i_mmap_rwsem, another task can do the final put_page
7073          * and that page table be reused and filled with junk.  If we actually
7074          * did unshare a page of pmds, flush the range corresponding to the pud.
7075          */
7076         if (shared_pmd)
7077                 flush_hugetlb_tlb_range(vma, range.start, range.end);
7078         else
7079                 flush_hugetlb_tlb_range(vma, start, end);
7080         /*
7081          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7082          * downgrading page table protection not changing it to point to a new
7083          * page.
7084          *
7085          * See Documentation/mm/mmu_notifier.rst
7086          */
7087         i_mmap_unlock_write(vma->vm_file->f_mapping);
7088         hugetlb_vma_unlock_write(vma);
7089         mmu_notifier_invalidate_range_end(&range);
7090
7091         return pages > 0 ? (pages << h->order) : pages;
7092 }
7093
7094 /* Return true if reservation was successful, false otherwise.  */
7095 bool hugetlb_reserve_pages(struct inode *inode,
7096                                         long from, long to,
7097                                         struct vm_area_struct *vma,
7098                                         vm_flags_t vm_flags)
7099 {
7100         long chg = -1, add = -1;
7101         struct hstate *h = hstate_inode(inode);
7102         struct hugepage_subpool *spool = subpool_inode(inode);
7103         struct resv_map *resv_map;
7104         struct hugetlb_cgroup *h_cg = NULL;
7105         long gbl_reserve, regions_needed = 0;
7106
7107         /* This should never happen */
7108         if (from > to) {
7109                 VM_WARN(1, "%s called with a negative range\n", __func__);
7110                 return false;
7111         }
7112
7113         /*
7114          * vma specific semaphore used for pmd sharing and fault/truncation
7115          * synchronization
7116          */
7117         hugetlb_vma_lock_alloc(vma);
7118
7119         /*
7120          * Only apply hugepage reservation if asked. At fault time, an
7121          * attempt will be made for VM_NORESERVE to allocate a page
7122          * without using reserves
7123          */
7124         if (vm_flags & VM_NORESERVE)
7125                 return true;
7126
7127         /*
7128          * Shared mappings base their reservation on the number of pages that
7129          * are already allocated on behalf of the file. Private mappings need
7130          * to reserve the full area even if read-only as mprotect() may be
7131          * called to make the mapping read-write. Assume !vma is a shm mapping
7132          */
7133         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7134                 /*
7135                  * resv_map can not be NULL as hugetlb_reserve_pages is only
7136                  * called for inodes for which resv_maps were created (see
7137                  * hugetlbfs_get_inode).
7138                  */
7139                 resv_map = inode_resv_map(inode);
7140
7141                 chg = region_chg(resv_map, from, to, &regions_needed);
7142         } else {
7143                 /* Private mapping. */
7144                 resv_map = resv_map_alloc();
7145                 if (!resv_map)
7146                         goto out_err;
7147
7148                 chg = to - from;
7149
7150                 set_vma_resv_map(vma, resv_map);
7151                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7152         }
7153
7154         if (chg < 0)
7155                 goto out_err;
7156
7157         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7158                                 chg * pages_per_huge_page(h), &h_cg) < 0)
7159                 goto out_err;
7160
7161         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7162                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7163                  * of the resv_map.
7164                  */
7165                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7166         }
7167
7168         /*
7169          * There must be enough pages in the subpool for the mapping. If
7170          * the subpool has a minimum size, there may be some global
7171          * reservations already in place (gbl_reserve).
7172          */
7173         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7174         if (gbl_reserve < 0)
7175                 goto out_uncharge_cgroup;
7176
7177         /*
7178          * Check enough hugepages are available for the reservation.
7179          * Hand the pages back to the subpool if there are not
7180          */
7181         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7182                 goto out_put_pages;
7183
7184         /*
7185          * Account for the reservations made. Shared mappings record regions
7186          * that have reservations as they are shared by multiple VMAs.
7187          * When the last VMA disappears, the region map says how much
7188          * the reservation was and the page cache tells how much of
7189          * the reservation was consumed. Private mappings are per-VMA and
7190          * only the consumed reservations are tracked. When the VMA
7191          * disappears, the original reservation is the VMA size and the
7192          * consumed reservations are stored in the map. Hence, nothing
7193          * else has to be done for private mappings here
7194          */
7195         if (!vma || vma->vm_flags & VM_MAYSHARE) {
7196                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7197
7198                 if (unlikely(add < 0)) {
7199                         hugetlb_acct_memory(h, -gbl_reserve);
7200                         goto out_put_pages;
7201                 } else if (unlikely(chg > add)) {
7202                         /*
7203                          * pages in this range were added to the reserve
7204                          * map between region_chg and region_add.  This
7205                          * indicates a race with alloc_hugetlb_folio.  Adjust
7206                          * the subpool and reserve counts modified above
7207                          * based on the difference.
7208                          */
7209                         long rsv_adjust;
7210
7211                         /*
7212                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7213                          * reference to h_cg->css. See comment below for detail.
7214                          */
7215                         hugetlb_cgroup_uncharge_cgroup_rsvd(
7216                                 hstate_index(h),
7217                                 (chg - add) * pages_per_huge_page(h), h_cg);
7218
7219                         rsv_adjust = hugepage_subpool_put_pages(spool,
7220                                                                 chg - add);
7221                         hugetlb_acct_memory(h, -rsv_adjust);
7222                 } else if (h_cg) {
7223                         /*
7224                          * The file_regions will hold their own reference to
7225                          * h_cg->css. So we should release the reference held
7226                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7227                          * done.
7228                          */
7229                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7230                 }
7231         }
7232         return true;
7233
7234 out_put_pages:
7235         /* put back original number of pages, chg */
7236         (void)hugepage_subpool_put_pages(spool, chg);
7237 out_uncharge_cgroup:
7238         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7239                                             chg * pages_per_huge_page(h), h_cg);
7240 out_err:
7241         hugetlb_vma_lock_free(vma);
7242         if (!vma || vma->vm_flags & VM_MAYSHARE)
7243                 /* Only call region_abort if the region_chg succeeded but the
7244                  * region_add failed or didn't run.
7245                  */
7246                 if (chg >= 0 && add < 0)
7247                         region_abort(resv_map, from, to, regions_needed);
7248         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7249                 kref_put(&resv_map->refs, resv_map_release);
7250                 set_vma_resv_map(vma, NULL);
7251         }
7252         return false;
7253 }
7254
7255 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7256                                                                 long freed)
7257 {
7258         struct hstate *h = hstate_inode(inode);
7259         struct resv_map *resv_map = inode_resv_map(inode);
7260         long chg = 0;
7261         struct hugepage_subpool *spool = subpool_inode(inode);
7262         long gbl_reserve;
7263
7264         /*
7265          * Since this routine can be called in the evict inode path for all
7266          * hugetlbfs inodes, resv_map could be NULL.
7267          */
7268         if (resv_map) {
7269                 chg = region_del(resv_map, start, end);
7270                 /*
7271                  * region_del() can fail in the rare case where a region
7272                  * must be split and another region descriptor can not be
7273                  * allocated.  If end == LONG_MAX, it will not fail.
7274                  */
7275                 if (chg < 0)
7276                         return chg;
7277         }
7278
7279         spin_lock(&inode->i_lock);
7280         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7281         spin_unlock(&inode->i_lock);
7282
7283         /*
7284          * If the subpool has a minimum size, the number of global
7285          * reservations to be released may be adjusted.
7286          *
7287          * Note that !resv_map implies freed == 0. So (chg - freed)
7288          * won't go negative.
7289          */
7290         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7291         hugetlb_acct_memory(h, -gbl_reserve);
7292
7293         return 0;
7294 }
7295
7296 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7297 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7298                                 struct vm_area_struct *vma,
7299                                 unsigned long addr, pgoff_t idx)
7300 {
7301         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7302                                 svma->vm_start;
7303         unsigned long sbase = saddr & PUD_MASK;
7304         unsigned long s_end = sbase + PUD_SIZE;
7305
7306         /* Allow segments to share if only one is marked locked */
7307         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7308         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7309
7310         /*
7311          * match the virtual addresses, permission and the alignment of the
7312          * page table page.
7313          *
7314          * Also, vma_lock (vm_private_data) is required for sharing.
7315          */
7316         if (pmd_index(addr) != pmd_index(saddr) ||
7317             vm_flags != svm_flags ||
7318             !range_in_vma(svma, sbase, s_end) ||
7319             !svma->vm_private_data)
7320                 return 0;
7321
7322         return saddr;
7323 }
7324
7325 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7326 {
7327         unsigned long start = addr & PUD_MASK;
7328         unsigned long end = start + PUD_SIZE;
7329
7330 #ifdef CONFIG_USERFAULTFD
7331         if (uffd_disable_huge_pmd_share(vma))
7332                 return false;
7333 #endif
7334         /*
7335          * check on proper vm_flags and page table alignment
7336          */
7337         if (!(vma->vm_flags & VM_MAYSHARE))
7338                 return false;
7339         if (!vma->vm_private_data)      /* vma lock required for sharing */
7340                 return false;
7341         if (!range_in_vma(vma, start, end))
7342                 return false;
7343         return true;
7344 }
7345
7346 /*
7347  * Determine if start,end range within vma could be mapped by shared pmd.
7348  * If yes, adjust start and end to cover range associated with possible
7349  * shared pmd mappings.
7350  */
7351 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7352                                 unsigned long *start, unsigned long *end)
7353 {
7354         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7355                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7356
7357         /*
7358          * vma needs to span at least one aligned PUD size, and the range
7359          * must be at least partially within in.
7360          */
7361         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7362                 (*end <= v_start) || (*start >= v_end))
7363                 return;
7364
7365         /* Extend the range to be PUD aligned for a worst case scenario */
7366         if (*start > v_start)
7367                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7368
7369         if (*end < v_end)
7370                 *end = ALIGN(*end, PUD_SIZE);
7371 }
7372
7373 /*
7374  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7375  * and returns the corresponding pte. While this is not necessary for the
7376  * !shared pmd case because we can allocate the pmd later as well, it makes the
7377  * code much cleaner. pmd allocation is essential for the shared case because
7378  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7379  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7380  * bad pmd for sharing.
7381  */
7382 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7383                       unsigned long addr, pud_t *pud)
7384 {
7385         struct address_space *mapping = vma->vm_file->f_mapping;
7386         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7387                         vma->vm_pgoff;
7388         struct vm_area_struct *svma;
7389         unsigned long saddr;
7390         pte_t *spte = NULL;
7391         pte_t *pte;
7392
7393         i_mmap_lock_read(mapping);
7394         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7395                 if (svma == vma)
7396                         continue;
7397
7398                 saddr = page_table_shareable(svma, vma, addr, idx);
7399                 if (saddr) {
7400                         spte = hugetlb_walk(svma, saddr,
7401                                             vma_mmu_pagesize(svma));
7402                         if (spte) {
7403                                 get_page(virt_to_page(spte));
7404                                 break;
7405                         }
7406                 }
7407         }
7408
7409         if (!spte)
7410                 goto out;
7411
7412         spin_lock(&mm->page_table_lock);
7413         if (pud_none(*pud)) {
7414                 pud_populate(mm, pud,
7415                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7416                 mm_inc_nr_pmds(mm);
7417         } else {
7418                 put_page(virt_to_page(spte));
7419         }
7420         spin_unlock(&mm->page_table_lock);
7421 out:
7422         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7423         i_mmap_unlock_read(mapping);
7424         return pte;
7425 }
7426
7427 /*
7428  * unmap huge page backed by shared pte.
7429  *
7430  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7431  * indicated by page_count > 1, unmap is achieved by clearing pud and
7432  * decrementing the ref count. If count == 1, the pte page is not shared.
7433  *
7434  * Called with page table lock held.
7435  *
7436  * returns: 1 successfully unmapped a shared pte page
7437  *          0 the underlying pte page is not shared, or it is the last user
7438  */
7439 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7440                                         unsigned long addr, pte_t *ptep)
7441 {
7442         pgd_t *pgd = pgd_offset(mm, addr);
7443         p4d_t *p4d = p4d_offset(pgd, addr);
7444         pud_t *pud = pud_offset(p4d, addr);
7445
7446         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7447         hugetlb_vma_assert_locked(vma);
7448         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7449         if (page_count(virt_to_page(ptep)) == 1)
7450                 return 0;
7451
7452         pud_clear(pud);
7453         put_page(virt_to_page(ptep));
7454         mm_dec_nr_pmds(mm);
7455         return 1;
7456 }
7457
7458 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7459
7460 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7461                       unsigned long addr, pud_t *pud)
7462 {
7463         return NULL;
7464 }
7465
7466 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7467                                 unsigned long addr, pte_t *ptep)
7468 {
7469         return 0;
7470 }
7471
7472 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7473                                 unsigned long *start, unsigned long *end)
7474 {
7475 }
7476
7477 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7478 {
7479         return false;
7480 }
7481 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7482
7483 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7484 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7485                         unsigned long addr, unsigned long sz)
7486 {
7487         pgd_t *pgd;
7488         p4d_t *p4d;
7489         pud_t *pud;
7490         pte_t *pte = NULL;
7491
7492         pgd = pgd_offset(mm, addr);
7493         p4d = p4d_alloc(mm, pgd, addr);
7494         if (!p4d)
7495                 return NULL;
7496         pud = pud_alloc(mm, p4d, addr);
7497         if (pud) {
7498                 if (sz == PUD_SIZE) {
7499                         pte = (pte_t *)pud;
7500                 } else {
7501                         BUG_ON(sz != PMD_SIZE);
7502                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7503                                 pte = huge_pmd_share(mm, vma, addr, pud);
7504                         else
7505                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7506                 }
7507         }
7508
7509         if (pte) {
7510                 pte_t pteval = ptep_get_lockless(pte);
7511
7512                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7513         }
7514
7515         return pte;
7516 }
7517
7518 /*
7519  * huge_pte_offset() - Walk the page table to resolve the hugepage
7520  * entry at address @addr
7521  *
7522  * Return: Pointer to page table entry (PUD or PMD) for
7523  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7524  * size @sz doesn't match the hugepage size at this level of the page
7525  * table.
7526  */
7527 pte_t *huge_pte_offset(struct mm_struct *mm,
7528                        unsigned long addr, unsigned long sz)
7529 {
7530         pgd_t *pgd;
7531         p4d_t *p4d;
7532         pud_t *pud;
7533         pmd_t *pmd;
7534
7535         pgd = pgd_offset(mm, addr);
7536         if (!pgd_present(*pgd))
7537                 return NULL;
7538         p4d = p4d_offset(pgd, addr);
7539         if (!p4d_present(*p4d))
7540                 return NULL;
7541
7542         pud = pud_offset(p4d, addr);
7543         if (sz == PUD_SIZE)
7544                 /* must be pud huge, non-present or none */
7545                 return (pte_t *)pud;
7546         if (!pud_present(*pud))
7547                 return NULL;
7548         /* must have a valid entry and size to go further */
7549
7550         pmd = pmd_offset(pud, addr);
7551         /* must be pmd huge, non-present or none */
7552         return (pte_t *)pmd;
7553 }
7554
7555 /*
7556  * Return a mask that can be used to update an address to the last huge
7557  * page in a page table page mapping size.  Used to skip non-present
7558  * page table entries when linearly scanning address ranges.  Architectures
7559  * with unique huge page to page table relationships can define their own
7560  * version of this routine.
7561  */
7562 unsigned long hugetlb_mask_last_page(struct hstate *h)
7563 {
7564         unsigned long hp_size = huge_page_size(h);
7565
7566         if (hp_size == PUD_SIZE)
7567                 return P4D_SIZE - PUD_SIZE;
7568         else if (hp_size == PMD_SIZE)
7569                 return PUD_SIZE - PMD_SIZE;
7570         else
7571                 return 0UL;
7572 }
7573
7574 #else
7575
7576 /* See description above.  Architectures can provide their own version. */
7577 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7578 {
7579 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7580         if (huge_page_size(h) == PMD_SIZE)
7581                 return PUD_SIZE - PMD_SIZE;
7582 #endif
7583         return 0UL;
7584 }
7585
7586 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7587
7588 /*
7589  * These functions are overwritable if your architecture needs its own
7590  * behavior.
7591  */
7592 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7593 {
7594         bool ret = true;
7595
7596         spin_lock_irq(&hugetlb_lock);
7597         if (!folio_test_hugetlb(folio) ||
7598             !folio_test_hugetlb_migratable(folio) ||
7599             !folio_try_get(folio)) {
7600                 ret = false;
7601                 goto unlock;
7602         }
7603         folio_clear_hugetlb_migratable(folio);
7604         list_move_tail(&folio->lru, list);
7605 unlock:
7606         spin_unlock_irq(&hugetlb_lock);
7607         return ret;
7608 }
7609
7610 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7611 {
7612         int ret = 0;
7613
7614         *hugetlb = false;
7615         spin_lock_irq(&hugetlb_lock);
7616         if (folio_test_hugetlb(folio)) {
7617                 *hugetlb = true;
7618                 if (folio_test_hugetlb_freed(folio))
7619                         ret = 0;
7620                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7621                         ret = folio_try_get(folio);
7622                 else
7623                         ret = -EBUSY;
7624         }
7625         spin_unlock_irq(&hugetlb_lock);
7626         return ret;
7627 }
7628
7629 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7630                                 bool *migratable_cleared)
7631 {
7632         int ret;
7633
7634         spin_lock_irq(&hugetlb_lock);
7635         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7636         spin_unlock_irq(&hugetlb_lock);
7637         return ret;
7638 }
7639
7640 void folio_putback_active_hugetlb(struct folio *folio)
7641 {
7642         spin_lock_irq(&hugetlb_lock);
7643         folio_set_hugetlb_migratable(folio);
7644         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7645         spin_unlock_irq(&hugetlb_lock);
7646         folio_put(folio);
7647 }
7648
7649 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7650 {
7651         struct hstate *h = folio_hstate(old_folio);
7652
7653         hugetlb_cgroup_migrate(old_folio, new_folio);
7654         set_page_owner_migrate_reason(&new_folio->page, reason);
7655
7656         /*
7657          * transfer temporary state of the new hugetlb folio. This is
7658          * reverse to other transitions because the newpage is going to
7659          * be final while the old one will be freed so it takes over
7660          * the temporary status.
7661          *
7662          * Also note that we have to transfer the per-node surplus state
7663          * here as well otherwise the global surplus count will not match
7664          * the per-node's.
7665          */
7666         if (folio_test_hugetlb_temporary(new_folio)) {
7667                 int old_nid = folio_nid(old_folio);
7668                 int new_nid = folio_nid(new_folio);
7669
7670                 folio_set_hugetlb_temporary(old_folio);
7671                 folio_clear_hugetlb_temporary(new_folio);
7672
7673
7674                 /*
7675                  * There is no need to transfer the per-node surplus state
7676                  * when we do not cross the node.
7677                  */
7678                 if (new_nid == old_nid)
7679                         return;
7680                 spin_lock_irq(&hugetlb_lock);
7681                 if (h->surplus_huge_pages_node[old_nid]) {
7682                         h->surplus_huge_pages_node[old_nid]--;
7683                         h->surplus_huge_pages_node[new_nid]++;
7684                 }
7685                 spin_unlock_irq(&hugetlb_lock);
7686         }
7687 }
7688
7689 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7690                                    unsigned long start,
7691                                    unsigned long end)
7692 {
7693         struct hstate *h = hstate_vma(vma);
7694         unsigned long sz = huge_page_size(h);
7695         struct mm_struct *mm = vma->vm_mm;
7696         struct mmu_notifier_range range;
7697         unsigned long address;
7698         spinlock_t *ptl;
7699         pte_t *ptep;
7700
7701         if (!(vma->vm_flags & VM_MAYSHARE))
7702                 return;
7703
7704         if (start >= end)
7705                 return;
7706
7707         flush_cache_range(vma, start, end);
7708         /*
7709          * No need to call adjust_range_if_pmd_sharing_possible(), because
7710          * we have already done the PUD_SIZE alignment.
7711          */
7712         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7713                                 start, end);
7714         mmu_notifier_invalidate_range_start(&range);
7715         hugetlb_vma_lock_write(vma);
7716         i_mmap_lock_write(vma->vm_file->f_mapping);
7717         for (address = start; address < end; address += PUD_SIZE) {
7718                 ptep = hugetlb_walk(vma, address, sz);
7719                 if (!ptep)
7720                         continue;
7721                 ptl = huge_pte_lock(h, mm, ptep);
7722                 huge_pmd_unshare(mm, vma, address, ptep);
7723                 spin_unlock(ptl);
7724         }
7725         flush_hugetlb_tlb_range(vma, start, end);
7726         i_mmap_unlock_write(vma->vm_file->f_mapping);
7727         hugetlb_vma_unlock_write(vma);
7728         /*
7729          * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7730          * Documentation/mm/mmu_notifier.rst.
7731          */
7732         mmu_notifier_invalidate_range_end(&range);
7733 }
7734
7735 /*
7736  * This function will unconditionally remove all the shared pmd pgtable entries
7737  * within the specific vma for a hugetlbfs memory range.
7738  */
7739 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7740 {
7741         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7742                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7743 }
7744
7745 #ifdef CONFIG_CMA
7746 static bool cma_reserve_called __initdata;
7747
7748 static int __init cmdline_parse_hugetlb_cma(char *p)
7749 {
7750         int nid, count = 0;
7751         unsigned long tmp;
7752         char *s = p;
7753
7754         while (*s) {
7755                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7756                         break;
7757
7758                 if (s[count] == ':') {
7759                         if (tmp >= MAX_NUMNODES)
7760                                 break;
7761                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7762
7763                         s += count + 1;
7764                         tmp = memparse(s, &s);
7765                         hugetlb_cma_size_in_node[nid] = tmp;
7766                         hugetlb_cma_size += tmp;
7767
7768                         /*
7769                          * Skip the separator if have one, otherwise
7770                          * break the parsing.
7771                          */
7772                         if (*s == ',')
7773                                 s++;
7774                         else
7775                                 break;
7776                 } else {
7777                         hugetlb_cma_size = memparse(p, &p);
7778                         break;
7779                 }
7780         }
7781
7782         return 0;
7783 }
7784
7785 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7786
7787 void __init hugetlb_cma_reserve(int order)
7788 {
7789         unsigned long size, reserved, per_node;
7790         bool node_specific_cma_alloc = false;
7791         int nid;
7792
7793         /*
7794          * HugeTLB CMA reservation is required for gigantic
7795          * huge pages which could not be allocated via the
7796          * page allocator. Just warn if there is any change
7797          * breaking this assumption.
7798          */
7799         VM_WARN_ON(order <= MAX_PAGE_ORDER);
7800         cma_reserve_called = true;
7801
7802         if (!hugetlb_cma_size)
7803                 return;
7804
7805         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7806                 if (hugetlb_cma_size_in_node[nid] == 0)
7807                         continue;
7808
7809                 if (!node_online(nid)) {
7810                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7811                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7812                         hugetlb_cma_size_in_node[nid] = 0;
7813                         continue;
7814                 }
7815
7816                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7817                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7818                                 nid, (PAGE_SIZE << order) / SZ_1M);
7819                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7820                         hugetlb_cma_size_in_node[nid] = 0;
7821                 } else {
7822                         node_specific_cma_alloc = true;
7823                 }
7824         }
7825
7826         /* Validate the CMA size again in case some invalid nodes specified. */
7827         if (!hugetlb_cma_size)
7828                 return;
7829
7830         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7831                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7832                         (PAGE_SIZE << order) / SZ_1M);
7833                 hugetlb_cma_size = 0;
7834                 return;
7835         }
7836
7837         if (!node_specific_cma_alloc) {
7838                 /*
7839                  * If 3 GB area is requested on a machine with 4 numa nodes,
7840                  * let's allocate 1 GB on first three nodes and ignore the last one.
7841                  */
7842                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7843                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7844                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7845         }
7846
7847         reserved = 0;
7848         for_each_online_node(nid) {
7849                 int res;
7850                 char name[CMA_MAX_NAME];
7851
7852                 if (node_specific_cma_alloc) {
7853                         if (hugetlb_cma_size_in_node[nid] == 0)
7854                                 continue;
7855
7856                         size = hugetlb_cma_size_in_node[nid];
7857                 } else {
7858                         size = min(per_node, hugetlb_cma_size - reserved);
7859                 }
7860
7861                 size = round_up(size, PAGE_SIZE << order);
7862
7863                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7864                 /*
7865                  * Note that 'order per bit' is based on smallest size that
7866                  * may be returned to CMA allocator in the case of
7867                  * huge page demotion.
7868                  */
7869                 res = cma_declare_contiguous_nid(0, size, 0,
7870                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7871                                                  0, false, name,
7872                                                  &hugetlb_cma[nid], nid);
7873                 if (res) {
7874                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7875                                 res, nid);
7876                         continue;
7877                 }
7878
7879                 reserved += size;
7880                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7881                         size / SZ_1M, nid);
7882
7883                 if (reserved >= hugetlb_cma_size)
7884                         break;
7885         }
7886
7887         if (!reserved)
7888                 /*
7889                  * hugetlb_cma_size is used to determine if allocations from
7890                  * cma are possible.  Set to zero if no cma regions are set up.
7891                  */
7892                 hugetlb_cma_size = 0;
7893 }
7894
7895 static void __init hugetlb_cma_check(void)
7896 {
7897         if (!hugetlb_cma_size || cma_reserve_called)
7898                 return;
7899
7900         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7901 }
7902
7903 #endif /* CONFIG_CMA */