Documentation: embargoed-hardware-issues.rst: Add myself for Power
[sfrench/cifs-2.6.git] / fs / bcachefs / util.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_UTIL_H
3 #define _BCACHEFS_UTIL_H
4
5 #include <linux/bio.h>
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/clock.h>
12 #include <linux/llist.h>
13 #include <linux/log2.h>
14 #include <linux/percpu.h>
15 #include <linux/preempt.h>
16 #include <linux/ratelimit.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/workqueue.h>
20
21 #include "mean_and_variance.h"
22
23 #include "darray.h"
24 #include "time_stats.h"
25
26 struct closure;
27
28 #ifdef CONFIG_BCACHEFS_DEBUG
29 #define EBUG_ON(cond)           BUG_ON(cond)
30 #else
31 #define EBUG_ON(cond)
32 #endif
33
34 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
35 #define CPU_BIG_ENDIAN          0
36 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
37 #define CPU_BIG_ENDIAN          1
38 #endif
39
40 /* type hackery */
41
42 #define type_is_exact(_val, _type)                                      \
43         __builtin_types_compatible_p(typeof(_val), _type)
44
45 #define type_is(_val, _type)                                            \
46         (__builtin_types_compatible_p(typeof(_val), _type) ||           \
47          __builtin_types_compatible_p(typeof(_val), const _type))
48
49 /* Userspace doesn't align allocations as nicely as the kernel allocators: */
50 static inline size_t buf_pages(void *p, size_t len)
51 {
52         return DIV_ROUND_UP(len +
53                             ((unsigned long) p & (PAGE_SIZE - 1)),
54                             PAGE_SIZE);
55 }
56
57 #define HEAP(type)                                                      \
58 struct {                                                                \
59         size_t size, used;                                              \
60         type *data;                                                     \
61 }
62
63 #define DECLARE_HEAP(type, name) HEAP(type) name
64
65 #define init_heap(heap, _size, gfp)                                     \
66 ({                                                                      \
67         (heap)->used = 0;                                               \
68         (heap)->size = (_size);                                         \
69         (heap)->data = kvmalloc((heap)->size * sizeof((heap)->data[0]),\
70                                  (gfp));                                \
71 })
72
73 #define free_heap(heap)                                                 \
74 do {                                                                    \
75         kvfree((heap)->data);                                           \
76         (heap)->data = NULL;                                            \
77 } while (0)
78
79 #define heap_set_backpointer(h, i, _fn)                                 \
80 do {                                                                    \
81         void (*fn)(typeof(h), size_t) = _fn;                            \
82         if (fn)                                                         \
83                 fn(h, i);                                               \
84 } while (0)
85
86 #define heap_swap(h, i, j, set_backpointer)                             \
87 do {                                                                    \
88         swap((h)->data[i], (h)->data[j]);                               \
89         heap_set_backpointer(h, i, set_backpointer);                    \
90         heap_set_backpointer(h, j, set_backpointer);                    \
91 } while (0)
92
93 #define heap_peek(h)                                                    \
94 ({                                                                      \
95         EBUG_ON(!(h)->used);                                            \
96         (h)->data[0];                                                   \
97 })
98
99 #define heap_full(h)    ((h)->used == (h)->size)
100
101 #define heap_sift_down(h, i, cmp, set_backpointer)                      \
102 do {                                                                    \
103         size_t _c, _j = i;                                              \
104                                                                         \
105         for (; _j * 2 + 1 < (h)->used; _j = _c) {                       \
106                 _c = _j * 2 + 1;                                        \
107                 if (_c + 1 < (h)->used &&                               \
108                     cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0)      \
109                         _c++;                                           \
110                                                                         \
111                 if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0)          \
112                         break;                                          \
113                 heap_swap(h, _c, _j, set_backpointer);                  \
114         }                                                               \
115 } while (0)
116
117 #define heap_sift_up(h, i, cmp, set_backpointer)                        \
118 do {                                                                    \
119         while (i) {                                                     \
120                 size_t p = (i - 1) / 2;                                 \
121                 if (cmp(h, (h)->data[i], (h)->data[p]) >= 0)            \
122                         break;                                          \
123                 heap_swap(h, i, p, set_backpointer);                    \
124                 i = p;                                                  \
125         }                                                               \
126 } while (0)
127
128 #define __heap_add(h, d, cmp, set_backpointer)                          \
129 ({                                                                      \
130         size_t _i = (h)->used++;                                        \
131         (h)->data[_i] = d;                                              \
132         heap_set_backpointer(h, _i, set_backpointer);                   \
133                                                                         \
134         heap_sift_up(h, _i, cmp, set_backpointer);                      \
135         _i;                                                             \
136 })
137
138 #define heap_add(h, d, cmp, set_backpointer)                            \
139 ({                                                                      \
140         bool _r = !heap_full(h);                                        \
141         if (_r)                                                         \
142                 __heap_add(h, d, cmp, set_backpointer);                 \
143         _r;                                                             \
144 })
145
146 #define heap_add_or_replace(h, new, cmp, set_backpointer)               \
147 do {                                                                    \
148         if (!heap_add(h, new, cmp, set_backpointer) &&                  \
149             cmp(h, new, heap_peek(h)) >= 0) {                           \
150                 (h)->data[0] = new;                                     \
151                 heap_set_backpointer(h, 0, set_backpointer);            \
152                 heap_sift_down(h, 0, cmp, set_backpointer);             \
153         }                                                               \
154 } while (0)
155
156 #define heap_del(h, i, cmp, set_backpointer)                            \
157 do {                                                                    \
158         size_t _i = (i);                                                \
159                                                                         \
160         BUG_ON(_i >= (h)->used);                                        \
161         (h)->used--;                                                    \
162         if ((_i) < (h)->used) {                                         \
163                 heap_swap(h, _i, (h)->used, set_backpointer);           \
164                 heap_sift_up(h, _i, cmp, set_backpointer);              \
165                 heap_sift_down(h, _i, cmp, set_backpointer);            \
166         }                                                               \
167 } while (0)
168
169 #define heap_pop(h, d, cmp, set_backpointer)                            \
170 ({                                                                      \
171         bool _r = (h)->used;                                            \
172         if (_r) {                                                       \
173                 (d) = (h)->data[0];                                     \
174                 heap_del(h, 0, cmp, set_backpointer);                   \
175         }                                                               \
176         _r;                                                             \
177 })
178
179 #define heap_resort(heap, cmp, set_backpointer)                         \
180 do {                                                                    \
181         ssize_t _i;                                                     \
182         for (_i = (ssize_t) (heap)->used / 2 -  1; _i >= 0; --_i)       \
183                 heap_sift_down(heap, _i, cmp, set_backpointer);         \
184 } while (0)
185
186 #define ANYSINT_MAX(t)                                                  \
187         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
188
189 #include "printbuf.h"
190
191 #define prt_vprintf(_out, ...)          bch2_prt_vprintf(_out, __VA_ARGS__)
192 #define prt_printf(_out, ...)           bch2_prt_printf(_out, __VA_ARGS__)
193 #define printbuf_str(_buf)              bch2_printbuf_str(_buf)
194 #define printbuf_exit(_buf)             bch2_printbuf_exit(_buf)
195
196 #define printbuf_tabstops_reset(_buf)   bch2_printbuf_tabstops_reset(_buf)
197 #define printbuf_tabstop_pop(_buf)      bch2_printbuf_tabstop_pop(_buf)
198 #define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n)
199
200 #define printbuf_indent_add(_out, _n)   bch2_printbuf_indent_add(_out, _n)
201 #define printbuf_indent_sub(_out, _n)   bch2_printbuf_indent_sub(_out, _n)
202
203 #define prt_newline(_out)               bch2_prt_newline(_out)
204 #define prt_tab(_out)                   bch2_prt_tab(_out)
205 #define prt_tab_rjust(_out)             bch2_prt_tab_rjust(_out)
206
207 #define prt_bytes_indented(...)         bch2_prt_bytes_indented(__VA_ARGS__)
208 #define prt_u64(_out, _v)               prt_printf(_out, "%llu", (u64) (_v))
209 #define prt_human_readable_u64(...)     bch2_prt_human_readable_u64(__VA_ARGS__)
210 #define prt_human_readable_s64(...)     bch2_prt_human_readable_s64(__VA_ARGS__)
211 #define prt_units_u64(...)              bch2_prt_units_u64(__VA_ARGS__)
212 #define prt_units_s64(...)              bch2_prt_units_s64(__VA_ARGS__)
213 #define prt_string_option(...)          bch2_prt_string_option(__VA_ARGS__)
214 #define prt_bitflags(...)               bch2_prt_bitflags(__VA_ARGS__)
215 #define prt_bitflags_vector(...)        bch2_prt_bitflags_vector(__VA_ARGS__)
216
217 void bch2_pr_time_units(struct printbuf *, u64);
218 void bch2_prt_datetime(struct printbuf *, time64_t);
219
220 #ifdef __KERNEL__
221 static inline void uuid_unparse_lower(u8 *uuid, char *out)
222 {
223         sprintf(out, "%pUb", uuid);
224 }
225 #else
226 #include <uuid/uuid.h>
227 #endif
228
229 static inline void pr_uuid(struct printbuf *out, u8 *uuid)
230 {
231         char uuid_str[40];
232
233         uuid_unparse_lower(uuid, uuid_str);
234         prt_printf(out, "%s", uuid_str);
235 }
236
237 int bch2_strtoint_h(const char *, int *);
238 int bch2_strtouint_h(const char *, unsigned int *);
239 int bch2_strtoll_h(const char *, long long *);
240 int bch2_strtoull_h(const char *, unsigned long long *);
241 int bch2_strtou64_h(const char *, u64 *);
242
243 static inline int bch2_strtol_h(const char *cp, long *res)
244 {
245 #if BITS_PER_LONG == 32
246         return bch2_strtoint_h(cp, (int *) res);
247 #else
248         return bch2_strtoll_h(cp, (long long *) res);
249 #endif
250 }
251
252 static inline int bch2_strtoul_h(const char *cp, long *res)
253 {
254 #if BITS_PER_LONG == 32
255         return bch2_strtouint_h(cp, (unsigned int *) res);
256 #else
257         return bch2_strtoull_h(cp, (unsigned long long *) res);
258 #endif
259 }
260
261 #define strtoi_h(cp, res)                                               \
262         ( type_is(*res, int)            ? bch2_strtoint_h(cp, (void *) res)\
263         : type_is(*res, long)           ? bch2_strtol_h(cp, (void *) res)\
264         : type_is(*res, long long)      ? bch2_strtoll_h(cp, (void *) res)\
265         : type_is(*res, unsigned)       ? bch2_strtouint_h(cp, (void *) res)\
266         : type_is(*res, unsigned long)  ? bch2_strtoul_h(cp, (void *) res)\
267         : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\
268         : -EINVAL)
269
270 #define strtoul_safe(cp, var)                                           \
271 ({                                                                      \
272         unsigned long _v;                                               \
273         int _r = kstrtoul(cp, 10, &_v);                                 \
274         if (!_r)                                                        \
275                 var = _v;                                               \
276         _r;                                                             \
277 })
278
279 #define strtoul_safe_clamp(cp, var, min, max)                           \
280 ({                                                                      \
281         unsigned long _v;                                               \
282         int _r = kstrtoul(cp, 10, &_v);                                 \
283         if (!_r)                                                        \
284                 var = clamp_t(typeof(var), _v, min, max);               \
285         _r;                                                             \
286 })
287
288 #define strtoul_safe_restrict(cp, var, min, max)                        \
289 ({                                                                      \
290         unsigned long _v;                                               \
291         int _r = kstrtoul(cp, 10, &_v);                                 \
292         if (!_r && _v >= min && _v <= max)                              \
293                 var = _v;                                               \
294         else                                                            \
295                 _r = -EINVAL;                                           \
296         _r;                                                             \
297 })
298
299 #define snprint(out, var)                                               \
300         prt_printf(out,                                                 \
301                    type_is(var, int)            ? "%i\n"                \
302                  : type_is(var, unsigned)       ? "%u\n"                \
303                  : type_is(var, long)           ? "%li\n"               \
304                  : type_is(var, unsigned long)  ? "%lu\n"               \
305                  : type_is(var, s64)            ? "%lli\n"              \
306                  : type_is(var, u64)            ? "%llu\n"              \
307                  : type_is(var, char *)         ? "%s\n"                \
308                  : "%i\n", var)
309
310 bool bch2_is_zero(const void *, size_t);
311
312 u64 bch2_read_flag_list(char *, const char * const[]);
313
314 void bch2_prt_u64_base2_nbits(struct printbuf *, u64, unsigned);
315 void bch2_prt_u64_base2(struct printbuf *, u64);
316
317 void bch2_print_string_as_lines(const char *prefix, const char *lines);
318
319 typedef DARRAY(unsigned long) bch_stacktrace;
320 int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *, unsigned, gfp_t);
321 void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *);
322 int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *, unsigned, gfp_t);
323
324 static inline void prt_bdevname(struct printbuf *out, struct block_device *bdev)
325 {
326 #ifdef __KERNEL__
327         prt_printf(out, "%pg", bdev);
328 #else
329         prt_str(out, bdev->name);
330 #endif
331 }
332
333 void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *);
334
335 #define ewma_add(ewma, val, weight)                                     \
336 ({                                                                      \
337         typeof(ewma) _ewma = (ewma);                                    \
338         typeof(weight) _weight = (weight);                              \
339                                                                         \
340         (((_ewma << _weight) - _ewma) + (val)) >> _weight;              \
341 })
342
343 struct bch_ratelimit {
344         /* Next time we want to do some work, in nanoseconds */
345         u64                     next;
346
347         /*
348          * Rate at which we want to do work, in units per nanosecond
349          * The units here correspond to the units passed to
350          * bch2_ratelimit_increment()
351          */
352         unsigned                rate;
353 };
354
355 static inline void bch2_ratelimit_reset(struct bch_ratelimit *d)
356 {
357         d->next = local_clock();
358 }
359
360 u64 bch2_ratelimit_delay(struct bch_ratelimit *);
361 void bch2_ratelimit_increment(struct bch_ratelimit *, u64);
362
363 struct bch_pd_controller {
364         struct bch_ratelimit    rate;
365         unsigned long           last_update;
366
367         s64                     last_actual;
368         s64                     smoothed_derivative;
369
370         unsigned                p_term_inverse;
371         unsigned                d_smooth;
372         unsigned                d_term;
373
374         /* for exporting to sysfs (no effect on behavior) */
375         s64                     last_derivative;
376         s64                     last_proportional;
377         s64                     last_change;
378         s64                     last_target;
379
380         /*
381          * If true, the rate will not increase if bch2_ratelimit_delay()
382          * is not being called often enough.
383          */
384         bool                    backpressure;
385 };
386
387 void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int);
388 void bch2_pd_controller_init(struct bch_pd_controller *);
389 void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *);
390
391 #define sysfs_pd_controller_attribute(name)                             \
392         rw_attribute(name##_rate);                                      \
393         rw_attribute(name##_rate_bytes);                                \
394         rw_attribute(name##_rate_d_term);                               \
395         rw_attribute(name##_rate_p_term_inverse);                       \
396         read_attribute(name##_rate_debug)
397
398 #define sysfs_pd_controller_files(name)                                 \
399         &sysfs_##name##_rate,                                           \
400         &sysfs_##name##_rate_bytes,                                     \
401         &sysfs_##name##_rate_d_term,                                    \
402         &sysfs_##name##_rate_p_term_inverse,                            \
403         &sysfs_##name##_rate_debug
404
405 #define sysfs_pd_controller_show(name, var)                             \
406 do {                                                                    \
407         sysfs_hprint(name##_rate,               (var)->rate.rate);      \
408         sysfs_print(name##_rate_bytes,          (var)->rate.rate);      \
409         sysfs_print(name##_rate_d_term,         (var)->d_term);         \
410         sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \
411                                                                         \
412         if (attr == &sysfs_##name##_rate_debug)                         \
413                 bch2_pd_controller_debug_to_text(out, var);             \
414 } while (0)
415
416 #define sysfs_pd_controller_store(name, var)                            \
417 do {                                                                    \
418         sysfs_strtoul_clamp(name##_rate,                                \
419                             (var)->rate.rate, 1, UINT_MAX);             \
420         sysfs_strtoul_clamp(name##_rate_bytes,                          \
421                             (var)->rate.rate, 1, UINT_MAX);             \
422         sysfs_strtoul(name##_rate_d_term,       (var)->d_term);         \
423         sysfs_strtoul_clamp(name##_rate_p_term_inverse,                 \
424                             (var)->p_term_inverse, 1, INT_MAX);         \
425 } while (0)
426
427 #define container_of_or_null(ptr, type, member)                         \
428 ({                                                                      \
429         typeof(ptr) _ptr = ptr;                                         \
430         _ptr ? container_of(_ptr, type, member) : NULL;                 \
431 })
432
433 /* Does linear interpolation between powers of two */
434 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
435 {
436         unsigned fract = x & ~(~0 << fract_bits);
437
438         x >>= fract_bits;
439         x   = 1 << x;
440         x  += (x * fract) >> fract_bits;
441
442         return x;
443 }
444
445 void bch2_bio_map(struct bio *bio, void *base, size_t);
446 int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t);
447
448 static inline sector_t bdev_sectors(struct block_device *bdev)
449 {
450         return bdev->bd_inode->i_size >> 9;
451 }
452
453 #define closure_bio_submit(bio, cl)                                     \
454 do {                                                                    \
455         closure_get(cl);                                                \
456         submit_bio(bio);                                                \
457 } while (0)
458
459 #define kthread_wait(cond)                                              \
460 ({                                                                      \
461         int _ret = 0;                                                   \
462                                                                         \
463         while (1) {                                                     \
464                 set_current_state(TASK_INTERRUPTIBLE);                  \
465                 if (kthread_should_stop()) {                            \
466                         _ret = -1;                                      \
467                         break;                                          \
468                 }                                                       \
469                                                                         \
470                 if (cond)                                               \
471                         break;                                          \
472                                                                         \
473                 schedule();                                             \
474         }                                                               \
475         set_current_state(TASK_RUNNING);                                \
476         _ret;                                                           \
477 })
478
479 #define kthread_wait_freezable(cond)                                    \
480 ({                                                                      \
481         int _ret = 0;                                                   \
482         while (1) {                                                     \
483                 set_current_state(TASK_INTERRUPTIBLE);                  \
484                 if (kthread_should_stop()) {                            \
485                         _ret = -1;                                      \
486                         break;                                          \
487                 }                                                       \
488                                                                         \
489                 if (cond)                                               \
490                         break;                                          \
491                                                                         \
492                 schedule();                                             \
493                 try_to_freeze();                                        \
494         }                                                               \
495         set_current_state(TASK_RUNNING);                                \
496         _ret;                                                           \
497 })
498
499 size_t bch2_rand_range(size_t);
500
501 void memcpy_to_bio(struct bio *, struct bvec_iter, const void *);
502 void memcpy_from_bio(void *, struct bio *, struct bvec_iter);
503
504 static inline void memcpy_u64s_small(void *dst, const void *src,
505                                      unsigned u64s)
506 {
507         u64 *d = dst;
508         const u64 *s = src;
509
510         while (u64s--)
511                 *d++ = *s++;
512 }
513
514 static inline void __memcpy_u64s(void *dst, const void *src,
515                                  unsigned u64s)
516 {
517 #ifdef CONFIG_X86_64
518         long d0, d1, d2;
519
520         asm volatile("rep ; movsq"
521                      : "=&c" (d0), "=&D" (d1), "=&S" (d2)
522                      : "0" (u64s), "1" (dst), "2" (src)
523                      : "memory");
524 #else
525         u64 *d = dst;
526         const u64 *s = src;
527
528         while (u64s--)
529                 *d++ = *s++;
530 #endif
531 }
532
533 static inline void memcpy_u64s(void *dst, const void *src,
534                                unsigned u64s)
535 {
536         EBUG_ON(!(dst >= src + u64s * sizeof(u64) ||
537                  dst + u64s * sizeof(u64) <= src));
538
539         __memcpy_u64s(dst, src, u64s);
540 }
541
542 static inline void __memmove_u64s_down(void *dst, const void *src,
543                                        unsigned u64s)
544 {
545         __memcpy_u64s(dst, src, u64s);
546 }
547
548 static inline void memmove_u64s_down(void *dst, const void *src,
549                                      unsigned u64s)
550 {
551         EBUG_ON(dst > src);
552
553         __memmove_u64s_down(dst, src, u64s);
554 }
555
556 static inline void __memmove_u64s_down_small(void *dst, const void *src,
557                                        unsigned u64s)
558 {
559         memcpy_u64s_small(dst, src, u64s);
560 }
561
562 static inline void memmove_u64s_down_small(void *dst, const void *src,
563                                      unsigned u64s)
564 {
565         EBUG_ON(dst > src);
566
567         __memmove_u64s_down_small(dst, src, u64s);
568 }
569
570 static inline void __memmove_u64s_up_small(void *_dst, const void *_src,
571                                            unsigned u64s)
572 {
573         u64 *dst = (u64 *) _dst + u64s;
574         u64 *src = (u64 *) _src + u64s;
575
576         while (u64s--)
577                 *--dst = *--src;
578 }
579
580 static inline void memmove_u64s_up_small(void *dst, const void *src,
581                                          unsigned u64s)
582 {
583         EBUG_ON(dst < src);
584
585         __memmove_u64s_up_small(dst, src, u64s);
586 }
587
588 static inline void __memmove_u64s_up(void *_dst, const void *_src,
589                                      unsigned u64s)
590 {
591         u64 *dst = (u64 *) _dst + u64s - 1;
592         u64 *src = (u64 *) _src + u64s - 1;
593
594 #ifdef CONFIG_X86_64
595         long d0, d1, d2;
596
597         asm volatile("std ;\n"
598                      "rep ; movsq\n"
599                      "cld ;\n"
600                      : "=&c" (d0), "=&D" (d1), "=&S" (d2)
601                      : "0" (u64s), "1" (dst), "2" (src)
602                      : "memory");
603 #else
604         while (u64s--)
605                 *dst-- = *src--;
606 #endif
607 }
608
609 static inline void memmove_u64s_up(void *dst, const void *src,
610                                    unsigned u64s)
611 {
612         EBUG_ON(dst < src);
613
614         __memmove_u64s_up(dst, src, u64s);
615 }
616
617 static inline void memmove_u64s(void *dst, const void *src,
618                                 unsigned u64s)
619 {
620         if (dst < src)
621                 __memmove_u64s_down(dst, src, u64s);
622         else
623                 __memmove_u64s_up(dst, src, u64s);
624 }
625
626 /* Set the last few bytes up to a u64 boundary given an offset into a buffer. */
627 static inline void memset_u64s_tail(void *s, int c, unsigned bytes)
628 {
629         unsigned rem = round_up(bytes, sizeof(u64)) - bytes;
630
631         memset(s + bytes, c, rem);
632 }
633
634 void sort_cmp_size(void *base, size_t num, size_t size,
635           int (*cmp_func)(const void *, const void *, size_t),
636           void (*swap_func)(void *, void *, size_t));
637
638 /* just the memmove, doesn't update @_nr */
639 #define __array_insert_item(_array, _nr, _pos)                          \
640         memmove(&(_array)[(_pos) + 1],                                  \
641                 &(_array)[(_pos)],                                      \
642                 sizeof((_array)[0]) * ((_nr) - (_pos)))
643
644 #define array_insert_item(_array, _nr, _pos, _new_item)                 \
645 do {                                                                    \
646         __array_insert_item(_array, _nr, _pos);                         \
647         (_nr)++;                                                        \
648         (_array)[(_pos)] = (_new_item);                                 \
649 } while (0)
650
651 #define array_remove_items(_array, _nr, _pos, _nr_to_remove)            \
652 do {                                                                    \
653         (_nr) -= (_nr_to_remove);                                       \
654         memmove(&(_array)[(_pos)],                                      \
655                 &(_array)[(_pos) + (_nr_to_remove)],                    \
656                 sizeof((_array)[0]) * ((_nr) - (_pos)));                \
657 } while (0)
658
659 #define array_remove_item(_array, _nr, _pos)                            \
660         array_remove_items(_array, _nr, _pos, 1)
661
662 static inline void __move_gap(void *array, size_t element_size,
663                               size_t nr, size_t size,
664                               size_t old_gap, size_t new_gap)
665 {
666         size_t gap_end = old_gap + size - nr;
667
668         if (new_gap < old_gap) {
669                 size_t move = old_gap - new_gap;
670
671                 memmove(array + element_size * (gap_end - move),
672                         array + element_size * (old_gap - move),
673                                 element_size * move);
674         } else if (new_gap > old_gap) {
675                 size_t move = new_gap - old_gap;
676
677                 memmove(array + element_size * old_gap,
678                         array + element_size * gap_end,
679                                 element_size * move);
680         }
681 }
682
683 /* Move the gap in a gap buffer: */
684 #define move_gap(_d, _new_gap)                                          \
685 do {                                                                    \
686         BUG_ON(_new_gap > (_d)->nr);                                    \
687         BUG_ON((_d)->gap > (_d)->nr);                                   \
688                                                                         \
689         __move_gap((_d)->data, sizeof((_d)->data[0]),                   \
690                    (_d)->nr, (_d)->size, (_d)->gap, _new_gap);          \
691         (_d)->gap = _new_gap;                                           \
692 } while (0)
693
694 #define bubble_sort(_base, _nr, _cmp)                                   \
695 do {                                                                    \
696         ssize_t _i, _last;                                              \
697         bool _swapped = true;                                           \
698                                                                         \
699         for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\
700                 _swapped = false;                                       \
701                 for (_i = 0; _i < _last; _i++)                          \
702                         if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) {   \
703                                 swap((_base)[_i], (_base)[_i + 1]);     \
704                                 _swapped = true;                        \
705                         }                                               \
706         }                                                               \
707 } while (0)
708
709 static inline u64 percpu_u64_get(u64 __percpu *src)
710 {
711         u64 ret = 0;
712         int cpu;
713
714         for_each_possible_cpu(cpu)
715                 ret += *per_cpu_ptr(src, cpu);
716         return ret;
717 }
718
719 static inline void percpu_u64_set(u64 __percpu *dst, u64 src)
720 {
721         int cpu;
722
723         for_each_possible_cpu(cpu)
724                 *per_cpu_ptr(dst, cpu) = 0;
725         this_cpu_write(*dst, src);
726 }
727
728 static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr)
729 {
730         unsigned i;
731
732         for (i = 0; i < nr; i++)
733                 acc[i] += src[i];
734 }
735
736 static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src,
737                                    unsigned nr)
738 {
739         int cpu;
740
741         for_each_possible_cpu(cpu)
742                 acc_u64s(acc, per_cpu_ptr(src, cpu), nr);
743 }
744
745 static inline void percpu_memset(void __percpu *p, int c, size_t bytes)
746 {
747         int cpu;
748
749         for_each_possible_cpu(cpu)
750                 memset(per_cpu_ptr(p, cpu), c, bytes);
751 }
752
753 u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned);
754
755 #define cmp_int(l, r)           ((l > r) - (l < r))
756
757 static inline int u8_cmp(u8 l, u8 r)
758 {
759         return cmp_int(l, r);
760 }
761
762 static inline int cmp_le32(__le32 l, __le32 r)
763 {
764         return cmp_int(le32_to_cpu(l), le32_to_cpu(r));
765 }
766
767 #include <linux/uuid.h>
768
769 #define QSTR(n) { { { .len = strlen(n) } }, .name = n }
770
771 static inline bool qstr_eq(const struct qstr l, const struct qstr r)
772 {
773         return l.len == r.len && !memcmp(l.name, r.name, l.len);
774 }
775
776 void bch2_darray_str_exit(darray_str *);
777 int bch2_split_devs(const char *, darray_str *);
778
779 #ifdef __KERNEL__
780
781 __must_check
782 static inline int copy_to_user_errcode(void __user *to, const void *from, unsigned long n)
783 {
784         return copy_to_user(to, from, n) ? -EFAULT : 0;
785 }
786
787 __must_check
788 static inline int copy_from_user_errcode(void *to, const void __user *from, unsigned long n)
789 {
790         return copy_from_user(to, from, n) ? -EFAULT : 0;
791 }
792
793 #endif
794
795 static inline void __set_bit_le64(size_t bit, __le64 *addr)
796 {
797         addr[bit / 64] |= cpu_to_le64(BIT_ULL(bit % 64));
798 }
799
800 #endif /* _BCACHEFS_UTIL_H */