Merge tag 'driver-core-6.9-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / scsi / mpi3mr / mpi3mr_app.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom MPI3 Storage Controllers
4  *
5  * Copyright (C) 2017-2023 Broadcom Inc.
6  *  (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
7  *
8  */
9
10 #include "mpi3mr.h"
11 #include <linux/bsg-lib.h>
12 #include <uapi/scsi/scsi_bsg_mpi3mr.h>
13
14 /**
15  * mpi3mr_bsg_pel_abort - sends PEL abort request
16  * @mrioc: Adapter instance reference
17  *
18  * This function sends PEL abort request to the firmware through
19  * admin request queue.
20  *
21  * Return: 0 on success, -1 on failure
22  */
23 static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
24 {
25         struct mpi3_pel_req_action_abort pel_abort_req;
26         struct mpi3_pel_reply *pel_reply;
27         int retval = 0;
28         u16 pe_log_status;
29
30         if (mrioc->reset_in_progress) {
31                 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
32                 return -1;
33         }
34         if (mrioc->stop_bsgs) {
35                 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
36                 return -1;
37         }
38
39         memset(&pel_abort_req, 0, sizeof(pel_abort_req));
40         mutex_lock(&mrioc->pel_abort_cmd.mutex);
41         if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
42                 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
43                 mutex_unlock(&mrioc->pel_abort_cmd.mutex);
44                 return -1;
45         }
46         mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
47         mrioc->pel_abort_cmd.is_waiting = 1;
48         mrioc->pel_abort_cmd.callback = NULL;
49         pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
50         pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
51         pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
52         pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
53
54         mrioc->pel_abort_requested = 1;
55         init_completion(&mrioc->pel_abort_cmd.done);
56         retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
57             sizeof(pel_abort_req), 0);
58         if (retval) {
59                 retval = -1;
60                 dprint_bsg_err(mrioc, "%s: admin request post failed\n",
61                     __func__);
62                 mrioc->pel_abort_requested = 0;
63                 goto out_unlock;
64         }
65
66         wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
67             (MPI3MR_INTADMCMD_TIMEOUT * HZ));
68         if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
69                 mrioc->pel_abort_cmd.is_waiting = 0;
70                 dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
71                 if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
72                         mpi3mr_soft_reset_handler(mrioc,
73                             MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
74                 retval = -1;
75                 goto out_unlock;
76         }
77         if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
78              != MPI3_IOCSTATUS_SUCCESS) {
79                 dprint_bsg_err(mrioc,
80                     "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
81                     __func__, (mrioc->pel_abort_cmd.ioc_status &
82                     MPI3_IOCSTATUS_STATUS_MASK),
83                     mrioc->pel_abort_cmd.ioc_loginfo);
84                 retval = -1;
85                 goto out_unlock;
86         }
87         if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
88                 pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
89                 pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
90                 if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
91                         dprint_bsg_err(mrioc,
92                             "%s: command failed, pel_status(0x%04x)\n",
93                             __func__, pe_log_status);
94                         retval = -1;
95                 }
96         }
97
98 out_unlock:
99         mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
100         mutex_unlock(&mrioc->pel_abort_cmd.mutex);
101         return retval;
102 }
103 /**
104  * mpi3mr_bsg_verify_adapter - verify adapter number is valid
105  * @ioc_number: Adapter number
106  *
107  * This function returns the adapter instance pointer of given
108  * adapter number. If adapter number does not match with the
109  * driver's adapter list, driver returns NULL.
110  *
111  * Return: adapter instance reference
112  */
113 static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
114 {
115         struct mpi3mr_ioc *mrioc = NULL;
116
117         spin_lock(&mrioc_list_lock);
118         list_for_each_entry(mrioc, &mrioc_list, list) {
119                 if (mrioc->id == ioc_number) {
120                         spin_unlock(&mrioc_list_lock);
121                         return mrioc;
122                 }
123         }
124         spin_unlock(&mrioc_list_lock);
125         return NULL;
126 }
127
128 /**
129  * mpi3mr_enable_logdata - Handler for log data enable
130  * @mrioc: Adapter instance reference
131  * @job: BSG job reference
132  *
133  * This function enables log data caching in the driver if not
134  * already enabled and return the maximum number of log data
135  * entries that can be cached in the driver.
136  *
137  * Return: 0 on success and proper error codes on failure
138  */
139 static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
140         struct bsg_job *job)
141 {
142         struct mpi3mr_logdata_enable logdata_enable;
143
144         if (!mrioc->logdata_buf) {
145                 mrioc->logdata_entry_sz =
146                     (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
147                     + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
148                 mrioc->logdata_buf_idx = 0;
149                 mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
150                     mrioc->logdata_entry_sz, GFP_KERNEL);
151
152                 if (!mrioc->logdata_buf)
153                         return -ENOMEM;
154         }
155
156         memset(&logdata_enable, 0, sizeof(logdata_enable));
157         logdata_enable.max_entries =
158             MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
159         if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
160                 sg_copy_from_buffer(job->request_payload.sg_list,
161                                     job->request_payload.sg_cnt,
162                                     &logdata_enable, sizeof(logdata_enable));
163                 return 0;
164         }
165
166         return -EINVAL;
167 }
168 /**
169  * mpi3mr_get_logdata - Handler for get log data
170  * @mrioc: Adapter instance reference
171  * @job: BSG job pointer
172  * This function copies the log data entries to the user buffer
173  * when log caching is enabled in the driver.
174  *
175  * Return: 0 on success and proper error codes on failure
176  */
177 static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
178         struct bsg_job *job)
179 {
180         u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
181
182         if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
183                 return -EINVAL;
184
185         num_entries = job->request_payload.payload_len / entry_sz;
186         if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
187                 num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
188         sz = num_entries * entry_sz;
189
190         if (job->request_payload.payload_len >= sz) {
191                 sg_copy_from_buffer(job->request_payload.sg_list,
192                                     job->request_payload.sg_cnt,
193                                     mrioc->logdata_buf, sz);
194                 return 0;
195         }
196         return -EINVAL;
197 }
198
199 /**
200  * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
201  * @mrioc: Adapter instance reference
202  * @job: BSG job pointer
203  *
204  * This function is the handler for PEL enable driver.
205  * Validates the application given class and locale and if
206  * requires aborts the existing PEL wait request and/or issues
207  * new PEL wait request to the firmware and returns.
208  *
209  * Return: 0 on success and proper error codes on failure.
210  */
211 static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
212                                   struct bsg_job *job)
213 {
214         long rval = -EINVAL;
215         struct mpi3mr_bsg_out_pel_enable pel_enable;
216         u8 issue_pel_wait;
217         u8 tmp_class;
218         u16 tmp_locale;
219
220         if (job->request_payload.payload_len != sizeof(pel_enable)) {
221                 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
222                     __func__);
223                 return rval;
224         }
225
226         if (mrioc->unrecoverable) {
227                 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
228                                __func__);
229                 return -EFAULT;
230         }
231
232         if (mrioc->reset_in_progress) {
233                 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
234                 return -EAGAIN;
235         }
236
237         if (mrioc->stop_bsgs) {
238                 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
239                 return -EAGAIN;
240         }
241
242         sg_copy_to_buffer(job->request_payload.sg_list,
243                           job->request_payload.sg_cnt,
244                           &pel_enable, sizeof(pel_enable));
245
246         if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
247                 dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
248                         __func__, pel_enable.pel_class);
249                 rval = 0;
250                 goto out;
251         }
252         if (!mrioc->pel_enabled)
253                 issue_pel_wait = 1;
254         else {
255                 if ((mrioc->pel_class <= pel_enable.pel_class) &&
256                     !((mrioc->pel_locale & pel_enable.pel_locale) ^
257                       pel_enable.pel_locale)) {
258                         issue_pel_wait = 0;
259                         rval = 0;
260                 } else {
261                         pel_enable.pel_locale |= mrioc->pel_locale;
262
263                         if (mrioc->pel_class < pel_enable.pel_class)
264                                 pel_enable.pel_class = mrioc->pel_class;
265
266                         rval = mpi3mr_bsg_pel_abort(mrioc);
267                         if (rval) {
268                                 dprint_bsg_err(mrioc,
269                                     "%s: pel_abort failed, status(%ld)\n",
270                                     __func__, rval);
271                                 goto out;
272                         }
273                         issue_pel_wait = 1;
274                 }
275         }
276         if (issue_pel_wait) {
277                 tmp_class = mrioc->pel_class;
278                 tmp_locale = mrioc->pel_locale;
279                 mrioc->pel_class = pel_enable.pel_class;
280                 mrioc->pel_locale = pel_enable.pel_locale;
281                 mrioc->pel_enabled = 1;
282                 rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
283                 if (rval) {
284                         mrioc->pel_class = tmp_class;
285                         mrioc->pel_locale = tmp_locale;
286                         mrioc->pel_enabled = 0;
287                         dprint_bsg_err(mrioc,
288                             "%s: pel get sequence number failed, status(%ld)\n",
289                             __func__, rval);
290                 }
291         }
292
293 out:
294         return rval;
295 }
296 /**
297  * mpi3mr_get_all_tgt_info - Get all target information
298  * @mrioc: Adapter instance reference
299  * @job: BSG job reference
300  *
301  * This function copies the driver managed target devices device
302  * handle, persistent ID, bus ID and taret ID to the user
303  * provided buffer for the specific controller. This function
304  * also provides the number of devices managed by the driver for
305  * the specific controller.
306  *
307  * Return: 0 on success and proper error codes on failure
308  */
309 static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
310         struct bsg_job *job)
311 {
312         u16 num_devices = 0, i = 0, size;
313         unsigned long flags;
314         struct mpi3mr_tgt_dev *tgtdev;
315         struct mpi3mr_device_map_info *devmap_info = NULL;
316         struct mpi3mr_all_tgt_info *alltgt_info = NULL;
317         uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
318
319         if (job->request_payload.payload_len < sizeof(u32)) {
320                 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
321                     __func__);
322                 return -EINVAL;
323         }
324
325         spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
326         list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
327                 num_devices++;
328         spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
329
330         if ((job->request_payload.payload_len <= sizeof(u64)) ||
331                 list_empty(&mrioc->tgtdev_list)) {
332                 sg_copy_from_buffer(job->request_payload.sg_list,
333                                     job->request_payload.sg_cnt,
334                                     &num_devices, sizeof(num_devices));
335                 return 0;
336         }
337
338         kern_entrylen = num_devices * sizeof(*devmap_info);
339         size = sizeof(u64) + kern_entrylen;
340         alltgt_info = kzalloc(size, GFP_KERNEL);
341         if (!alltgt_info)
342                 return -ENOMEM;
343
344         devmap_info = alltgt_info->dmi;
345         memset((u8 *)devmap_info, 0xFF, kern_entrylen);
346         spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
347         list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
348                 if (i < num_devices) {
349                         devmap_info[i].handle = tgtdev->dev_handle;
350                         devmap_info[i].perst_id = tgtdev->perst_id;
351                         if (tgtdev->host_exposed && tgtdev->starget) {
352                                 devmap_info[i].target_id = tgtdev->starget->id;
353                                 devmap_info[i].bus_id =
354                                     tgtdev->starget->channel;
355                         }
356                         i++;
357                 }
358         }
359         num_devices = i;
360         spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
361
362         alltgt_info->num_devices = num_devices;
363
364         usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
365                 sizeof(*devmap_info);
366         usr_entrylen *= sizeof(*devmap_info);
367         min_entrylen = min(usr_entrylen, kern_entrylen);
368
369         sg_copy_from_buffer(job->request_payload.sg_list,
370                             job->request_payload.sg_cnt,
371                             alltgt_info, (min_entrylen + sizeof(u64)));
372         kfree(alltgt_info);
373         return 0;
374 }
375 /**
376  * mpi3mr_get_change_count - Get topology change count
377  * @mrioc: Adapter instance reference
378  * @job: BSG job reference
379  *
380  * This function copies the toplogy change count provided by the
381  * driver in events and cached in the driver to the user
382  * provided buffer for the specific controller.
383  *
384  * Return: 0 on success and proper error codes on failure
385  */
386 static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
387         struct bsg_job *job)
388 {
389         struct mpi3mr_change_count chgcnt;
390
391         memset(&chgcnt, 0, sizeof(chgcnt));
392         chgcnt.change_count = mrioc->change_count;
393         if (job->request_payload.payload_len >= sizeof(chgcnt)) {
394                 sg_copy_from_buffer(job->request_payload.sg_list,
395                                     job->request_payload.sg_cnt,
396                                     &chgcnt, sizeof(chgcnt));
397                 return 0;
398         }
399         return -EINVAL;
400 }
401
402 /**
403  * mpi3mr_bsg_adp_reset - Issue controller reset
404  * @mrioc: Adapter instance reference
405  * @job: BSG job reference
406  *
407  * This function identifies the user provided reset type and
408  * issues approporiate reset to the controller and wait for that
409  * to complete and reinitialize the controller and then returns
410  *
411  * Return: 0 on success and proper error codes on failure
412  */
413 static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
414         struct bsg_job *job)
415 {
416         long rval = -EINVAL;
417         u8 save_snapdump;
418         struct mpi3mr_bsg_adp_reset adpreset;
419
420         if (job->request_payload.payload_len !=
421                         sizeof(adpreset)) {
422                 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
423                     __func__);
424                 goto out;
425         }
426
427         sg_copy_to_buffer(job->request_payload.sg_list,
428                           job->request_payload.sg_cnt,
429                           &adpreset, sizeof(adpreset));
430
431         switch (adpreset.reset_type) {
432         case MPI3MR_BSG_ADPRESET_SOFT:
433                 save_snapdump = 0;
434                 break;
435         case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
436                 save_snapdump = 1;
437                 break;
438         default:
439                 dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
440                     __func__, adpreset.reset_type);
441                 goto out;
442         }
443
444         rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
445             save_snapdump);
446
447         if (rval)
448                 dprint_bsg_err(mrioc,
449                     "%s: reset handler returned error(%ld) for reset type %d\n",
450                     __func__, rval, adpreset.reset_type);
451 out:
452         return rval;
453 }
454
455 /**
456  * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
457  * @mrioc: Adapter instance reference
458  * @job: BSG job reference
459  *
460  * This function provides adapter information for the given
461  * controller
462  *
463  * Return: 0 on success and proper error codes on failure
464  */
465 static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
466         struct bsg_job *job)
467 {
468         enum mpi3mr_iocstate ioc_state;
469         struct mpi3mr_bsg_in_adpinfo adpinfo;
470
471         memset(&adpinfo, 0, sizeof(adpinfo));
472         adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
473         adpinfo.pci_dev_id = mrioc->pdev->device;
474         adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
475         adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
476         adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
477         adpinfo.pci_bus = mrioc->pdev->bus->number;
478         adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
479         adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
480         adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
481         adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
482
483         ioc_state = mpi3mr_get_iocstate(mrioc);
484         if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
485                 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
486         else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
487                 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
488         else if (ioc_state == MRIOC_STATE_FAULT)
489                 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
490         else
491                 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
492
493         memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
494             sizeof(adpinfo.driver_info));
495
496         if (job->request_payload.payload_len >= sizeof(adpinfo)) {
497                 sg_copy_from_buffer(job->request_payload.sg_list,
498                                     job->request_payload.sg_cnt,
499                                     &adpinfo, sizeof(adpinfo));
500                 return 0;
501         }
502         return -EINVAL;
503 }
504
505 /**
506  * mpi3mr_bsg_process_drv_cmds - Driver Command handler
507  * @job: BSG job reference
508  *
509  * This function is the top level handler for driver commands,
510  * this does basic validation of the buffer and identifies the
511  * opcode and switches to correct sub handler.
512  *
513  * Return: 0 on success and proper error codes on failure
514  */
515 static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
516 {
517         long rval = -EINVAL;
518         struct mpi3mr_ioc *mrioc = NULL;
519         struct mpi3mr_bsg_packet *bsg_req = NULL;
520         struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
521
522         bsg_req = job->request;
523         drvrcmd = &bsg_req->cmd.drvrcmd;
524
525         mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
526         if (!mrioc)
527                 return -ENODEV;
528
529         if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
530                 rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
531                 return rval;
532         }
533
534         if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
535                 return -ERESTARTSYS;
536
537         switch (drvrcmd->opcode) {
538         case MPI3MR_DRVBSG_OPCODE_ADPRESET:
539                 rval = mpi3mr_bsg_adp_reset(mrioc, job);
540                 break;
541         case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
542                 rval = mpi3mr_get_all_tgt_info(mrioc, job);
543                 break;
544         case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
545                 rval = mpi3mr_get_change_count(mrioc, job);
546                 break;
547         case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
548                 rval = mpi3mr_enable_logdata(mrioc, job);
549                 break;
550         case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
551                 rval = mpi3mr_get_logdata(mrioc, job);
552                 break;
553         case MPI3MR_DRVBSG_OPCODE_PELENABLE:
554                 rval = mpi3mr_bsg_pel_enable(mrioc, job);
555                 break;
556         case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
557         default:
558                 pr_err("%s: unsupported driver command opcode %d\n",
559                     MPI3MR_DRIVER_NAME, drvrcmd->opcode);
560                 break;
561         }
562         mutex_unlock(&mrioc->bsg_cmds.mutex);
563         return rval;
564 }
565
566 /**
567  * mpi3mr_total_num_ioctl_sges - Count number of SGEs required
568  * @drv_bufs: DMA address of the buffers to be placed in sgl
569  * @bufcnt: Number of DMA buffers
570  *
571  * This function returns total number of data SGEs required
572  * including zero length SGEs and excluding management request
573  * and response buffer for the given list of data buffer
574  * descriptors
575  *
576  * Return: Number of SGE elements needed
577  */
578 static inline u16 mpi3mr_total_num_ioctl_sges(struct mpi3mr_buf_map *drv_bufs,
579                                               u8 bufcnt)
580 {
581         u16 i, sge_count = 0;
582
583         for (i = 0; i < bufcnt; i++, drv_bufs++) {
584                 if (drv_bufs->data_dir == DMA_NONE ||
585                     drv_bufs->kern_buf)
586                         continue;
587                 sge_count += drv_bufs->num_dma_desc;
588                 if (!drv_bufs->num_dma_desc)
589                         sge_count++;
590         }
591         return sge_count;
592 }
593
594 /**
595  * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
596  * @mrioc: Adapter instance reference
597  * @mpi_req: MPI request
598  * @sgl_offset: offset to start sgl in the MPI request
599  * @drv_bufs: DMA address of the buffers to be placed in sgl
600  * @bufcnt: Number of DMA buffers
601  * @is_rmc: Does the buffer list has management command buffer
602  * @is_rmr: Does the buffer list has management response buffer
603  * @num_datasges: Number of data buffers in the list
604  *
605  * This function places the DMA address of the given buffers in
606  * proper format as SGEs in the given MPI request.
607  *
608  * Return: 0 on success,-1 on failure
609  */
610 static int mpi3mr_bsg_build_sgl(struct mpi3mr_ioc *mrioc, u8 *mpi_req,
611                                 u32 sgl_offset, struct mpi3mr_buf_map *drv_bufs,
612                                 u8 bufcnt, u8 is_rmc, u8 is_rmr, u8 num_datasges)
613 {
614         struct mpi3_request_header *mpi_header =
615                 (struct mpi3_request_header *)mpi_req;
616         u8 *sgl = (mpi_req + sgl_offset), count = 0;
617         struct mpi3_mgmt_passthrough_request *rmgmt_req =
618             (struct mpi3_mgmt_passthrough_request *)mpi_req;
619         struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
620         u8 flag, sgl_flags, sgl_flag_eob, sgl_flags_last, last_chain_sgl_flag;
621         u16 available_sges, i, sges_needed;
622         u32 sge_element_size = sizeof(struct mpi3_sge_common);
623         bool chain_used = false;
624
625         sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
626                 MPI3_SGE_FLAGS_DLAS_SYSTEM;
627         sgl_flag_eob = sgl_flags | MPI3_SGE_FLAGS_END_OF_BUFFER;
628         sgl_flags_last = sgl_flag_eob | MPI3_SGE_FLAGS_END_OF_LIST;
629         last_chain_sgl_flag = MPI3_SGE_FLAGS_ELEMENT_TYPE_LAST_CHAIN |
630             MPI3_SGE_FLAGS_DLAS_SYSTEM;
631
632         sges_needed = mpi3mr_total_num_ioctl_sges(drv_bufs, bufcnt);
633
634         if (is_rmc) {
635                 mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
636                     sgl_flags_last, drv_buf_iter->kern_buf_len,
637                     drv_buf_iter->kern_buf_dma);
638                 sgl = (u8 *)drv_buf_iter->kern_buf +
639                         drv_buf_iter->bsg_buf_len;
640                 available_sges = (drv_buf_iter->kern_buf_len -
641                     drv_buf_iter->bsg_buf_len) / sge_element_size;
642
643                 if (sges_needed > available_sges)
644                         return -1;
645
646                 chain_used = true;
647                 drv_buf_iter++;
648                 count++;
649                 if (is_rmr) {
650                         mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
651                             sgl_flags_last, drv_buf_iter->kern_buf_len,
652                             drv_buf_iter->kern_buf_dma);
653                         drv_buf_iter++;
654                         count++;
655                 } else
656                         mpi3mr_build_zero_len_sge(
657                             &rmgmt_req->response_sgl);
658                 if (num_datasges) {
659                         i = 0;
660                         goto build_sges;
661                 }
662         } else {
663                 if (sgl_offset >= MPI3MR_ADMIN_REQ_FRAME_SZ)
664                         return -1;
665                 available_sges = (MPI3MR_ADMIN_REQ_FRAME_SZ - sgl_offset) /
666                 sge_element_size;
667                 if (!available_sges)
668                         return -1;
669         }
670         if (!num_datasges) {
671                 mpi3mr_build_zero_len_sge(sgl);
672                 return 0;
673         }
674         if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
675                 if ((sges_needed > 2) || (sges_needed > available_sges))
676                         return -1;
677                 for (; count < bufcnt; count++, drv_buf_iter++) {
678                         if (drv_buf_iter->data_dir == DMA_NONE ||
679                             !drv_buf_iter->num_dma_desc)
680                                 continue;
681                         mpi3mr_add_sg_single(sgl, sgl_flags_last,
682                                              drv_buf_iter->dma_desc[0].size,
683                                              drv_buf_iter->dma_desc[0].dma_addr);
684                         sgl += sge_element_size;
685                 }
686                 return 0;
687         }
688         i = 0;
689
690 build_sges:
691         for (; count < bufcnt; count++, drv_buf_iter++) {
692                 if (drv_buf_iter->data_dir == DMA_NONE)
693                         continue;
694                 if (!drv_buf_iter->num_dma_desc) {
695                         if (chain_used && !available_sges)
696                                 return -1;
697                         if (!chain_used && (available_sges == 1) &&
698                             (sges_needed > 1))
699                                 goto setup_chain;
700                         flag = sgl_flag_eob;
701                         if (num_datasges == 1)
702                                 flag = sgl_flags_last;
703                         mpi3mr_add_sg_single(sgl, flag, 0, 0);
704                         sgl += sge_element_size;
705                         sges_needed--;
706                         available_sges--;
707                         num_datasges--;
708                         continue;
709                 }
710                 for (; i < drv_buf_iter->num_dma_desc; i++) {
711                         if (chain_used && !available_sges)
712                                 return -1;
713                         if (!chain_used && (available_sges == 1) &&
714                             (sges_needed > 1))
715                                 goto setup_chain;
716                         flag = sgl_flags;
717                         if (i == (drv_buf_iter->num_dma_desc - 1)) {
718                                 if (num_datasges == 1)
719                                         flag = sgl_flags_last;
720                                 else
721                                         flag = sgl_flag_eob;
722                         }
723
724                         mpi3mr_add_sg_single(sgl, flag,
725                                              drv_buf_iter->dma_desc[i].size,
726                                              drv_buf_iter->dma_desc[i].dma_addr);
727                         sgl += sge_element_size;
728                         available_sges--;
729                         sges_needed--;
730                 }
731                 num_datasges--;
732                 i = 0;
733         }
734         return 0;
735
736 setup_chain:
737         available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
738         if (sges_needed > available_sges)
739                 return -1;
740         mpi3mr_add_sg_single(sgl, last_chain_sgl_flag,
741                              (sges_needed * sge_element_size),
742                              mrioc->ioctl_chain_sge.dma_addr);
743         memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
744         sgl = (u8 *)mrioc->ioctl_chain_sge.addr;
745         chain_used = true;
746         goto build_sges;
747 }
748
749 /**
750  * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
751  * @nvme_encap_request: NVMe encapsulated MPI request
752  *
753  * This function returns the type of the data format specified
754  * in user provided NVMe command in NVMe encapsulated request.
755  *
756  * Return: Data format of the NVMe command (PRP/SGL etc)
757  */
758 static unsigned int mpi3mr_get_nvme_data_fmt(
759         struct mpi3_nvme_encapsulated_request *nvme_encap_request)
760 {
761         u8 format = 0;
762
763         format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
764         return format;
765
766 }
767
768 /**
769  * mpi3mr_build_nvme_sgl - SGL constructor for NVME
770  *                                 encapsulated request
771  * @mrioc: Adapter instance reference
772  * @nvme_encap_request: NVMe encapsulated MPI request
773  * @drv_bufs: DMA address of the buffers to be placed in sgl
774  * @bufcnt: Number of DMA buffers
775  *
776  * This function places the DMA address of the given buffers in
777  * proper format as SGEs in the given NVMe encapsulated request.
778  *
779  * Return: 0 on success, -1 on failure
780  */
781 static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
782         struct mpi3_nvme_encapsulated_request *nvme_encap_request,
783         struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
784 {
785         struct mpi3mr_nvme_pt_sge *nvme_sgl;
786         __le64 sgl_dma;
787         u8 count;
788         size_t length = 0;
789         u16 available_sges = 0, i;
790         u32 sge_element_size = sizeof(struct mpi3mr_nvme_pt_sge);
791         struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
792         u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
793                             mrioc->facts.sge_mod_shift) << 32);
794         u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
795                           mrioc->facts.sge_mod_shift) << 32;
796         u32 size;
797
798         nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
799             ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
800
801         /*
802          * Not all commands require a data transfer. If no data, just return
803          * without constructing any sgl.
804          */
805         for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
806                 if (drv_buf_iter->data_dir == DMA_NONE)
807                         continue;
808                 length = drv_buf_iter->kern_buf_len;
809                 break;
810         }
811         if (!length || !drv_buf_iter->num_dma_desc)
812                 return 0;
813
814         if (drv_buf_iter->num_dma_desc == 1) {
815                 available_sges = 1;
816                 goto build_sges;
817         }
818
819         sgl_dma = cpu_to_le64(mrioc->ioctl_chain_sge.dma_addr);
820         if (sgl_dma & sgemod_mask) {
821                 dprint_bsg_err(mrioc,
822                     "%s: SGL chain address collides with SGE modifier\n",
823                     __func__);
824                 return -1;
825         }
826
827         sgl_dma &= ~sgemod_mask;
828         sgl_dma |= sgemod_val;
829
830         memset(mrioc->ioctl_chain_sge.addr, 0, mrioc->ioctl_chain_sge.size);
831         available_sges = mrioc->ioctl_chain_sge.size / sge_element_size;
832         if (available_sges < drv_buf_iter->num_dma_desc)
833                 return -1;
834         memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
835         nvme_sgl->base_addr = sgl_dma;
836         size = drv_buf_iter->num_dma_desc * sizeof(struct mpi3mr_nvme_pt_sge);
837         nvme_sgl->length = cpu_to_le32(size);
838         nvme_sgl->type = MPI3MR_NVMESGL_LAST_SEGMENT;
839         nvme_sgl = (struct mpi3mr_nvme_pt_sge *)mrioc->ioctl_chain_sge.addr;
840
841 build_sges:
842         for (i = 0; i < drv_buf_iter->num_dma_desc; i++) {
843                 sgl_dma = cpu_to_le64(drv_buf_iter->dma_desc[i].dma_addr);
844                 if (sgl_dma & sgemod_mask) {
845                         dprint_bsg_err(mrioc,
846                                        "%s: SGL address collides with SGE modifier\n",
847                                        __func__);
848                 return -1;
849                 }
850
851                 sgl_dma &= ~sgemod_mask;
852                 sgl_dma |= sgemod_val;
853
854                 nvme_sgl->base_addr = sgl_dma;
855                 nvme_sgl->length = cpu_to_le32(drv_buf_iter->dma_desc[i].size);
856                 nvme_sgl->type = MPI3MR_NVMESGL_DATA_SEGMENT;
857                 nvme_sgl++;
858                 available_sges--;
859         }
860
861         return 0;
862 }
863
864 /**
865  * mpi3mr_build_nvme_prp - PRP constructor for NVME
866  *                             encapsulated request
867  * @mrioc: Adapter instance reference
868  * @nvme_encap_request: NVMe encapsulated MPI request
869  * @drv_bufs: DMA address of the buffers to be placed in SGL
870  * @bufcnt: Number of DMA buffers
871  *
872  * This function places the DMA address of the given buffers in
873  * proper format as PRP entries in the given NVMe encapsulated
874  * request.
875  *
876  * Return: 0 on success, -1 on failure
877  */
878 static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
879         struct mpi3_nvme_encapsulated_request *nvme_encap_request,
880         struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
881 {
882         int prp_size = MPI3MR_NVME_PRP_SIZE;
883         __le64 *prp_entry, *prp1_entry, *prp2_entry;
884         __le64 *prp_page;
885         dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
886         u32 offset, entry_len, dev_pgsz;
887         u32 page_mask_result, page_mask;
888         size_t length = 0, desc_len;
889         u8 count;
890         struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
891         u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
892                             mrioc->facts.sge_mod_shift) << 32);
893         u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
894                           mrioc->facts.sge_mod_shift) << 32;
895         u16 dev_handle = nvme_encap_request->dev_handle;
896         struct mpi3mr_tgt_dev *tgtdev;
897         u16 desc_count = 0;
898
899         tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
900         if (!tgtdev) {
901                 dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
902                         __func__, dev_handle);
903                 return -1;
904         }
905
906         if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
907                 dprint_bsg_err(mrioc,
908                     "%s: NVMe device page size is zero for handle 0x%04x\n",
909                     __func__, dev_handle);
910                 mpi3mr_tgtdev_put(tgtdev);
911                 return -1;
912         }
913
914         dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
915         mpi3mr_tgtdev_put(tgtdev);
916         page_mask = dev_pgsz - 1;
917
918         if (dev_pgsz > MPI3MR_IOCTL_SGE_SIZE) {
919                 dprint_bsg_err(mrioc,
920                                "%s: NVMe device page size(%d) is greater than ioctl data sge size(%d) for handle 0x%04x\n",
921                                __func__, dev_pgsz,  MPI3MR_IOCTL_SGE_SIZE, dev_handle);
922                 return -1;
923         }
924
925         if (MPI3MR_IOCTL_SGE_SIZE % dev_pgsz) {
926                 dprint_bsg_err(mrioc,
927                                "%s: ioctl data sge size(%d) is not a multiple of NVMe device page size(%d) for handle 0x%04x\n",
928                                __func__, MPI3MR_IOCTL_SGE_SIZE, dev_pgsz, dev_handle);
929                 return -1;
930         }
931
932         /*
933          * Not all commands require a data transfer. If no data, just return
934          * without constructing any PRP.
935          */
936         for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
937                 if (drv_buf_iter->data_dir == DMA_NONE)
938                         continue;
939                 length = drv_buf_iter->kern_buf_len;
940                 break;
941         }
942
943         if (!length || !drv_buf_iter->num_dma_desc)
944                 return 0;
945
946         for (count = 0; count < drv_buf_iter->num_dma_desc; count++) {
947                 dma_addr = drv_buf_iter->dma_desc[count].dma_addr;
948                 if (dma_addr & page_mask) {
949                         dprint_bsg_err(mrioc,
950                                        "%s:dma_addr %pad is not aligned with page size 0x%x\n",
951                                        __func__,  &dma_addr, dev_pgsz);
952                         return -1;
953                 }
954         }
955
956         dma_addr = drv_buf_iter->dma_desc[0].dma_addr;
957         desc_len = drv_buf_iter->dma_desc[0].size;
958
959         mrioc->prp_sz = 0;
960         mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
961             dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
962
963         if (!mrioc->prp_list_virt)
964                 return -1;
965         mrioc->prp_sz = dev_pgsz;
966
967         /*
968          * Set pointers to PRP1 and PRP2, which are in the NVMe command.
969          * PRP1 is located at a 24 byte offset from the start of the NVMe
970          * command.  Then set the current PRP entry pointer to PRP1.
971          */
972         prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
973             MPI3MR_NVME_CMD_PRP1_OFFSET);
974         prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
975             MPI3MR_NVME_CMD_PRP2_OFFSET);
976         prp_entry = prp1_entry;
977         /*
978          * For the PRP entries, use the specially allocated buffer of
979          * contiguous memory.
980          */
981         prp_page = (__le64 *)mrioc->prp_list_virt;
982         prp_page_dma = mrioc->prp_list_dma;
983
984         /*
985          * Check if we are within 1 entry of a page boundary we don't
986          * want our first entry to be a PRP List entry.
987          */
988         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
989         if (!page_mask_result) {
990                 dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
991                     __func__);
992                 goto err_out;
993         }
994
995         /*
996          * Set PRP physical pointer, which initially points to the current PRP
997          * DMA memory page.
998          */
999         prp_entry_dma = prp_page_dma;
1000
1001
1002         /* Loop while the length is not zero. */
1003         while (length) {
1004                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
1005                 if (!page_mask_result && (length >  dev_pgsz)) {
1006                         dprint_bsg_err(mrioc,
1007                             "%s: single PRP page is not sufficient\n",
1008                             __func__);
1009                         goto err_out;
1010                 }
1011
1012                 /* Need to handle if entry will be part of a page. */
1013                 offset = dma_addr & page_mask;
1014                 entry_len = dev_pgsz - offset;
1015
1016                 if (prp_entry == prp1_entry) {
1017                         /*
1018                          * Must fill in the first PRP pointer (PRP1) before
1019                          * moving on.
1020                          */
1021                         *prp1_entry = cpu_to_le64(dma_addr);
1022                         if (*prp1_entry & sgemod_mask) {
1023                                 dprint_bsg_err(mrioc,
1024                                     "%s: PRP1 address collides with SGE modifier\n",
1025                                     __func__);
1026                                 goto err_out;
1027                         }
1028                         *prp1_entry &= ~sgemod_mask;
1029                         *prp1_entry |= sgemod_val;
1030
1031                         /*
1032                          * Now point to the second PRP entry within the
1033                          * command (PRP2).
1034                          */
1035                         prp_entry = prp2_entry;
1036                 } else if (prp_entry == prp2_entry) {
1037                         /*
1038                          * Should the PRP2 entry be a PRP List pointer or just
1039                          * a regular PRP pointer?  If there is more than one
1040                          * more page of data, must use a PRP List pointer.
1041                          */
1042                         if (length > dev_pgsz) {
1043                                 /*
1044                                  * PRP2 will contain a PRP List pointer because
1045                                  * more PRP's are needed with this command. The
1046                                  * list will start at the beginning of the
1047                                  * contiguous buffer.
1048                                  */
1049                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
1050                                 if (*prp2_entry & sgemod_mask) {
1051                                         dprint_bsg_err(mrioc,
1052                                             "%s: PRP list address collides with SGE modifier\n",
1053                                             __func__);
1054                                         goto err_out;
1055                                 }
1056                                 *prp2_entry &= ~sgemod_mask;
1057                                 *prp2_entry |= sgemod_val;
1058
1059                                 /*
1060                                  * The next PRP Entry will be the start of the
1061                                  * first PRP List.
1062                                  */
1063                                 prp_entry = prp_page;
1064                                 continue;
1065                         } else {
1066                                 /*
1067                                  * After this, the PRP Entries are complete.
1068                                  * This command uses 2 PRP's and no PRP list.
1069                                  */
1070                                 *prp2_entry = cpu_to_le64(dma_addr);
1071                                 if (*prp2_entry & sgemod_mask) {
1072                                         dprint_bsg_err(mrioc,
1073                                             "%s: PRP2 collides with SGE modifier\n",
1074                                             __func__);
1075                                         goto err_out;
1076                                 }
1077                                 *prp2_entry &= ~sgemod_mask;
1078                                 *prp2_entry |= sgemod_val;
1079                         }
1080                 } else {
1081                         /*
1082                          * Put entry in list and bump the addresses.
1083                          *
1084                          * After PRP1 and PRP2 are filled in, this will fill in
1085                          * all remaining PRP entries in a PRP List, one per
1086                          * each time through the loop.
1087                          */
1088                         *prp_entry = cpu_to_le64(dma_addr);
1089                         if (*prp_entry & sgemod_mask) {
1090                                 dprint_bsg_err(mrioc,
1091                                     "%s: PRP address collides with SGE modifier\n",
1092                                     __func__);
1093                                 goto err_out;
1094                         }
1095                         *prp_entry &= ~sgemod_mask;
1096                         *prp_entry |= sgemod_val;
1097                         prp_entry++;
1098                         prp_entry_dma += prp_size;
1099                 }
1100
1101                 /* decrement length accounting for last partial page. */
1102                 if (entry_len >= length) {
1103                         length = 0;
1104                 } else {
1105                         if (entry_len <= desc_len) {
1106                                 dma_addr += entry_len;
1107                                 desc_len -= entry_len;
1108                         }
1109                         if (!desc_len) {
1110                                 if ((++desc_count) >=
1111                                    drv_buf_iter->num_dma_desc) {
1112                                         dprint_bsg_err(mrioc,
1113                                                        "%s: Invalid len %zd while building PRP\n",
1114                                                        __func__, length);
1115                                         goto err_out;
1116                                 }
1117                                 dma_addr =
1118                                     drv_buf_iter->dma_desc[desc_count].dma_addr;
1119                                 desc_len =
1120                                     drv_buf_iter->dma_desc[desc_count].size;
1121                         }
1122                         length -= entry_len;
1123                 }
1124         }
1125
1126         return 0;
1127 err_out:
1128         if (mrioc->prp_list_virt) {
1129                 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1130                     mrioc->prp_list_virt, mrioc->prp_list_dma);
1131                 mrioc->prp_list_virt = NULL;
1132         }
1133         return -1;
1134 }
1135
1136 /**
1137  * mpi3mr_map_data_buffer_dma - build dma descriptors for data
1138  *                              buffers
1139  * @mrioc: Adapter instance reference
1140  * @drv_buf: buffer map descriptor
1141  * @desc_count: Number of already consumed dma descriptors
1142  *
1143  * This function computes how many pre-allocated DMA descriptors
1144  * are required for the given data buffer and if those number of
1145  * descriptors are free, then setup the mapping of the scattered
1146  * DMA address to the given data buffer, if the data direction
1147  * of the buffer is DMA_TO_DEVICE then the actual data is copied to
1148  * the DMA buffers
1149  *
1150  * Return: 0 on success, -1 on failure
1151  */
1152 static int mpi3mr_map_data_buffer_dma(struct mpi3mr_ioc *mrioc,
1153                                       struct mpi3mr_buf_map *drv_buf,
1154                                       u16 desc_count)
1155 {
1156         u16 i, needed_desc = drv_buf->kern_buf_len / MPI3MR_IOCTL_SGE_SIZE;
1157         u32 buf_len = drv_buf->kern_buf_len, copied_len = 0;
1158
1159         if (drv_buf->kern_buf_len % MPI3MR_IOCTL_SGE_SIZE)
1160                 needed_desc++;
1161         if ((needed_desc + desc_count) > MPI3MR_NUM_IOCTL_SGE) {
1162                 dprint_bsg_err(mrioc, "%s: DMA descriptor mapping error %d:%d:%d\n",
1163                                __func__, needed_desc, desc_count, MPI3MR_NUM_IOCTL_SGE);
1164                 return -1;
1165         }
1166         drv_buf->dma_desc = kzalloc(sizeof(*drv_buf->dma_desc) * needed_desc,
1167                                     GFP_KERNEL);
1168         if (!drv_buf->dma_desc)
1169                 return -1;
1170         for (i = 0; i < needed_desc; i++, desc_count++) {
1171                 drv_buf->dma_desc[i].addr = mrioc->ioctl_sge[desc_count].addr;
1172                 drv_buf->dma_desc[i].dma_addr =
1173                     mrioc->ioctl_sge[desc_count].dma_addr;
1174                 if (buf_len < mrioc->ioctl_sge[desc_count].size)
1175                         drv_buf->dma_desc[i].size = buf_len;
1176                 else
1177                         drv_buf->dma_desc[i].size =
1178                             mrioc->ioctl_sge[desc_count].size;
1179                 buf_len -= drv_buf->dma_desc[i].size;
1180                 memset(drv_buf->dma_desc[i].addr, 0,
1181                        mrioc->ioctl_sge[desc_count].size);
1182                 if (drv_buf->data_dir == DMA_TO_DEVICE) {
1183                         memcpy(drv_buf->dma_desc[i].addr,
1184                                drv_buf->bsg_buf + copied_len,
1185                                drv_buf->dma_desc[i].size);
1186                         copied_len += drv_buf->dma_desc[i].size;
1187                 }
1188         }
1189         drv_buf->num_dma_desc = needed_desc;
1190         return 0;
1191 }
1192 /**
1193  * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
1194  * @job: BSG job reference
1195  *
1196  * This function is the top level handler for MPI Pass through
1197  * command, this does basic validation of the input data buffers,
1198  * identifies the given buffer types and MPI command, allocates
1199  * DMAable memory for user given buffers, construstcs SGL
1200  * properly and passes the command to the firmware.
1201  *
1202  * Once the MPI command is completed the driver copies the data
1203  * if any and reply, sense information to user provided buffers.
1204  * If the command is timed out then issues controller reset
1205  * prior to returning.
1206  *
1207  * Return: 0 on success and proper error codes on failure
1208  */
1209
1210 static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job)
1211 {
1212         long rval = -EINVAL;
1213         struct mpi3mr_ioc *mrioc = NULL;
1214         u8 *mpi_req = NULL, *sense_buff_k = NULL;
1215         u8 mpi_msg_size = 0;
1216         struct mpi3mr_bsg_packet *bsg_req = NULL;
1217         struct mpi3mr_bsg_mptcmd *karg;
1218         struct mpi3mr_buf_entry *buf_entries = NULL;
1219         struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
1220         u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0;
1221         u8 din_cnt = 0, dout_cnt = 0;
1222         u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF;
1223         u8 block_io = 0, nvme_fmt = 0, resp_code = 0;
1224         struct mpi3_request_header *mpi_header = NULL;
1225         struct mpi3_status_reply_descriptor *status_desc;
1226         struct mpi3_scsi_task_mgmt_request *tm_req;
1227         u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
1228         u16 dev_handle;
1229         struct mpi3mr_tgt_dev *tgtdev;
1230         struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
1231         struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
1232         u32 din_size = 0, dout_size = 0;
1233         u8 *din_buf = NULL, *dout_buf = NULL;
1234         u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
1235         u16 rmc_size  = 0, desc_count = 0;
1236
1237         bsg_req = job->request;
1238         karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
1239
1240         mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
1241         if (!mrioc)
1242                 return -ENODEV;
1243
1244         if (!mrioc->ioctl_sges_allocated) {
1245                 dprint_bsg_err(mrioc, "%s: DMA memory was not allocated\n",
1246                                __func__);
1247                 return -ENOMEM;
1248         }
1249
1250         if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
1251                 karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
1252
1253         mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
1254         if (!mpi_req)
1255                 return -ENOMEM;
1256         mpi_header = (struct mpi3_request_header *)mpi_req;
1257
1258         bufcnt = karg->buf_entry_list.num_of_entries;
1259         drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
1260         if (!drv_bufs) {
1261                 rval = -ENOMEM;
1262                 goto out;
1263         }
1264
1265         dout_buf = kzalloc(job->request_payload.payload_len,
1266                                       GFP_KERNEL);
1267         if (!dout_buf) {
1268                 rval = -ENOMEM;
1269                 goto out;
1270         }
1271
1272         din_buf = kzalloc(job->reply_payload.payload_len,
1273                                      GFP_KERNEL);
1274         if (!din_buf) {
1275                 rval = -ENOMEM;
1276                 goto out;
1277         }
1278
1279         sg_copy_to_buffer(job->request_payload.sg_list,
1280                           job->request_payload.sg_cnt,
1281                           dout_buf, job->request_payload.payload_len);
1282
1283         buf_entries = karg->buf_entry_list.buf_entry;
1284         sgl_din_iter = din_buf;
1285         sgl_dout_iter = dout_buf;
1286         drv_buf_iter = drv_bufs;
1287
1288         for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
1289
1290                 switch (buf_entries->buf_type) {
1291                 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
1292                         sgl_iter = sgl_dout_iter;
1293                         sgl_dout_iter += buf_entries->buf_len;
1294                         drv_buf_iter->data_dir = DMA_TO_DEVICE;
1295                         is_rmcb = 1;
1296                         if ((count != 0) || !buf_entries->buf_len)
1297                                 invalid_be = 1;
1298                         break;
1299                 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
1300                         sgl_iter = sgl_din_iter;
1301                         sgl_din_iter += buf_entries->buf_len;
1302                         drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1303                         is_rmrb = 1;
1304                         if (count != 1 || !is_rmcb || !buf_entries->buf_len)
1305                                 invalid_be = 1;
1306                         break;
1307                 case MPI3MR_BSG_BUFTYPE_DATA_IN:
1308                         sgl_iter = sgl_din_iter;
1309                         sgl_din_iter += buf_entries->buf_len;
1310                         drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1311                         din_cnt++;
1312                         din_size += buf_entries->buf_len;
1313                         if ((din_cnt > 1) && !is_rmcb)
1314                                 invalid_be = 1;
1315                         break;
1316                 case MPI3MR_BSG_BUFTYPE_DATA_OUT:
1317                         sgl_iter = sgl_dout_iter;
1318                         sgl_dout_iter += buf_entries->buf_len;
1319                         drv_buf_iter->data_dir = DMA_TO_DEVICE;
1320                         dout_cnt++;
1321                         dout_size += buf_entries->buf_len;
1322                         if ((dout_cnt > 1) && !is_rmcb)
1323                                 invalid_be = 1;
1324                         break;
1325                 case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
1326                         sgl_iter = sgl_din_iter;
1327                         sgl_din_iter += buf_entries->buf_len;
1328                         drv_buf_iter->data_dir = DMA_NONE;
1329                         mpirep_offset = count;
1330                         if (!buf_entries->buf_len)
1331                                 invalid_be = 1;
1332                         break;
1333                 case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
1334                         sgl_iter = sgl_din_iter;
1335                         sgl_din_iter += buf_entries->buf_len;
1336                         drv_buf_iter->data_dir = DMA_NONE;
1337                         erb_offset = count;
1338                         if (!buf_entries->buf_len)
1339                                 invalid_be = 1;
1340                         break;
1341                 case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
1342                         sgl_iter = sgl_dout_iter;
1343                         sgl_dout_iter += buf_entries->buf_len;
1344                         drv_buf_iter->data_dir = DMA_NONE;
1345                         mpi_msg_size = buf_entries->buf_len;
1346                         if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
1347                                         (mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
1348                                 dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
1349                                         __func__);
1350                                 rval = -EINVAL;
1351                                 goto out;
1352                         }
1353                         memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
1354                         break;
1355                 default:
1356                         invalid_be = 1;
1357                         break;
1358                 }
1359                 if (invalid_be) {
1360                         dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
1361                                 __func__);
1362                         rval = -EINVAL;
1363                         goto out;
1364                 }
1365
1366                 if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
1367                         dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
1368                                        __func__);
1369                         rval = -EINVAL;
1370                         goto out;
1371                 }
1372                 if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
1373                         dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
1374                                        __func__);
1375                         rval = -EINVAL;
1376                         goto out;
1377                 }
1378
1379                 drv_buf_iter->bsg_buf = sgl_iter;
1380                 drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
1381         }
1382
1383         if (is_rmcb && ((din_size + dout_size) > MPI3MR_MAX_APP_XFER_SIZE)) {
1384                 dprint_bsg_err(mrioc, "%s:%d: invalid data transfer size passed for function 0x%x din_size = %d, dout_size = %d\n",
1385                                __func__, __LINE__, mpi_header->function, din_size,
1386                                dout_size);
1387                 rval = -EINVAL;
1388                 goto out;
1389         }
1390
1391         if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
1392                 dprint_bsg_err(mrioc,
1393                     "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
1394                     __func__, __LINE__, mpi_header->function, din_size);
1395                 rval = -EINVAL;
1396                 goto out;
1397         }
1398         if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
1399                 dprint_bsg_err(mrioc,
1400                     "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
1401                     __func__, __LINE__, mpi_header->function, dout_size);
1402                 rval = -EINVAL;
1403                 goto out;
1404         }
1405
1406         if (mpi_header->function == MPI3_BSG_FUNCTION_SMP_PASSTHROUGH) {
1407                 if (din_size > MPI3MR_IOCTL_SGE_SIZE ||
1408                     dout_size > MPI3MR_IOCTL_SGE_SIZE) {
1409                         dprint_bsg_err(mrioc, "%s:%d: invalid message size passed:%d:%d:%d:%d\n",
1410                                        __func__, __LINE__, din_cnt, dout_cnt, din_size,
1411                             dout_size);
1412                         rval = -EINVAL;
1413                         goto out;
1414                 }
1415         }
1416
1417         drv_buf_iter = drv_bufs;
1418         for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1419                 if (drv_buf_iter->data_dir == DMA_NONE)
1420                         continue;
1421
1422                 drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
1423                 if (is_rmcb && !count) {
1424                         drv_buf_iter->kern_buf_len =
1425                             mrioc->ioctl_chain_sge.size;
1426                         drv_buf_iter->kern_buf =
1427                             mrioc->ioctl_chain_sge.addr;
1428                         drv_buf_iter->kern_buf_dma =
1429                             mrioc->ioctl_chain_sge.dma_addr;
1430                         drv_buf_iter->dma_desc = NULL;
1431                         drv_buf_iter->num_dma_desc = 0;
1432                         memset(drv_buf_iter->kern_buf, 0,
1433                                drv_buf_iter->kern_buf_len);
1434                         tmplen = min(drv_buf_iter->kern_buf_len,
1435                                      drv_buf_iter->bsg_buf_len);
1436                         rmc_size = tmplen;
1437                         memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
1438                 } else if (is_rmrb && (count == 1)) {
1439                         drv_buf_iter->kern_buf_len =
1440                             mrioc->ioctl_resp_sge.size;
1441                         drv_buf_iter->kern_buf =
1442                             mrioc->ioctl_resp_sge.addr;
1443                         drv_buf_iter->kern_buf_dma =
1444                             mrioc->ioctl_resp_sge.dma_addr;
1445                         drv_buf_iter->dma_desc = NULL;
1446                         drv_buf_iter->num_dma_desc = 0;
1447                         memset(drv_buf_iter->kern_buf, 0,
1448                                drv_buf_iter->kern_buf_len);
1449                         tmplen = min(drv_buf_iter->kern_buf_len,
1450                                      drv_buf_iter->bsg_buf_len);
1451                         drv_buf_iter->kern_buf_len = tmplen;
1452                         memset(drv_buf_iter->bsg_buf, 0,
1453                                drv_buf_iter->bsg_buf_len);
1454                 } else {
1455                         if (!drv_buf_iter->kern_buf_len)
1456                                 continue;
1457                         if (mpi3mr_map_data_buffer_dma(mrioc, drv_buf_iter, desc_count)) {
1458                                 rval = -ENOMEM;
1459                                 dprint_bsg_err(mrioc, "%s:%d: mapping data buffers failed\n",
1460                                                __func__, __LINE__);
1461                         goto out;
1462                 }
1463                         desc_count += drv_buf_iter->num_dma_desc;
1464                 }
1465         }
1466
1467         if (erb_offset != 0xFF) {
1468                 sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
1469                 if (!sense_buff_k) {
1470                         rval = -ENOMEM;
1471                         goto out;
1472                 }
1473         }
1474
1475         if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
1476                 rval = -ERESTARTSYS;
1477                 goto out;
1478         }
1479         if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
1480                 rval = -EAGAIN;
1481                 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
1482                 mutex_unlock(&mrioc->bsg_cmds.mutex);
1483                 goto out;
1484         }
1485         if (mrioc->unrecoverable) {
1486                 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1487                     __func__);
1488                 rval = -EFAULT;
1489                 mutex_unlock(&mrioc->bsg_cmds.mutex);
1490                 goto out;
1491         }
1492         if (mrioc->reset_in_progress) {
1493                 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1494                 rval = -EAGAIN;
1495                 mutex_unlock(&mrioc->bsg_cmds.mutex);
1496                 goto out;
1497         }
1498         if (mrioc->stop_bsgs) {
1499                 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1500                 rval = -EAGAIN;
1501                 mutex_unlock(&mrioc->bsg_cmds.mutex);
1502                 goto out;
1503         }
1504
1505         if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
1506                 nvme_fmt = mpi3mr_get_nvme_data_fmt(
1507                         (struct mpi3_nvme_encapsulated_request *)mpi_req);
1508                 if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
1509                         if (mpi3mr_build_nvme_prp(mrioc,
1510                             (struct mpi3_nvme_encapsulated_request *)mpi_req,
1511                             drv_bufs, bufcnt)) {
1512                                 rval = -ENOMEM;
1513                                 mutex_unlock(&mrioc->bsg_cmds.mutex);
1514                                 goto out;
1515                         }
1516                 } else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
1517                         nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
1518                         if (mpi3mr_build_nvme_sgl(mrioc,
1519                             (struct mpi3_nvme_encapsulated_request *)mpi_req,
1520                             drv_bufs, bufcnt)) {
1521                                 rval = -EINVAL;
1522                                 mutex_unlock(&mrioc->bsg_cmds.mutex);
1523                                 goto out;
1524                         }
1525                 } else {
1526                         dprint_bsg_err(mrioc,
1527                             "%s:invalid NVMe command format\n", __func__);
1528                         rval = -EINVAL;
1529                         mutex_unlock(&mrioc->bsg_cmds.mutex);
1530                         goto out;
1531                 }
1532         } else {
1533                 if (mpi3mr_bsg_build_sgl(mrioc, mpi_req, mpi_msg_size,
1534                                          drv_bufs, bufcnt, is_rmcb, is_rmrb,
1535                                          (dout_cnt + din_cnt))) {
1536                         dprint_bsg_err(mrioc, "%s: sgl build failed\n", __func__);
1537                         rval = -EAGAIN;
1538                         mutex_unlock(&mrioc->bsg_cmds.mutex);
1539                         goto out;
1540                 }
1541         }
1542
1543         if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
1544                 tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
1545                 if (tm_req->task_type !=
1546                     MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
1547                         dev_handle = tm_req->dev_handle;
1548                         block_io = 1;
1549                 }
1550         }
1551         if (block_io) {
1552                 tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1553                 if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
1554                         stgt_priv = (struct mpi3mr_stgt_priv_data *)
1555                             tgtdev->starget->hostdata;
1556                         atomic_inc(&stgt_priv->block_io);
1557                         mpi3mr_tgtdev_put(tgtdev);
1558                 }
1559         }
1560
1561         mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
1562         mrioc->bsg_cmds.is_waiting = 1;
1563         mrioc->bsg_cmds.callback = NULL;
1564         mrioc->bsg_cmds.is_sense = 0;
1565         mrioc->bsg_cmds.sensebuf = sense_buff_k;
1566         memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
1567         mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
1568         if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
1569                 dprint_bsg_info(mrioc,
1570                     "%s: posting bsg request to the controller\n", __func__);
1571                 dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1572                     "bsg_mpi3_req");
1573                 if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1574                         drv_buf_iter = &drv_bufs[0];
1575                         dprint_dump(drv_buf_iter->kern_buf,
1576                             rmc_size, "mpi3_mgmt_req");
1577                 }
1578         }
1579
1580         init_completion(&mrioc->bsg_cmds.done);
1581         rval = mpi3mr_admin_request_post(mrioc, mpi_req,
1582             MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
1583
1584
1585         if (rval) {
1586                 mrioc->bsg_cmds.is_waiting = 0;
1587                 dprint_bsg_err(mrioc,
1588                     "%s: posting bsg request is failed\n", __func__);
1589                 rval = -EAGAIN;
1590                 goto out_unlock;
1591         }
1592         wait_for_completion_timeout(&mrioc->bsg_cmds.done,
1593             (karg->timeout * HZ));
1594         if (block_io && stgt_priv)
1595                 atomic_dec(&stgt_priv->block_io);
1596         if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
1597                 mrioc->bsg_cmds.is_waiting = 0;
1598                 rval = -EAGAIN;
1599                 if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
1600                         goto out_unlock;
1601                 dprint_bsg_err(mrioc,
1602                     "%s: bsg request timedout after %d seconds\n", __func__,
1603                     karg->timeout);
1604                 if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) {
1605                         dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1606                             "bsg_mpi3_req");
1607                         if (mpi_header->function ==
1608                             MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1609                                 drv_buf_iter = &drv_bufs[0];
1610                                 dprint_dump(drv_buf_iter->kern_buf,
1611                                     rmc_size, "mpi3_mgmt_req");
1612                         }
1613                 }
1614                 if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
1615                     (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO))
1616                         mpi3mr_issue_tm(mrioc,
1617                             MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
1618                             mpi_header->function_dependent, 0,
1619                             MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
1620                             &mrioc->host_tm_cmds, &resp_code, NULL);
1621                 if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
1622                     !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
1623                         mpi3mr_soft_reset_handler(mrioc,
1624                             MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
1625                 goto out_unlock;
1626         }
1627         dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
1628
1629         if (mrioc->prp_list_virt) {
1630                 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1631                     mrioc->prp_list_virt, mrioc->prp_list_dma);
1632                 mrioc->prp_list_virt = NULL;
1633         }
1634
1635         if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
1636              != MPI3_IOCSTATUS_SUCCESS) {
1637                 dprint_bsg_info(mrioc,
1638                     "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
1639                     __func__,
1640                     (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
1641                     mrioc->bsg_cmds.ioc_loginfo);
1642         }
1643
1644         if ((mpirep_offset != 0xFF) &&
1645             drv_bufs[mpirep_offset].bsg_buf_len) {
1646                 drv_buf_iter = &drv_bufs[mpirep_offset];
1647                 drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) +
1648                                            mrioc->reply_sz);
1649                 bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
1650
1651                 if (!bsg_reply_buf) {
1652                         rval = -ENOMEM;
1653                         goto out_unlock;
1654                 }
1655                 if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
1656                         bsg_reply_buf->mpi_reply_type =
1657                                 MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
1658                         memcpy(bsg_reply_buf->reply_buf,
1659                             mrioc->bsg_cmds.reply, mrioc->reply_sz);
1660                 } else {
1661                         bsg_reply_buf->mpi_reply_type =
1662                                 MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
1663                         status_desc = (struct mpi3_status_reply_descriptor *)
1664                             bsg_reply_buf->reply_buf;
1665                         status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
1666                         status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
1667                 }
1668                 tmplen = min(drv_buf_iter->kern_buf_len,
1669                         drv_buf_iter->bsg_buf_len);
1670                 memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
1671         }
1672
1673         if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
1674             mrioc->bsg_cmds.is_sense) {
1675                 drv_buf_iter = &drv_bufs[erb_offset];
1676                 tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
1677                 memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
1678         }
1679
1680         drv_buf_iter = drv_bufs;
1681         for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1682                 if (drv_buf_iter->data_dir == DMA_NONE)
1683                         continue;
1684                 if ((count == 1) && is_rmrb) {
1685                         memcpy(drv_buf_iter->bsg_buf,
1686                             drv_buf_iter->kern_buf,
1687                             drv_buf_iter->kern_buf_len);
1688                 } else if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
1689                         tmplen = 0;
1690                         for (desc_count = 0;
1691                             desc_count < drv_buf_iter->num_dma_desc;
1692                             desc_count++) {
1693                                 memcpy(((u8 *)drv_buf_iter->bsg_buf + tmplen),
1694                                        drv_buf_iter->dma_desc[desc_count].addr,
1695                                        drv_buf_iter->dma_desc[desc_count].size);
1696                                 tmplen +=
1697                                     drv_buf_iter->dma_desc[desc_count].size;
1698                 }
1699         }
1700         }
1701
1702 out_unlock:
1703         if (din_buf) {
1704                 job->reply_payload_rcv_len =
1705                         sg_copy_from_buffer(job->reply_payload.sg_list,
1706                                             job->reply_payload.sg_cnt,
1707                                             din_buf, job->reply_payload.payload_len);
1708         }
1709         mrioc->bsg_cmds.is_sense = 0;
1710         mrioc->bsg_cmds.sensebuf = NULL;
1711         mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
1712         mutex_unlock(&mrioc->bsg_cmds.mutex);
1713 out:
1714         kfree(sense_buff_k);
1715         kfree(dout_buf);
1716         kfree(din_buf);
1717         kfree(mpi_req);
1718         if (drv_bufs) {
1719                 drv_buf_iter = drv_bufs;
1720                 for (count = 0; count < bufcnt; count++, drv_buf_iter++)
1721                         kfree(drv_buf_iter->dma_desc);
1722                 kfree(drv_bufs);
1723         }
1724         kfree(bsg_reply_buf);
1725         return rval;
1726 }
1727
1728 /**
1729  * mpi3mr_app_save_logdata - Save Log Data events
1730  * @mrioc: Adapter instance reference
1731  * @event_data: event data associated with log data event
1732  * @event_data_size: event data size to copy
1733  *
1734  * If log data event caching is enabled by the applicatiobns,
1735  * then this function saves the log data in the circular queue
1736  * and Sends async signal SIGIO to indicate there is an async
1737  * event from the firmware to the event monitoring applications.
1738  *
1739  * Return:Nothing
1740  */
1741 void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
1742         u16 event_data_size)
1743 {
1744         u32 index = mrioc->logdata_buf_idx, sz;
1745         struct mpi3mr_logdata_entry *entry;
1746
1747         if (!(mrioc->logdata_buf))
1748                 return;
1749
1750         entry = (struct mpi3mr_logdata_entry *)
1751                 (mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
1752         entry->valid_entry = 1;
1753         sz = min(mrioc->logdata_entry_sz, event_data_size);
1754         memcpy(entry->data, event_data, sz);
1755         mrioc->logdata_buf_idx =
1756                 ((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
1757         atomic64_inc(&event_counter);
1758 }
1759
1760 /**
1761  * mpi3mr_bsg_request - bsg request entry point
1762  * @job: BSG job reference
1763  *
1764  * This is driver's entry point for bsg requests
1765  *
1766  * Return: 0 on success and proper error codes on failure
1767  */
1768 static int mpi3mr_bsg_request(struct bsg_job *job)
1769 {
1770         long rval = -EINVAL;
1771         unsigned int reply_payload_rcv_len = 0;
1772
1773         struct mpi3mr_bsg_packet *bsg_req = job->request;
1774
1775         switch (bsg_req->cmd_type) {
1776         case MPI3MR_DRV_CMD:
1777                 rval = mpi3mr_bsg_process_drv_cmds(job);
1778                 break;
1779         case MPI3MR_MPT_CMD:
1780                 rval = mpi3mr_bsg_process_mpt_cmds(job);
1781                 break;
1782         default:
1783                 pr_err("%s: unsupported BSG command(0x%08x)\n",
1784                     MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
1785                 break;
1786         }
1787
1788         bsg_job_done(job, rval, reply_payload_rcv_len);
1789
1790         return 0;
1791 }
1792
1793 /**
1794  * mpi3mr_bsg_exit - de-registration from bsg layer
1795  * @mrioc: Adapter instance reference
1796  *
1797  * This will be called during driver unload and all
1798  * bsg resources allocated during load will be freed.
1799  *
1800  * Return:Nothing
1801  */
1802 void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
1803 {
1804         struct device *bsg_dev = &mrioc->bsg_dev;
1805         if (!mrioc->bsg_queue)
1806                 return;
1807
1808         bsg_remove_queue(mrioc->bsg_queue);
1809         mrioc->bsg_queue = NULL;
1810
1811         device_del(bsg_dev);
1812         put_device(bsg_dev);
1813 }
1814
1815 /**
1816  * mpi3mr_bsg_node_release -release bsg device node
1817  * @dev: bsg device node
1818  *
1819  * decrements bsg dev parent reference count
1820  *
1821  * Return:Nothing
1822  */
1823 static void mpi3mr_bsg_node_release(struct device *dev)
1824 {
1825         put_device(dev->parent);
1826 }
1827
1828 /**
1829  * mpi3mr_bsg_init -  registration with bsg layer
1830  * @mrioc: Adapter instance reference
1831  *
1832  * This will be called during driver load and it will
1833  * register driver with bsg layer
1834  *
1835  * Return:Nothing
1836  */
1837 void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
1838 {
1839         struct device *bsg_dev = &mrioc->bsg_dev;
1840         struct device *parent = &mrioc->shost->shost_gendev;
1841
1842         device_initialize(bsg_dev);
1843
1844         bsg_dev->parent = get_device(parent);
1845         bsg_dev->release = mpi3mr_bsg_node_release;
1846
1847         dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
1848
1849         if (device_add(bsg_dev)) {
1850                 ioc_err(mrioc, "%s: bsg device add failed\n",
1851                     dev_name(bsg_dev));
1852                 put_device(bsg_dev);
1853                 return;
1854         }
1855
1856         mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev),
1857                         mpi3mr_bsg_request, NULL, 0);
1858         if (IS_ERR(mrioc->bsg_queue)) {
1859                 ioc_err(mrioc, "%s: bsg registration failed\n",
1860                     dev_name(bsg_dev));
1861                 device_del(bsg_dev);
1862                 put_device(bsg_dev);
1863                 return;
1864         }
1865
1866         blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS);
1867         blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS);
1868
1869         return;
1870 }
1871
1872 /**
1873  * version_fw_show - SysFS callback for firmware version read
1874  * @dev: class device
1875  * @attr: Device attributes
1876  * @buf: Buffer to copy
1877  *
1878  * Return: sysfs_emit() return after copying firmware version
1879  */
1880 static ssize_t
1881 version_fw_show(struct device *dev, struct device_attribute *attr,
1882         char *buf)
1883 {
1884         struct Scsi_Host *shost = class_to_shost(dev);
1885         struct mpi3mr_ioc *mrioc = shost_priv(shost);
1886         struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
1887
1888         return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
1889             fwver->gen_major, fwver->gen_minor, fwver->ph_major,
1890             fwver->ph_minor, fwver->cust_id, fwver->build_num);
1891 }
1892 static DEVICE_ATTR_RO(version_fw);
1893
1894 /**
1895  * fw_queue_depth_show - SysFS callback for firmware max cmds
1896  * @dev: class device
1897  * @attr: Device attributes
1898  * @buf: Buffer to copy
1899  *
1900  * Return: sysfs_emit() return after copying firmware max commands
1901  */
1902 static ssize_t
1903 fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
1904                         char *buf)
1905 {
1906         struct Scsi_Host *shost = class_to_shost(dev);
1907         struct mpi3mr_ioc *mrioc = shost_priv(shost);
1908
1909         return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
1910 }
1911 static DEVICE_ATTR_RO(fw_queue_depth);
1912
1913 /**
1914  * op_req_q_count_show - SysFS callback for request queue count
1915  * @dev: class device
1916  * @attr: Device attributes
1917  * @buf: Buffer to copy
1918  *
1919  * Return: sysfs_emit() return after copying request queue count
1920  */
1921 static ssize_t
1922 op_req_q_count_show(struct device *dev, struct device_attribute *attr,
1923                         char *buf)
1924 {
1925         struct Scsi_Host *shost = class_to_shost(dev);
1926         struct mpi3mr_ioc *mrioc = shost_priv(shost);
1927
1928         return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
1929 }
1930 static DEVICE_ATTR_RO(op_req_q_count);
1931
1932 /**
1933  * reply_queue_count_show - SysFS callback for reply queue count
1934  * @dev: class device
1935  * @attr: Device attributes
1936  * @buf: Buffer to copy
1937  *
1938  * Return: sysfs_emit() return after copying reply queue count
1939  */
1940 static ssize_t
1941 reply_queue_count_show(struct device *dev, struct device_attribute *attr,
1942                         char *buf)
1943 {
1944         struct Scsi_Host *shost = class_to_shost(dev);
1945         struct mpi3mr_ioc *mrioc = shost_priv(shost);
1946
1947         return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
1948 }
1949
1950 static DEVICE_ATTR_RO(reply_queue_count);
1951
1952 /**
1953  * logging_level_show - Show controller debug level
1954  * @dev: class device
1955  * @attr: Device attributes
1956  * @buf: Buffer to copy
1957  *
1958  * A sysfs 'read/write' shost attribute, to show the current
1959  * debug log level used by the driver for the specific
1960  * controller.
1961  *
1962  * Return: sysfs_emit() return
1963  */
1964 static ssize_t
1965 logging_level_show(struct device *dev,
1966         struct device_attribute *attr, char *buf)
1967
1968 {
1969         struct Scsi_Host *shost = class_to_shost(dev);
1970         struct mpi3mr_ioc *mrioc = shost_priv(shost);
1971
1972         return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
1973 }
1974
1975 /**
1976  * logging_level_store- Change controller debug level
1977  * @dev: class device
1978  * @attr: Device attributes
1979  * @buf: Buffer to copy
1980  * @count: size of the buffer
1981  *
1982  * A sysfs 'read/write' shost attribute, to change the current
1983  * debug log level used by the driver for the specific
1984  * controller.
1985  *
1986  * Return: strlen() return
1987  */
1988 static ssize_t
1989 logging_level_store(struct device *dev,
1990         struct device_attribute *attr,
1991         const char *buf, size_t count)
1992 {
1993         struct Scsi_Host *shost = class_to_shost(dev);
1994         struct mpi3mr_ioc *mrioc = shost_priv(shost);
1995         int val = 0;
1996
1997         if (kstrtoint(buf, 0, &val) != 0)
1998                 return -EINVAL;
1999
2000         mrioc->logging_level = val;
2001         ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
2002         return strlen(buf);
2003 }
2004 static DEVICE_ATTR_RW(logging_level);
2005
2006 /**
2007  * adp_state_show() - SysFS callback for adapter state show
2008  * @dev: class device
2009  * @attr: Device attributes
2010  * @buf: Buffer to copy
2011  *
2012  * Return: sysfs_emit() return after copying adapter state
2013  */
2014 static ssize_t
2015 adp_state_show(struct device *dev, struct device_attribute *attr,
2016         char *buf)
2017 {
2018         struct Scsi_Host *shost = class_to_shost(dev);
2019         struct mpi3mr_ioc *mrioc = shost_priv(shost);
2020         enum mpi3mr_iocstate ioc_state;
2021         uint8_t adp_state;
2022
2023         ioc_state = mpi3mr_get_iocstate(mrioc);
2024         if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
2025                 adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
2026         else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
2027                 adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
2028         else if (ioc_state == MRIOC_STATE_FAULT)
2029                 adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
2030         else
2031                 adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
2032
2033         return sysfs_emit(buf, "%u\n", adp_state);
2034 }
2035
2036 static DEVICE_ATTR_RO(adp_state);
2037
2038 static struct attribute *mpi3mr_host_attrs[] = {
2039         &dev_attr_version_fw.attr,
2040         &dev_attr_fw_queue_depth.attr,
2041         &dev_attr_op_req_q_count.attr,
2042         &dev_attr_reply_queue_count.attr,
2043         &dev_attr_logging_level.attr,
2044         &dev_attr_adp_state.attr,
2045         NULL,
2046 };
2047
2048 static const struct attribute_group mpi3mr_host_attr_group = {
2049         .attrs = mpi3mr_host_attrs
2050 };
2051
2052 const struct attribute_group *mpi3mr_host_groups[] = {
2053         &mpi3mr_host_attr_group,
2054         NULL,
2055 };
2056
2057
2058 /*
2059  * SCSI Device attributes under sysfs
2060  */
2061
2062 /**
2063  * sas_address_show - SysFS callback for dev SASaddress display
2064  * @dev: class device
2065  * @attr: Device attributes
2066  * @buf: Buffer to copy
2067  *
2068  * Return: sysfs_emit() return after copying SAS address of the
2069  * specific SAS/SATA end device.
2070  */
2071 static ssize_t
2072 sas_address_show(struct device *dev, struct device_attribute *attr,
2073                         char *buf)
2074 {
2075         struct scsi_device *sdev = to_scsi_device(dev);
2076         struct mpi3mr_sdev_priv_data *sdev_priv_data;
2077         struct mpi3mr_stgt_priv_data *tgt_priv_data;
2078         struct mpi3mr_tgt_dev *tgtdev;
2079
2080         sdev_priv_data = sdev->hostdata;
2081         if (!sdev_priv_data)
2082                 return 0;
2083
2084         tgt_priv_data = sdev_priv_data->tgt_priv_data;
2085         if (!tgt_priv_data)
2086                 return 0;
2087         tgtdev = tgt_priv_data->tgt_dev;
2088         if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
2089                 return 0;
2090         return sysfs_emit(buf, "0x%016llx\n",
2091             (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
2092 }
2093
2094 static DEVICE_ATTR_RO(sas_address);
2095
2096 /**
2097  * device_handle_show - SysFS callback for device handle display
2098  * @dev: class device
2099  * @attr: Device attributes
2100  * @buf: Buffer to copy
2101  *
2102  * Return: sysfs_emit() return after copying firmware internal
2103  * device handle of the specific device.
2104  */
2105 static ssize_t
2106 device_handle_show(struct device *dev, struct device_attribute *attr,
2107                         char *buf)
2108 {
2109         struct scsi_device *sdev = to_scsi_device(dev);
2110         struct mpi3mr_sdev_priv_data *sdev_priv_data;
2111         struct mpi3mr_stgt_priv_data *tgt_priv_data;
2112         struct mpi3mr_tgt_dev *tgtdev;
2113
2114         sdev_priv_data = sdev->hostdata;
2115         if (!sdev_priv_data)
2116                 return 0;
2117
2118         tgt_priv_data = sdev_priv_data->tgt_priv_data;
2119         if (!tgt_priv_data)
2120                 return 0;
2121         tgtdev = tgt_priv_data->tgt_dev;
2122         if (!tgtdev)
2123                 return 0;
2124         return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
2125 }
2126
2127 static DEVICE_ATTR_RO(device_handle);
2128
2129 /**
2130  * persistent_id_show - SysFS callback for persisten ID display
2131  * @dev: class device
2132  * @attr: Device attributes
2133  * @buf: Buffer to copy
2134  *
2135  * Return: sysfs_emit() return after copying persistent ID of the
2136  * of the specific device.
2137  */
2138 static ssize_t
2139 persistent_id_show(struct device *dev, struct device_attribute *attr,
2140                         char *buf)
2141 {
2142         struct scsi_device *sdev = to_scsi_device(dev);
2143         struct mpi3mr_sdev_priv_data *sdev_priv_data;
2144         struct mpi3mr_stgt_priv_data *tgt_priv_data;
2145         struct mpi3mr_tgt_dev *tgtdev;
2146
2147         sdev_priv_data = sdev->hostdata;
2148         if (!sdev_priv_data)
2149                 return 0;
2150
2151         tgt_priv_data = sdev_priv_data->tgt_priv_data;
2152         if (!tgt_priv_data)
2153                 return 0;
2154         tgtdev = tgt_priv_data->tgt_dev;
2155         if (!tgtdev)
2156                 return 0;
2157         return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
2158 }
2159 static DEVICE_ATTR_RO(persistent_id);
2160
2161 static struct attribute *mpi3mr_dev_attrs[] = {
2162         &dev_attr_sas_address.attr,
2163         &dev_attr_device_handle.attr,
2164         &dev_attr_persistent_id.attr,
2165         NULL,
2166 };
2167
2168 static const struct attribute_group mpi3mr_dev_attr_group = {
2169         .attrs = mpi3mr_dev_attrs
2170 };
2171
2172 const struct attribute_group *mpi3mr_dev_groups[] = {
2173         &mpi3mr_dev_attr_group,
2174         NULL,
2175 };