Merge tag 'driver-core-6.9-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / bcachefs / bset.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcachefs.h"
10 #include "btree_cache.h"
11 #include "bset.h"
12 #include "eytzinger.h"
13 #include "trace.h"
14 #include "util.h"
15
16 #include <asm/unaligned.h>
17 #include <linux/console.h>
18 #include <linux/random.h>
19 #include <linux/prefetch.h>
20
21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
22                                                   struct btree *);
23
24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
25 {
26         unsigned n = ARRAY_SIZE(iter->data);
27
28         while (n && __btree_node_iter_set_end(iter, n - 1))
29                 --n;
30
31         return n;
32 }
33
34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
35 {
36         return bch2_bkey_to_bset_inlined(b, k);
37 }
38
39 /*
40  * There are never duplicate live keys in the btree - but including keys that
41  * have been flagged as deleted (and will be cleaned up later) we _will_ see
42  * duplicates.
43  *
44  * Thus the sort order is: usual key comparison first, but for keys that compare
45  * equal the deleted key(s) come first, and the (at most one) live version comes
46  * last.
47  *
48  * The main reason for this is insertion: to handle overwrites, we first iterate
49  * over keys that compare equal to our insert key, and then insert immediately
50  * prior to the first key greater than the key we're inserting - our insert
51  * position will be after all keys that compare equal to our insert key, which
52  * by the time we actually do the insert will all be deleted.
53  */
54
55 void bch2_dump_bset(struct bch_fs *c, struct btree *b,
56                     struct bset *i, unsigned set)
57 {
58         struct bkey_packed *_k, *_n;
59         struct bkey uk, n;
60         struct bkey_s_c k;
61         struct printbuf buf = PRINTBUF;
62
63         if (!i->u64s)
64                 return;
65
66         for (_k = i->start;
67              _k < vstruct_last(i);
68              _k = _n) {
69                 _n = bkey_p_next(_k);
70
71                 if (!_k->u64s) {
72                         printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set,
73                                _k->_data - i->_data);
74                         break;
75                 }
76
77                 k = bkey_disassemble(b, _k, &uk);
78
79                 printbuf_reset(&buf);
80                 if (c)
81                         bch2_bkey_val_to_text(&buf, c, k);
82                 else
83                         bch2_bkey_to_text(&buf, k.k);
84                 printk(KERN_ERR "block %u key %5zu: %s\n", set,
85                        _k->_data - i->_data, buf.buf);
86
87                 if (_n == vstruct_last(i))
88                         continue;
89
90                 n = bkey_unpack_key(b, _n);
91
92                 if (bpos_lt(n.p, k.k->p)) {
93                         printk(KERN_ERR "Key skipped backwards\n");
94                         continue;
95                 }
96
97                 if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p))
98                         printk(KERN_ERR "Duplicate keys\n");
99         }
100
101         printbuf_exit(&buf);
102 }
103
104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
105 {
106         struct bset_tree *t;
107
108         console_lock();
109         for_each_bset(b, t)
110                 bch2_dump_bset(c, b, bset(b, t), t - b->set);
111         console_unlock();
112 }
113
114 void bch2_dump_btree_node_iter(struct btree *b,
115                               struct btree_node_iter *iter)
116 {
117         struct btree_node_iter_set *set;
118         struct printbuf buf = PRINTBUF;
119
120         printk(KERN_ERR "btree node iter with %u/%u sets:\n",
121                __btree_node_iter_used(iter), b->nsets);
122
123         btree_node_iter_for_each(iter, set) {
124                 struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
125                 struct bset_tree *t = bch2_bkey_to_bset(b, k);
126                 struct bkey uk = bkey_unpack_key(b, k);
127
128                 printbuf_reset(&buf);
129                 bch2_bkey_to_text(&buf, &uk);
130                 printk(KERN_ERR "set %zu key %u: %s\n",
131                        t - b->set, set->k, buf.buf);
132         }
133
134         printbuf_exit(&buf);
135 }
136
137 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b)
138 {
139         struct bset_tree *t;
140         struct bkey_packed *k;
141         struct btree_nr_keys nr = {};
142
143         for_each_bset(b, t)
144                 bset_tree_for_each_key(b, t, k)
145                         if (!bkey_deleted(k))
146                                 btree_keys_account_key_add(&nr, t - b->set, k);
147         return nr;
148 }
149
150 #ifdef CONFIG_BCACHEFS_DEBUG
151
152 void __bch2_verify_btree_nr_keys(struct btree *b)
153 {
154         struct btree_nr_keys nr = bch2_btree_node_count_keys(b);
155
156         BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
157 }
158
159 static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
160                                             struct btree *b)
161 {
162         struct btree_node_iter iter = *_iter;
163         const struct bkey_packed *k, *n;
164
165         k = bch2_btree_node_iter_peek_all(&iter, b);
166         __bch2_btree_node_iter_advance(&iter, b);
167         n = bch2_btree_node_iter_peek_all(&iter, b);
168
169         bkey_unpack_key(b, k);
170
171         if (n &&
172             bkey_iter_cmp(b, k, n) > 0) {
173                 struct btree_node_iter_set *set;
174                 struct bkey ku = bkey_unpack_key(b, k);
175                 struct bkey nu = bkey_unpack_key(b, n);
176                 struct printbuf buf1 = PRINTBUF;
177                 struct printbuf buf2 = PRINTBUF;
178
179                 bch2_dump_btree_node(NULL, b);
180                 bch2_bkey_to_text(&buf1, &ku);
181                 bch2_bkey_to_text(&buf2, &nu);
182                 printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
183                        buf1.buf, buf2.buf);
184                 printk(KERN_ERR "iter was:");
185
186                 btree_node_iter_for_each(_iter, set) {
187                         struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k);
188                         struct bset_tree *t = bch2_bkey_to_bset(b, k2);
189                         printk(" [%zi %zi]", t - b->set,
190                                k2->_data - bset(b, t)->_data);
191                 }
192                 panic("\n");
193         }
194 }
195
196 void bch2_btree_node_iter_verify(struct btree_node_iter *iter,
197                                  struct btree *b)
198 {
199         struct btree_node_iter_set *set, *s2;
200         struct bkey_packed *k, *p;
201         struct bset_tree *t;
202
203         if (bch2_btree_node_iter_end(iter))
204                 return;
205
206         /* Verify no duplicates: */
207         btree_node_iter_for_each(iter, set) {
208                 BUG_ON(set->k > set->end);
209                 btree_node_iter_for_each(iter, s2)
210                         BUG_ON(set != s2 && set->end == s2->end);
211         }
212
213         /* Verify that set->end is correct: */
214         btree_node_iter_for_each(iter, set) {
215                 for_each_bset(b, t)
216                         if (set->end == t->end_offset)
217                                 goto found;
218                 BUG();
219 found:
220                 BUG_ON(set->k < btree_bkey_first_offset(t) ||
221                        set->k >= t->end_offset);
222         }
223
224         /* Verify iterator is sorted: */
225         btree_node_iter_for_each(iter, set)
226                 BUG_ON(set != iter->data &&
227                        btree_node_iter_cmp(b, set[-1], set[0]) > 0);
228
229         k = bch2_btree_node_iter_peek_all(iter, b);
230
231         for_each_bset(b, t) {
232                 if (iter->data[0].end == t->end_offset)
233                         continue;
234
235                 p = bch2_bkey_prev_all(b, t,
236                         bch2_btree_node_iter_bset_pos(iter, b, t));
237
238                 BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
239         }
240 }
241
242 void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
243                             struct bkey_packed *insert, unsigned clobber_u64s)
244 {
245         struct bset_tree *t = bch2_bkey_to_bset(b, where);
246         struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
247         struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s);
248         struct printbuf buf1 = PRINTBUF;
249         struct printbuf buf2 = PRINTBUF;
250 #if 0
251         BUG_ON(prev &&
252                bkey_iter_cmp(b, prev, insert) > 0);
253 #else
254         if (prev &&
255             bkey_iter_cmp(b, prev, insert) > 0) {
256                 struct bkey k1 = bkey_unpack_key(b, prev);
257                 struct bkey k2 = bkey_unpack_key(b, insert);
258
259                 bch2_dump_btree_node(NULL, b);
260                 bch2_bkey_to_text(&buf1, &k1);
261                 bch2_bkey_to_text(&buf2, &k2);
262
263                 panic("prev > insert:\n"
264                       "prev    key %s\n"
265                       "insert  key %s\n",
266                       buf1.buf, buf2.buf);
267         }
268 #endif
269 #if 0
270         BUG_ON(next != btree_bkey_last(b, t) &&
271                bkey_iter_cmp(b, insert, next) > 0);
272 #else
273         if (next != btree_bkey_last(b, t) &&
274             bkey_iter_cmp(b, insert, next) > 0) {
275                 struct bkey k1 = bkey_unpack_key(b, insert);
276                 struct bkey k2 = bkey_unpack_key(b, next);
277
278                 bch2_dump_btree_node(NULL, b);
279                 bch2_bkey_to_text(&buf1, &k1);
280                 bch2_bkey_to_text(&buf2, &k2);
281
282                 panic("insert > next:\n"
283                       "insert  key %s\n"
284                       "next    key %s\n",
285                       buf1.buf, buf2.buf);
286         }
287 #endif
288 }
289
290 #else
291
292 static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter,
293                                                    struct btree *b) {}
294
295 #endif
296
297 /* Auxiliary search trees */
298
299 #define BFLOAT_FAILED_UNPACKED  U8_MAX
300 #define BFLOAT_FAILED           U8_MAX
301
302 struct bkey_float {
303         u8              exponent;
304         u8              key_offset;
305         u16             mantissa;
306 };
307 #define BKEY_MANTISSA_BITS      16
308
309 static unsigned bkey_float_byte_offset(unsigned idx)
310 {
311         return idx * sizeof(struct bkey_float);
312 }
313
314 struct ro_aux_tree {
315         u8                      nothing[0];
316         struct bkey_float       f[];
317 };
318
319 struct rw_aux_tree {
320         u16             offset;
321         struct bpos     k;
322 };
323
324 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
325 {
326         BUG_ON(t->aux_data_offset == U16_MAX);
327
328         switch (bset_aux_tree_type(t)) {
329         case BSET_NO_AUX_TREE:
330                 return t->aux_data_offset;
331         case BSET_RO_AUX_TREE:
332                 return t->aux_data_offset +
333                         DIV_ROUND_UP(t->size * sizeof(struct bkey_float) +
334                                      t->size * sizeof(u8), 8);
335         case BSET_RW_AUX_TREE:
336                 return t->aux_data_offset +
337                         DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
338         default:
339                 BUG();
340         }
341 }
342
343 static unsigned bset_aux_tree_buf_start(const struct btree *b,
344                                         const struct bset_tree *t)
345 {
346         return t == b->set
347                 ? DIV_ROUND_UP(b->unpack_fn_len, 8)
348                 : bset_aux_tree_buf_end(t - 1);
349 }
350
351 static void *__aux_tree_base(const struct btree *b,
352                              const struct bset_tree *t)
353 {
354         return b->aux_data + t->aux_data_offset * 8;
355 }
356
357 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
358                                             const struct bset_tree *t)
359 {
360         EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
361
362         return __aux_tree_base(b, t);
363 }
364
365 static u8 *ro_aux_tree_prev(const struct btree *b,
366                             const struct bset_tree *t)
367 {
368         EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
369
370         return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size);
371 }
372
373 static struct bkey_float *bkey_float(const struct btree *b,
374                                      const struct bset_tree *t,
375                                      unsigned idx)
376 {
377         return ro_aux_tree_base(b, t)->f + idx;
378 }
379
380 static void bset_aux_tree_verify(const struct btree *b)
381 {
382 #ifdef CONFIG_BCACHEFS_DEBUG
383         const struct bset_tree *t;
384
385         for_each_bset(b, t) {
386                 if (t->aux_data_offset == U16_MAX)
387                         continue;
388
389                 BUG_ON(t != b->set &&
390                        t[-1].aux_data_offset == U16_MAX);
391
392                 BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
393                 BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
394                 BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
395         }
396 #endif
397 }
398
399 void bch2_btree_keys_init(struct btree *b)
400 {
401         unsigned i;
402
403         b->nsets                = 0;
404         memset(&b->nr, 0, sizeof(b->nr));
405
406         for (i = 0; i < MAX_BSETS; i++)
407                 b->set[i].data_offset = U16_MAX;
408
409         bch2_bset_set_no_aux_tree(b, b->set);
410 }
411
412 /* Binary tree stuff for auxiliary search trees */
413
414 /*
415  * Cacheline/offset <-> bkey pointer arithmetic:
416  *
417  * t->tree is a binary search tree in an array; each node corresponds to a key
418  * in one cacheline in t->set (BSET_CACHELINE bytes).
419  *
420  * This means we don't have to store the full index of the key that a node in
421  * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
422  * then bkey_float->m gives us the offset within that cacheline, in units of 8
423  * bytes.
424  *
425  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
426  * make this work.
427  *
428  * To construct the bfloat for an arbitrary key we need to know what the key
429  * immediately preceding it is: we have to check if the two keys differ in the
430  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
431  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
432  */
433
434 static inline void *bset_cacheline(const struct btree *b,
435                                    const struct bset_tree *t,
436                                    unsigned cacheline)
437 {
438         return (void *) round_down((unsigned long) btree_bkey_first(b, t),
439                                    L1_CACHE_BYTES) +
440                 cacheline * BSET_CACHELINE;
441 }
442
443 static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
444                                              const struct bset_tree *t,
445                                              unsigned cacheline,
446                                              unsigned offset)
447 {
448         return bset_cacheline(b, t, cacheline) + offset * 8;
449 }
450
451 static unsigned bkey_to_cacheline(const struct btree *b,
452                                   const struct bset_tree *t,
453                                   const struct bkey_packed *k)
454 {
455         return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
456 }
457
458 static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
459                                           const struct bset_tree *t,
460                                           unsigned cacheline,
461                                           const struct bkey_packed *k)
462 {
463         return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
464 }
465
466 static unsigned bkey_to_cacheline_offset(const struct btree *b,
467                                          const struct bset_tree *t,
468                                          unsigned cacheline,
469                                          const struct bkey_packed *k)
470 {
471         size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
472
473         EBUG_ON(m > U8_MAX);
474         return m;
475 }
476
477 static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
478                                                const struct bset_tree *t,
479                                                unsigned j)
480 {
481         return cacheline_to_bkey(b, t,
482                         __eytzinger1_to_inorder(j, t->size - 1, t->extra),
483                         bkey_float(b, t, j)->key_offset);
484 }
485
486 static struct bkey_packed *tree_to_prev_bkey(const struct btree *b,
487                                              const struct bset_tree *t,
488                                              unsigned j)
489 {
490         unsigned prev_u64s = ro_aux_tree_prev(b, t)[j];
491
492         return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s);
493 }
494
495 static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
496                                        const struct bset_tree *t)
497 {
498         EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
499
500         return __aux_tree_base(b, t);
501 }
502
503 /*
504  * For the write set - the one we're currently inserting keys into - we don't
505  * maintain a full search tree, we just keep a simple lookup table in t->prev.
506  */
507 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
508                                           struct bset_tree *t,
509                                           unsigned j)
510 {
511         return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
512 }
513
514 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
515                             unsigned j, struct bkey_packed *k)
516 {
517         EBUG_ON(k >= btree_bkey_last(b, t));
518
519         rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
520                 .offset = __btree_node_key_to_offset(b, k),
521                 .k      = bkey_unpack_pos(b, k),
522         };
523 }
524
525 static void bch2_bset_verify_rw_aux_tree(struct btree *b,
526                                         struct bset_tree *t)
527 {
528         struct bkey_packed *k = btree_bkey_first(b, t);
529         unsigned j = 0;
530
531         if (!bch2_expensive_debug_checks)
532                 return;
533
534         BUG_ON(bset_has_ro_aux_tree(t));
535
536         if (!bset_has_rw_aux_tree(t))
537                 return;
538
539         BUG_ON(t->size < 1);
540         BUG_ON(rw_aux_to_bkey(b, t, j) != k);
541
542         goto start;
543         while (1) {
544                 if (rw_aux_to_bkey(b, t, j) == k) {
545                         BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k,
546                                         bkey_unpack_pos(b, k)));
547 start:
548                         if (++j == t->size)
549                                 break;
550
551                         BUG_ON(rw_aux_tree(b, t)[j].offset <=
552                                rw_aux_tree(b, t)[j - 1].offset);
553                 }
554
555                 k = bkey_p_next(k);
556                 BUG_ON(k >= btree_bkey_last(b, t));
557         }
558 }
559
560 /* returns idx of first entry >= offset: */
561 static unsigned rw_aux_tree_bsearch(struct btree *b,
562                                     struct bset_tree *t,
563                                     unsigned offset)
564 {
565         unsigned bset_offs = offset - btree_bkey_first_offset(t);
566         unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
567         unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
568
569         EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
570         EBUG_ON(!t->size);
571         EBUG_ON(idx > t->size);
572
573         while (idx < t->size &&
574                rw_aux_tree(b, t)[idx].offset < offset)
575                 idx++;
576
577         while (idx &&
578                rw_aux_tree(b, t)[idx - 1].offset >= offset)
579                 idx--;
580
581         EBUG_ON(idx < t->size &&
582                 rw_aux_tree(b, t)[idx].offset < offset);
583         EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
584         EBUG_ON(idx + 1 < t->size &&
585                 rw_aux_tree(b, t)[idx].offset ==
586                 rw_aux_tree(b, t)[idx + 1].offset);
587
588         return idx;
589 }
590
591 static inline unsigned bkey_mantissa(const struct bkey_packed *k,
592                                      const struct bkey_float *f,
593                                      unsigned idx)
594 {
595         u64 v;
596
597         EBUG_ON(!bkey_packed(k));
598
599         v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
600
601         /*
602          * In little endian, we're shifting off low bits (and then the bits we
603          * want are at the low end), in big endian we're shifting off high bits
604          * (and then the bits we want are at the high end, so we shift them
605          * back down):
606          */
607 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
608         v >>= f->exponent & 7;
609 #else
610         v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
611 #endif
612         return (u16) v;
613 }
614
615 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t,
616                                         unsigned j,
617                                         struct bkey_packed *min_key,
618                                         struct bkey_packed *max_key)
619 {
620         struct bkey_float *f = bkey_float(b, t, j);
621         struct bkey_packed *m = tree_to_bkey(b, t, j);
622         struct bkey_packed *l = is_power_of_2(j)
623                 ? min_key
624                 : tree_to_prev_bkey(b, t, j >> ffs(j));
625         struct bkey_packed *r = is_power_of_2(j + 1)
626                 ? max_key
627                 : tree_to_bkey(b, t, j >> (ffz(j) + 1));
628         unsigned mantissa;
629         int shift, exponent, high_bit;
630
631         /*
632          * for failed bfloats, the lookup code falls back to comparing against
633          * the original key.
634          */
635
636         if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
637             !b->nr_key_bits) {
638                 f->exponent = BFLOAT_FAILED_UNPACKED;
639                 return;
640         }
641
642         /*
643          * The greatest differing bit of l and r is the first bit we must
644          * include in the bfloat mantissa we're creating in order to do
645          * comparisons - that bit always becomes the high bit of
646          * bfloat->mantissa, and thus the exponent we're calculating here is
647          * the position of what will become the low bit in bfloat->mantissa:
648          *
649          * Note that this may be negative - we may be running off the low end
650          * of the key: we handle this later:
651          */
652         high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
653                        min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
654         exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
655
656         /*
657          * Then we calculate the actual shift value, from the start of the key
658          * (k->_data), to get the key bits starting at exponent:
659          */
660 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
661         shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
662
663         EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
664 #else
665         shift = high_bit_offset +
666                 b->nr_key_bits -
667                 exponent -
668                 BKEY_MANTISSA_BITS;
669
670         EBUG_ON(shift < KEY_PACKED_BITS_START);
671 #endif
672         EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
673
674         f->exponent = shift;
675         mantissa = bkey_mantissa(m, f, j);
676
677         /*
678          * If we've got garbage bits, set them to all 1s - it's legal for the
679          * bfloat to compare larger than the original key, but not smaller:
680          */
681         if (exponent < 0)
682                 mantissa |= ~(~0U << -exponent);
683
684         f->mantissa = mantissa;
685 }
686
687 /* bytes remaining - only valid for last bset: */
688 static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t)
689 {
690         bset_aux_tree_verify(b);
691
692         return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
693 }
694
695 static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t)
696 {
697         return __bset_tree_capacity(b, t) /
698                 (sizeof(struct bkey_float) + sizeof(u8));
699 }
700
701 static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t)
702 {
703         return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
704 }
705
706 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
707 {
708         struct bkey_packed *k;
709
710         t->size = 1;
711         t->extra = BSET_RW_AUX_TREE_VAL;
712         rw_aux_tree(b, t)[0].offset =
713                 __btree_node_key_to_offset(b, btree_bkey_first(b, t));
714
715         bset_tree_for_each_key(b, t, k) {
716                 if (t->size == bset_rw_tree_capacity(b, t))
717                         break;
718
719                 if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
720                     L1_CACHE_BYTES)
721                         rw_aux_tree_set(b, t, t->size++, k);
722         }
723 }
724
725 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
726 {
727         struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t);
728         struct bkey_i min_key, max_key;
729         unsigned cacheline = 1;
730
731         t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
732                       bset_ro_tree_capacity(b, t));
733 retry:
734         if (t->size < 2) {
735                 t->size = 0;
736                 t->extra = BSET_NO_AUX_TREE_VAL;
737                 return;
738         }
739
740         t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
741
742         /* First we figure out where the first key in each cacheline is */
743         eytzinger1_for_each(j, t->size - 1) {
744                 while (bkey_to_cacheline(b, t, k) < cacheline)
745                         prev = k, k = bkey_p_next(k);
746
747                 if (k >= btree_bkey_last(b, t)) {
748                         /* XXX: this path sucks */
749                         t->size--;
750                         goto retry;
751                 }
752
753                 ro_aux_tree_prev(b, t)[j] = prev->u64s;
754                 bkey_float(b, t, j)->key_offset =
755                         bkey_to_cacheline_offset(b, t, cacheline++, k);
756
757                 EBUG_ON(tree_to_prev_bkey(b, t, j) != prev);
758                 EBUG_ON(tree_to_bkey(b, t, j) != k);
759         }
760
761         while (k != btree_bkey_last(b, t))
762                 prev = k, k = bkey_p_next(k);
763
764         if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
765                 bkey_init(&min_key.k);
766                 min_key.k.p = b->data->min_key;
767         }
768
769         if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
770                 bkey_init(&max_key.k);
771                 max_key.k.p = b->data->max_key;
772         }
773
774         /* Then we build the tree */
775         eytzinger1_for_each(j, t->size - 1)
776                 make_bfloat(b, t, j,
777                             bkey_to_packed(&min_key),
778                             bkey_to_packed(&max_key));
779 }
780
781 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
782 {
783         struct bset_tree *i;
784
785         for (i = b->set; i != t; i++)
786                 BUG_ON(bset_has_rw_aux_tree(i));
787
788         bch2_bset_set_no_aux_tree(b, t);
789
790         /* round up to next cacheline: */
791         t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
792                                       SMP_CACHE_BYTES / sizeof(u64));
793
794         bset_aux_tree_verify(b);
795 }
796
797 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
798                              bool writeable)
799 {
800         if (writeable
801             ? bset_has_rw_aux_tree(t)
802             : bset_has_ro_aux_tree(t))
803                 return;
804
805         bset_alloc_tree(b, t);
806
807         if (!__bset_tree_capacity(b, t))
808                 return;
809
810         if (writeable)
811                 __build_rw_aux_tree(b, t);
812         else
813                 __build_ro_aux_tree(b, t);
814
815         bset_aux_tree_verify(b);
816 }
817
818 void bch2_bset_init_first(struct btree *b, struct bset *i)
819 {
820         struct bset_tree *t;
821
822         BUG_ON(b->nsets);
823
824         memset(i, 0, sizeof(*i));
825         get_random_bytes(&i->seq, sizeof(i->seq));
826         SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
827
828         t = &b->set[b->nsets++];
829         set_btree_bset(b, t, i);
830 }
831
832 void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne)
833 {
834         struct bset *i = &bne->keys;
835         struct bset_tree *t;
836
837         BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b));
838         BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
839         BUG_ON(b->nsets >= MAX_BSETS);
840
841         memset(i, 0, sizeof(*i));
842         i->seq = btree_bset_first(b)->seq;
843         SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
844
845         t = &b->set[b->nsets++];
846         set_btree_bset(b, t, i);
847 }
848
849 /*
850  * find _some_ key in the same bset as @k that precedes @k - not necessarily the
851  * immediate predecessor:
852  */
853 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
854                                        struct bkey_packed *k)
855 {
856         struct bkey_packed *p;
857         unsigned offset;
858         int j;
859
860         EBUG_ON(k < btree_bkey_first(b, t) ||
861                 k > btree_bkey_last(b, t));
862
863         if (k == btree_bkey_first(b, t))
864                 return NULL;
865
866         switch (bset_aux_tree_type(t)) {
867         case BSET_NO_AUX_TREE:
868                 p = btree_bkey_first(b, t);
869                 break;
870         case BSET_RO_AUX_TREE:
871                 j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
872
873                 do {
874                         p = j ? tree_to_bkey(b, t,
875                                         __inorder_to_eytzinger1(j--,
876                                                         t->size - 1, t->extra))
877                               : btree_bkey_first(b, t);
878                 } while (p >= k);
879                 break;
880         case BSET_RW_AUX_TREE:
881                 offset = __btree_node_key_to_offset(b, k);
882                 j = rw_aux_tree_bsearch(b, t, offset);
883                 p = j ? rw_aux_to_bkey(b, t, j - 1)
884                       : btree_bkey_first(b, t);
885                 break;
886         }
887
888         return p;
889 }
890
891 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
892                                           struct bset_tree *t,
893                                           struct bkey_packed *k,
894                                           unsigned min_key_type)
895 {
896         struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
897
898         while ((p = __bkey_prev(b, t, k)) && !ret) {
899                 for (i = p; i != k; i = bkey_p_next(i))
900                         if (i->type >= min_key_type)
901                                 ret = i;
902
903                 k = p;
904         }
905
906         if (bch2_expensive_debug_checks) {
907                 BUG_ON(ret >= orig_k);
908
909                 for (i = ret
910                         ? bkey_p_next(ret)
911                         : btree_bkey_first(b, t);
912                      i != orig_k;
913                      i = bkey_p_next(i))
914                         BUG_ON(i->type >= min_key_type);
915         }
916
917         return ret;
918 }
919
920 /* Insert */
921
922 static void bch2_bset_fix_lookup_table(struct btree *b,
923                                        struct bset_tree *t,
924                                        struct bkey_packed *_where,
925                                        unsigned clobber_u64s,
926                                        unsigned new_u64s)
927 {
928         int shift = new_u64s - clobber_u64s;
929         unsigned l, j, where = __btree_node_key_to_offset(b, _where);
930
931         EBUG_ON(bset_has_ro_aux_tree(t));
932
933         if (!bset_has_rw_aux_tree(t))
934                 return;
935
936         /* returns first entry >= where */
937         l = rw_aux_tree_bsearch(b, t, where);
938
939         if (!l) /* never delete first entry */
940                 l++;
941         else if (l < t->size &&
942                  where < t->end_offset &&
943                  rw_aux_tree(b, t)[l].offset == where)
944                 rw_aux_tree_set(b, t, l++, _where);
945
946         /* l now > where */
947
948         for (j = l;
949              j < t->size &&
950              rw_aux_tree(b, t)[j].offset < where + clobber_u64s;
951              j++)
952                 ;
953
954         if (j < t->size &&
955             rw_aux_tree(b, t)[j].offset + shift ==
956             rw_aux_tree(b, t)[l - 1].offset)
957                 j++;
958
959         memmove(&rw_aux_tree(b, t)[l],
960                 &rw_aux_tree(b, t)[j],
961                 (void *) &rw_aux_tree(b, t)[t->size] -
962                 (void *) &rw_aux_tree(b, t)[j]);
963         t->size -= j - l;
964
965         for (j = l; j < t->size; j++)
966                 rw_aux_tree(b, t)[j].offset += shift;
967
968         EBUG_ON(l < t->size &&
969                 rw_aux_tree(b, t)[l].offset ==
970                 rw_aux_tree(b, t)[l - 1].offset);
971
972         if (t->size < bset_rw_tree_capacity(b, t) &&
973             (l < t->size
974              ? rw_aux_tree(b, t)[l].offset
975              : t->end_offset) -
976             rw_aux_tree(b, t)[l - 1].offset >
977             L1_CACHE_BYTES / sizeof(u64)) {
978                 struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1);
979                 struct bkey_packed *end = l < t->size
980                         ? rw_aux_to_bkey(b, t, l)
981                         : btree_bkey_last(b, t);
982                 struct bkey_packed *k = start;
983
984                 while (1) {
985                         k = bkey_p_next(k);
986                         if (k == end)
987                                 break;
988
989                         if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
990                                 memmove(&rw_aux_tree(b, t)[l + 1],
991                                         &rw_aux_tree(b, t)[l],
992                                         (void *) &rw_aux_tree(b, t)[t->size] -
993                                         (void *) &rw_aux_tree(b, t)[l]);
994                                 t->size++;
995                                 rw_aux_tree_set(b, t, l, k);
996                                 break;
997                         }
998                 }
999         }
1000
1001         bch2_bset_verify_rw_aux_tree(b, t);
1002         bset_aux_tree_verify(b);
1003 }
1004
1005 void bch2_bset_insert(struct btree *b,
1006                       struct btree_node_iter *iter,
1007                       struct bkey_packed *where,
1008                       struct bkey_i *insert,
1009                       unsigned clobber_u64s)
1010 {
1011         struct bkey_format *f = &b->format;
1012         struct bset_tree *t = bset_tree_last(b);
1013         struct bkey_packed packed, *src = bkey_to_packed(insert);
1014
1015         bch2_bset_verify_rw_aux_tree(b, t);
1016         bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
1017
1018         if (bch2_bkey_pack_key(&packed, &insert->k, f))
1019                 src = &packed;
1020
1021         if (!bkey_deleted(&insert->k))
1022                 btree_keys_account_key_add(&b->nr, t - b->set, src);
1023
1024         if (src->u64s != clobber_u64s) {
1025                 u64 *src_p = (u64 *) where->_data + clobber_u64s;
1026                 u64 *dst_p = (u64 *) where->_data + src->u64s;
1027
1028                 EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1029                         (int) clobber_u64s - src->u64s);
1030
1031                 memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1032                 le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1033                 set_btree_bset_end(b, t);
1034         }
1035
1036         memcpy_u64s_small(where, src,
1037                     bkeyp_key_u64s(f, src));
1038         memcpy_u64s(bkeyp_val(f, where), &insert->v,
1039                     bkeyp_val_u64s(f, src));
1040
1041         if (src->u64s != clobber_u64s)
1042                 bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1043
1044         bch2_verify_btree_nr_keys(b);
1045 }
1046
1047 void bch2_bset_delete(struct btree *b,
1048                       struct bkey_packed *where,
1049                       unsigned clobber_u64s)
1050 {
1051         struct bset_tree *t = bset_tree_last(b);
1052         u64 *src_p = (u64 *) where->_data + clobber_u64s;
1053         u64 *dst_p = where->_data;
1054
1055         bch2_bset_verify_rw_aux_tree(b, t);
1056
1057         EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1058
1059         memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1060         le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1061         set_btree_bset_end(b, t);
1062
1063         bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1064 }
1065
1066 /* Lookup */
1067
1068 __flatten
1069 static struct bkey_packed *bset_search_write_set(const struct btree *b,
1070                                 struct bset_tree *t,
1071                                 struct bpos *search)
1072 {
1073         unsigned l = 0, r = t->size;
1074
1075         while (l + 1 != r) {
1076                 unsigned m = (l + r) >> 1;
1077
1078                 if (bpos_lt(rw_aux_tree(b, t)[m].k, *search))
1079                         l = m;
1080                 else
1081                         r = m;
1082         }
1083
1084         return rw_aux_to_bkey(b, t, l);
1085 }
1086
1087 static inline void prefetch_four_cachelines(void *p)
1088 {
1089 #ifdef CONFIG_X86_64
1090         asm("prefetcht0 (-127 + 64 * 0)(%0);"
1091             "prefetcht0 (-127 + 64 * 1)(%0);"
1092             "prefetcht0 (-127 + 64 * 2)(%0);"
1093             "prefetcht0 (-127 + 64 * 3)(%0);"
1094             :
1095             : "r" (p + 127));
1096 #else
1097         prefetch(p + L1_CACHE_BYTES * 0);
1098         prefetch(p + L1_CACHE_BYTES * 1);
1099         prefetch(p + L1_CACHE_BYTES * 2);
1100         prefetch(p + L1_CACHE_BYTES * 3);
1101 #endif
1102 }
1103
1104 static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1105                                               const struct bkey_float *f,
1106                                               unsigned idx)
1107 {
1108 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1109         unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1110
1111         return f->exponent > key_bits_start;
1112 #else
1113         unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1114
1115         return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1116 #endif
1117 }
1118
1119 __flatten
1120 static struct bkey_packed *bset_search_tree(const struct btree *b,
1121                                 const struct bset_tree *t,
1122                                 const struct bpos *search,
1123                                 const struct bkey_packed *packed_search)
1124 {
1125         struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1126         struct bkey_float *f;
1127         struct bkey_packed *k;
1128         unsigned inorder, n = 1, l, r;
1129         int cmp;
1130
1131         do {
1132                 if (likely(n << 4 < t->size))
1133                         prefetch(&base->f[n << 4]);
1134
1135                 f = &base->f[n];
1136                 if (unlikely(f->exponent >= BFLOAT_FAILED))
1137                         goto slowpath;
1138
1139                 l = f->mantissa;
1140                 r = bkey_mantissa(packed_search, f, n);
1141
1142                 if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n))
1143                         goto slowpath;
1144
1145                 n = n * 2 + (l < r);
1146                 continue;
1147 slowpath:
1148                 k = tree_to_bkey(b, t, n);
1149                 cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1150                 if (!cmp)
1151                         return k;
1152
1153                 n = n * 2 + (cmp < 0);
1154         } while (n < t->size);
1155
1156         inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1157
1158         /*
1159          * n would have been the node we recursed to - the low bit tells us if
1160          * we recursed left or recursed right.
1161          */
1162         if (likely(!(n & 1))) {
1163                 --inorder;
1164                 if (unlikely(!inorder))
1165                         return btree_bkey_first(b, t);
1166
1167                 f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1168         }
1169
1170         return cacheline_to_bkey(b, t, inorder, f->key_offset);
1171 }
1172
1173 static __always_inline __flatten
1174 struct bkey_packed *__bch2_bset_search(struct btree *b,
1175                                 struct bset_tree *t,
1176                                 struct bpos *search,
1177                                 const struct bkey_packed *lossy_packed_search)
1178 {
1179
1180         /*
1181          * First, we search for a cacheline, then lastly we do a linear search
1182          * within that cacheline.
1183          *
1184          * To search for the cacheline, there's three different possibilities:
1185          *  * The set is too small to have a search tree, so we just do a linear
1186          *    search over the whole set.
1187          *  * The set is the one we're currently inserting into; keeping a full
1188          *    auxiliary search tree up to date would be too expensive, so we
1189          *    use a much simpler lookup table to do a binary search -
1190          *    bset_search_write_set().
1191          *  * Or we use the auxiliary search tree we constructed earlier -
1192          *    bset_search_tree()
1193          */
1194
1195         switch (bset_aux_tree_type(t)) {
1196         case BSET_NO_AUX_TREE:
1197                 return btree_bkey_first(b, t);
1198         case BSET_RW_AUX_TREE:
1199                 return bset_search_write_set(b, t, search);
1200         case BSET_RO_AUX_TREE:
1201                 return bset_search_tree(b, t, search, lossy_packed_search);
1202         default:
1203                 BUG();
1204         }
1205 }
1206
1207 static __always_inline __flatten
1208 struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1209                                 struct bset_tree *t,
1210                                 struct bpos *search,
1211                                 struct bkey_packed *packed_search,
1212                                 const struct bkey_packed *lossy_packed_search,
1213                                 struct bkey_packed *m)
1214 {
1215         if (lossy_packed_search)
1216                 while (m != btree_bkey_last(b, t) &&
1217                        bkey_iter_cmp_p_or_unp(b, m,
1218                                         lossy_packed_search, search) < 0)
1219                         m = bkey_p_next(m);
1220
1221         if (!packed_search)
1222                 while (m != btree_bkey_last(b, t) &&
1223                        bkey_iter_pos_cmp(b, m, search) < 0)
1224                         m = bkey_p_next(m);
1225
1226         if (bch2_expensive_debug_checks) {
1227                 struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1228
1229                 BUG_ON(prev &&
1230                        bkey_iter_cmp_p_or_unp(b, prev,
1231                                         packed_search, search) >= 0);
1232         }
1233
1234         return m;
1235 }
1236
1237 /* Btree node iterator */
1238
1239 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1240                               struct btree *b,
1241                               const struct bkey_packed *k,
1242                               const struct bkey_packed *end)
1243 {
1244         if (k != end) {
1245                 struct btree_node_iter_set *pos;
1246
1247                 btree_node_iter_for_each(iter, pos)
1248                         ;
1249
1250                 BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1251                 *pos = (struct btree_node_iter_set) {
1252                         __btree_node_key_to_offset(b, k),
1253                         __btree_node_key_to_offset(b, end)
1254                 };
1255         }
1256 }
1257
1258 void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1259                                struct btree *b,
1260                                const struct bkey_packed *k,
1261                                const struct bkey_packed *end)
1262 {
1263         __bch2_btree_node_iter_push(iter, b, k, end);
1264         bch2_btree_node_iter_sort(iter, b);
1265 }
1266
1267 noinline __flatten __cold
1268 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1269                               struct btree *b, struct bpos *search)
1270 {
1271         struct bkey_packed *k;
1272
1273         trace_bkey_pack_pos_fail(search);
1274
1275         bch2_btree_node_iter_init_from_start(iter, b);
1276
1277         while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1278                bkey_iter_pos_cmp(b, k, search) < 0)
1279                 bch2_btree_node_iter_advance(iter, b);
1280 }
1281
1282 /**
1283  * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a
1284  * given position
1285  *
1286  * @iter:       iterator to initialize
1287  * @b:          btree node to search
1288  * @search:     search key
1289  *
1290  * Main entry point to the lookup code for individual btree nodes:
1291  *
1292  * NOTE:
1293  *
1294  * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1295  * keys. This doesn't matter for most code, but it does matter for lookups.
1296  *
1297  * Some adjacent keys with a string of equal keys:
1298  *      i j k k k k l m
1299  *
1300  * If you search for k, the lookup code isn't guaranteed to return you any
1301  * specific k. The lookup code is conceptually doing a binary search and
1302  * iterating backwards is very expensive so if the pivot happens to land at the
1303  * last k that's what you'll get.
1304  *
1305  * This works out ok, but it's something to be aware of:
1306  *
1307  *  - For non extents, we guarantee that the live key comes last - see
1308  *    btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1309  *    see will only be deleted keys you don't care about.
1310  *
1311  *  - For extents, deleted keys sort last (see the comment at the top of this
1312  *    file). But when you're searching for extents, you actually want the first
1313  *    key strictly greater than your search key - an extent that compares equal
1314  *    to the search key is going to have 0 sectors after the search key.
1315  *
1316  *    But this does mean that we can't just search for
1317  *    bpos_successor(start_of_range) to get the first extent that overlaps with
1318  *    the range we want - if we're unlucky and there's an extent that ends
1319  *    exactly where we searched, then there could be a deleted key at the same
1320  *    position and we'd get that when we search instead of the preceding extent
1321  *    we needed.
1322  *
1323  *    So we've got to search for start_of_range, then after the lookup iterate
1324  *    past any extents that compare equal to the position we searched for.
1325  */
1326 __flatten
1327 void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1328                                struct btree *b, struct bpos *search)
1329 {
1330         struct bkey_packed p, *packed_search = NULL;
1331         struct btree_node_iter_set *pos = iter->data;
1332         struct bkey_packed *k[MAX_BSETS];
1333         unsigned i;
1334
1335         EBUG_ON(bpos_lt(*search, b->data->min_key));
1336         EBUG_ON(bpos_gt(*search, b->data->max_key));
1337         bset_aux_tree_verify(b);
1338
1339         memset(iter, 0, sizeof(*iter));
1340
1341         switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1342         case BKEY_PACK_POS_EXACT:
1343                 packed_search = &p;
1344                 break;
1345         case BKEY_PACK_POS_SMALLER:
1346                 packed_search = NULL;
1347                 break;
1348         case BKEY_PACK_POS_FAIL:
1349                 btree_node_iter_init_pack_failed(iter, b, search);
1350                 return;
1351         }
1352
1353         for (i = 0; i < b->nsets; i++) {
1354                 k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1355                 prefetch_four_cachelines(k[i]);
1356         }
1357
1358         for (i = 0; i < b->nsets; i++) {
1359                 struct bset_tree *t = b->set + i;
1360                 struct bkey_packed *end = btree_bkey_last(b, t);
1361
1362                 k[i] = bch2_bset_search_linear(b, t, search,
1363                                                packed_search, &p, k[i]);
1364                 if (k[i] != end)
1365                         *pos++ = (struct btree_node_iter_set) {
1366                                 __btree_node_key_to_offset(b, k[i]),
1367                                 __btree_node_key_to_offset(b, end)
1368                         };
1369         }
1370
1371         bch2_btree_node_iter_sort(iter, b);
1372 }
1373
1374 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1375                                           struct btree *b)
1376 {
1377         struct bset_tree *t;
1378
1379         memset(iter, 0, sizeof(*iter));
1380
1381         for_each_bset(b, t)
1382                 __bch2_btree_node_iter_push(iter, b,
1383                                            btree_bkey_first(b, t),
1384                                            btree_bkey_last(b, t));
1385         bch2_btree_node_iter_sort(iter, b);
1386 }
1387
1388 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1389                                                   struct btree *b,
1390                                                   struct bset_tree *t)
1391 {
1392         struct btree_node_iter_set *set;
1393
1394         btree_node_iter_for_each(iter, set)
1395                 if (set->end == t->end_offset)
1396                         return __btree_node_offset_to_key(b, set->k);
1397
1398         return btree_bkey_last(b, t);
1399 }
1400
1401 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1402                                             struct btree *b,
1403                                             unsigned first)
1404 {
1405         bool ret;
1406
1407         if ((ret = (btree_node_iter_cmp(b,
1408                                         iter->data[first],
1409                                         iter->data[first + 1]) > 0)))
1410                 swap(iter->data[first], iter->data[first + 1]);
1411         return ret;
1412 }
1413
1414 void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1415                                struct btree *b)
1416 {
1417         /* unrolled bubble sort: */
1418
1419         if (!__btree_node_iter_set_end(iter, 2)) {
1420                 btree_node_iter_sort_two(iter, b, 0);
1421                 btree_node_iter_sort_two(iter, b, 1);
1422         }
1423
1424         if (!__btree_node_iter_set_end(iter, 1))
1425                 btree_node_iter_sort_two(iter, b, 0);
1426 }
1427
1428 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1429                                    struct btree_node_iter_set *set)
1430 {
1431         struct btree_node_iter_set *last =
1432                 iter->data + ARRAY_SIZE(iter->data) - 1;
1433
1434         memmove(&set[0], &set[1], (void *) last - (void *) set);
1435         *last = (struct btree_node_iter_set) { 0, 0 };
1436 }
1437
1438 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1439                                                   struct btree *b)
1440 {
1441         iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1442
1443         EBUG_ON(iter->data->k > iter->data->end);
1444
1445         if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1446                 /* avoid an expensive memmove call: */
1447                 iter->data[0] = iter->data[1];
1448                 iter->data[1] = iter->data[2];
1449                 iter->data[2] = (struct btree_node_iter_set) { 0, 0 };
1450                 return;
1451         }
1452
1453         if (__btree_node_iter_set_end(iter, 1))
1454                 return;
1455
1456         if (!btree_node_iter_sort_two(iter, b, 0))
1457                 return;
1458
1459         if (__btree_node_iter_set_end(iter, 2))
1460                 return;
1461
1462         btree_node_iter_sort_two(iter, b, 1);
1463 }
1464
1465 void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1466                                   struct btree *b)
1467 {
1468         if (bch2_expensive_debug_checks) {
1469                 bch2_btree_node_iter_verify(iter, b);
1470                 bch2_btree_node_iter_next_check(iter, b);
1471         }
1472
1473         __bch2_btree_node_iter_advance(iter, b);
1474 }
1475
1476 /*
1477  * Expensive:
1478  */
1479 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1480                                                   struct btree *b)
1481 {
1482         struct bkey_packed *k, *prev = NULL;
1483         struct btree_node_iter_set *set;
1484         struct bset_tree *t;
1485         unsigned end = 0;
1486
1487         if (bch2_expensive_debug_checks)
1488                 bch2_btree_node_iter_verify(iter, b);
1489
1490         for_each_bset(b, t) {
1491                 k = bch2_bkey_prev_all(b, t,
1492                         bch2_btree_node_iter_bset_pos(iter, b, t));
1493                 if (k &&
1494                     (!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1495                         prev = k;
1496                         end = t->end_offset;
1497                 }
1498         }
1499
1500         if (!prev)
1501                 return NULL;
1502
1503         /*
1504          * We're manually memmoving instead of just calling sort() to ensure the
1505          * prev we picked ends up in slot 0 - sort won't necessarily put it
1506          * there because of duplicate deleted keys:
1507          */
1508         btree_node_iter_for_each(iter, set)
1509                 if (set->end == end)
1510                         goto found;
1511
1512         BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1513 found:
1514         BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1515
1516         memmove(&iter->data[1],
1517                 &iter->data[0],
1518                 (void *) set - (void *) &iter->data[0]);
1519
1520         iter->data[0].k = __btree_node_key_to_offset(b, prev);
1521         iter->data[0].end = end;
1522
1523         if (bch2_expensive_debug_checks)
1524                 bch2_btree_node_iter_verify(iter, b);
1525         return prev;
1526 }
1527
1528 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1529                                               struct btree *b)
1530 {
1531         struct bkey_packed *prev;
1532
1533         do {
1534                 prev = bch2_btree_node_iter_prev_all(iter, b);
1535         } while (prev && bkey_deleted(prev));
1536
1537         return prev;
1538 }
1539
1540 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1541                                                  struct btree *b,
1542                                                  struct bkey *u)
1543 {
1544         struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1545
1546         return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1547 }
1548
1549 /* Mergesort */
1550
1551 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats)
1552 {
1553         const struct bset_tree *t;
1554
1555         for_each_bset(b, t) {
1556                 enum bset_aux_tree_type type = bset_aux_tree_type(t);
1557                 size_t j;
1558
1559                 stats->sets[type].nr++;
1560                 stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1561                         sizeof(u64);
1562
1563                 if (bset_has_ro_aux_tree(t)) {
1564                         stats->floats += t->size - 1;
1565
1566                         for (j = 1; j < t->size; j++)
1567                                 stats->failed +=
1568                                         bkey_float(b, t, j)->exponent ==
1569                                         BFLOAT_FAILED;
1570                 }
1571         }
1572 }
1573
1574 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1575                          struct bkey_packed *k)
1576 {
1577         struct bset_tree *t = bch2_bkey_to_bset(b, k);
1578         struct bkey uk;
1579         unsigned j, inorder;
1580
1581         if (!bset_has_ro_aux_tree(t))
1582                 return;
1583
1584         inorder = bkey_to_cacheline(b, t, k);
1585         if (!inorder || inorder >= t->size)
1586                 return;
1587
1588         j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1589         if (k != tree_to_bkey(b, t, j))
1590                 return;
1591
1592         switch (bkey_float(b, t, j)->exponent) {
1593         case BFLOAT_FAILED:
1594                 uk = bkey_unpack_key(b, k);
1595                 prt_printf(out,
1596                        "    failed unpacked at depth %u\n"
1597                        "\t",
1598                        ilog2(j));
1599                 bch2_bpos_to_text(out, uk.p);
1600                 prt_printf(out, "\n");
1601                 break;
1602         }
1603 }