3871ec49cc4d6200ed27db793c595847fd5d29f8
[jlayton/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_vfpf.h"
64 #include "bnx2x_dcb.h"
65 #include "bnx2x_sp.h"
66
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION                                 \
71         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
73         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
74         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT              (5*HZ)
81
82 static char version[] =
83         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88                    "BCM57710/57711/57711E/"
89                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90                    "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99 MODULE_PARM_DESC(num_queues,
100                  " Set number of queues (default is as a number of CPUs)");
101
102 static int disable_tpa;
103 module_param(disable_tpa, int, S_IRUGO);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106 static int int_mode;
107 module_param(int_mode, int, S_IRUGO);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109                                 "(1 INT#x; 2 MSI)");
110
111 static int dropless_fc;
112 module_param(dropless_fc, int, S_IRUGO);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115 static int mrrs = -1;
116 module_param(mrrs, int, S_IRUGO);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119 static int debug;
120 module_param(debug, int, S_IRUGO);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123 static struct workqueue_struct *bnx2x_wq;
124 struct workqueue_struct *bnx2x_iov_wq;
125
126 struct bnx2x_mac_vals {
127         u32 xmac_addr;
128         u32 xmac_val;
129         u32 emac_addr;
130         u32 emac_val;
131         u32 umac_addr;
132         u32 umac_val;
133         u32 bmac_addr;
134         u32 bmac_val[2];
135 };
136
137 enum bnx2x_board_type {
138         BCM57710 = 0,
139         BCM57711,
140         BCM57711E,
141         BCM57712,
142         BCM57712_MF,
143         BCM57712_VF,
144         BCM57800,
145         BCM57800_MF,
146         BCM57800_VF,
147         BCM57810,
148         BCM57810_MF,
149         BCM57810_VF,
150         BCM57840_4_10,
151         BCM57840_2_20,
152         BCM57840_MF,
153         BCM57840_VF,
154         BCM57811,
155         BCM57811_MF,
156         BCM57840_O,
157         BCM57840_MFO,
158         BCM57811_VF
159 };
160
161 /* indexed by board_type, above */
162 static struct {
163         char *name;
164 } board_info[] = {
165         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
166         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
167         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
168         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
169         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
170         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
171         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
172         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
173         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
174         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
175         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
176         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
177         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
178         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
179         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
182         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
183         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
184         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 };
187
188 #ifndef PCI_DEVICE_ID_NX2_57710
189 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711
192 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711E
195 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712
198 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_MF
201 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_VF
204 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800
207 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_MF
210 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_VF
213 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810
216 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810_MF
219 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_O
222 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810_VF
225 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
228 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
231 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
234 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MF
237 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_VF
240 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811
243 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_MF
246 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_VF
249 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
250 #endif
251
252 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274         { 0 }
275 };
276
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278
279 /* Global resources for unloading a previously loaded device */
280 #define BNX2X_PREV_WAIT_NEEDED 1
281 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
282 static LIST_HEAD(bnx2x_prev_list);
283
284 /* Forward declaration */
285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
288
289 /****************************************************************************
290 * General service functions
291 ****************************************************************************/
292
293 static void __storm_memset_dma_mapping(struct bnx2x *bp,
294                                        u32 addr, dma_addr_t mapping)
295 {
296         REG_WR(bp,  addr, U64_LO(mapping));
297         REG_WR(bp,  addr + 4, U64_HI(mapping));
298 }
299
300 static void storm_memset_spq_addr(struct bnx2x *bp,
301                                   dma_addr_t mapping, u16 abs_fid)
302 {
303         u32 addr = XSEM_REG_FAST_MEMORY +
304                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
305
306         __storm_memset_dma_mapping(bp, addr, mapping);
307 }
308
309 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
310                                   u16 pf_id)
311 {
312         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
313                 pf_id);
314         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
315                 pf_id);
316         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
317                 pf_id);
318         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
319                 pf_id);
320 }
321
322 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
323                                  u8 enable)
324 {
325         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
326                 enable);
327         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
328                 enable);
329         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
330                 enable);
331         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
332                 enable);
333 }
334
335 static void storm_memset_eq_data(struct bnx2x *bp,
336                                  struct event_ring_data *eq_data,
337                                 u16 pfid)
338 {
339         size_t size = sizeof(struct event_ring_data);
340
341         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
342
343         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
344 }
345
346 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
347                                  u16 pfid)
348 {
349         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
350         REG_WR16(bp, addr, eq_prod);
351 }
352
353 /* used only at init
354  * locking is done by mcp
355  */
356 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
357 {
358         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
359         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
361                                PCICFG_VENDOR_ID_OFFSET);
362 }
363
364 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
365 {
366         u32 val;
367
368         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
369         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
370         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
371                                PCICFG_VENDOR_ID_OFFSET);
372
373         return val;
374 }
375
376 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
377 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
378 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
379 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
380 #define DMAE_DP_DST_NONE        "dst_addr [none]"
381
382 static void bnx2x_dp_dmae(struct bnx2x *bp,
383                           struct dmae_command *dmae, int msglvl)
384 {
385         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
386         int i;
387
388         switch (dmae->opcode & DMAE_COMMAND_DST) {
389         case DMAE_CMD_DST_PCI:
390                 if (src_type == DMAE_CMD_SRC_PCI)
391                         DP(msglvl, "DMAE: opcode 0x%08x\n"
392                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
393                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
394                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
395                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396                            dmae->comp_addr_hi, dmae->comp_addr_lo,
397                            dmae->comp_val);
398                 else
399                         DP(msglvl, "DMAE: opcode 0x%08x\n"
400                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
401                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
402                            dmae->opcode, dmae->src_addr_lo >> 2,
403                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404                            dmae->comp_addr_hi, dmae->comp_addr_lo,
405                            dmae->comp_val);
406                 break;
407         case DMAE_CMD_DST_GRC:
408                 if (src_type == DMAE_CMD_SRC_PCI)
409                         DP(msglvl, "DMAE: opcode 0x%08x\n"
410                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
411                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
412                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
413                            dmae->len, dmae->dst_addr_lo >> 2,
414                            dmae->comp_addr_hi, dmae->comp_addr_lo,
415                            dmae->comp_val);
416                 else
417                         DP(msglvl, "DMAE: opcode 0x%08x\n"
418                            "src [%08x], len [%d*4], dst [%08x]\n"
419                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
420                            dmae->opcode, dmae->src_addr_lo >> 2,
421                            dmae->len, dmae->dst_addr_lo >> 2,
422                            dmae->comp_addr_hi, dmae->comp_addr_lo,
423                            dmae->comp_val);
424                 break;
425         default:
426                 if (src_type == DMAE_CMD_SRC_PCI)
427                         DP(msglvl, "DMAE: opcode 0x%08x\n"
428                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
429                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
430                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
431                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
432                            dmae->comp_val);
433                 else
434                         DP(msglvl, "DMAE: opcode 0x%08x\n"
435                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
436                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437                            dmae->opcode, dmae->src_addr_lo >> 2,
438                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439                            dmae->comp_val);
440                 break;
441         }
442
443         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
444                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
445                    i, *(((u32 *)dmae) + i));
446 }
447
448 /* copy command into DMAE command memory and set DMAE command go */
449 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
450 {
451         u32 cmd_offset;
452         int i;
453
454         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
455         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
456                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
457         }
458         REG_WR(bp, dmae_reg_go_c[idx], 1);
459 }
460
461 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
462 {
463         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
464                            DMAE_CMD_C_ENABLE);
465 }
466
467 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
468 {
469         return opcode & ~DMAE_CMD_SRC_RESET;
470 }
471
472 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
473                              bool with_comp, u8 comp_type)
474 {
475         u32 opcode = 0;
476
477         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
478                    (dst_type << DMAE_COMMAND_DST_SHIFT));
479
480         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
481
482         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
483         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
484                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
485         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
486
487 #ifdef __BIG_ENDIAN
488         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
489 #else
490         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
491 #endif
492         if (with_comp)
493                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
494         return opcode;
495 }
496
497 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
498                                       struct dmae_command *dmae,
499                                       u8 src_type, u8 dst_type)
500 {
501         memset(dmae, 0, sizeof(struct dmae_command));
502
503         /* set the opcode */
504         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
505                                          true, DMAE_COMP_PCI);
506
507         /* fill in the completion parameters */
508         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
509         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
510         dmae->comp_val = DMAE_COMP_VAL;
511 }
512
513 /* issue a dmae command over the init-channel and wait for completion */
514 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
515                                u32 *comp)
516 {
517         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
518         int rc = 0;
519
520         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
521
522         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
523          * as long as this code is called both from syscall context and
524          * from ndo_set_rx_mode() flow that may be called from BH.
525          */
526         spin_lock_bh(&bp->dmae_lock);
527
528         /* reset completion */
529         *comp = 0;
530
531         /* post the command on the channel used for initializations */
532         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
533
534         /* wait for completion */
535         udelay(5);
536         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
537
538                 if (!cnt ||
539                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
540                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
541                         BNX2X_ERR("DMAE timeout!\n");
542                         rc = DMAE_TIMEOUT;
543                         goto unlock;
544                 }
545                 cnt--;
546                 udelay(50);
547         }
548         if (*comp & DMAE_PCI_ERR_FLAG) {
549                 BNX2X_ERR("DMAE PCI error!\n");
550                 rc = DMAE_PCI_ERROR;
551         }
552
553 unlock:
554         spin_unlock_bh(&bp->dmae_lock);
555         return rc;
556 }
557
558 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
559                       u32 len32)
560 {
561         int rc;
562         struct dmae_command dmae;
563
564         if (!bp->dmae_ready) {
565                 u32 *data = bnx2x_sp(bp, wb_data[0]);
566
567                 if (CHIP_IS_E1(bp))
568                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
569                 else
570                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
571                 return;
572         }
573
574         /* set opcode and fixed command fields */
575         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
576
577         /* fill in addresses and len */
578         dmae.src_addr_lo = U64_LO(dma_addr);
579         dmae.src_addr_hi = U64_HI(dma_addr);
580         dmae.dst_addr_lo = dst_addr >> 2;
581         dmae.dst_addr_hi = 0;
582         dmae.len = len32;
583
584         /* issue the command and wait for completion */
585         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
586         if (rc) {
587                 BNX2X_ERR("DMAE returned failure %d\n", rc);
588 #ifdef BNX2X_STOP_ON_ERROR
589                 bnx2x_panic();
590 #endif
591         }
592 }
593
594 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
595 {
596         int rc;
597         struct dmae_command dmae;
598
599         if (!bp->dmae_ready) {
600                 u32 *data = bnx2x_sp(bp, wb_data[0]);
601                 int i;
602
603                 if (CHIP_IS_E1(bp))
604                         for (i = 0; i < len32; i++)
605                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
606                 else
607                         for (i = 0; i < len32; i++)
608                                 data[i] = REG_RD(bp, src_addr + i*4);
609
610                 return;
611         }
612
613         /* set opcode and fixed command fields */
614         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
615
616         /* fill in addresses and len */
617         dmae.src_addr_lo = src_addr >> 2;
618         dmae.src_addr_hi = 0;
619         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
620         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
621         dmae.len = len32;
622
623         /* issue the command and wait for completion */
624         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
625         if (rc) {
626                 BNX2X_ERR("DMAE returned failure %d\n", rc);
627 #ifdef BNX2X_STOP_ON_ERROR
628                 bnx2x_panic();
629 #endif
630         }
631 }
632
633 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
634                                       u32 addr, u32 len)
635 {
636         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
637         int offset = 0;
638
639         while (len > dmae_wr_max) {
640                 bnx2x_write_dmae(bp, phys_addr + offset,
641                                  addr + offset, dmae_wr_max);
642                 offset += dmae_wr_max * 4;
643                 len -= dmae_wr_max;
644         }
645
646         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
647 }
648
649 static int bnx2x_mc_assert(struct bnx2x *bp)
650 {
651         char last_idx;
652         int i, rc = 0;
653         u32 row0, row1, row2, row3;
654
655         /* XSTORM */
656         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
657                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
658         if (last_idx)
659                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
660
661         /* print the asserts */
662         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
663
664                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
665                               XSTORM_ASSERT_LIST_OFFSET(i));
666                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
667                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
668                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
669                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
670                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
671                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
672
673                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
674                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
675                                   i, row3, row2, row1, row0);
676                         rc++;
677                 } else {
678                         break;
679                 }
680         }
681
682         /* TSTORM */
683         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
684                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
685         if (last_idx)
686                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
687
688         /* print the asserts */
689         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
690
691                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
692                               TSTORM_ASSERT_LIST_OFFSET(i));
693                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
694                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
695                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
696                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
697                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
698                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
699
700                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
701                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
702                                   i, row3, row2, row1, row0);
703                         rc++;
704                 } else {
705                         break;
706                 }
707         }
708
709         /* CSTORM */
710         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
711                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
712         if (last_idx)
713                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
714
715         /* print the asserts */
716         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
717
718                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
719                               CSTORM_ASSERT_LIST_OFFSET(i));
720                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
721                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
722                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
723                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
724                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
725                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
726
727                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
728                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
729                                   i, row3, row2, row1, row0);
730                         rc++;
731                 } else {
732                         break;
733                 }
734         }
735
736         /* USTORM */
737         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
738                            USTORM_ASSERT_LIST_INDEX_OFFSET);
739         if (last_idx)
740                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
741
742         /* print the asserts */
743         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
744
745                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
746                               USTORM_ASSERT_LIST_OFFSET(i));
747                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
748                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
749                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
750                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
751                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
752                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
753
754                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
755                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
756                                   i, row3, row2, row1, row0);
757                         rc++;
758                 } else {
759                         break;
760                 }
761         }
762
763         return rc;
764 }
765
766 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
767 #define SCRATCH_BUFFER_SIZE(bp) \
768         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
769
770 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
771 {
772         u32 addr, val;
773         u32 mark, offset;
774         __be32 data[9];
775         int word;
776         u32 trace_shmem_base;
777         if (BP_NOMCP(bp)) {
778                 BNX2X_ERR("NO MCP - can not dump\n");
779                 return;
780         }
781         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
782                 (bp->common.bc_ver & 0xff0000) >> 16,
783                 (bp->common.bc_ver & 0xff00) >> 8,
784                 (bp->common.bc_ver & 0xff));
785
786         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
787         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
788                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
789
790         if (BP_PATH(bp) == 0)
791                 trace_shmem_base = bp->common.shmem_base;
792         else
793                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
794
795         /* sanity */
796         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
797             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
798                                 SCRATCH_BUFFER_SIZE(bp)) {
799                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
800                           trace_shmem_base);
801                 return;
802         }
803
804         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
805
806         /* validate TRCB signature */
807         mark = REG_RD(bp, addr);
808         if (mark != MFW_TRACE_SIGNATURE) {
809                 BNX2X_ERR("Trace buffer signature is missing.");
810                 return ;
811         }
812
813         /* read cyclic buffer pointer */
814         addr += 4;
815         mark = REG_RD(bp, addr);
816         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
817         if (mark >= trace_shmem_base || mark < addr + 4) {
818                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
819                 return;
820         }
821         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
822
823         printk("%s", lvl);
824
825         /* dump buffer after the mark */
826         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
827                 for (word = 0; word < 8; word++)
828                         data[word] = htonl(REG_RD(bp, offset + 4*word));
829                 data[8] = 0x0;
830                 pr_cont("%s", (char *)data);
831         }
832
833         /* dump buffer before the mark */
834         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
835                 for (word = 0; word < 8; word++)
836                         data[word] = htonl(REG_RD(bp, offset + 4*word));
837                 data[8] = 0x0;
838                 pr_cont("%s", (char *)data);
839         }
840         printk("%s" "end of fw dump\n", lvl);
841 }
842
843 static void bnx2x_fw_dump(struct bnx2x *bp)
844 {
845         bnx2x_fw_dump_lvl(bp, KERN_ERR);
846 }
847
848 static void bnx2x_hc_int_disable(struct bnx2x *bp)
849 {
850         int port = BP_PORT(bp);
851         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
852         u32 val = REG_RD(bp, addr);
853
854         /* in E1 we must use only PCI configuration space to disable
855          * MSI/MSIX capability
856          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
857          */
858         if (CHIP_IS_E1(bp)) {
859                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
860                  * Use mask register to prevent from HC sending interrupts
861                  * after we exit the function
862                  */
863                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
864
865                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
867                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
868         } else
869                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
870                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
871                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
872                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
873
874         DP(NETIF_MSG_IFDOWN,
875            "write %x to HC %d (addr 0x%x)\n",
876            val, port, addr);
877
878         /* flush all outstanding writes */
879         mmiowb();
880
881         REG_WR(bp, addr, val);
882         if (REG_RD(bp, addr) != val)
883                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
884 }
885
886 static void bnx2x_igu_int_disable(struct bnx2x *bp)
887 {
888         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
889
890         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
891                  IGU_PF_CONF_INT_LINE_EN |
892                  IGU_PF_CONF_ATTN_BIT_EN);
893
894         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
895
896         /* flush all outstanding writes */
897         mmiowb();
898
899         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
902 }
903
904 static void bnx2x_int_disable(struct bnx2x *bp)
905 {
906         if (bp->common.int_block == INT_BLOCK_HC)
907                 bnx2x_hc_int_disable(bp);
908         else
909                 bnx2x_igu_int_disable(bp);
910 }
911
912 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
913 {
914         int i;
915         u16 j;
916         struct hc_sp_status_block_data sp_sb_data;
917         int func = BP_FUNC(bp);
918 #ifdef BNX2X_STOP_ON_ERROR
919         u16 start = 0, end = 0;
920         u8 cos;
921 #endif
922         if (IS_PF(bp) && disable_int)
923                 bnx2x_int_disable(bp);
924
925         bp->stats_state = STATS_STATE_DISABLED;
926         bp->eth_stats.unrecoverable_error++;
927         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
928
929         BNX2X_ERR("begin crash dump -----------------\n");
930
931         /* Indices */
932         /* Common */
933         if (IS_PF(bp)) {
934                 struct host_sp_status_block *def_sb = bp->def_status_blk;
935                 int data_size, cstorm_offset;
936
937                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938                           bp->def_idx, bp->def_att_idx, bp->attn_state,
939                           bp->spq_prod_idx, bp->stats_counter);
940                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
941                           def_sb->atten_status_block.attn_bits,
942                           def_sb->atten_status_block.attn_bits_ack,
943                           def_sb->atten_status_block.status_block_id,
944                           def_sb->atten_status_block.attn_bits_index);
945                 BNX2X_ERR("     def (");
946                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
947                         pr_cont("0x%x%s",
948                                 def_sb->sp_sb.index_values[i],
949                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
950
951                 data_size = sizeof(struct hc_sp_status_block_data) /
952                             sizeof(u32);
953                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954                 for (i = 0; i < data_size; i++)
955                         *((u32 *)&sp_sb_data + i) =
956                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
957                                            i * sizeof(u32));
958
959                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
960                         sp_sb_data.igu_sb_id,
961                         sp_sb_data.igu_seg_id,
962                         sp_sb_data.p_func.pf_id,
963                         sp_sb_data.p_func.vnic_id,
964                         sp_sb_data.p_func.vf_id,
965                         sp_sb_data.p_func.vf_valid,
966                         sp_sb_data.state);
967         }
968
969         for_each_eth_queue(bp, i) {
970                 struct bnx2x_fastpath *fp = &bp->fp[i];
971                 int loop;
972                 struct hc_status_block_data_e2 sb_data_e2;
973                 struct hc_status_block_data_e1x sb_data_e1x;
974                 struct hc_status_block_sm  *hc_sm_p =
975                         CHIP_IS_E1x(bp) ?
976                         sb_data_e1x.common.state_machine :
977                         sb_data_e2.common.state_machine;
978                 struct hc_index_data *hc_index_p =
979                         CHIP_IS_E1x(bp) ?
980                         sb_data_e1x.index_data :
981                         sb_data_e2.index_data;
982                 u8 data_size, cos;
983                 u32 *sb_data_p;
984                 struct bnx2x_fp_txdata txdata;
985
986                 /* Rx */
987                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988                           i, fp->rx_bd_prod, fp->rx_bd_cons,
989                           fp->rx_comp_prod,
990                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992                           fp->rx_sge_prod, fp->last_max_sge,
993                           le16_to_cpu(fp->fp_hc_idx));
994
995                 /* Tx */
996                 for_each_cos_in_tx_queue(fp, cos)
997                 {
998                         txdata = *fp->txdata_ptr[cos];
999                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1000                                   i, txdata.tx_pkt_prod,
1001                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1002                                   txdata.tx_bd_cons,
1003                                   le16_to_cpu(*txdata.tx_cons_sb));
1004                 }
1005
1006                 loop = CHIP_IS_E1x(bp) ?
1007                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1008
1009                 /* host sb data */
1010
1011                 if (IS_FCOE_FP(fp))
1012                         continue;
1013
1014                 BNX2X_ERR("     run indexes (");
1015                 for (j = 0; j < HC_SB_MAX_SM; j++)
1016                         pr_cont("0x%x%s",
1017                                fp->sb_running_index[j],
1018                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1019
1020                 BNX2X_ERR("     indexes (");
1021                 for (j = 0; j < loop; j++)
1022                         pr_cont("0x%x%s",
1023                                fp->sb_index_values[j],
1024                                (j == loop - 1) ? ")" : " ");
1025
1026                 /* VF cannot access FW refelection for status block */
1027                 if (IS_VF(bp))
1028                         continue;
1029
1030                 /* fw sb data */
1031                 data_size = CHIP_IS_E1x(bp) ?
1032                         sizeof(struct hc_status_block_data_e1x) :
1033                         sizeof(struct hc_status_block_data_e2);
1034                 data_size /= sizeof(u32);
1035                 sb_data_p = CHIP_IS_E1x(bp) ?
1036                         (u32 *)&sb_data_e1x :
1037                         (u32 *)&sb_data_e2;
1038                 /* copy sb data in here */
1039                 for (j = 0; j < data_size; j++)
1040                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1041                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1042                                 j * sizeof(u32));
1043
1044                 if (!CHIP_IS_E1x(bp)) {
1045                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1046                                 sb_data_e2.common.p_func.pf_id,
1047                                 sb_data_e2.common.p_func.vf_id,
1048                                 sb_data_e2.common.p_func.vf_valid,
1049                                 sb_data_e2.common.p_func.vnic_id,
1050                                 sb_data_e2.common.same_igu_sb_1b,
1051                                 sb_data_e2.common.state);
1052                 } else {
1053                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1054                                 sb_data_e1x.common.p_func.pf_id,
1055                                 sb_data_e1x.common.p_func.vf_id,
1056                                 sb_data_e1x.common.p_func.vf_valid,
1057                                 sb_data_e1x.common.p_func.vnic_id,
1058                                 sb_data_e1x.common.same_igu_sb_1b,
1059                                 sb_data_e1x.common.state);
1060                 }
1061
1062                 /* SB_SMs data */
1063                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1064                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1065                                 j, hc_sm_p[j].__flags,
1066                                 hc_sm_p[j].igu_sb_id,
1067                                 hc_sm_p[j].igu_seg_id,
1068                                 hc_sm_p[j].time_to_expire,
1069                                 hc_sm_p[j].timer_value);
1070                 }
1071
1072                 /* Indices data */
1073                 for (j = 0; j < loop; j++) {
1074                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1075                                hc_index_p[j].flags,
1076                                hc_index_p[j].timeout);
1077                 }
1078         }
1079
1080 #ifdef BNX2X_STOP_ON_ERROR
1081         if (IS_PF(bp)) {
1082                 /* event queue */
1083                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1084                 for (i = 0; i < NUM_EQ_DESC; i++) {
1085                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1086
1087                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1088                                   i, bp->eq_ring[i].message.opcode,
1089                                   bp->eq_ring[i].message.error);
1090                         BNX2X_ERR("data: %x %x %x\n",
1091                                   data[0], data[1], data[2]);
1092                 }
1093         }
1094
1095         /* Rings */
1096         /* Rx */
1097         for_each_valid_rx_queue(bp, i) {
1098                 struct bnx2x_fastpath *fp = &bp->fp[i];
1099
1100                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1101                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1102                 for (j = start; j != end; j = RX_BD(j + 1)) {
1103                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1104                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1105
1106                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1107                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1108                 }
1109
1110                 start = RX_SGE(fp->rx_sge_prod);
1111                 end = RX_SGE(fp->last_max_sge);
1112                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1113                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1114                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1115
1116                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1117                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1118                 }
1119
1120                 start = RCQ_BD(fp->rx_comp_cons - 10);
1121                 end = RCQ_BD(fp->rx_comp_cons + 503);
1122                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1123                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1124
1125                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1126                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1127                 }
1128         }
1129
1130         /* Tx */
1131         for_each_valid_tx_queue(bp, i) {
1132                 struct bnx2x_fastpath *fp = &bp->fp[i];
1133                 for_each_cos_in_tx_queue(fp, cos) {
1134                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1135
1136                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1137                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1138                         for (j = start; j != end; j = TX_BD(j + 1)) {
1139                                 struct sw_tx_bd *sw_bd =
1140                                         &txdata->tx_buf_ring[j];
1141
1142                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1143                                           i, cos, j, sw_bd->skb,
1144                                           sw_bd->first_bd);
1145                         }
1146
1147                         start = TX_BD(txdata->tx_bd_cons - 10);
1148                         end = TX_BD(txdata->tx_bd_cons + 254);
1149                         for (j = start; j != end; j = TX_BD(j + 1)) {
1150                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1151
1152                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1153                                           i, cos, j, tx_bd[0], tx_bd[1],
1154                                           tx_bd[2], tx_bd[3]);
1155                         }
1156                 }
1157         }
1158 #endif
1159         if (IS_PF(bp)) {
1160                 bnx2x_fw_dump(bp);
1161                 bnx2x_mc_assert(bp);
1162         }
1163         BNX2X_ERR("end crash dump -----------------\n");
1164 }
1165
1166 /*
1167  * FLR Support for E2
1168  *
1169  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1170  * initialization.
1171  */
1172 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1173 #define FLR_WAIT_INTERVAL       50      /* usec */
1174 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1175
1176 struct pbf_pN_buf_regs {
1177         int pN;
1178         u32 init_crd;
1179         u32 crd;
1180         u32 crd_freed;
1181 };
1182
1183 struct pbf_pN_cmd_regs {
1184         int pN;
1185         u32 lines_occup;
1186         u32 lines_freed;
1187 };
1188
1189 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1190                                      struct pbf_pN_buf_regs *regs,
1191                                      u32 poll_count)
1192 {
1193         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1194         u32 cur_cnt = poll_count;
1195
1196         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1197         crd = crd_start = REG_RD(bp, regs->crd);
1198         init_crd = REG_RD(bp, regs->init_crd);
1199
1200         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1201         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1202         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1203
1204         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1205                (init_crd - crd_start))) {
1206                 if (cur_cnt--) {
1207                         udelay(FLR_WAIT_INTERVAL);
1208                         crd = REG_RD(bp, regs->crd);
1209                         crd_freed = REG_RD(bp, regs->crd_freed);
1210                 } else {
1211                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1212                            regs->pN);
1213                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1214                            regs->pN, crd);
1215                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1216                            regs->pN, crd_freed);
1217                         break;
1218                 }
1219         }
1220         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1221            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1222 }
1223
1224 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1225                                      struct pbf_pN_cmd_regs *regs,
1226                                      u32 poll_count)
1227 {
1228         u32 occup, to_free, freed, freed_start;
1229         u32 cur_cnt = poll_count;
1230
1231         occup = to_free = REG_RD(bp, regs->lines_occup);
1232         freed = freed_start = REG_RD(bp, regs->lines_freed);
1233
1234         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1235         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1236
1237         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1238                 if (cur_cnt--) {
1239                         udelay(FLR_WAIT_INTERVAL);
1240                         occup = REG_RD(bp, regs->lines_occup);
1241                         freed = REG_RD(bp, regs->lines_freed);
1242                 } else {
1243                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1244                            regs->pN);
1245                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1246                            regs->pN, occup);
1247                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1248                            regs->pN, freed);
1249                         break;
1250                 }
1251         }
1252         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1253            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1254 }
1255
1256 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1257                                     u32 expected, u32 poll_count)
1258 {
1259         u32 cur_cnt = poll_count;
1260         u32 val;
1261
1262         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1263                 udelay(FLR_WAIT_INTERVAL);
1264
1265         return val;
1266 }
1267
1268 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1269                                     char *msg, u32 poll_cnt)
1270 {
1271         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1272         if (val != 0) {
1273                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1274                 return 1;
1275         }
1276         return 0;
1277 }
1278
1279 /* Common routines with VF FLR cleanup */
1280 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1281 {
1282         /* adjust polling timeout */
1283         if (CHIP_REV_IS_EMUL(bp))
1284                 return FLR_POLL_CNT * 2000;
1285
1286         if (CHIP_REV_IS_FPGA(bp))
1287                 return FLR_POLL_CNT * 120;
1288
1289         return FLR_POLL_CNT;
1290 }
1291
1292 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1293 {
1294         struct pbf_pN_cmd_regs cmd_regs[] = {
1295                 {0, (CHIP_IS_E3B0(bp)) ?
1296                         PBF_REG_TQ_OCCUPANCY_Q0 :
1297                         PBF_REG_P0_TQ_OCCUPANCY,
1298                     (CHIP_IS_E3B0(bp)) ?
1299                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1300                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1301                 {1, (CHIP_IS_E3B0(bp)) ?
1302                         PBF_REG_TQ_OCCUPANCY_Q1 :
1303                         PBF_REG_P1_TQ_OCCUPANCY,
1304                     (CHIP_IS_E3B0(bp)) ?
1305                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1306                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1307                 {4, (CHIP_IS_E3B0(bp)) ?
1308                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1309                         PBF_REG_P4_TQ_OCCUPANCY,
1310                     (CHIP_IS_E3B0(bp)) ?
1311                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1312                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1313         };
1314
1315         struct pbf_pN_buf_regs buf_regs[] = {
1316                 {0, (CHIP_IS_E3B0(bp)) ?
1317                         PBF_REG_INIT_CRD_Q0 :
1318                         PBF_REG_P0_INIT_CRD ,
1319                     (CHIP_IS_E3B0(bp)) ?
1320                         PBF_REG_CREDIT_Q0 :
1321                         PBF_REG_P0_CREDIT,
1322                     (CHIP_IS_E3B0(bp)) ?
1323                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1324                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1325                 {1, (CHIP_IS_E3B0(bp)) ?
1326                         PBF_REG_INIT_CRD_Q1 :
1327                         PBF_REG_P1_INIT_CRD,
1328                     (CHIP_IS_E3B0(bp)) ?
1329                         PBF_REG_CREDIT_Q1 :
1330                         PBF_REG_P1_CREDIT,
1331                     (CHIP_IS_E3B0(bp)) ?
1332                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1333                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1334                 {4, (CHIP_IS_E3B0(bp)) ?
1335                         PBF_REG_INIT_CRD_LB_Q :
1336                         PBF_REG_P4_INIT_CRD,
1337                     (CHIP_IS_E3B0(bp)) ?
1338                         PBF_REG_CREDIT_LB_Q :
1339                         PBF_REG_P4_CREDIT,
1340                     (CHIP_IS_E3B0(bp)) ?
1341                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1342                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1343         };
1344
1345         int i;
1346
1347         /* Verify the command queues are flushed P0, P1, P4 */
1348         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1349                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1350
1351         /* Verify the transmission buffers are flushed P0, P1, P4 */
1352         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1353                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1354 }
1355
1356 #define OP_GEN_PARAM(param) \
1357         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1358
1359 #define OP_GEN_TYPE(type) \
1360         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1361
1362 #define OP_GEN_AGG_VECT(index) \
1363         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1364
1365 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1366 {
1367         u32 op_gen_command = 0;
1368         u32 comp_addr = BAR_CSTRORM_INTMEM +
1369                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1370         int ret = 0;
1371
1372         if (REG_RD(bp, comp_addr)) {
1373                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1374                 return 1;
1375         }
1376
1377         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1378         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1379         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1380         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1381
1382         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1383         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1384
1385         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1386                 BNX2X_ERR("FW final cleanup did not succeed\n");
1387                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1388                    (REG_RD(bp, comp_addr)));
1389                 bnx2x_panic();
1390                 return 1;
1391         }
1392         /* Zero completion for next FLR */
1393         REG_WR(bp, comp_addr, 0);
1394
1395         return ret;
1396 }
1397
1398 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1399 {
1400         u16 status;
1401
1402         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1403         return status & PCI_EXP_DEVSTA_TRPND;
1404 }
1405
1406 /* PF FLR specific routines
1407 */
1408 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1409 {
1410         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1411         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1412                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1413                         "CFC PF usage counter timed out",
1414                         poll_cnt))
1415                 return 1;
1416
1417         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1418         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1419                         DORQ_REG_PF_USAGE_CNT,
1420                         "DQ PF usage counter timed out",
1421                         poll_cnt))
1422                 return 1;
1423
1424         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1425         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1427                         "QM PF usage counter timed out",
1428                         poll_cnt))
1429                 return 1;
1430
1431         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1432         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1434                         "Timers VNIC usage counter timed out",
1435                         poll_cnt))
1436                 return 1;
1437         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1439                         "Timers NUM_SCANS usage counter timed out",
1440                         poll_cnt))
1441                 return 1;
1442
1443         /* Wait DMAE PF usage counter to zero */
1444         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1446                         "DMAE command register timed out",
1447                         poll_cnt))
1448                 return 1;
1449
1450         return 0;
1451 }
1452
1453 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1454 {
1455         u32 val;
1456
1457         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1458         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1459
1460         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1461         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1462
1463         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1464         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1465
1466         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1467         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1468
1469         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1470         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1471
1472         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1473         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1474
1475         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1476         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1477
1478         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1479         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1480            val);
1481 }
1482
1483 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1484 {
1485         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1486
1487         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1488
1489         /* Re-enable PF target read access */
1490         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1491
1492         /* Poll HW usage counters */
1493         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1494         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1495                 return -EBUSY;
1496
1497         /* Zero the igu 'trailing edge' and 'leading edge' */
1498
1499         /* Send the FW cleanup command */
1500         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1501                 return -EBUSY;
1502
1503         /* ATC cleanup */
1504
1505         /* Verify TX hw is flushed */
1506         bnx2x_tx_hw_flushed(bp, poll_cnt);
1507
1508         /* Wait 100ms (not adjusted according to platform) */
1509         msleep(100);
1510
1511         /* Verify no pending pci transactions */
1512         if (bnx2x_is_pcie_pending(bp->pdev))
1513                 BNX2X_ERR("PCIE Transactions still pending\n");
1514
1515         /* Debug */
1516         bnx2x_hw_enable_status(bp);
1517
1518         /*
1519          * Master enable - Due to WB DMAE writes performed before this
1520          * register is re-initialized as part of the regular function init
1521          */
1522         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1523
1524         return 0;
1525 }
1526
1527 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1528 {
1529         int port = BP_PORT(bp);
1530         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1531         u32 val = REG_RD(bp, addr);
1532         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1533         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1534         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1535
1536         if (msix) {
1537                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1538                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1539                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1540                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1541                 if (single_msix)
1542                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1543         } else if (msi) {
1544                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1545                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1546                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1547                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1548         } else {
1549                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1550                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1551                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1552                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1553
1554                 if (!CHIP_IS_E1(bp)) {
1555                         DP(NETIF_MSG_IFUP,
1556                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1557
1558                         REG_WR(bp, addr, val);
1559
1560                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1561                 }
1562         }
1563
1564         if (CHIP_IS_E1(bp))
1565                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1566
1567         DP(NETIF_MSG_IFUP,
1568            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1569            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1570
1571         REG_WR(bp, addr, val);
1572         /*
1573          * Ensure that HC_CONFIG is written before leading/trailing edge config
1574          */
1575         mmiowb();
1576         barrier();
1577
1578         if (!CHIP_IS_E1(bp)) {
1579                 /* init leading/trailing edge */
1580                 if (IS_MF(bp)) {
1581                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1582                         if (bp->port.pmf)
1583                                 /* enable nig and gpio3 attention */
1584                                 val |= 0x1100;
1585                 } else
1586                         val = 0xffff;
1587
1588                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1589                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1590         }
1591
1592         /* Make sure that interrupts are indeed enabled from here on */
1593         mmiowb();
1594 }
1595
1596 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1597 {
1598         u32 val;
1599         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1600         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1601         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1602
1603         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1604
1605         if (msix) {
1606                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1607                          IGU_PF_CONF_SINGLE_ISR_EN);
1608                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1609                         IGU_PF_CONF_ATTN_BIT_EN);
1610
1611                 if (single_msix)
1612                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1613         } else if (msi) {
1614                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1615                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1616                         IGU_PF_CONF_ATTN_BIT_EN |
1617                         IGU_PF_CONF_SINGLE_ISR_EN);
1618         } else {
1619                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1620                 val |= (IGU_PF_CONF_INT_LINE_EN |
1621                         IGU_PF_CONF_ATTN_BIT_EN |
1622                         IGU_PF_CONF_SINGLE_ISR_EN);
1623         }
1624
1625         /* Clean previous status - need to configure igu prior to ack*/
1626         if ((!msix) || single_msix) {
1627                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1628                 bnx2x_ack_int(bp);
1629         }
1630
1631         val |= IGU_PF_CONF_FUNC_EN;
1632
1633         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1634            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1635
1636         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1637
1638         if (val & IGU_PF_CONF_INT_LINE_EN)
1639                 pci_intx(bp->pdev, true);
1640
1641         barrier();
1642
1643         /* init leading/trailing edge */
1644         if (IS_MF(bp)) {
1645                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1646                 if (bp->port.pmf)
1647                         /* enable nig and gpio3 attention */
1648                         val |= 0x1100;
1649         } else
1650                 val = 0xffff;
1651
1652         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1653         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1654
1655         /* Make sure that interrupts are indeed enabled from here on */
1656         mmiowb();
1657 }
1658
1659 void bnx2x_int_enable(struct bnx2x *bp)
1660 {
1661         if (bp->common.int_block == INT_BLOCK_HC)
1662                 bnx2x_hc_int_enable(bp);
1663         else
1664                 bnx2x_igu_int_enable(bp);
1665 }
1666
1667 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1668 {
1669         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1670         int i, offset;
1671
1672         if (disable_hw)
1673                 /* prevent the HW from sending interrupts */
1674                 bnx2x_int_disable(bp);
1675
1676         /* make sure all ISRs are done */
1677         if (msix) {
1678                 synchronize_irq(bp->msix_table[0].vector);
1679                 offset = 1;
1680                 if (CNIC_SUPPORT(bp))
1681                         offset++;
1682                 for_each_eth_queue(bp, i)
1683                         synchronize_irq(bp->msix_table[offset++].vector);
1684         } else
1685                 synchronize_irq(bp->pdev->irq);
1686
1687         /* make sure sp_task is not running */
1688         cancel_delayed_work(&bp->sp_task);
1689         cancel_delayed_work(&bp->period_task);
1690         flush_workqueue(bnx2x_wq);
1691 }
1692
1693 /* fast path */
1694
1695 /*
1696  * General service functions
1697  */
1698
1699 /* Return true if succeeded to acquire the lock */
1700 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1701 {
1702         u32 lock_status;
1703         u32 resource_bit = (1 << resource);
1704         int func = BP_FUNC(bp);
1705         u32 hw_lock_control_reg;
1706
1707         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1708            "Trying to take a lock on resource %d\n", resource);
1709
1710         /* Validating that the resource is within range */
1711         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1712                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1714                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1715                 return false;
1716         }
1717
1718         if (func <= 5)
1719                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1720         else
1721                 hw_lock_control_reg =
1722                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1723
1724         /* Try to acquire the lock */
1725         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1726         lock_status = REG_RD(bp, hw_lock_control_reg);
1727         if (lock_status & resource_bit)
1728                 return true;
1729
1730         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731            "Failed to get a lock on resource %d\n", resource);
1732         return false;
1733 }
1734
1735 /**
1736  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1737  *
1738  * @bp: driver handle
1739  *
1740  * Returns the recovery leader resource id according to the engine this function
1741  * belongs to. Currently only only 2 engines is supported.
1742  */
1743 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1744 {
1745         if (BP_PATH(bp))
1746                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1747         else
1748                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1749 }
1750
1751 /**
1752  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1753  *
1754  * @bp: driver handle
1755  *
1756  * Tries to acquire a leader lock for current engine.
1757  */
1758 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1759 {
1760         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1761 }
1762
1763 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1764
1765 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1766 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1767 {
1768         /* Set the interrupt occurred bit for the sp-task to recognize it
1769          * must ack the interrupt and transition according to the IGU
1770          * state machine.
1771          */
1772         atomic_set(&bp->interrupt_occurred, 1);
1773
1774         /* The sp_task must execute only after this bit
1775          * is set, otherwise we will get out of sync and miss all
1776          * further interrupts. Hence, the barrier.
1777          */
1778         smp_wmb();
1779
1780         /* schedule sp_task to workqueue */
1781         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1782 }
1783
1784 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1785 {
1786         struct bnx2x *bp = fp->bp;
1787         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1788         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1789         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1790         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1791
1792         DP(BNX2X_MSG_SP,
1793            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1794            fp->index, cid, command, bp->state,
1795            rr_cqe->ramrod_cqe.ramrod_type);
1796
1797         /* If cid is within VF range, replace the slowpath object with the
1798          * one corresponding to this VF
1799          */
1800         if (cid >= BNX2X_FIRST_VF_CID  &&
1801             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1802                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1803
1804         switch (command) {
1805         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1806                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1807                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1808                 break;
1809
1810         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1811                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1812                 drv_cmd = BNX2X_Q_CMD_SETUP;
1813                 break;
1814
1815         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1816                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1817                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1818                 break;
1819
1820         case (RAMROD_CMD_ID_ETH_HALT):
1821                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1822                 drv_cmd = BNX2X_Q_CMD_HALT;
1823                 break;
1824
1825         case (RAMROD_CMD_ID_ETH_TERMINATE):
1826                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1827                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1828                 break;
1829
1830         case (RAMROD_CMD_ID_ETH_EMPTY):
1831                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1832                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1833                 break;
1834
1835         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1836                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1837                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1838                 break;
1839
1840         default:
1841                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1842                           command, fp->index);
1843                 return;
1844         }
1845
1846         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1847             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1848                 /* q_obj->complete_cmd() failure means that this was
1849                  * an unexpected completion.
1850                  *
1851                  * In this case we don't want to increase the bp->spq_left
1852                  * because apparently we haven't sent this command the first
1853                  * place.
1854                  */
1855 #ifdef BNX2X_STOP_ON_ERROR
1856                 bnx2x_panic();
1857 #else
1858                 return;
1859 #endif
1860
1861         smp_mb__before_atomic();
1862         atomic_inc(&bp->cq_spq_left);
1863         /* push the change in bp->spq_left and towards the memory */
1864         smp_mb__after_atomic();
1865
1866         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1867
1868         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1869             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1870                 /* if Q update ramrod is completed for last Q in AFEX vif set
1871                  * flow, then ACK MCP at the end
1872                  *
1873                  * mark pending ACK to MCP bit.
1874                  * prevent case that both bits are cleared.
1875                  * At the end of load/unload driver checks that
1876                  * sp_state is cleared, and this order prevents
1877                  * races
1878                  */
1879                 smp_mb__before_atomic();
1880                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1881                 wmb();
1882                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1883                 smp_mb__after_atomic();
1884
1885                 /* schedule the sp task as mcp ack is required */
1886                 bnx2x_schedule_sp_task(bp);
1887         }
1888
1889         return;
1890 }
1891
1892 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1893 {
1894         struct bnx2x *bp = netdev_priv(dev_instance);
1895         u16 status = bnx2x_ack_int(bp);
1896         u16 mask;
1897         int i;
1898         u8 cos;
1899
1900         /* Return here if interrupt is shared and it's not for us */
1901         if (unlikely(status == 0)) {
1902                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1903                 return IRQ_NONE;
1904         }
1905         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1906
1907 #ifdef BNX2X_STOP_ON_ERROR
1908         if (unlikely(bp->panic))
1909                 return IRQ_HANDLED;
1910 #endif
1911
1912         for_each_eth_queue(bp, i) {
1913                 struct bnx2x_fastpath *fp = &bp->fp[i];
1914
1915                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1916                 if (status & mask) {
1917                         /* Handle Rx or Tx according to SB id */
1918                         for_each_cos_in_tx_queue(fp, cos)
1919                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1920                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1921                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1922                         status &= ~mask;
1923                 }
1924         }
1925
1926         if (CNIC_SUPPORT(bp)) {
1927                 mask = 0x2;
1928                 if (status & (mask | 0x1)) {
1929                         struct cnic_ops *c_ops = NULL;
1930
1931                         rcu_read_lock();
1932                         c_ops = rcu_dereference(bp->cnic_ops);
1933                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1934                                       CNIC_DRV_STATE_HANDLES_IRQ))
1935                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1936                         rcu_read_unlock();
1937
1938                         status &= ~mask;
1939                 }
1940         }
1941
1942         if (unlikely(status & 0x1)) {
1943
1944                 /* schedule sp task to perform default status block work, ack
1945                  * attentions and enable interrupts.
1946                  */
1947                 bnx2x_schedule_sp_task(bp);
1948
1949                 status &= ~0x1;
1950                 if (!status)
1951                         return IRQ_HANDLED;
1952         }
1953
1954         if (unlikely(status))
1955                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1956                    status);
1957
1958         return IRQ_HANDLED;
1959 }
1960
1961 /* Link */
1962
1963 /*
1964  * General service functions
1965  */
1966
1967 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969         u32 lock_status;
1970         u32 resource_bit = (1 << resource);
1971         int func = BP_FUNC(bp);
1972         u32 hw_lock_control_reg;
1973         int cnt;
1974
1975         /* Validating that the resource is within range */
1976         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1977                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1978                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1979                 return -EINVAL;
1980         }
1981
1982         if (func <= 5) {
1983                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1984         } else {
1985                 hw_lock_control_reg =
1986                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1987         }
1988
1989         /* Validating that the resource is not already taken */
1990         lock_status = REG_RD(bp, hw_lock_control_reg);
1991         if (lock_status & resource_bit) {
1992                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1993                    lock_status, resource_bit);
1994                 return -EEXIST;
1995         }
1996
1997         /* Try for 5 second every 5ms */
1998         for (cnt = 0; cnt < 1000; cnt++) {
1999                 /* Try to acquire the lock */
2000                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2001                 lock_status = REG_RD(bp, hw_lock_control_reg);
2002                 if (lock_status & resource_bit)
2003                         return 0;
2004
2005                 usleep_range(5000, 10000);
2006         }
2007         BNX2X_ERR("Timeout\n");
2008         return -EAGAIN;
2009 }
2010
2011 int bnx2x_release_leader_lock(struct bnx2x *bp)
2012 {
2013         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2014 }
2015
2016 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2017 {
2018         u32 lock_status;
2019         u32 resource_bit = (1 << resource);
2020         int func = BP_FUNC(bp);
2021         u32 hw_lock_control_reg;
2022
2023         /* Validating that the resource is within range */
2024         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2025                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2026                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2027                 return -EINVAL;
2028         }
2029
2030         if (func <= 5) {
2031                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2032         } else {
2033                 hw_lock_control_reg =
2034                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2035         }
2036
2037         /* Validating that the resource is currently taken */
2038         lock_status = REG_RD(bp, hw_lock_control_reg);
2039         if (!(lock_status & resource_bit)) {
2040                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2041                           lock_status, resource_bit);
2042                 return -EFAULT;
2043         }
2044
2045         REG_WR(bp, hw_lock_control_reg, resource_bit);
2046         return 0;
2047 }
2048
2049 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2050 {
2051         /* The GPIO should be swapped if swap register is set and active */
2052         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2053                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2054         int gpio_shift = gpio_num +
2055                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2056         u32 gpio_mask = (1 << gpio_shift);
2057         u32 gpio_reg;
2058         int value;
2059
2060         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2061                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2062                 return -EINVAL;
2063         }
2064
2065         /* read GPIO value */
2066         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2067
2068         /* get the requested pin value */
2069         if ((gpio_reg & gpio_mask) == gpio_mask)
2070                 value = 1;
2071         else
2072                 value = 0;
2073
2074         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2075
2076         return value;
2077 }
2078
2079 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2080 {
2081         /* The GPIO should be swapped if swap register is set and active */
2082         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084         int gpio_shift = gpio_num +
2085                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086         u32 gpio_mask = (1 << gpio_shift);
2087         u32 gpio_reg;
2088
2089         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2090                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2091                 return -EINVAL;
2092         }
2093
2094         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2095         /* read GPIO and mask except the float bits */
2096         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2097
2098         switch (mode) {
2099         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2100                 DP(NETIF_MSG_LINK,
2101                    "Set GPIO %d (shift %d) -> output low\n",
2102                    gpio_num, gpio_shift);
2103                 /* clear FLOAT and set CLR */
2104                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2105                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2106                 break;
2107
2108         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2109                 DP(NETIF_MSG_LINK,
2110                    "Set GPIO %d (shift %d) -> output high\n",
2111                    gpio_num, gpio_shift);
2112                 /* clear FLOAT and set SET */
2113                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2114                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2115                 break;
2116
2117         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2118                 DP(NETIF_MSG_LINK,
2119                    "Set GPIO %d (shift %d) -> input\n",
2120                    gpio_num, gpio_shift);
2121                 /* set FLOAT */
2122                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2123                 break;
2124
2125         default:
2126                 break;
2127         }
2128
2129         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2130         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2131
2132         return 0;
2133 }
2134
2135 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2136 {
2137         u32 gpio_reg = 0;
2138         int rc = 0;
2139
2140         /* Any port swapping should be handled by caller. */
2141
2142         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143         /* read GPIO and mask except the float bits */
2144         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2145         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2146         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2147         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2148
2149         switch (mode) {
2150         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2151                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2152                 /* set CLR */
2153                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2154                 break;
2155
2156         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2157                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2158                 /* set SET */
2159                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2160                 break;
2161
2162         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2163                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2164                 /* set FLOAT */
2165                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2166                 break;
2167
2168         default:
2169                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2170                 rc = -EINVAL;
2171                 break;
2172         }
2173
2174         if (rc == 0)
2175                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2176
2177         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2178
2179         return rc;
2180 }
2181
2182 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2183 {
2184         /* The GPIO should be swapped if swap register is set and active */
2185         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2186                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2187         int gpio_shift = gpio_num +
2188                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2189         u32 gpio_mask = (1 << gpio_shift);
2190         u32 gpio_reg;
2191
2192         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2193                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2194                 return -EINVAL;
2195         }
2196
2197         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2198         /* read GPIO int */
2199         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2200
2201         switch (mode) {
2202         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2203                 DP(NETIF_MSG_LINK,
2204                    "Clear GPIO INT %d (shift %d) -> output low\n",
2205                    gpio_num, gpio_shift);
2206                 /* clear SET and set CLR */
2207                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2208                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2209                 break;
2210
2211         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2212                 DP(NETIF_MSG_LINK,
2213                    "Set GPIO INT %d (shift %d) -> output high\n",
2214                    gpio_num, gpio_shift);
2215                 /* clear CLR and set SET */
2216                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2217                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2218                 break;
2219
2220         default:
2221                 break;
2222         }
2223
2224         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2225         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2226
2227         return 0;
2228 }
2229
2230 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2231 {
2232         u32 spio_reg;
2233
2234         /* Only 2 SPIOs are configurable */
2235         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2236                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2237                 return -EINVAL;
2238         }
2239
2240         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2241         /* read SPIO and mask except the float bits */
2242         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2243
2244         switch (mode) {
2245         case MISC_SPIO_OUTPUT_LOW:
2246                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2247                 /* clear FLOAT and set CLR */
2248                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2249                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2250                 break;
2251
2252         case MISC_SPIO_OUTPUT_HIGH:
2253                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2254                 /* clear FLOAT and set SET */
2255                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2256                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2257                 break;
2258
2259         case MISC_SPIO_INPUT_HI_Z:
2260                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2261                 /* set FLOAT */
2262                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2263                 break;
2264
2265         default:
2266                 break;
2267         }
2268
2269         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2270         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2271
2272         return 0;
2273 }
2274
2275 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2276 {
2277         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2278         switch (bp->link_vars.ieee_fc &
2279                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2280         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2281                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2282                                                    ADVERTISED_Pause);
2283                 break;
2284
2285         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2286                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2287                                                   ADVERTISED_Pause);
2288                 break;
2289
2290         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2291                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2292                 break;
2293
2294         default:
2295                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2296                                                    ADVERTISED_Pause);
2297                 break;
2298         }
2299 }
2300
2301 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2302 {
2303         /* Initialize link parameters structure variables
2304          * It is recommended to turn off RX FC for jumbo frames
2305          *  for better performance
2306          */
2307         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2308                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2309         else
2310                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2311 }
2312
2313 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2314 {
2315         u32 pause_enabled = 0;
2316
2317         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2318                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2319                         pause_enabled = 1;
2320
2321                 REG_WR(bp, BAR_USTRORM_INTMEM +
2322                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2323                        pause_enabled);
2324         }
2325
2326         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2327            pause_enabled ? "enabled" : "disabled");
2328 }
2329
2330 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2331 {
2332         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2333         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2334
2335         if (!BP_NOMCP(bp)) {
2336                 bnx2x_set_requested_fc(bp);
2337                 bnx2x_acquire_phy_lock(bp);
2338
2339                 if (load_mode == LOAD_DIAG) {
2340                         struct link_params *lp = &bp->link_params;
2341                         lp->loopback_mode = LOOPBACK_XGXS;
2342                         /* do PHY loopback at 10G speed, if possible */
2343                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2344                                 if (lp->speed_cap_mask[cfx_idx] &
2345                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2346                                         lp->req_line_speed[cfx_idx] =
2347                                         SPEED_10000;
2348                                 else
2349                                         lp->req_line_speed[cfx_idx] =
2350                                         SPEED_1000;
2351                         }
2352                 }
2353
2354                 if (load_mode == LOAD_LOOPBACK_EXT) {
2355                         struct link_params *lp = &bp->link_params;
2356                         lp->loopback_mode = LOOPBACK_EXT;
2357                 }
2358
2359                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2360
2361                 bnx2x_release_phy_lock(bp);
2362
2363                 bnx2x_init_dropless_fc(bp);
2364
2365                 bnx2x_calc_fc_adv(bp);
2366
2367                 if (bp->link_vars.link_up) {
2368                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2369                         bnx2x_link_report(bp);
2370                 }
2371                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2372                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2373                 return rc;
2374         }
2375         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2376         return -EINVAL;
2377 }
2378
2379 void bnx2x_link_set(struct bnx2x *bp)
2380 {
2381         if (!BP_NOMCP(bp)) {
2382                 bnx2x_acquire_phy_lock(bp);
2383                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2384                 bnx2x_release_phy_lock(bp);
2385
2386                 bnx2x_init_dropless_fc(bp);
2387
2388                 bnx2x_calc_fc_adv(bp);
2389         } else
2390                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2391 }
2392
2393 static void bnx2x__link_reset(struct bnx2x *bp)
2394 {
2395         if (!BP_NOMCP(bp)) {
2396                 bnx2x_acquire_phy_lock(bp);
2397                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2398                 bnx2x_release_phy_lock(bp);
2399         } else
2400                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2401 }
2402
2403 void bnx2x_force_link_reset(struct bnx2x *bp)
2404 {
2405         bnx2x_acquire_phy_lock(bp);
2406         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2407         bnx2x_release_phy_lock(bp);
2408 }
2409
2410 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2411 {
2412         u8 rc = 0;
2413
2414         if (!BP_NOMCP(bp)) {
2415                 bnx2x_acquire_phy_lock(bp);
2416                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2417                                      is_serdes);
2418                 bnx2x_release_phy_lock(bp);
2419         } else
2420                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2421
2422         return rc;
2423 }
2424
2425 /* Calculates the sum of vn_min_rates.
2426    It's needed for further normalizing of the min_rates.
2427    Returns:
2428      sum of vn_min_rates.
2429        or
2430      0 - if all the min_rates are 0.
2431      In the later case fairness algorithm should be deactivated.
2432      If not all min_rates are zero then those that are zeroes will be set to 1.
2433  */
2434 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2435                                       struct cmng_init_input *input)
2436 {
2437         int all_zero = 1;
2438         int vn;
2439
2440         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2441                 u32 vn_cfg = bp->mf_config[vn];
2442                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2443                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2444
2445                 /* Skip hidden vns */
2446                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2447                         vn_min_rate = 0;
2448                 /* If min rate is zero - set it to 1 */
2449                 else if (!vn_min_rate)
2450                         vn_min_rate = DEF_MIN_RATE;
2451                 else
2452                         all_zero = 0;
2453
2454                 input->vnic_min_rate[vn] = vn_min_rate;
2455         }
2456
2457         /* if ETS or all min rates are zeros - disable fairness */
2458         if (BNX2X_IS_ETS_ENABLED(bp)) {
2459                 input->flags.cmng_enables &=
2460                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2461                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2462         } else if (all_zero) {
2463                 input->flags.cmng_enables &=
2464                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2465                 DP(NETIF_MSG_IFUP,
2466                    "All MIN values are zeroes fairness will be disabled\n");
2467         } else
2468                 input->flags.cmng_enables |=
2469                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2470 }
2471
2472 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2473                                     struct cmng_init_input *input)
2474 {
2475         u16 vn_max_rate;
2476         u32 vn_cfg = bp->mf_config[vn];
2477
2478         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2479                 vn_max_rate = 0;
2480         else {
2481                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2482
2483                 if (IS_MF_SI(bp)) {
2484                         /* maxCfg in percents of linkspeed */
2485                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2486                 } else /* SD modes */
2487                         /* maxCfg is absolute in 100Mb units */
2488                         vn_max_rate = maxCfg * 100;
2489         }
2490
2491         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2492
2493         input->vnic_max_rate[vn] = vn_max_rate;
2494 }
2495
2496 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2497 {
2498         if (CHIP_REV_IS_SLOW(bp))
2499                 return CMNG_FNS_NONE;
2500         if (IS_MF(bp))
2501                 return CMNG_FNS_MINMAX;
2502
2503         return CMNG_FNS_NONE;
2504 }
2505
2506 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2507 {
2508         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2509
2510         if (BP_NOMCP(bp))
2511                 return; /* what should be the default value in this case */
2512
2513         /* For 2 port configuration the absolute function number formula
2514          * is:
2515          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2516          *
2517          *      and there are 4 functions per port
2518          *
2519          * For 4 port configuration it is
2520          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2521          *
2522          *      and there are 2 functions per port
2523          */
2524         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2525                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2526
2527                 if (func >= E1H_FUNC_MAX)
2528                         break;
2529
2530                 bp->mf_config[vn] =
2531                         MF_CFG_RD(bp, func_mf_config[func].config);
2532         }
2533         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2534                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2535                 bp->flags |= MF_FUNC_DIS;
2536         } else {
2537                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2538                 bp->flags &= ~MF_FUNC_DIS;
2539         }
2540 }
2541
2542 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2543 {
2544         struct cmng_init_input input;
2545         memset(&input, 0, sizeof(struct cmng_init_input));
2546
2547         input.port_rate = bp->link_vars.line_speed;
2548
2549         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2550                 int vn;
2551
2552                 /* read mf conf from shmem */
2553                 if (read_cfg)
2554                         bnx2x_read_mf_cfg(bp);
2555
2556                 /* vn_weight_sum and enable fairness if not 0 */
2557                 bnx2x_calc_vn_min(bp, &input);
2558
2559                 /* calculate and set min-max rate for each vn */
2560                 if (bp->port.pmf)
2561                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2562                                 bnx2x_calc_vn_max(bp, vn, &input);
2563
2564                 /* always enable rate shaping and fairness */
2565                 input.flags.cmng_enables |=
2566                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2567
2568                 bnx2x_init_cmng(&input, &bp->cmng);
2569                 return;
2570         }
2571
2572         /* rate shaping and fairness are disabled */
2573         DP(NETIF_MSG_IFUP,
2574            "rate shaping and fairness are disabled\n");
2575 }
2576
2577 static void storm_memset_cmng(struct bnx2x *bp,
2578                               struct cmng_init *cmng,
2579                               u8 port)
2580 {
2581         int vn;
2582         size_t size = sizeof(struct cmng_struct_per_port);
2583
2584         u32 addr = BAR_XSTRORM_INTMEM +
2585                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2586
2587         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2588
2589         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2590                 int func = func_by_vn(bp, vn);
2591
2592                 addr = BAR_XSTRORM_INTMEM +
2593                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2594                 size = sizeof(struct rate_shaping_vars_per_vn);
2595                 __storm_memset_struct(bp, addr, size,
2596                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2597
2598                 addr = BAR_XSTRORM_INTMEM +
2599                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2600                 size = sizeof(struct fairness_vars_per_vn);
2601                 __storm_memset_struct(bp, addr, size,
2602                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2603         }
2604 }
2605
2606 /* init cmng mode in HW according to local configuration */
2607 void bnx2x_set_local_cmng(struct bnx2x *bp)
2608 {
2609         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2610
2611         if (cmng_fns != CMNG_FNS_NONE) {
2612                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2613                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2614         } else {
2615                 /* rate shaping and fairness are disabled */
2616                 DP(NETIF_MSG_IFUP,
2617                    "single function mode without fairness\n");
2618         }
2619 }
2620
2621 /* This function is called upon link interrupt */
2622 static void bnx2x_link_attn(struct bnx2x *bp)
2623 {
2624         /* Make sure that we are synced with the current statistics */
2625         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2626
2627         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2628
2629         bnx2x_init_dropless_fc(bp);
2630
2631         if (bp->link_vars.link_up) {
2632
2633                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2634                         struct host_port_stats *pstats;
2635
2636                         pstats = bnx2x_sp(bp, port_stats);
2637                         /* reset old mac stats */
2638                         memset(&(pstats->mac_stx[0]), 0,
2639                                sizeof(struct mac_stx));
2640                 }
2641                 if (bp->state == BNX2X_STATE_OPEN)
2642                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2643         }
2644
2645         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2646                 bnx2x_set_local_cmng(bp);
2647
2648         __bnx2x_link_report(bp);
2649
2650         if (IS_MF(bp))
2651                 bnx2x_link_sync_notify(bp);
2652 }
2653
2654 void bnx2x__link_status_update(struct bnx2x *bp)
2655 {
2656         if (bp->state != BNX2X_STATE_OPEN)
2657                 return;
2658
2659         /* read updated dcb configuration */
2660         if (IS_PF(bp)) {
2661                 bnx2x_dcbx_pmf_update(bp);
2662                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2663                 if (bp->link_vars.link_up)
2664                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2665                 else
2666                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2667                         /* indicate link status */
2668                 bnx2x_link_report(bp);
2669
2670         } else { /* VF */
2671                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2672                                           SUPPORTED_10baseT_Full |
2673                                           SUPPORTED_100baseT_Half |
2674                                           SUPPORTED_100baseT_Full |
2675                                           SUPPORTED_1000baseT_Full |
2676                                           SUPPORTED_2500baseX_Full |
2677                                           SUPPORTED_10000baseT_Full |
2678                                           SUPPORTED_TP |
2679                                           SUPPORTED_FIBRE |
2680                                           SUPPORTED_Autoneg |
2681                                           SUPPORTED_Pause |
2682                                           SUPPORTED_Asym_Pause);
2683                 bp->port.advertising[0] = bp->port.supported[0];
2684
2685                 bp->link_params.bp = bp;
2686                 bp->link_params.port = BP_PORT(bp);
2687                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2688                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2689                 bp->link_params.req_line_speed[0] = SPEED_10000;
2690                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2691                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2692                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2693                 bp->link_vars.line_speed = SPEED_10000;
2694                 bp->link_vars.link_status =
2695                         (LINK_STATUS_LINK_UP |
2696                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2697                 bp->link_vars.link_up = 1;
2698                 bp->link_vars.duplex = DUPLEX_FULL;
2699                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2700                 __bnx2x_link_report(bp);
2701
2702                 bnx2x_sample_bulletin(bp);
2703
2704                 /* if bulletin board did not have an update for link status
2705                  * __bnx2x_link_report will report current status
2706                  * but it will NOT duplicate report in case of already reported
2707                  * during sampling bulletin board.
2708                  */
2709                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2710         }
2711 }
2712
2713 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2714                                   u16 vlan_val, u8 allowed_prio)
2715 {
2716         struct bnx2x_func_state_params func_params = {NULL};
2717         struct bnx2x_func_afex_update_params *f_update_params =
2718                 &func_params.params.afex_update;
2719
2720         func_params.f_obj = &bp->func_obj;
2721         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2722
2723         /* no need to wait for RAMROD completion, so don't
2724          * set RAMROD_COMP_WAIT flag
2725          */
2726
2727         f_update_params->vif_id = vifid;
2728         f_update_params->afex_default_vlan = vlan_val;
2729         f_update_params->allowed_priorities = allowed_prio;
2730
2731         /* if ramrod can not be sent, response to MCP immediately */
2732         if (bnx2x_func_state_change(bp, &func_params) < 0)
2733                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2734
2735         return 0;
2736 }
2737
2738 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2739                                           u16 vif_index, u8 func_bit_map)
2740 {
2741         struct bnx2x_func_state_params func_params = {NULL};
2742         struct bnx2x_func_afex_viflists_params *update_params =
2743                 &func_params.params.afex_viflists;
2744         int rc;
2745         u32 drv_msg_code;
2746
2747         /* validate only LIST_SET and LIST_GET are received from switch */
2748         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2749                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2750                           cmd_type);
2751
2752         func_params.f_obj = &bp->func_obj;
2753         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2754
2755         /* set parameters according to cmd_type */
2756         update_params->afex_vif_list_command = cmd_type;
2757         update_params->vif_list_index = vif_index;
2758         update_params->func_bit_map =
2759                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2760         update_params->func_to_clear = 0;
2761         drv_msg_code =
2762                 (cmd_type == VIF_LIST_RULE_GET) ?
2763                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2764                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2765
2766         /* if ramrod can not be sent, respond to MCP immediately for
2767          * SET and GET requests (other are not triggered from MCP)
2768          */
2769         rc = bnx2x_func_state_change(bp, &func_params);
2770         if (rc < 0)
2771                 bnx2x_fw_command(bp, drv_msg_code, 0);
2772
2773         return 0;
2774 }
2775
2776 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2777 {
2778         struct afex_stats afex_stats;
2779         u32 func = BP_ABS_FUNC(bp);
2780         u32 mf_config;
2781         u16 vlan_val;
2782         u32 vlan_prio;
2783         u16 vif_id;
2784         u8 allowed_prio;
2785         u8 vlan_mode;
2786         u32 addr_to_write, vifid, addrs, stats_type, i;
2787
2788         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2789                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2790                 DP(BNX2X_MSG_MCP,
2791                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2792                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2793         }
2794
2795         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2796                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2797                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2798                 DP(BNX2X_MSG_MCP,
2799                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2800                    vifid, addrs);
2801                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2802                                                addrs);
2803         }
2804
2805         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2806                 addr_to_write = SHMEM2_RD(bp,
2807                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2808                 stats_type = SHMEM2_RD(bp,
2809                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2810
2811                 DP(BNX2X_MSG_MCP,
2812                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2813                    addr_to_write);
2814
2815                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2816
2817                 /* write response to scratchpad, for MCP */
2818                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2819                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2820                                *(((u32 *)(&afex_stats))+i));
2821
2822                 /* send ack message to MCP */
2823                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2824         }
2825
2826         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2827                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2828                 bp->mf_config[BP_VN(bp)] = mf_config;
2829                 DP(BNX2X_MSG_MCP,
2830                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2831                    mf_config);
2832
2833                 /* if VIF_SET is "enabled" */
2834                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2835                         /* set rate limit directly to internal RAM */
2836                         struct cmng_init_input cmng_input;
2837                         struct rate_shaping_vars_per_vn m_rs_vn;
2838                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2839                         u32 addr = BAR_XSTRORM_INTMEM +
2840                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2841
2842                         bp->mf_config[BP_VN(bp)] = mf_config;
2843
2844                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2845                         m_rs_vn.vn_counter.rate =
2846                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2847                         m_rs_vn.vn_counter.quota =
2848                                 (m_rs_vn.vn_counter.rate *
2849                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2850
2851                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2852
2853                         /* read relevant values from mf_cfg struct in shmem */
2854                         vif_id =
2855                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2856                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2857                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2858                         vlan_val =
2859                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2860                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2861                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2862                         vlan_prio = (mf_config &
2863                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2864                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2865                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2866                         vlan_mode =
2867                                 (MF_CFG_RD(bp,
2868                                            func_mf_config[func].afex_config) &
2869                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2870                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2871                         allowed_prio =
2872                                 (MF_CFG_RD(bp,
2873                                            func_mf_config[func].afex_config) &
2874                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2875                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2876
2877                         /* send ramrod to FW, return in case of failure */
2878                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2879                                                    allowed_prio))
2880                                 return;
2881
2882                         bp->afex_def_vlan_tag = vlan_val;
2883                         bp->afex_vlan_mode = vlan_mode;
2884                 } else {
2885                         /* notify link down because BP->flags is disabled */
2886                         bnx2x_link_report(bp);
2887
2888                         /* send INVALID VIF ramrod to FW */
2889                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2890
2891                         /* Reset the default afex VLAN */
2892                         bp->afex_def_vlan_tag = -1;
2893                 }
2894         }
2895 }
2896
2897 static void bnx2x_pmf_update(struct bnx2x *bp)
2898 {
2899         int port = BP_PORT(bp);
2900         u32 val;
2901
2902         bp->port.pmf = 1;
2903         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2904
2905         /*
2906          * We need the mb() to ensure the ordering between the writing to
2907          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2908          */
2909         smp_mb();
2910
2911         /* queue a periodic task */
2912         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2913
2914         bnx2x_dcbx_pmf_update(bp);
2915
2916         /* enable nig attention */
2917         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2918         if (bp->common.int_block == INT_BLOCK_HC) {
2919                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2920                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2921         } else if (!CHIP_IS_E1x(bp)) {
2922                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2923                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2924         }
2925
2926         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2927 }
2928
2929 /* end of Link */
2930
2931 /* slow path */
2932
2933 /*
2934  * General service functions
2935  */
2936
2937 /* send the MCP a request, block until there is a reply */
2938 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2939 {
2940         int mb_idx = BP_FW_MB_IDX(bp);
2941         u32 seq;
2942         u32 rc = 0;
2943         u32 cnt = 1;
2944         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2945
2946         mutex_lock(&bp->fw_mb_mutex);
2947         seq = ++bp->fw_seq;
2948         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2949         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2950
2951         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2952                         (command | seq), param);
2953
2954         do {
2955                 /* let the FW do it's magic ... */
2956                 msleep(delay);
2957
2958                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2959
2960                 /* Give the FW up to 5 second (500*10ms) */
2961         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2962
2963         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2964            cnt*delay, rc, seq);
2965
2966         /* is this a reply to our command? */
2967         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2968                 rc &= FW_MSG_CODE_MASK;
2969         else {
2970                 /* FW BUG! */
2971                 BNX2X_ERR("FW failed to respond!\n");
2972                 bnx2x_fw_dump(bp);
2973                 rc = 0;
2974         }
2975         mutex_unlock(&bp->fw_mb_mutex);
2976
2977         return rc;
2978 }
2979
2980 static void storm_memset_func_cfg(struct bnx2x *bp,
2981                                  struct tstorm_eth_function_common_config *tcfg,
2982                                  u16 abs_fid)
2983 {
2984         size_t size = sizeof(struct tstorm_eth_function_common_config);
2985
2986         u32 addr = BAR_TSTRORM_INTMEM +
2987                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2988
2989         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2990 }
2991
2992 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2993 {
2994         if (CHIP_IS_E1x(bp)) {
2995                 struct tstorm_eth_function_common_config tcfg = {0};
2996
2997                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2998         }
2999
3000         /* Enable the function in the FW */
3001         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3002         storm_memset_func_en(bp, p->func_id, 1);
3003
3004         /* spq */
3005         if (p->func_flgs & FUNC_FLG_SPQ) {
3006                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3007                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3008                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3009         }
3010 }
3011
3012 /**
3013  * bnx2x_get_common_flags - Return common flags
3014  *
3015  * @bp          device handle
3016  * @fp          queue handle
3017  * @zero_stats  TRUE if statistics zeroing is needed
3018  *
3019  * Return the flags that are common for the Tx-only and not normal connections.
3020  */
3021 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3022                                             struct bnx2x_fastpath *fp,
3023                                             bool zero_stats)
3024 {
3025         unsigned long flags = 0;
3026
3027         /* PF driver will always initialize the Queue to an ACTIVE state */
3028         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3029
3030         /* tx only connections collect statistics (on the same index as the
3031          * parent connection). The statistics are zeroed when the parent
3032          * connection is initialized.
3033          */
3034
3035         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3036         if (zero_stats)
3037                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3038
3039         if (bp->flags & TX_SWITCHING)
3040                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3041
3042         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3043         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3044
3045 #ifdef BNX2X_STOP_ON_ERROR
3046         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3047 #endif
3048
3049         return flags;
3050 }
3051
3052 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3053                                        struct bnx2x_fastpath *fp,
3054                                        bool leading)
3055 {
3056         unsigned long flags = 0;
3057
3058         /* calculate other queue flags */
3059         if (IS_MF_SD(bp))
3060                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3061
3062         if (IS_FCOE_FP(fp)) {
3063                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3064                 /* For FCoE - force usage of default priority (for afex) */
3065                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3066         }
3067
3068         if (!fp->disable_tpa) {
3069                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3070                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3071                 if (fp->mode == TPA_MODE_GRO)
3072                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3073         }
3074
3075         if (leading) {
3076                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3077                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3078         }
3079
3080         /* Always set HW VLAN stripping */
3081         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3082
3083         /* configure silent vlan removal */
3084         if (IS_MF_AFEX(bp))
3085                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3086
3087         return flags | bnx2x_get_common_flags(bp, fp, true);
3088 }
3089
3090 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3091         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3092         u8 cos)
3093 {
3094         gen_init->stat_id = bnx2x_stats_id(fp);
3095         gen_init->spcl_id = fp->cl_id;
3096
3097         /* Always use mini-jumbo MTU for FCoE L2 ring */
3098         if (IS_FCOE_FP(fp))
3099                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3100         else
3101                 gen_init->mtu = bp->dev->mtu;
3102
3103         gen_init->cos = cos;
3104 }
3105
3106 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3107         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3108         struct bnx2x_rxq_setup_params *rxq_init)
3109 {
3110         u8 max_sge = 0;
3111         u16 sge_sz = 0;
3112         u16 tpa_agg_size = 0;
3113
3114         if (!fp->disable_tpa) {
3115                 pause->sge_th_lo = SGE_TH_LO(bp);
3116                 pause->sge_th_hi = SGE_TH_HI(bp);
3117
3118                 /* validate SGE ring has enough to cross high threshold */
3119                 WARN_ON(bp->dropless_fc &&
3120                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3121                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3122
3123                 tpa_agg_size = TPA_AGG_SIZE;
3124                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3125                         SGE_PAGE_SHIFT;
3126                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3127                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3128                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3129         }
3130
3131         /* pause - not for e1 */
3132         if (!CHIP_IS_E1(bp)) {
3133                 pause->bd_th_lo = BD_TH_LO(bp);
3134                 pause->bd_th_hi = BD_TH_HI(bp);
3135
3136                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3137                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3138                 /*
3139                  * validate that rings have enough entries to cross
3140                  * high thresholds
3141                  */
3142                 WARN_ON(bp->dropless_fc &&
3143                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3144                                 bp->rx_ring_size);
3145                 WARN_ON(bp->dropless_fc &&
3146                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3147                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3148
3149                 pause->pri_map = 1;
3150         }
3151
3152         /* rxq setup */
3153         rxq_init->dscr_map = fp->rx_desc_mapping;
3154         rxq_init->sge_map = fp->rx_sge_mapping;
3155         rxq_init->rcq_map = fp->rx_comp_mapping;
3156         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3157
3158         /* This should be a maximum number of data bytes that may be
3159          * placed on the BD (not including paddings).
3160          */
3161         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3162                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3163
3164         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3165         rxq_init->tpa_agg_sz = tpa_agg_size;
3166         rxq_init->sge_buf_sz = sge_sz;
3167         rxq_init->max_sges_pkt = max_sge;
3168         rxq_init->rss_engine_id = BP_FUNC(bp);
3169         rxq_init->mcast_engine_id = BP_FUNC(bp);
3170
3171         /* Maximum number or simultaneous TPA aggregation for this Queue.
3172          *
3173          * For PF Clients it should be the maximum available number.
3174          * VF driver(s) may want to define it to a smaller value.
3175          */
3176         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3177
3178         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3179         rxq_init->fw_sb_id = fp->fw_sb_id;
3180
3181         if (IS_FCOE_FP(fp))
3182                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3183         else
3184                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3185         /* configure silent vlan removal
3186          * if multi function mode is afex, then mask default vlan
3187          */
3188         if (IS_MF_AFEX(bp)) {
3189                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3190                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3191         }
3192 }
3193
3194 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3195         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3196         u8 cos)
3197 {
3198         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3199         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3200         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3201         txq_init->fw_sb_id = fp->fw_sb_id;
3202
3203         /*
3204          * set the tss leading client id for TX classification ==
3205          * leading RSS client id
3206          */
3207         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3208
3209         if (IS_FCOE_FP(fp)) {
3210                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3211                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3212         }
3213 }
3214
3215 static void bnx2x_pf_init(struct bnx2x *bp)
3216 {
3217         struct bnx2x_func_init_params func_init = {0};
3218         struct event_ring_data eq_data = { {0} };
3219         u16 flags;
3220
3221         if (!CHIP_IS_E1x(bp)) {
3222                 /* reset IGU PF statistics: MSIX + ATTN */
3223                 /* PF */
3224                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3225                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3226                            (CHIP_MODE_IS_4_PORT(bp) ?
3227                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3228                 /* ATTN */
3229                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3230                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3231                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3232                            (CHIP_MODE_IS_4_PORT(bp) ?
3233                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3234         }
3235
3236         /* function setup flags */
3237         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3238
3239         /* This flag is relevant for E1x only.
3240          * E2 doesn't have a TPA configuration in a function level.
3241          */
3242         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3243
3244         func_init.func_flgs = flags;
3245         func_init.pf_id = BP_FUNC(bp);
3246         func_init.func_id = BP_FUNC(bp);
3247         func_init.spq_map = bp->spq_mapping;
3248         func_init.spq_prod = bp->spq_prod_idx;
3249
3250         bnx2x_func_init(bp, &func_init);
3251
3252         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3253
3254         /*
3255          * Congestion management values depend on the link rate
3256          * There is no active link so initial link rate is set to 10 Gbps.
3257          * When the link comes up The congestion management values are
3258          * re-calculated according to the actual link rate.
3259          */
3260         bp->link_vars.line_speed = SPEED_10000;
3261         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3262
3263         /* Only the PMF sets the HW */
3264         if (bp->port.pmf)
3265                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3266
3267         /* init Event Queue - PCI bus guarantees correct endianity*/
3268         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3269         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3270         eq_data.producer = bp->eq_prod;
3271         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3272         eq_data.sb_id = DEF_SB_ID;
3273         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3274 }
3275
3276 static void bnx2x_e1h_disable(struct bnx2x *bp)
3277 {
3278         int port = BP_PORT(bp);
3279
3280         bnx2x_tx_disable(bp);
3281
3282         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3283 }
3284
3285 static void bnx2x_e1h_enable(struct bnx2x *bp)
3286 {
3287         int port = BP_PORT(bp);
3288
3289         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3290
3291         /* Tx queue should be only re-enabled */
3292         netif_tx_wake_all_queues(bp->dev);
3293
3294         /*
3295          * Should not call netif_carrier_on since it will be called if the link
3296          * is up when checking for link state
3297          */
3298 }
3299
3300 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3301
3302 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3303 {
3304         struct eth_stats_info *ether_stat =
3305                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3306         struct bnx2x_vlan_mac_obj *mac_obj =
3307                 &bp->sp_objs->mac_obj;
3308         int i;
3309
3310         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3311                 ETH_STAT_INFO_VERSION_LEN);
3312
3313         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3314          * mac_local field in ether_stat struct. The base address is offset by 2
3315          * bytes to account for the field being 8 bytes but a mac address is
3316          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3317          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3318          * allocated by the ether_stat struct, so the macs will land in their
3319          * proper positions.
3320          */
3321         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3322                 memset(ether_stat->mac_local + i, 0,
3323                        sizeof(ether_stat->mac_local[0]));
3324         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3325                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3326                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3327                                 ETH_ALEN);
3328         ether_stat->mtu_size = bp->dev->mtu;
3329         if (bp->dev->features & NETIF_F_RXCSUM)
3330                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3331         if (bp->dev->features & NETIF_F_TSO)
3332                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3333         ether_stat->feature_flags |= bp->common.boot_mode;
3334
3335         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3336
3337         ether_stat->txq_size = bp->tx_ring_size;
3338         ether_stat->rxq_size = bp->rx_ring_size;
3339
3340 #ifdef CONFIG_BNX2X_SRIOV
3341         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3342 #endif
3343 }
3344
3345 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3346 {
3347         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3348         struct fcoe_stats_info *fcoe_stat =
3349                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3350
3351         if (!CNIC_LOADED(bp))
3352                 return;
3353
3354         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3355
3356         fcoe_stat->qos_priority =
3357                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3358
3359         /* insert FCoE stats from ramrod response */
3360         if (!NO_FCOE(bp)) {
3361                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3362                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3363                         tstorm_queue_statistics;
3364
3365                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3366                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3367                         xstorm_queue_statistics;
3368
3369                 struct fcoe_statistics_params *fw_fcoe_stat =
3370                         &bp->fw_stats_data->fcoe;
3371
3372                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3373                           fcoe_stat->rx_bytes_lo,
3374                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3375
3376                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3377                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3378                           fcoe_stat->rx_bytes_lo,
3379                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3380
3381                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3382                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3383                           fcoe_stat->rx_bytes_lo,
3384                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3385
3386                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3387                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3388                           fcoe_stat->rx_bytes_lo,
3389                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3390
3391                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3392                           fcoe_stat->rx_frames_lo,
3393                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3394
3395                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3396                           fcoe_stat->rx_frames_lo,
3397                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3398
3399                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3400                           fcoe_stat->rx_frames_lo,
3401                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3402
3403                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3404                           fcoe_stat->rx_frames_lo,
3405                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3406
3407                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3408                           fcoe_stat->tx_bytes_lo,
3409                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3410
3411                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3412                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3413                           fcoe_stat->tx_bytes_lo,
3414                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3415
3416                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3417                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3418                           fcoe_stat->tx_bytes_lo,
3419                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3420
3421                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3422                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3423                           fcoe_stat->tx_bytes_lo,
3424                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3425
3426                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3427                           fcoe_stat->tx_frames_lo,
3428                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3429
3430                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3431                           fcoe_stat->tx_frames_lo,
3432                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3433
3434                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3435                           fcoe_stat->tx_frames_lo,
3436                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3437
3438                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3439                           fcoe_stat->tx_frames_lo,
3440                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3441         }
3442
3443         /* ask L5 driver to add data to the struct */
3444         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3445 }
3446
3447 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3448 {
3449         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3450         struct iscsi_stats_info *iscsi_stat =
3451                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3452
3453         if (!CNIC_LOADED(bp))
3454                 return;
3455
3456         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3457                ETH_ALEN);
3458
3459         iscsi_stat->qos_priority =
3460                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3461
3462         /* ask L5 driver to add data to the struct */
3463         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3464 }
3465
3466 /* called due to MCP event (on pmf):
3467  *      reread new bandwidth configuration
3468  *      configure FW
3469  *      notify others function about the change
3470  */
3471 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3472 {
3473         if (bp->link_vars.link_up) {
3474                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3475                 bnx2x_link_sync_notify(bp);
3476         }
3477         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3478 }
3479
3480 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3481 {
3482         bnx2x_config_mf_bw(bp);
3483         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3484 }
3485
3486 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3487 {
3488         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3489         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3490 }
3491
3492 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3493 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3494
3495 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3496 {
3497         enum drv_info_opcode op_code;
3498         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3499         bool release = false;
3500         int wait;
3501
3502         /* if drv_info version supported by MFW doesn't match - send NACK */
3503         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3504                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3505                 return;
3506         }
3507
3508         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3509                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3510
3511         /* Must prevent other flows from accessing drv_info_to_mcp */
3512         mutex_lock(&bp->drv_info_mutex);
3513
3514         memset(&bp->slowpath->drv_info_to_mcp, 0,
3515                sizeof(union drv_info_to_mcp));
3516
3517         switch (op_code) {
3518         case ETH_STATS_OPCODE:
3519                 bnx2x_drv_info_ether_stat(bp);
3520                 break;
3521         case FCOE_STATS_OPCODE:
3522                 bnx2x_drv_info_fcoe_stat(bp);
3523                 break;
3524         case ISCSI_STATS_OPCODE:
3525                 bnx2x_drv_info_iscsi_stat(bp);
3526                 break;
3527         default:
3528                 /* if op code isn't supported - send NACK */
3529                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3530                 goto out;
3531         }
3532
3533         /* if we got drv_info attn from MFW then these fields are defined in
3534          * shmem2 for sure
3535          */
3536         SHMEM2_WR(bp, drv_info_host_addr_lo,
3537                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3538         SHMEM2_WR(bp, drv_info_host_addr_hi,
3539                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3540
3541         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3542
3543         /* Since possible management wants both this and get_driver_version
3544          * need to wait until management notifies us it finished utilizing
3545          * the buffer.
3546          */
3547         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3548                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3549         } else if (!bp->drv_info_mng_owner) {
3550                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3551
3552                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3553                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3554
3555                         /* Management is done; need to clear indication */
3556                         if (indication & bit) {
3557                                 SHMEM2_WR(bp, mfw_drv_indication,
3558                                           indication & ~bit);
3559                                 release = true;
3560                                 break;
3561                         }
3562
3563                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3564                 }
3565         }
3566         if (!release) {
3567                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3568                 bp->drv_info_mng_owner = true;
3569         }
3570
3571 out:
3572         mutex_unlock(&bp->drv_info_mutex);
3573 }
3574
3575 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3576 {
3577         u8 vals[4];
3578         int i = 0;
3579
3580         if (bnx2x_format) {
3581                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3582                            &vals[0], &vals[1], &vals[2], &vals[3]);
3583                 if (i > 0)
3584                         vals[0] -= '0';
3585         } else {
3586                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3587                            &vals[0], &vals[1], &vals[2], &vals[3]);
3588         }
3589
3590         while (i < 4)
3591                 vals[i++] = 0;
3592
3593         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3594 }
3595
3596 void bnx2x_update_mng_version(struct bnx2x *bp)
3597 {
3598         u32 iscsiver = DRV_VER_NOT_LOADED;
3599         u32 fcoever = DRV_VER_NOT_LOADED;
3600         u32 ethver = DRV_VER_NOT_LOADED;
3601         int idx = BP_FW_MB_IDX(bp);
3602         u8 *version;
3603
3604         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3605                 return;
3606
3607         mutex_lock(&bp->drv_info_mutex);
3608         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3609         if (bp->drv_info_mng_owner)
3610                 goto out;
3611
3612         if (bp->state != BNX2X_STATE_OPEN)
3613                 goto out;
3614
3615         /* Parse ethernet driver version */
3616         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3617         if (!CNIC_LOADED(bp))
3618                 goto out;
3619
3620         /* Try getting storage driver version via cnic */
3621         memset(&bp->slowpath->drv_info_to_mcp, 0,
3622                sizeof(union drv_info_to_mcp));
3623         bnx2x_drv_info_iscsi_stat(bp);
3624         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3625         iscsiver = bnx2x_update_mng_version_utility(version, false);
3626
3627         memset(&bp->slowpath->drv_info_to_mcp, 0,
3628                sizeof(union drv_info_to_mcp));
3629         bnx2x_drv_info_fcoe_stat(bp);
3630         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3631         fcoever = bnx2x_update_mng_version_utility(version, false);
3632
3633 out:
3634         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3635         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3636         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3637
3638         mutex_unlock(&bp->drv_info_mutex);
3639
3640         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3641            ethver, iscsiver, fcoever);
3642 }
3643
3644 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3645 {
3646         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3647
3648         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3649
3650                 /*
3651                  * This is the only place besides the function initialization
3652                  * where the bp->flags can change so it is done without any
3653                  * locks
3654                  */
3655                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3656                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3657                         bp->flags |= MF_FUNC_DIS;
3658
3659                         bnx2x_e1h_disable(bp);
3660                 } else {
3661                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3662                         bp->flags &= ~MF_FUNC_DIS;
3663
3664                         bnx2x_e1h_enable(bp);
3665                 }
3666                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3667         }
3668         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3669                 bnx2x_config_mf_bw(bp);
3670                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3671         }
3672
3673         /* Report results to MCP */
3674         if (dcc_event)
3675                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3676         else
3677                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3678 }
3679
3680 /* must be called under the spq lock */
3681 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3682 {
3683         struct eth_spe *next_spe = bp->spq_prod_bd;
3684
3685         if (bp->spq_prod_bd == bp->spq_last_bd) {
3686                 bp->spq_prod_bd = bp->spq;
3687                 bp->spq_prod_idx = 0;
3688                 DP(BNX2X_MSG_SP, "end of spq\n");
3689         } else {
3690                 bp->spq_prod_bd++;
3691                 bp->spq_prod_idx++;
3692         }
3693         return next_spe;
3694 }
3695
3696 /* must be called under the spq lock */
3697 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3698 {
3699         int func = BP_FUNC(bp);
3700
3701         /*
3702          * Make sure that BD data is updated before writing the producer:
3703          * BD data is written to the memory, the producer is read from the
3704          * memory, thus we need a full memory barrier to ensure the ordering.
3705          */
3706         mb();
3707
3708         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3709                  bp->spq_prod_idx);
3710         mmiowb();
3711 }
3712
3713 /**
3714  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3715  *
3716  * @cmd:        command to check
3717  * @cmd_type:   command type
3718  */
3719 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3720 {
3721         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3722             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3723             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3724             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3725             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3726             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3727             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3728                 return true;
3729         else
3730                 return false;
3731 }
3732
3733 /**
3734  * bnx2x_sp_post - place a single command on an SP ring
3735  *
3736  * @bp:         driver handle
3737  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3738  * @cid:        SW CID the command is related to
3739  * @data_hi:    command private data address (high 32 bits)
3740  * @data_lo:    command private data address (low 32 bits)
3741  * @cmd_type:   command type (e.g. NONE, ETH)
3742  *
3743  * SP data is handled as if it's always an address pair, thus data fields are
3744  * not swapped to little endian in upper functions. Instead this function swaps
3745  * data as if it's two u32 fields.
3746  */
3747 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3748                   u32 data_hi, u32 data_lo, int cmd_type)
3749 {
3750         struct eth_spe *spe;
3751         u16 type;
3752         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3753
3754 #ifdef BNX2X_STOP_ON_ERROR
3755         if (unlikely(bp->panic)) {
3756                 BNX2X_ERR("Can't post SP when there is panic\n");
3757                 return -EIO;
3758         }
3759 #endif
3760
3761         spin_lock_bh(&bp->spq_lock);
3762
3763         if (common) {
3764                 if (!atomic_read(&bp->eq_spq_left)) {
3765                         BNX2X_ERR("BUG! EQ ring full!\n");
3766                         spin_unlock_bh(&bp->spq_lock);
3767                         bnx2x_panic();
3768                         return -EBUSY;
3769                 }
3770         } else if (!atomic_read(&bp->cq_spq_left)) {
3771                         BNX2X_ERR("BUG! SPQ ring full!\n");
3772                         spin_unlock_bh(&bp->spq_lock);
3773                         bnx2x_panic();
3774                         return -EBUSY;
3775         }
3776
3777         spe = bnx2x_sp_get_next(bp);
3778
3779         /* CID needs port number to be encoded int it */
3780         spe->hdr.conn_and_cmd_data =
3781                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3782                                     HW_CID(bp, cid));
3783
3784         /* In some cases, type may already contain the func-id
3785          * mainly in SRIOV related use cases, so we add it here only
3786          * if it's not already set.
3787          */
3788         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3789                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3790                         SPE_HDR_CONN_TYPE;
3791                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3792                          SPE_HDR_FUNCTION_ID);
3793         } else {
3794                 type = cmd_type;
3795         }
3796
3797         spe->hdr.type = cpu_to_le16(type);
3798
3799         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3800         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3801
3802         /*
3803          * It's ok if the actual decrement is issued towards the memory
3804          * somewhere between the spin_lock and spin_unlock. Thus no
3805          * more explicit memory barrier is needed.
3806          */
3807         if (common)
3808                 atomic_dec(&bp->eq_spq_left);
3809         else
3810                 atomic_dec(&bp->cq_spq_left);
3811
3812         DP(BNX2X_MSG_SP,
3813            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3814            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3815            (u32)(U64_LO(bp->spq_mapping) +
3816            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3817            HW_CID(bp, cid), data_hi, data_lo, type,
3818            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3819
3820         bnx2x_sp_prod_update(bp);
3821         spin_unlock_bh(&bp->spq_lock);
3822         return 0;
3823 }
3824
3825 /* acquire split MCP access lock register */
3826 static int bnx2x_acquire_alr(struct bnx2x *bp)
3827 {
3828         u32 j, val;
3829         int rc = 0;
3830
3831         might_sleep();
3832         for (j = 0; j < 1000; j++) {
3833                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3834                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3835                 if (val & MCPR_ACCESS_LOCK_LOCK)
3836                         break;
3837
3838                 usleep_range(5000, 10000);
3839         }
3840         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3841                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3842                 rc = -EBUSY;
3843         }
3844
3845         return rc;
3846 }
3847
3848 /* release split MCP access lock register */
3849 static void bnx2x_release_alr(struct bnx2x *bp)
3850 {
3851         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3852 }
3853
3854 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3855 #define BNX2X_DEF_SB_IDX        0x0002
3856
3857 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3858 {
3859         struct host_sp_status_block *def_sb = bp->def_status_blk;
3860         u16 rc = 0;
3861
3862         barrier(); /* status block is written to by the chip */
3863         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3864                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3865                 rc |= BNX2X_DEF_SB_ATT_IDX;
3866         }
3867
3868         if (bp->def_idx != def_sb->sp_sb.running_index) {
3869                 bp->def_idx = def_sb->sp_sb.running_index;
3870                 rc |= BNX2X_DEF_SB_IDX;
3871         }
3872
3873         /* Do not reorder: indices reading should complete before handling */
3874         barrier();
3875         return rc;
3876 }
3877
3878 /*
3879  * slow path service functions
3880  */
3881
3882 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3883 {
3884         int port = BP_PORT(bp);
3885         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3886                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3887         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3888                                        NIG_REG_MASK_INTERRUPT_PORT0;
3889         u32 aeu_mask;
3890         u32 nig_mask = 0;
3891         u32 reg_addr;
3892
3893         if (bp->attn_state & asserted)
3894                 BNX2X_ERR("IGU ERROR\n");
3895
3896         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3897         aeu_mask = REG_RD(bp, aeu_addr);
3898
3899         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3900            aeu_mask, asserted);
3901         aeu_mask &= ~(asserted & 0x3ff);
3902         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3903
3904         REG_WR(bp, aeu_addr, aeu_mask);
3905         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3906
3907         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3908         bp->attn_state |= asserted;
3909         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3910
3911         if (asserted & ATTN_HARD_WIRED_MASK) {
3912                 if (asserted & ATTN_NIG_FOR_FUNC) {
3913
3914                         bnx2x_acquire_phy_lock(bp);
3915
3916                         /* save nig interrupt mask */
3917                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3918
3919                         /* If nig_mask is not set, no need to call the update
3920                          * function.
3921                          */
3922                         if (nig_mask) {
3923                                 REG_WR(bp, nig_int_mask_addr, 0);
3924
3925                                 bnx2x_link_attn(bp);
3926                         }
3927
3928                         /* handle unicore attn? */
3929                 }
3930                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3931                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3932
3933                 if (asserted & GPIO_2_FUNC)
3934                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3935
3936                 if (asserted & GPIO_3_FUNC)
3937                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3938
3939                 if (asserted & GPIO_4_FUNC)
3940                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3941
3942                 if (port == 0) {
3943                         if (asserted & ATTN_GENERAL_ATTN_1) {
3944                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3945                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3946                         }
3947                         if (asserted & ATTN_GENERAL_ATTN_2) {
3948                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3949                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3950                         }
3951                         if (asserted & ATTN_GENERAL_ATTN_3) {
3952                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3953                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3954                         }
3955                 } else {
3956                         if (asserted & ATTN_GENERAL_ATTN_4) {
3957                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3958                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3959                         }
3960                         if (asserted & ATTN_GENERAL_ATTN_5) {
3961                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3962                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3963                         }
3964                         if (asserted & ATTN_GENERAL_ATTN_6) {
3965                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3966                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3967                         }
3968                 }
3969
3970         } /* if hardwired */
3971
3972         if (bp->common.int_block == INT_BLOCK_HC)
3973                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3974                             COMMAND_REG_ATTN_BITS_SET);
3975         else
3976                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3977
3978         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3979            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3980         REG_WR(bp, reg_addr, asserted);
3981
3982         /* now set back the mask */
3983         if (asserted & ATTN_NIG_FOR_FUNC) {
3984                 /* Verify that IGU ack through BAR was written before restoring
3985                  * NIG mask. This loop should exit after 2-3 iterations max.
3986                  */
3987                 if (bp->common.int_block != INT_BLOCK_HC) {
3988                         u32 cnt = 0, igu_acked;
3989                         do {
3990                                 igu_acked = REG_RD(bp,
3991                                                    IGU_REG_ATTENTION_ACK_BITS);
3992                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3993                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3994                         if (!igu_acked)
3995                                 DP(NETIF_MSG_HW,
3996                                    "Failed to verify IGU ack on time\n");
3997                         barrier();
3998                 }
3999                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4000                 bnx2x_release_phy_lock(bp);
4001         }
4002 }
4003
4004 static void bnx2x_fan_failure(struct bnx2x *bp)
4005 {
4006         int port = BP_PORT(bp);
4007         u32 ext_phy_config;
4008         /* mark the failure */
4009         ext_phy_config =
4010                 SHMEM_RD(bp,
4011                          dev_info.port_hw_config[port].external_phy_config);
4012
4013         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4014         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4015         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4016                  ext_phy_config);
4017
4018         /* log the failure */
4019         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4020                             "Please contact OEM Support for assistance\n");
4021
4022         /* Schedule device reset (unload)
4023          * This is due to some boards consuming sufficient power when driver is
4024          * up to overheat if fan fails.
4025          */
4026         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4027 }
4028
4029 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4030 {
4031         int port = BP_PORT(bp);
4032         int reg_offset;
4033         u32 val;
4034
4035         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4036                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4037
4038         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4039
4040                 val = REG_RD(bp, reg_offset);
4041                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4042                 REG_WR(bp, reg_offset, val);
4043
4044                 BNX2X_ERR("SPIO5 hw attention\n");
4045
4046                 /* Fan failure attention */
4047                 bnx2x_hw_reset_phy(&bp->link_params);
4048                 bnx2x_fan_failure(bp);
4049         }
4050
4051         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4052                 bnx2x_acquire_phy_lock(bp);
4053                 bnx2x_handle_module_detect_int(&bp->link_params);
4054                 bnx2x_release_phy_lock(bp);
4055         }
4056
4057         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4058
4059                 val = REG_RD(bp, reg_offset);
4060                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4061                 REG_WR(bp, reg_offset, val);
4062
4063                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4064                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4065                 bnx2x_panic();
4066         }
4067 }
4068
4069 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4070 {
4071         u32 val;
4072
4073         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4074
4075                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4076                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4077                 /* DORQ discard attention */
4078                 if (val & 0x2)
4079                         BNX2X_ERR("FATAL error from DORQ\n");
4080         }
4081
4082         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4083
4084                 int port = BP_PORT(bp);
4085                 int reg_offset;
4086
4087                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4088                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4089
4090                 val = REG_RD(bp, reg_offset);
4091                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4092                 REG_WR(bp, reg_offset, val);
4093
4094                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4095                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4096                 bnx2x_panic();
4097         }
4098 }
4099
4100 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4101 {
4102         u32 val;
4103
4104         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4105
4106                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4107                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4108                 /* CFC error attention */
4109                 if (val & 0x2)
4110                         BNX2X_ERR("FATAL error from CFC\n");
4111         }
4112
4113         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4114                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4115                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4116                 /* RQ_USDMDP_FIFO_OVERFLOW */
4117                 if (val & 0x18000)
4118                         BNX2X_ERR("FATAL error from PXP\n");
4119
4120                 if (!CHIP_IS_E1x(bp)) {
4121                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4122                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4123                 }
4124         }
4125
4126         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4127
4128                 int port = BP_PORT(bp);
4129                 int reg_offset;
4130
4131                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4132                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4133
4134                 val = REG_RD(bp, reg_offset);
4135                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4136                 REG_WR(bp, reg_offset, val);
4137
4138                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4139                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4140                 bnx2x_panic();
4141         }
4142 }
4143
4144 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4145 {
4146         u32 val;
4147
4148         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4149
4150                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4151                         int func = BP_FUNC(bp);
4152
4153                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4154                         bnx2x_read_mf_cfg(bp);
4155                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4156                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4157                         val = SHMEM_RD(bp,
4158                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4159                         if (val & DRV_STATUS_DCC_EVENT_MASK)
4160                                 bnx2x_dcc_event(bp,
4161                                             (val & DRV_STATUS_DCC_EVENT_MASK));
4162
4163                         if (val & DRV_STATUS_SET_MF_BW)
4164                                 bnx2x_set_mf_bw(bp);
4165
4166                         if (val & DRV_STATUS_DRV_INFO_REQ)
4167                                 bnx2x_handle_drv_info_req(bp);
4168
4169                         if (val & DRV_STATUS_VF_DISABLED)
4170                                 bnx2x_schedule_iov_task(bp,
4171                                                         BNX2X_IOV_HANDLE_FLR);
4172
4173                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4174                                 bnx2x_pmf_update(bp);
4175
4176                         if (bp->port.pmf &&
4177                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4178                                 bp->dcbx_enabled > 0)
4179                                 /* start dcbx state machine */
4180                                 bnx2x_dcbx_set_params(bp,
4181                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4182                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4183                                 bnx2x_handle_afex_cmd(bp,
4184                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4185                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4186                                 bnx2x_handle_eee_event(bp);
4187                         if (bp->link_vars.periodic_flags &
4188                             PERIODIC_FLAGS_LINK_EVENT) {
4189                                 /*  sync with link */
4190                                 bnx2x_acquire_phy_lock(bp);
4191                                 bp->link_vars.periodic_flags &=
4192                                         ~PERIODIC_FLAGS_LINK_EVENT;
4193                                 bnx2x_release_phy_lock(bp);
4194                                 if (IS_MF(bp))
4195                                         bnx2x_link_sync_notify(bp);
4196                                 bnx2x_link_report(bp);
4197                         }
4198                         /* Always call it here: bnx2x_link_report() will
4199                          * prevent the link indication duplication.
4200                          */
4201                         bnx2x__link_status_update(bp);
4202                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4203
4204                         BNX2X_ERR("MC assert!\n");
4205                         bnx2x_mc_assert(bp);
4206                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4207                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4208                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4209                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4210                         bnx2x_panic();
4211
4212                 } else if (attn & BNX2X_MCP_ASSERT) {
4213
4214                         BNX2X_ERR("MCP assert!\n");
4215                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4216                         bnx2x_fw_dump(bp);
4217
4218                 } else
4219                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4220         }
4221
4222         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4223                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4224                 if (attn & BNX2X_GRC_TIMEOUT) {
4225                         val = CHIP_IS_E1(bp) ? 0 :
4226                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4227                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4228                 }
4229                 if (attn & BNX2X_GRC_RSV) {
4230                         val = CHIP_IS_E1(bp) ? 0 :
4231                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4232                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4233                 }
4234                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4235         }
4236 }
4237
4238 /*
4239  * Bits map:
4240  * 0-7   - Engine0 load counter.
4241  * 8-15  - Engine1 load counter.
4242  * 16    - Engine0 RESET_IN_PROGRESS bit.
4243  * 17    - Engine1 RESET_IN_PROGRESS bit.
4244  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4245  *         on the engine
4246  * 19    - Engine1 ONE_IS_LOADED.
4247  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4248  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4249  *         just the one belonging to its engine).
4250  *
4251  */
4252 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4253
4254 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4255 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4256 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4257 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4258 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4259 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4260 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4261
4262 /*
4263  * Set the GLOBAL_RESET bit.
4264  *
4265  * Should be run under rtnl lock
4266  */
4267 void bnx2x_set_reset_global(struct bnx2x *bp)
4268 {
4269         u32 val;
4270         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4271         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4272         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4273         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4274 }
4275
4276 /*
4277  * Clear the GLOBAL_RESET bit.
4278  *
4279  * Should be run under rtnl lock
4280  */
4281 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4282 {
4283         u32 val;
4284         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4285         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4286         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4287         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4288 }
4289
4290 /*
4291  * Checks the GLOBAL_RESET bit.
4292  *
4293  * should be run under rtnl lock
4294  */
4295 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4296 {
4297         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4298
4299         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4300         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4301 }
4302
4303 /*
4304  * Clear RESET_IN_PROGRESS bit for the current engine.
4305  *
4306  * Should be run under rtnl lock
4307  */
4308 static void bnx2x_set_reset_done(struct bnx2x *bp)
4309 {
4310         u32 val;
4311         u32 bit = BP_PATH(bp) ?
4312                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4313         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4314         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4315
4316         /* Clear the bit */
4317         val &= ~bit;
4318         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4319
4320         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4321 }
4322
4323 /*
4324  * Set RESET_IN_PROGRESS for the current engine.
4325  *
4326  * should be run under rtnl lock
4327  */
4328 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4329 {
4330         u32 val;
4331         u32 bit = BP_PATH(bp) ?
4332                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4333         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4334         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4335
4336         /* Set the bit */
4337         val |= bit;
4338         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4339         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4340 }
4341
4342 /*
4343  * Checks the RESET_IN_PROGRESS bit for the given engine.
4344  * should be run under rtnl lock
4345  */
4346 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4347 {
4348         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4349         u32 bit = engine ?
4350                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4351
4352         /* return false if bit is set */
4353         return (val & bit) ? false : true;
4354 }
4355
4356 /*
4357  * set pf load for the current pf.
4358  *
4359  * should be run under rtnl lock
4360  */
4361 void bnx2x_set_pf_load(struct bnx2x *bp)
4362 {
4363         u32 val1, val;
4364         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4365                              BNX2X_PATH0_LOAD_CNT_MASK;
4366         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4367                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4368
4369         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4370         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4371
4372         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4373
4374         /* get the current counter value */
4375         val1 = (val & mask) >> shift;
4376
4377         /* set bit of that PF */
4378         val1 |= (1 << bp->pf_num);
4379
4380         /* clear the old value */
4381         val &= ~mask;
4382
4383         /* set the new one */
4384         val |= ((val1 << shift) & mask);
4385
4386         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4387         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4388 }
4389
4390 /**
4391  * bnx2x_clear_pf_load - clear pf load mark
4392  *
4393  * @bp:         driver handle
4394  *
4395  * Should be run under rtnl lock.
4396  * Decrements the load counter for the current engine. Returns
4397  * whether other functions are still loaded
4398  */
4399 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4400 {
4401         u32 val1, val;
4402         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4403                              BNX2X_PATH0_LOAD_CNT_MASK;
4404         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4405                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4406
4407         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4408         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4409         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4410
4411         /* get the current counter value */
4412         val1 = (val & mask) >> shift;
4413
4414         /* clear bit of that PF */
4415         val1 &= ~(1 << bp->pf_num);
4416
4417         /* clear the old value */
4418         val &= ~mask;
4419
4420         /* set the new one */
4421         val |= ((val1 << shift) & mask);
4422
4423         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4424         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4425         return val1 != 0;
4426 }
4427
4428 /*
4429  * Read the load status for the current engine.
4430  *
4431  * should be run under rtnl lock
4432  */
4433 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4434 {
4435         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4436                              BNX2X_PATH0_LOAD_CNT_MASK);
4437         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4438                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4439         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4440
4441         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4442
4443         val = (val & mask) >> shift;
4444
4445         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4446            engine, val);
4447
4448         return val != 0;
4449 }
4450
4451 static void _print_parity(struct bnx2x *bp, u32 reg)
4452 {
4453         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4454 }
4455
4456 static void _print_next_block(int idx, const char *blk)
4457 {
4458         pr_cont("%s%s", idx ? ", " : "", blk);
4459 }
4460
4461 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4462                                             int *par_num, bool print)
4463 {
4464         u32 cur_bit;
4465         bool res;
4466         int i;
4467
4468         res = false;
4469
4470         for (i = 0; sig; i++) {
4471                 cur_bit = (0x1UL << i);
4472                 if (sig & cur_bit) {
4473                         res |= true; /* Each bit is real error! */
4474
4475                         if (print) {
4476                                 switch (cur_bit) {
4477                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4478                                         _print_next_block((*par_num)++, "BRB");
4479                                         _print_parity(bp,
4480                                                       BRB1_REG_BRB1_PRTY_STS);
4481                                         break;
4482                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4483                                         _print_next_block((*par_num)++,
4484                                                           "PARSER");
4485                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4486                                         break;
4487                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4488                                         _print_next_block((*par_num)++, "TSDM");
4489                                         _print_parity(bp,
4490                                                       TSDM_REG_TSDM_PRTY_STS);
4491                                         break;
4492                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4493                                         _print_next_block((*par_num)++,
4494                                                           "SEARCHER");
4495                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4496                                         break;
4497                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4498                                         _print_next_block((*par_num)++, "TCM");
4499                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4500                                         break;
4501                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4502                                         _print_next_block((*par_num)++,
4503                                                           "TSEMI");
4504                                         _print_parity(bp,
4505                                                       TSEM_REG_TSEM_PRTY_STS_0);
4506                                         _print_parity(bp,
4507                                                       TSEM_REG_TSEM_PRTY_STS_1);
4508                                         break;
4509                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4510                                         _print_next_block((*par_num)++, "XPB");
4511                                         _print_parity(bp, GRCBASE_XPB +
4512                                                           PB_REG_PB_PRTY_STS);
4513                                         break;
4514                                 }
4515                         }
4516
4517                         /* Clear the bit */
4518                         sig &= ~cur_bit;
4519                 }
4520         }
4521
4522         return res;
4523 }
4524
4525 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4526                                             int *par_num, bool *global,
4527                                             bool print)
4528 {
4529         u32 cur_bit;
4530         bool res;
4531         int i;
4532
4533         res = false;
4534
4535         for (i = 0; sig; i++) {
4536                 cur_bit = (0x1UL << i);
4537                 if (sig & cur_bit) {
4538                         res |= true; /* Each bit is real error! */
4539                         switch (cur_bit) {
4540                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4541                                 if (print) {
4542                                         _print_next_block((*par_num)++, "PBF");
4543                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4544                                 }
4545                                 break;
4546                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4547                                 if (print) {
4548                                         _print_next_block((*par_num)++, "QM");
4549                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4550                                 }
4551                                 break;
4552                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4553                                 if (print) {
4554                                         _print_next_block((*par_num)++, "TM");
4555                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4556                                 }
4557                                 break;
4558                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4559                                 if (print) {
4560                                         _print_next_block((*par_num)++, "XSDM");
4561                                         _print_parity(bp,
4562                                                       XSDM_REG_XSDM_PRTY_STS);
4563                                 }
4564                                 break;
4565                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4566                                 if (print) {
4567                                         _print_next_block((*par_num)++, "XCM");
4568                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4569                                 }
4570                                 break;
4571                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4572                                 if (print) {
4573                                         _print_next_block((*par_num)++,
4574                                                           "XSEMI");
4575                                         _print_parity(bp,
4576                                                       XSEM_REG_XSEM_PRTY_STS_0);
4577                                         _print_parity(bp,
4578                                                       XSEM_REG_XSEM_PRTY_STS_1);
4579                                 }
4580                                 break;
4581                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4582                                 if (print) {
4583                                         _print_next_block((*par_num)++,
4584                                                           "DOORBELLQ");
4585                                         _print_parity(bp,
4586                                                       DORQ_REG_DORQ_PRTY_STS);
4587                                 }
4588                                 break;
4589                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4590                                 if (print) {
4591                                         _print_next_block((*par_num)++, "NIG");
4592                                         if (CHIP_IS_E1x(bp)) {
4593                                                 _print_parity(bp,
4594                                                         NIG_REG_NIG_PRTY_STS);
4595                                         } else {
4596                                                 _print_parity(bp,
4597                                                         NIG_REG_NIG_PRTY_STS_0);
4598                                                 _print_parity(bp,
4599                                                         NIG_REG_NIG_PRTY_STS_1);
4600                                         }
4601                                 }
4602                                 break;
4603                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4604                                 if (print)
4605                                         _print_next_block((*par_num)++,
4606                                                           "VAUX PCI CORE");
4607                                 *global = true;
4608                                 break;
4609                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4610                                 if (print) {
4611                                         _print_next_block((*par_num)++,
4612                                                           "DEBUG");
4613                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4614                                 }
4615                                 break;
4616                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4617                                 if (print) {
4618                                         _print_next_block((*par_num)++, "USDM");
4619                                         _print_parity(bp,
4620                                                       USDM_REG_USDM_PRTY_STS);
4621                                 }
4622                                 break;
4623                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4624                                 if (print) {
4625                                         _print_next_block((*par_num)++, "UCM");
4626                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4627                                 }
4628                                 break;
4629                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4630                                 if (print) {
4631                                         _print_next_block((*par_num)++,
4632                                                           "USEMI");
4633                                         _print_parity(bp,
4634                                                       USEM_REG_USEM_PRTY_STS_0);
4635                                         _print_parity(bp,
4636                                                       USEM_REG_USEM_PRTY_STS_1);
4637                                 }
4638                                 break;
4639                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4640                                 if (print) {
4641                                         _print_next_block((*par_num)++, "UPB");
4642                                         _print_parity(bp, GRCBASE_UPB +
4643                                                           PB_REG_PB_PRTY_STS);
4644                                 }
4645                                 break;
4646                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4647                                 if (print) {
4648                                         _print_next_block((*par_num)++, "CSDM");
4649                                         _print_parity(bp,
4650                                                       CSDM_REG_CSDM_PRTY_STS);
4651                                 }
4652                                 break;
4653                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4654                                 if (print) {
4655                                         _print_next_block((*par_num)++, "CCM");
4656                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4657                                 }
4658                                 break;
4659                         }
4660
4661                         /* Clear the bit */
4662                         sig &= ~cur_bit;
4663                 }
4664         }
4665
4666         return res;
4667 }
4668
4669 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4670                                             int *par_num, bool print)
4671 {
4672         u32 cur_bit;
4673         bool res;
4674         int i;
4675
4676         res = false;
4677
4678         for (i = 0; sig; i++) {
4679                 cur_bit = (0x1UL << i);
4680                 if (sig & cur_bit) {
4681                         res |= true; /* Each bit is real error! */
4682                         if (print) {
4683                                 switch (cur_bit) {
4684                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4685                                         _print_next_block((*par_num)++,
4686                                                           "CSEMI");
4687                                         _print_parity(bp,
4688                                                       CSEM_REG_CSEM_PRTY_STS_0);
4689                                         _print_parity(bp,
4690                                                       CSEM_REG_CSEM_PRTY_STS_1);
4691                                         break;
4692                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4693                                         _print_next_block((*par_num)++, "PXP");
4694                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4695                                         _print_parity(bp,
4696                                                       PXP2_REG_PXP2_PRTY_STS_0);
4697                                         _print_parity(bp,
4698                                                       PXP2_REG_PXP2_PRTY_STS_1);
4699                                         break;
4700                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4701                                         _print_next_block((*par_num)++,
4702                                                           "PXPPCICLOCKCLIENT");
4703                                         break;
4704                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4705                                         _print_next_block((*par_num)++, "CFC");
4706                                         _print_parity(bp,
4707                                                       CFC_REG_CFC_PRTY_STS);
4708                                         break;
4709                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4710                                         _print_next_block((*par_num)++, "CDU");
4711                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4712                                         break;
4713                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4714                                         _print_next_block((*par_num)++, "DMAE");
4715                                         _print_parity(bp,
4716                                                       DMAE_REG_DMAE_PRTY_STS);
4717                                         break;
4718                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4719                                         _print_next_block((*par_num)++, "IGU");
4720                                         if (CHIP_IS_E1x(bp))
4721                                                 _print_parity(bp,
4722                                                         HC_REG_HC_PRTY_STS);
4723                                         else
4724                                                 _print_parity(bp,
4725                                                         IGU_REG_IGU_PRTY_STS);
4726                                         break;
4727                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4728                                         _print_next_block((*par_num)++, "MISC");
4729                                         _print_parity(bp,
4730                                                       MISC_REG_MISC_PRTY_STS);
4731                                         break;
4732                                 }
4733                         }
4734
4735                         /* Clear the bit */
4736                         sig &= ~cur_bit;
4737                 }
4738         }
4739
4740         return res;
4741 }
4742
4743 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4744                                             int *par_num, bool *global,
4745                                             bool print)
4746 {
4747         bool res = false;
4748         u32 cur_bit;
4749         int i;
4750
4751         for (i = 0; sig; i++) {
4752                 cur_bit = (0x1UL << i);
4753                 if (sig & cur_bit) {
4754                         switch (cur_bit) {
4755                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4756                                 if (print)
4757                                         _print_next_block((*par_num)++,
4758                                                           "MCP ROM");
4759                                 *global = true;
4760                                 res |= true;
4761                                 break;
4762                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4763                                 if (print)
4764                                         _print_next_block((*par_num)++,
4765                                                           "MCP UMP RX");
4766                                 *global = true;
4767                                 res |= true;
4768                                 break;
4769                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4770                                 if (print)
4771                                         _print_next_block((*par_num)++,
4772                                                           "MCP UMP TX");
4773                                 *global = true;
4774                                 res |= true;
4775                                 break;
4776                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4777                                 if (print)
4778                                         _print_next_block((*par_num)++,
4779                                                           "MCP SCPAD");
4780                                 /* clear latched SCPAD PATIRY from MCP */
4781                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4782                                        1UL << 10);
4783                                 break;
4784                         }
4785
4786                         /* Clear the bit */
4787                         sig &= ~cur_bit;
4788                 }
4789         }
4790
4791         return res;
4792 }
4793
4794 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4795                                             int *par_num, bool print)
4796 {
4797         u32 cur_bit;
4798         bool res;
4799         int i;
4800
4801         res = false;
4802
4803         for (i = 0; sig; i++) {
4804                 cur_bit = (0x1UL << i);
4805                 if (sig & cur_bit) {
4806                         res |= true; /* Each bit is real error! */
4807                         if (print) {
4808                                 switch (cur_bit) {
4809                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4810                                         _print_next_block((*par_num)++,
4811                                                           "PGLUE_B");
4812                                         _print_parity(bp,
4813                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4814                                         break;
4815                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4816                                         _print_next_block((*par_num)++, "ATC");
4817                                         _print_parity(bp,
4818                                                       ATC_REG_ATC_PRTY_STS);
4819                                         break;
4820                                 }
4821                         }
4822                         /* Clear the bit */
4823                         sig &= ~cur_bit;
4824                 }
4825         }
4826
4827         return res;
4828 }
4829
4830 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4831                               u32 *sig)
4832 {
4833         bool res = false;
4834
4835         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4836             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4837             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4838             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4839             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4840                 int par_num = 0;
4841                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4842                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4843                           sig[0] & HW_PRTY_ASSERT_SET_0,
4844                           sig[1] & HW_PRTY_ASSERT_SET_1,
4845                           sig[2] & HW_PRTY_ASSERT_SET_2,
4846                           sig[3] & HW_PRTY_ASSERT_SET_3,
4847                           sig[4] & HW_PRTY_ASSERT_SET_4);
4848                 if (print)
4849                         netdev_err(bp->dev,
4850                                    "Parity errors detected in blocks: ");
4851                 res |= bnx2x_check_blocks_with_parity0(bp,
4852                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4853                 res |= bnx2x_check_blocks_with_parity1(bp,
4854                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4855                 res |= bnx2x_check_blocks_with_parity2(bp,
4856                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4857                 res |= bnx2x_check_blocks_with_parity3(bp,
4858                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4859                 res |= bnx2x_check_blocks_with_parity4(bp,
4860                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4861
4862                 if (print)
4863                         pr_cont("\n");
4864         }
4865
4866         return res;
4867 }
4868
4869 /**
4870  * bnx2x_chk_parity_attn - checks for parity attentions.
4871  *
4872  * @bp:         driver handle
4873  * @global:     true if there was a global attention
4874  * @print:      show parity attention in syslog
4875  */
4876 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4877 {
4878         struct attn_route attn = { {0} };
4879         int port = BP_PORT(bp);
4880
4881         attn.sig[0] = REG_RD(bp,
4882                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4883                              port*4);
4884         attn.sig[1] = REG_RD(bp,
4885                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4886                              port*4);
4887         attn.sig[2] = REG_RD(bp,
4888                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4889                              port*4);
4890         attn.sig[3] = REG_RD(bp,
4891                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4892                              port*4);
4893         /* Since MCP attentions can't be disabled inside the block, we need to
4894          * read AEU registers to see whether they're currently disabled
4895          */
4896         attn.sig[3] &= ((REG_RD(bp,
4897                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4898                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4899                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4900                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4901
4902         if (!CHIP_IS_E1x(bp))
4903                 attn.sig[4] = REG_RD(bp,
4904                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4905                                      port*4);
4906
4907         return bnx2x_parity_attn(bp, global, print, attn.sig);
4908 }
4909
4910 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4911 {
4912         u32 val;
4913         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4914
4915                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4916                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4917                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4918                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4919                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4920                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4921                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4922                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4923                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4924                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4925                 if (val &
4926                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4927                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4928                 if (val &
4929                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4930                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4931                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4932                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4933                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4934                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4935                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4936                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4937         }
4938         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4939                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4940                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4941                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4942                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4943                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4944                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4945                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4946                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4947                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4948                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4949                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4950                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4951                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4952                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4953         }
4954
4955         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4956                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4957                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4958                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4959                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4960         }
4961 }
4962
4963 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4964 {
4965         struct attn_route attn, *group_mask;
4966         int port = BP_PORT(bp);
4967         int index;
4968         u32 reg_addr;
4969         u32 val;
4970         u32 aeu_mask;
4971         bool global = false;
4972
4973         /* need to take HW lock because MCP or other port might also
4974            try to handle this event */
4975         bnx2x_acquire_alr(bp);
4976
4977         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4978 #ifndef BNX2X_STOP_ON_ERROR
4979                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4980                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4981                 /* Disable HW interrupts */
4982                 bnx2x_int_disable(bp);
4983                 /* In case of parity errors don't handle attentions so that
4984                  * other function would "see" parity errors.
4985                  */
4986 #else
4987                 bnx2x_panic();
4988 #endif
4989                 bnx2x_release_alr(bp);
4990                 return;
4991         }
4992
4993         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4994         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4995         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4996         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4997         if (!CHIP_IS_E1x(bp))
4998                 attn.sig[4] =
4999                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5000         else
5001                 attn.sig[4] = 0;
5002
5003         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5004            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5005
5006         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5007                 if (deasserted & (1 << index)) {
5008                         group_mask = &bp->attn_group[index];
5009
5010                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5011                            index,
5012                            group_mask->sig[0], group_mask->sig[1],
5013                            group_mask->sig[2], group_mask->sig[3],
5014                            group_mask->sig[4]);
5015
5016                         bnx2x_attn_int_deasserted4(bp,
5017                                         attn.sig[4] & group_mask->sig[4]);
5018                         bnx2x_attn_int_deasserted3(bp,
5019                                         attn.sig[3] & group_mask->sig[3]);
5020                         bnx2x_attn_int_deasserted1(bp,
5021                                         attn.sig[1] & group_mask->sig[1]);
5022                         bnx2x_attn_int_deasserted2(bp,
5023                                         attn.sig[2] & group_mask->sig[2]);
5024                         bnx2x_attn_int_deasserted0(bp,
5025                                         attn.sig[0] & group_mask->sig[0]);
5026                 }
5027         }
5028
5029         bnx2x_release_alr(bp);
5030
5031         if (bp->common.int_block == INT_BLOCK_HC)
5032                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5033                             COMMAND_REG_ATTN_BITS_CLR);
5034         else
5035                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5036
5037         val = ~deasserted;
5038         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5039            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5040         REG_WR(bp, reg_addr, val);
5041
5042         if (~bp->attn_state & deasserted)
5043                 BNX2X_ERR("IGU ERROR\n");
5044
5045         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5046                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5047
5048         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5049         aeu_mask = REG_RD(bp, reg_addr);
5050
5051         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5052            aeu_mask, deasserted);
5053         aeu_mask |= (deasserted & 0x3ff);
5054         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5055
5056         REG_WR(bp, reg_addr, aeu_mask);
5057         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5058
5059         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5060         bp->attn_state &= ~deasserted;
5061         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5062 }
5063
5064 static void bnx2x_attn_int(struct bnx2x *bp)
5065 {
5066         /* read local copy of bits */
5067         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5068                                                                 attn_bits);
5069         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5070                                                                 attn_bits_ack);
5071         u32 attn_state = bp->attn_state;
5072
5073         /* look for changed bits */
5074         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5075         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5076
5077         DP(NETIF_MSG_HW,
5078            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5079            attn_bits, attn_ack, asserted, deasserted);
5080
5081         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5082                 BNX2X_ERR("BAD attention state\n");
5083
5084         /* handle bits that were raised */
5085         if (asserted)
5086                 bnx2x_attn_int_asserted(bp, asserted);
5087
5088         if (deasserted)
5089                 bnx2x_attn_int_deasserted(bp, deasserted);
5090 }
5091
5092 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5093                       u16 index, u8 op, u8 update)
5094 {
5095         u32 igu_addr = bp->igu_base_addr;
5096         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5097         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5098                              igu_addr);
5099 }
5100
5101 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5102 {
5103         /* No memory barriers */
5104         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5105         mmiowb(); /* keep prod updates ordered */
5106 }
5107
5108 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5109                                       union event_ring_elem *elem)
5110 {
5111         u8 err = elem->message.error;
5112
5113         if (!bp->cnic_eth_dev.starting_cid  ||
5114             (cid < bp->cnic_eth_dev.starting_cid &&
5115             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5116                 return 1;
5117
5118         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5119
5120         if (unlikely(err)) {
5121
5122                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5123                           cid);
5124                 bnx2x_panic_dump(bp, false);
5125         }
5126         bnx2x_cnic_cfc_comp(bp, cid, err);
5127         return 0;
5128 }
5129
5130 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5131 {
5132         struct bnx2x_mcast_ramrod_params rparam;
5133         int rc;
5134
5135         memset(&rparam, 0, sizeof(rparam));
5136
5137         rparam.mcast_obj = &bp->mcast_obj;
5138
5139         netif_addr_lock_bh(bp->dev);
5140
5141         /* Clear pending state for the last command */
5142         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5143
5144         /* If there are pending mcast commands - send them */
5145         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5146                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5147                 if (rc < 0)
5148                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5149                                   rc);
5150         }
5151
5152         netif_addr_unlock_bh(bp->dev);
5153 }
5154
5155 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5156                                             union event_ring_elem *elem)
5157 {
5158         unsigned long ramrod_flags = 0;
5159         int rc = 0;
5160         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5161         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5162
5163         /* Always push next commands out, don't wait here */
5164         __set_bit(RAMROD_CONT, &ramrod_flags);
5165
5166         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5167                             >> BNX2X_SWCID_SHIFT) {
5168         case BNX2X_FILTER_MAC_PENDING:
5169                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5170                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5171                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5172                 else
5173                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5174
5175                 break;
5176         case BNX2X_FILTER_MCAST_PENDING:
5177                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5178                 /* This is only relevant for 57710 where multicast MACs are
5179                  * configured as unicast MACs using the same ramrod.
5180                  */
5181                 bnx2x_handle_mcast_eqe(bp);
5182                 return;
5183         default:
5184                 BNX2X_ERR("Unsupported classification command: %d\n",
5185                           elem->message.data.eth_event.echo);
5186                 return;
5187         }
5188
5189         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5190
5191         if (rc < 0)
5192                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5193         else if (rc > 0)
5194                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5195 }
5196
5197 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5198
5199 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5200 {
5201         netif_addr_lock_bh(bp->dev);
5202
5203         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5204
5205         /* Send rx_mode command again if was requested */
5206         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5207                 bnx2x_set_storm_rx_mode(bp);
5208         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5209                                     &bp->sp_state))
5210                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5211         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5212                                     &bp->sp_state))
5213                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5214
5215         netif_addr_unlock_bh(bp->dev);
5216 }
5217
5218 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5219                                               union event_ring_elem *elem)
5220 {
5221         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5222                 DP(BNX2X_MSG_SP,
5223                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5224                    elem->message.data.vif_list_event.func_bit_map);
5225                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5226                         elem->message.data.vif_list_event.func_bit_map);
5227         } else if (elem->message.data.vif_list_event.echo ==
5228                    VIF_LIST_RULE_SET) {
5229                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5230                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5231         }
5232 }
5233
5234 /* called with rtnl_lock */
5235 static void bnx2x_after_function_update(struct bnx2x *bp)
5236 {
5237         int q, rc;
5238         struct bnx2x_fastpath *fp;
5239         struct bnx2x_queue_state_params queue_params = {NULL};
5240         struct bnx2x_queue_update_params *q_update_params =
5241                 &queue_params.params.update;
5242
5243         /* Send Q update command with afex vlan removal values for all Qs */
5244         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5245
5246         /* set silent vlan removal values according to vlan mode */
5247         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5248                   &q_update_params->update_flags);
5249         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5250                   &q_update_params->update_flags);
5251         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5252
5253         /* in access mode mark mask and value are 0 to strip all vlans */
5254         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5255                 q_update_params->silent_removal_value = 0;
5256                 q_update_params->silent_removal_mask = 0;
5257         } else {
5258                 q_update_params->silent_removal_value =
5259                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5260                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5261         }
5262
5263         for_each_eth_queue(bp, q) {
5264                 /* Set the appropriate Queue object */
5265                 fp = &bp->fp[q];
5266                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5267
5268                 /* send the ramrod */
5269                 rc = bnx2x_queue_state_change(bp, &queue_params);
5270                 if (rc < 0)
5271                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5272                                   q);
5273         }
5274
5275         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5276                 fp = &bp->fp[FCOE_IDX(bp)];
5277                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5278
5279                 /* clear pending completion bit */
5280                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5281
5282                 /* mark latest Q bit */
5283                 smp_mb__before_atomic();
5284                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5285                 smp_mb__after_atomic();
5286
5287                 /* send Q update ramrod for FCoE Q */
5288                 rc = bnx2x_queue_state_change(bp, &queue_params);
5289                 if (rc < 0)
5290                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5291                                   q);
5292         } else {
5293                 /* If no FCoE ring - ACK MCP now */
5294                 bnx2x_link_report(bp);
5295                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5296         }
5297 }
5298
5299 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5300         struct bnx2x *bp, u32 cid)
5301 {
5302         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5303
5304         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5305                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5306         else
5307                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5308 }
5309
5310 static void bnx2x_eq_int(struct bnx2x *bp)
5311 {
5312         u16 hw_cons, sw_cons, sw_prod;
5313         union event_ring_elem *elem;
5314         u8 echo;
5315         u32 cid;
5316         u8 opcode;
5317         int rc, spqe_cnt = 0;
5318         struct bnx2x_queue_sp_obj *q_obj;
5319         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5320         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5321
5322         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5323
5324         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5325          * when we get the next-page we need to adjust so the loop
5326          * condition below will be met. The next element is the size of a
5327          * regular element and hence incrementing by 1
5328          */
5329         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5330                 hw_cons++;
5331
5332         /* This function may never run in parallel with itself for a
5333          * specific bp, thus there is no need in "paired" read memory
5334          * barrier here.
5335          */
5336         sw_cons = bp->eq_cons;
5337         sw_prod = bp->eq_prod;
5338
5339         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5340                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5341
5342         for (; sw_cons != hw_cons;
5343               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5344
5345                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5346
5347                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5348                 if (!rc) {
5349                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5350                            rc);
5351                         goto next_spqe;
5352                 }
5353
5354                 /* elem CID originates from FW; actually LE */
5355                 cid = SW_CID((__force __le32)
5356                              elem->message.data.cfc_del_event.cid);
5357                 opcode = elem->message.opcode;
5358
5359                 /* handle eq element */
5360                 switch (opcode) {
5361                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5362                         bnx2x_vf_mbx_schedule(bp,
5363                                               &elem->message.data.vf_pf_event);
5364                         continue;
5365
5366                 case EVENT_RING_OPCODE_STAT_QUERY:
5367                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5368                                "got statistics comp event %d\n",
5369                                bp->stats_comp++);
5370                         /* nothing to do with stats comp */
5371                         goto next_spqe;
5372
5373                 case EVENT_RING_OPCODE_CFC_DEL:
5374                         /* handle according to cid range */
5375                         /*
5376                          * we may want to verify here that the bp state is
5377                          * HALTING
5378                          */
5379                         DP(BNX2X_MSG_SP,
5380                            "got delete ramrod for MULTI[%d]\n", cid);
5381
5382                         if (CNIC_LOADED(bp) &&
5383                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5384                                 goto next_spqe;
5385
5386                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5387
5388                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5389                                 break;
5390
5391                         goto next_spqe;
5392
5393                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5394                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5395                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5396                         if (f_obj->complete_cmd(bp, f_obj,
5397                                                 BNX2X_F_CMD_TX_STOP))
5398                                 break;
5399                         goto next_spqe;
5400
5401                 case EVENT_RING_OPCODE_START_TRAFFIC:
5402                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5403                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5404                         if (f_obj->complete_cmd(bp, f_obj,
5405                                                 BNX2X_F_CMD_TX_START))
5406                                 break;
5407                         goto next_spqe;
5408
5409                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5410                         echo = elem->message.data.function_update_event.echo;
5411                         if (echo == SWITCH_UPDATE) {
5412                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5413                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5414                                 if (f_obj->complete_cmd(
5415                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5416                                         break;
5417
5418                         } else {
5419                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5420
5421                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5422                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5423                                 f_obj->complete_cmd(bp, f_obj,
5424                                                     BNX2X_F_CMD_AFEX_UPDATE);
5425
5426                                 /* We will perform the Queues update from
5427                                  * sp_rtnl task as all Queue SP operations
5428                                  * should run under rtnl_lock.
5429                                  */
5430                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5431                         }
5432
5433                         goto next_spqe;
5434
5435                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5436                         f_obj->complete_cmd(bp, f_obj,
5437                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5438                         bnx2x_after_afex_vif_lists(bp, elem);
5439                         goto next_spqe;
5440                 case EVENT_RING_OPCODE_FUNCTION_START:
5441                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5442                            "got FUNC_START ramrod\n");
5443                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5444                                 break;
5445
5446                         goto next_spqe;
5447
5448                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5449                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5450                            "got FUNC_STOP ramrod\n");
5451                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5452                                 break;
5453
5454                         goto next_spqe;
5455                 }
5456
5457                 switch (opcode | bp->state) {
5458                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5459                       BNX2X_STATE_OPEN):
5460                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5461                       BNX2X_STATE_OPENING_WAIT4_PORT):
5462                         cid = elem->message.data.eth_event.echo &
5463                                 BNX2X_SWCID_MASK;
5464                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5465                            cid);
5466                         rss_raw->clear_pending(rss_raw);
5467                         break;
5468
5469                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5470                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5471                 case (EVENT_RING_OPCODE_SET_MAC |
5472                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5473                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5474                       BNX2X_STATE_OPEN):
5475                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5476                       BNX2X_STATE_DIAG):
5477                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5478                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5479                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5480                         bnx2x_handle_classification_eqe(bp, elem);
5481                         break;
5482
5483                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5484                       BNX2X_STATE_OPEN):
5485                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5486                       BNX2X_STATE_DIAG):
5487                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5488                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5489                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5490                         bnx2x_handle_mcast_eqe(bp);
5491                         break;
5492
5493                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5494                       BNX2X_STATE_OPEN):
5495                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5496                       BNX2X_STATE_DIAG):
5497                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5498                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5499                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5500                         bnx2x_handle_rx_mode_eqe(bp);
5501                         break;
5502                 default:
5503                         /* unknown event log error and continue */
5504                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5505                                   elem->message.opcode, bp->state);
5506                 }
5507 next_spqe:
5508                 spqe_cnt++;
5509         } /* for */
5510
5511         smp_mb__before_atomic();
5512         atomic_add(spqe_cnt, &bp->eq_spq_left);
5513
5514         bp->eq_cons = sw_cons;
5515         bp->eq_prod = sw_prod;
5516         /* Make sure that above mem writes were issued towards the memory */
5517         smp_wmb();
5518
5519         /* update producer */
5520         bnx2x_update_eq_prod(bp, bp->eq_prod);
5521 }
5522
5523 static void bnx2x_sp_task(struct work_struct *work)
5524 {
5525         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5526
5527         DP(BNX2X_MSG_SP, "sp task invoked\n");
5528
5529         /* make sure the atomic interrupt_occurred has been written */
5530         smp_rmb();
5531         if (atomic_read(&bp->interrupt_occurred)) {
5532
5533                 /* what work needs to be performed? */
5534                 u16 status = bnx2x_update_dsb_idx(bp);
5535
5536                 DP(BNX2X_MSG_SP, "status %x\n", status);
5537                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5538                 atomic_set(&bp->interrupt_occurred, 0);
5539
5540                 /* HW attentions */
5541                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5542                         bnx2x_attn_int(bp);
5543                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5544                 }
5545
5546                 /* SP events: STAT_QUERY and others */
5547                 if (status & BNX2X_DEF_SB_IDX) {
5548                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5549
5550                 if (FCOE_INIT(bp) &&
5551                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5552                                 /* Prevent local bottom-halves from running as
5553                                  * we are going to change the local NAPI list.
5554                                  */
5555                                 local_bh_disable();
5556                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5557                                 local_bh_enable();
5558                         }
5559
5560                         /* Handle EQ completions */
5561                         bnx2x_eq_int(bp);
5562                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5563                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5564
5565                         status &= ~BNX2X_DEF_SB_IDX;
5566                 }
5567
5568                 /* if status is non zero then perhaps something went wrong */
5569                 if (unlikely(status))
5570                         DP(BNX2X_MSG_SP,
5571                            "got an unknown interrupt! (status 0x%x)\n", status);
5572
5573                 /* ack status block only if something was actually handled */
5574                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5575                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5576         }
5577
5578         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5579         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5580                                &bp->sp_state)) {
5581                 bnx2x_link_report(bp);
5582                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5583         }
5584 }
5585
5586 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5587 {
5588         struct net_device *dev = dev_instance;
5589         struct bnx2x *bp = netdev_priv(dev);
5590
5591         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5592                      IGU_INT_DISABLE, 0);
5593
5594 #ifdef BNX2X_STOP_ON_ERROR
5595         if (unlikely(bp->panic))
5596                 return IRQ_HANDLED;
5597 #endif
5598
5599         if (CNIC_LOADED(bp)) {
5600                 struct cnic_ops *c_ops;
5601
5602                 rcu_read_lock();
5603                 c_ops = rcu_dereference(bp->cnic_ops);
5604                 if (c_ops)
5605                         c_ops->cnic_handler(bp->cnic_data, NULL);
5606                 rcu_read_unlock();
5607         }
5608
5609         /* schedule sp task to perform default status block work, ack
5610          * attentions and enable interrupts.
5611          */
5612         bnx2x_schedule_sp_task(bp);
5613
5614         return IRQ_HANDLED;
5615 }
5616
5617 /* end of slow path */
5618
5619 void bnx2x_drv_pulse(struct bnx2x *bp)
5620 {
5621         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5622                  bp->fw_drv_pulse_wr_seq);
5623 }
5624
5625 static void bnx2x_timer(unsigned long data)
5626 {
5627         struct bnx2x *bp = (struct bnx2x *) data;
5628
5629         if (!netif_running(bp->dev))
5630                 return;
5631
5632         if (IS_PF(bp) &&
5633             !BP_NOMCP(bp)) {
5634                 int mb_idx = BP_FW_MB_IDX(bp);
5635                 u16 drv_pulse;
5636                 u16 mcp_pulse;
5637
5638                 ++bp->fw_drv_pulse_wr_seq;
5639                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5640                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5641                 bnx2x_drv_pulse(bp);
5642
5643                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5644                              MCP_PULSE_SEQ_MASK);
5645                 /* The delta between driver pulse and mcp response
5646                  * should not get too big. If the MFW is more than 5 pulses
5647                  * behind, we should worry about it enough to generate an error
5648                  * log.
5649                  */
5650                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5651                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5652                                   drv_pulse, mcp_pulse);
5653         }
5654
5655         if (bp->state == BNX2X_STATE_OPEN)
5656                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5657
5658         /* sample pf vf bulletin board for new posts from pf */
5659         if (IS_VF(bp))
5660                 bnx2x_timer_sriov(bp);
5661
5662         mod_timer(&bp->timer, jiffies + bp->current_interval);
5663 }
5664
5665 /* end of Statistics */
5666
5667 /* nic init */
5668
5669 /*
5670  * nic init service functions
5671  */
5672
5673 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5674 {
5675         u32 i;
5676         if (!(len%4) && !(addr%4))
5677                 for (i = 0; i < len; i += 4)
5678                         REG_WR(bp, addr + i, fill);
5679         else
5680                 for (i = 0; i < len; i++)
5681                         REG_WR8(bp, addr + i, fill);
5682 }
5683
5684 /* helper: writes FP SP data to FW - data_size in dwords */
5685 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5686                                 int fw_sb_id,
5687                                 u32 *sb_data_p,
5688                                 u32 data_size)
5689 {
5690         int index;
5691         for (index = 0; index < data_size; index++)
5692                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5693                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5694                         sizeof(u32)*index,
5695                         *(sb_data_p + index));
5696 }
5697
5698 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5699 {
5700         u32 *sb_data_p;
5701         u32 data_size = 0;
5702         struct hc_status_block_data_e2 sb_data_e2;
5703         struct hc_status_block_data_e1x sb_data_e1x;
5704
5705         /* disable the function first */
5706         if (!CHIP_IS_E1x(bp)) {
5707                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5708                 sb_data_e2.common.state = SB_DISABLED;
5709                 sb_data_e2.common.p_func.vf_valid = false;
5710                 sb_data_p = (u32 *)&sb_data_e2;
5711                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5712         } else {
5713                 memset(&sb_data_e1x, 0,
5714                        sizeof(struct hc_status_block_data_e1x));
5715                 sb_data_e1x.common.state = SB_DISABLED;
5716                 sb_data_e1x.common.p_func.vf_valid = false;
5717                 sb_data_p = (u32 *)&sb_data_e1x;
5718                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5719         }
5720         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5721
5722         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5723                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5724                         CSTORM_STATUS_BLOCK_SIZE);
5725         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5726                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5727                         CSTORM_SYNC_BLOCK_SIZE);
5728 }
5729
5730 /* helper:  writes SP SB data to FW */
5731 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5732                 struct hc_sp_status_block_data *sp_sb_data)
5733 {
5734         int func = BP_FUNC(bp);
5735         int i;
5736         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5737                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5738                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5739                         i*sizeof(u32),
5740                         *((u32 *)sp_sb_data + i));
5741 }
5742
5743 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5744 {
5745         int func = BP_FUNC(bp);
5746         struct hc_sp_status_block_data sp_sb_data;
5747         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5748
5749         sp_sb_data.state = SB_DISABLED;
5750         sp_sb_data.p_func.vf_valid = false;
5751
5752         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5753
5754         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5755                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5756                         CSTORM_SP_STATUS_BLOCK_SIZE);
5757         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5758                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5759                         CSTORM_SP_SYNC_BLOCK_SIZE);
5760 }
5761
5762 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5763                                            int igu_sb_id, int igu_seg_id)
5764 {
5765         hc_sm->igu_sb_id = igu_sb_id;
5766         hc_sm->igu_seg_id = igu_seg_id;
5767         hc_sm->timer_value = 0xFF;
5768         hc_sm->time_to_expire = 0xFFFFFFFF;
5769 }
5770
5771 /* allocates state machine ids. */
5772 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5773 {
5774         /* zero out state machine indices */
5775         /* rx indices */
5776         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5777
5778         /* tx indices */
5779         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5780         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5781         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5782         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5783
5784         /* map indices */
5785         /* rx indices */
5786         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5787                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5788
5789         /* tx indices */
5790         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5791                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5792         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5793                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5794         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5795                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5796         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5797                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5798 }
5799
5800 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5801                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5802 {
5803         int igu_seg_id;
5804
5805         struct hc_status_block_data_e2 sb_data_e2;
5806         struct hc_status_block_data_e1x sb_data_e1x;
5807         struct hc_status_block_sm  *hc_sm_p;
5808         int data_size;
5809         u32 *sb_data_p;
5810
5811         if (CHIP_INT_MODE_IS_BC(bp))
5812                 igu_seg_id = HC_SEG_ACCESS_NORM;
5813         else
5814                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5815
5816         bnx2x_zero_fp_sb(bp, fw_sb_id);
5817
5818         if (!CHIP_IS_E1x(bp)) {
5819                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5820                 sb_data_e2.common.state = SB_ENABLED;
5821                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5822                 sb_data_e2.common.p_func.vf_id = vfid;
5823                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5824                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5825                 sb_data_e2.common.same_igu_sb_1b = true;
5826                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5827                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5828                 hc_sm_p = sb_data_e2.common.state_machine;
5829                 sb_data_p = (u32 *)&sb_data_e2;
5830                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5831                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5832         } else {
5833                 memset(&sb_data_e1x, 0,
5834                        sizeof(struct hc_status_block_data_e1x));
5835                 sb_data_e1x.common.state = SB_ENABLED;
5836                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5837                 sb_data_e1x.common.p_func.vf_id = 0xff;
5838                 sb_data_e1x.common.p_func.vf_valid = false;
5839                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5840                 sb_data_e1x.common.same_igu_sb_1b = true;
5841                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5842                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5843                 hc_sm_p = sb_data_e1x.common.state_machine;
5844                 sb_data_p = (u32 *)&sb_data_e1x;
5845                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5846                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5847         }
5848
5849         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5850                                        igu_sb_id, igu_seg_id);
5851         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5852                                        igu_sb_id, igu_seg_id);
5853
5854         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5855
5856         /* write indices to HW - PCI guarantees endianity of regpairs */
5857         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5858 }
5859
5860 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5861                                      u16 tx_usec, u16 rx_usec)
5862 {
5863         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5864                                     false, rx_usec);
5865         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5866                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5867                                        tx_usec);
5868         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5869                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5870                                        tx_usec);
5871         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5872                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5873                                        tx_usec);
5874 }
5875
5876 static void bnx2x_init_def_sb(struct bnx2x *bp)
5877 {
5878         struct host_sp_status_block *def_sb = bp->def_status_blk;
5879         dma_addr_t mapping = bp->def_status_blk_mapping;
5880         int igu_sp_sb_index;
5881         int igu_seg_id;
5882         int port = BP_PORT(bp);
5883         int func = BP_FUNC(bp);
5884         int reg_offset, reg_offset_en5;
5885         u64 section;
5886         int index;
5887         struct hc_sp_status_block_data sp_sb_data;
5888         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5889
5890         if (CHIP_INT_MODE_IS_BC(bp)) {
5891                 igu_sp_sb_index = DEF_SB_IGU_ID;
5892                 igu_seg_id = HC_SEG_ACCESS_DEF;
5893         } else {
5894                 igu_sp_sb_index = bp->igu_dsb_id;
5895                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5896         }
5897
5898         /* ATTN */
5899         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5900                                             atten_status_block);
5901         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5902
5903         bp->attn_state = 0;
5904
5905         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5906                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5907         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5908                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5909         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5910                 int sindex;
5911                 /* take care of sig[0]..sig[4] */
5912                 for (sindex = 0; sindex < 4; sindex++)
5913                         bp->attn_group[index].sig[sindex] =
5914                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5915
5916                 if (!CHIP_IS_E1x(bp))
5917                         /*
5918                          * enable5 is separate from the rest of the registers,
5919                          * and therefore the address skip is 4
5920                          * and not 16 between the different groups
5921                          */
5922                         bp->attn_group[index].sig[4] = REG_RD(bp,
5923                                         reg_offset_en5 + 0x4*index);
5924                 else
5925                         bp->attn_group[index].sig[4] = 0;
5926         }
5927
5928         if (bp->common.int_block == INT_BLOCK_HC) {
5929                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5930                                      HC_REG_ATTN_MSG0_ADDR_L);
5931
5932                 REG_WR(bp, reg_offset, U64_LO(section));
5933                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5934         } else if (!CHIP_IS_E1x(bp)) {
5935                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5936                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5937         }
5938
5939         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5940                                             sp_sb);
5941
5942         bnx2x_zero_sp_sb(bp);
5943
5944         /* PCI guarantees endianity of regpairs */
5945         sp_sb_data.state                = SB_ENABLED;
5946         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5947         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5948         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5949         sp_sb_data.igu_seg_id           = igu_seg_id;
5950         sp_sb_data.p_func.pf_id         = func;
5951         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5952         sp_sb_data.p_func.vf_id         = 0xff;
5953
5954         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5955
5956         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5957 }
5958
5959 void bnx2x_update_coalesce(struct bnx2x *bp)
5960 {
5961         int i;
5962
5963         for_each_eth_queue(bp, i)
5964                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5965                                          bp->tx_ticks, bp->rx_ticks);
5966 }
5967
5968 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5969 {
5970         spin_lock_init(&bp->spq_lock);
5971         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5972
5973         bp->spq_prod_idx = 0;
5974         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5975         bp->spq_prod_bd = bp->spq;
5976         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5977 }
5978
5979 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5980 {
5981         int i;
5982         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5983                 union event_ring_elem *elem =
5984                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5985
5986                 elem->next_page.addr.hi =
5987                         cpu_to_le32(U64_HI(bp->eq_mapping +
5988                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5989                 elem->next_page.addr.lo =
5990                         cpu_to_le32(U64_LO(bp->eq_mapping +
5991                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5992         }
5993         bp->eq_cons = 0;
5994         bp->eq_prod = NUM_EQ_DESC;
5995         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5996         /* we want a warning message before it gets wrought... */
5997         atomic_set(&bp->eq_spq_left,
5998                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5999 }
6000
6001 /* called with netif_addr_lock_bh() */
6002 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6003                                unsigned long rx_mode_flags,
6004                                unsigned long rx_accept_flags,
6005                                unsigned long tx_accept_flags,
6006                                unsigned long ramrod_flags)
6007 {
6008         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6009         int rc;
6010
6011         memset(&ramrod_param, 0, sizeof(ramrod_param));
6012
6013         /* Prepare ramrod parameters */
6014         ramrod_param.cid = 0;
6015         ramrod_param.cl_id = cl_id;
6016         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6017         ramrod_param.func_id = BP_FUNC(bp);
6018
6019         ramrod_param.pstate = &bp->sp_state;
6020         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6021
6022         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6023         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6024
6025         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6026
6027         ramrod_param.ramrod_flags = ramrod_flags;
6028         ramrod_param.rx_mode_flags = rx_mode_flags;
6029
6030         ramrod_param.rx_accept_flags = rx_accept_flags;
6031         ramrod_param.tx_accept_flags = tx_accept_flags;
6032
6033         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6034         if (rc < 0) {
6035                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6036                 return rc;
6037         }
6038
6039         return 0;
6040 }
6041
6042 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6043                                    unsigned long *rx_accept_flags,
6044                                    unsigned long *tx_accept_flags)
6045 {
6046         /* Clear the flags first */
6047         *rx_accept_flags = 0;
6048         *tx_accept_flags = 0;
6049
6050         switch (rx_mode) {
6051         case BNX2X_RX_MODE_NONE:
6052                 /*
6053                  * 'drop all' supersedes any accept flags that may have been
6054                  * passed to the function.
6055                  */
6056                 break;
6057         case BNX2X_RX_MODE_NORMAL:
6058                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6059                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6060                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6061
6062                 /* internal switching mode */
6063                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6064                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6065                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6066
6067                 break;
6068         case BNX2X_RX_MODE_ALLMULTI:
6069                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6070                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6071                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6072
6073                 /* internal switching mode */
6074                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6075                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6076                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6077
6078                 break;
6079         case BNX2X_RX_MODE_PROMISC:
6080                 /* According to definition of SI mode, iface in promisc mode
6081                  * should receive matched and unmatched (in resolution of port)
6082                  * unicast packets.
6083                  */
6084                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6085                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6086                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6087                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6088
6089                 /* internal switching mode */
6090                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6091                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6092
6093                 if (IS_MF_SI(bp))
6094                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6095                 else
6096                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6097
6098                 break;
6099         default:
6100                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6101                 return -EINVAL;
6102         }
6103
6104         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6105         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
6106                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6107                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6108         }
6109
6110         return 0;
6111 }
6112
6113 /* called with netif_addr_lock_bh() */
6114 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6115 {
6116         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6117         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6118         int rc;
6119
6120         if (!NO_FCOE(bp))
6121                 /* Configure rx_mode of FCoE Queue */
6122                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6123
6124         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6125                                      &tx_accept_flags);
6126         if (rc)
6127                 return rc;
6128
6129         __set_bit(RAMROD_RX, &ramrod_flags);
6130         __set_bit(RAMROD_TX, &ramrod_flags);
6131
6132         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6133                                    rx_accept_flags, tx_accept_flags,
6134                                    ramrod_flags);
6135 }
6136
6137 static void bnx2x_init_internal_common(struct bnx2x *bp)
6138 {
6139         int i;
6140
6141         /* Zero this manually as its initialization is
6142            currently missing in the initTool */
6143         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6144                 REG_WR(bp, BAR_USTRORM_INTMEM +
6145                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6146         if (!CHIP_IS_E1x(bp)) {
6147                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6148                         CHIP_INT_MODE_IS_BC(bp) ?
6149                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6150         }
6151 }
6152
6153 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6154 {
6155         switch (load_code) {
6156         case FW_MSG_CODE_DRV_LOAD_COMMON:
6157         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6158                 bnx2x_init_internal_common(bp);
6159                 /* no break */
6160
6161         case FW_MSG_CODE_DRV_LOAD_PORT:
6162                 /* nothing to do */
6163                 /* no break */
6164
6165         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6166                 /* internal memory per function is
6167                    initialized inside bnx2x_pf_init */
6168                 break;
6169
6170         default:
6171                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6172                 break;
6173         }
6174 }
6175
6176 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6177 {
6178         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6179 }
6180
6181 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6182 {
6183         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6184 }
6185
6186 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6187 {
6188         if (CHIP_IS_E1x(fp->bp))
6189                 return BP_L_ID(fp->bp) + fp->index;
6190         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6191                 return bnx2x_fp_igu_sb_id(fp);
6192 }
6193
6194 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6195 {
6196         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6197         u8 cos;
6198         unsigned long q_type = 0;
6199         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6200         fp->rx_queue = fp_idx;
6201         fp->cid = fp_idx;
6202         fp->cl_id = bnx2x_fp_cl_id(fp);
6203         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6204         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6205         /* qZone id equals to FW (per path) client id */
6206         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6207
6208         /* init shortcut */
6209         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6210
6211         /* Setup SB indices */
6212         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6213
6214         /* Configure Queue State object */
6215         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6216         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6217
6218         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6219
6220         /* init tx data */
6221         for_each_cos_in_tx_queue(fp, cos) {
6222                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6223                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6224                                   FP_COS_TO_TXQ(fp, cos, bp),
6225                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6226                 cids[cos] = fp->txdata_ptr[cos]->cid;
6227         }
6228
6229         /* nothing more for vf to do here */
6230         if (IS_VF(bp))
6231                 return;
6232
6233         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6234                       fp->fw_sb_id, fp->igu_sb_id);
6235         bnx2x_update_fpsb_idx(fp);
6236         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6237                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6238                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6239
6240         /**
6241          * Configure classification DBs: Always enable Tx switching
6242          */
6243         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6244
6245         DP(NETIF_MSG_IFUP,
6246            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6247            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6248            fp->igu_sb_id);
6249 }
6250
6251 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6252 {
6253         int i;
6254
6255         for (i = 1; i <= NUM_TX_RINGS; i++) {
6256                 struct eth_tx_next_bd *tx_next_bd =
6257                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6258
6259                 tx_next_bd->addr_hi =
6260                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6261                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6262                 tx_next_bd->addr_lo =
6263                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6264                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6265         }
6266
6267         *txdata->tx_cons_sb = cpu_to_le16(0);
6268
6269         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6270         txdata->tx_db.data.zero_fill1 = 0;
6271         txdata->tx_db.data.prod = 0;
6272
6273         txdata->tx_pkt_prod = 0;
6274         txdata->tx_pkt_cons = 0;
6275         txdata->tx_bd_prod = 0;
6276         txdata->tx_bd_cons = 0;
6277         txdata->tx_pkt = 0;
6278 }
6279
6280 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6281 {
6282         int i;
6283
6284         for_each_tx_queue_cnic(bp, i)
6285                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6286 }
6287
6288 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6289 {
6290         int i;
6291         u8 cos;
6292
6293         for_each_eth_queue(bp, i)
6294                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6295                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6296 }
6297
6298 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6299 {
6300         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6301         unsigned long q_type = 0;
6302
6303         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6304         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6305                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6306         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6307         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6308         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6309         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6310         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6311                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6312                           fp);
6313
6314         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6315
6316         /* qZone id equals to FW (per path) client id */
6317         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6318         /* init shortcut */
6319         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6320                 bnx2x_rx_ustorm_prods_offset(fp);
6321
6322         /* Configure Queue State object */
6323         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6324         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6325
6326         /* No multi-CoS for FCoE L2 client */
6327         BUG_ON(fp->max_cos != 1);
6328
6329         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6330                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6331                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6332
6333         DP(NETIF_MSG_IFUP,
6334            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6335            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6336            fp->igu_sb_id);
6337 }
6338
6339 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6340 {
6341         if (!NO_FCOE(bp))
6342                 bnx2x_init_fcoe_fp(bp);
6343
6344         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6345                       BNX2X_VF_ID_INVALID, false,
6346                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6347
6348         /* ensure status block indices were read */
6349         rmb();
6350         bnx2x_init_rx_rings_cnic(bp);
6351         bnx2x_init_tx_rings_cnic(bp);
6352
6353         /* flush all */
6354         mb();
6355         mmiowb();
6356 }
6357
6358 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6359 {
6360         int i;
6361
6362         /* Setup NIC internals and enable interrupts */
6363         for_each_eth_queue(bp, i)
6364                 bnx2x_init_eth_fp(bp, i);
6365
6366         /* ensure status block indices were read */
6367         rmb();
6368         bnx2x_init_rx_rings(bp);
6369         bnx2x_init_tx_rings(bp);
6370
6371         if (IS_PF(bp)) {
6372                 /* Initialize MOD_ABS interrupts */
6373                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6374                                        bp->common.shmem_base,
6375                                        bp->common.shmem2_base, BP_PORT(bp));
6376
6377                 /* initialize the default status block and sp ring */
6378                 bnx2x_init_def_sb(bp);
6379                 bnx2x_update_dsb_idx(bp);
6380                 bnx2x_init_sp_ring(bp);
6381         } else {
6382                 bnx2x_memset_stats(bp);
6383         }
6384 }
6385
6386 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6387 {
6388         bnx2x_init_eq_ring(bp);
6389         bnx2x_init_internal(bp, load_code);
6390         bnx2x_pf_init(bp);
6391         bnx2x_stats_init(bp);
6392
6393         /* flush all before enabling interrupts */
6394         mb();
6395         mmiowb();
6396
6397         bnx2x_int_enable(bp);
6398
6399         /* Check for SPIO5 */
6400         bnx2x_attn_int_deasserted0(bp,
6401                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6402                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6403 }
6404
6405 /* gzip service functions */
6406 static int bnx2x_gunzip_init(struct bnx2x *bp)
6407 {
6408         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6409                                             &bp->gunzip_mapping, GFP_KERNEL);
6410         if (bp->gunzip_buf  == NULL)
6411                 goto gunzip_nomem1;
6412
6413         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6414         if (bp->strm  == NULL)
6415                 goto gunzip_nomem2;
6416
6417         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6418         if (bp->strm->workspace == NULL)
6419                 goto gunzip_nomem3;
6420
6421         return 0;
6422
6423 gunzip_nomem3:
6424         kfree(bp->strm);
6425         bp->strm = NULL;
6426
6427 gunzip_nomem2:
6428         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6429                           bp->gunzip_mapping);
6430         bp->gunzip_buf = NULL;
6431
6432 gunzip_nomem1:
6433         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6434         return -ENOMEM;
6435 }
6436
6437 static void bnx2x_gunzip_end(struct bnx2x *bp)
6438 {
6439         if (bp->strm) {
6440                 vfree(bp->strm->workspace);
6441                 kfree(bp->strm);
6442                 bp->strm = NULL;
6443         }
6444
6445         if (bp->gunzip_buf) {
6446                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6447                                   bp->gunzip_mapping);
6448                 bp->gunzip_buf = NULL;
6449         }
6450 }
6451
6452 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6453 {
6454         int n, rc;
6455
6456         /* check gzip header */
6457         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6458                 BNX2X_ERR("Bad gzip header\n");
6459                 return -EINVAL;
6460         }
6461
6462         n = 10;
6463
6464 #define FNAME                           0x8
6465
6466         if (zbuf[3] & FNAME)
6467                 while ((zbuf[n++] != 0) && (n < len));
6468
6469         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6470         bp->strm->avail_in = len - n;
6471         bp->strm->next_out = bp->gunzip_buf;
6472         bp->strm->avail_out = FW_BUF_SIZE;
6473
6474         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6475         if (rc != Z_OK)
6476                 return rc;
6477
6478         rc = zlib_inflate(bp->strm, Z_FINISH);
6479         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6480                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6481                            bp->strm->msg);
6482
6483         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6484         if (bp->gunzip_outlen & 0x3)
6485                 netdev_err(bp->dev,
6486                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6487                                 bp->gunzip_outlen);
6488         bp->gunzip_outlen >>= 2;
6489
6490         zlib_inflateEnd(bp->strm);
6491
6492         if (rc == Z_STREAM_END)
6493                 return 0;
6494
6495         return rc;
6496 }
6497
6498 /* nic load/unload */
6499
6500 /*
6501  * General service functions
6502  */
6503
6504 /* send a NIG loopback debug packet */
6505 static void bnx2x_lb_pckt(struct bnx2x *bp)
6506 {
6507         u32 wb_write[3];
6508
6509         /* Ethernet source and destination addresses */
6510         wb_write[0] = 0x55555555;
6511         wb_write[1] = 0x55555555;
6512         wb_write[2] = 0x20;             /* SOP */
6513         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6514
6515         /* NON-IP protocol */
6516         wb_write[0] = 0x09000000;
6517         wb_write[1] = 0x55555555;
6518         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6519         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6520 }
6521
6522 /* some of the internal memories
6523  * are not directly readable from the driver
6524  * to test them we send debug packets
6525  */
6526 static int bnx2x_int_mem_test(struct bnx2x *bp)
6527 {
6528         int factor;
6529         int count, i;
6530         u32 val = 0;
6531
6532         if (CHIP_REV_IS_FPGA(bp))
6533                 factor = 120;
6534         else if (CHIP_REV_IS_EMUL(bp))
6535                 factor = 200;
6536         else
6537                 factor = 1;
6538
6539         /* Disable inputs of parser neighbor blocks */
6540         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6541         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6542         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6543         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6544
6545         /*  Write 0 to parser credits for CFC search request */
6546         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6547
6548         /* send Ethernet packet */
6549         bnx2x_lb_pckt(bp);
6550
6551         /* TODO do i reset NIG statistic? */
6552         /* Wait until NIG register shows 1 packet of size 0x10 */
6553         count = 1000 * factor;
6554         while (count) {
6555
6556                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6557                 val = *bnx2x_sp(bp, wb_data[0]);
6558                 if (val == 0x10)
6559                         break;
6560
6561                 usleep_range(10000, 20000);
6562                 count--;
6563         }
6564         if (val != 0x10) {
6565                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6566                 return -1;
6567         }
6568
6569         /* Wait until PRS register shows 1 packet */
6570         count = 1000 * factor;
6571         while (count) {
6572                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6573                 if (val == 1)
6574                         break;
6575
6576                 usleep_range(10000, 20000);
6577                 count--;
6578         }
6579         if (val != 0x1) {
6580                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6581                 return -2;
6582         }
6583
6584         /* Reset and init BRB, PRS */
6585         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6586         msleep(50);
6587         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6588         msleep(50);
6589         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6590         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6591
6592         DP(NETIF_MSG_HW, "part2\n");
6593
6594         /* Disable inputs of parser neighbor blocks */
6595         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6596         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6597         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6598         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6599
6600         /* Write 0 to parser credits for CFC search request */
6601         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6602
6603         /* send 10 Ethernet packets */
6604         for (i = 0; i < 10; i++)
6605                 bnx2x_lb_pckt(bp);
6606
6607         /* Wait until NIG register shows 10 + 1
6608            packets of size 11*0x10 = 0xb0 */
6609         count = 1000 * factor;
6610         while (count) {
6611
6612                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6613                 val = *bnx2x_sp(bp, wb_data[0]);
6614                 if (val == 0xb0)
6615                         break;
6616
6617                 usleep_range(10000, 20000);
6618                 count--;
6619         }
6620         if (val != 0xb0) {
6621                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6622                 return -3;
6623         }
6624
6625         /* Wait until PRS register shows 2 packets */
6626         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6627         if (val != 2)
6628                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6629
6630         /* Write 1 to parser credits for CFC search request */
6631         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6632
6633         /* Wait until PRS register shows 3 packets */
6634         msleep(10 * factor);
6635         /* Wait until NIG register shows 1 packet of size 0x10 */
6636         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6637         if (val != 3)
6638                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6639
6640         /* clear NIG EOP FIFO */
6641         for (i = 0; i < 11; i++)
6642                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6643         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6644         if (val != 1) {
6645                 BNX2X_ERR("clear of NIG failed\n");
6646                 return -4;
6647         }
6648
6649         /* Reset and init BRB, PRS, NIG */
6650         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6651         msleep(50);
6652         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6653         msleep(50);
6654         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6655         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6656         if (!CNIC_SUPPORT(bp))
6657                 /* set NIC mode */
6658                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6659
6660         /* Enable inputs of parser neighbor blocks */
6661         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6662         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6663         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6664         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6665
6666         DP(NETIF_MSG_HW, "done\n");
6667
6668         return 0; /* OK */
6669 }
6670
6671 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6672 {
6673         u32 val;
6674
6675         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6676         if (!CHIP_IS_E1x(bp))
6677                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6678         else
6679                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6680         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6681         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6682         /*
6683          * mask read length error interrupts in brb for parser
6684          * (parsing unit and 'checksum and crc' unit)
6685          * these errors are legal (PU reads fixed length and CAC can cause
6686          * read length error on truncated packets)
6687          */
6688         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6689         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6690         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6691         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6692         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6693         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6694 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6695 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6696         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6697         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6698         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6699 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6700 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6701         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6702         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6703         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6704         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6705 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6706 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6707
6708         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6709                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6710                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6711         if (!CHIP_IS_E1x(bp))
6712                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6713                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6714         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6715
6716         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6717         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6718         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6719 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6720
6721         if (!CHIP_IS_E1x(bp))
6722                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6723                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6724
6725         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6726         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6727 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6728         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6729 }
6730
6731 static void bnx2x_reset_common(struct bnx2x *bp)
6732 {
6733         u32 val = 0x1400;
6734
6735         /* reset_common */
6736         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6737                0xd3ffff7f);
6738
6739         if (CHIP_IS_E3(bp)) {
6740                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6741                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6742         }
6743
6744         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6745 }
6746
6747 static void bnx2x_setup_dmae(struct bnx2x *bp)
6748 {
6749         bp->dmae_ready = 0;
6750         spin_lock_init(&bp->dmae_lock);
6751 }
6752
6753 static void bnx2x_init_pxp(struct bnx2x *bp)
6754 {
6755         u16 devctl;
6756         int r_order, w_order;
6757
6758         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6759         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6760         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6761         if (bp->mrrs == -1)
6762                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6763         else {
6764                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6765                 r_order = bp->mrrs;
6766         }
6767
6768         bnx2x_init_pxp_arb(bp, r_order, w_order);
6769 }
6770
6771 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6772 {
6773         int is_required;
6774         u32 val;
6775         int port;
6776
6777         if (BP_NOMCP(bp))
6778                 return;
6779
6780         is_required = 0;
6781         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6782               SHARED_HW_CFG_FAN_FAILURE_MASK;
6783
6784         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6785                 is_required = 1;
6786
6787         /*
6788          * The fan failure mechanism is usually related to the PHY type since
6789          * the power consumption of the board is affected by the PHY. Currently,
6790          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6791          */
6792         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6793                 for (port = PORT_0; port < PORT_MAX; port++) {
6794                         is_required |=
6795                                 bnx2x_fan_failure_det_req(
6796                                         bp,
6797                                         bp->common.shmem_base,
6798                                         bp->common.shmem2_base,
6799                                         port);
6800                 }
6801
6802         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6803
6804         if (is_required == 0)
6805                 return;
6806
6807         /* Fan failure is indicated by SPIO 5 */
6808         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6809
6810         /* set to active low mode */
6811         val = REG_RD(bp, MISC_REG_SPIO_INT);
6812         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6813         REG_WR(bp, MISC_REG_SPIO_INT, val);
6814
6815         /* enable interrupt to signal the IGU */
6816         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6817         val |= MISC_SPIO_SPIO5;
6818         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6819 }
6820
6821 void bnx2x_pf_disable(struct bnx2x *bp)
6822 {
6823         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6824         val &= ~IGU_PF_CONF_FUNC_EN;
6825
6826         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6827         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6828         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6829 }
6830
6831 static void bnx2x__common_init_phy(struct bnx2x *bp)
6832 {
6833         u32 shmem_base[2], shmem2_base[2];
6834         /* Avoid common init in case MFW supports LFA */
6835         if (SHMEM2_RD(bp, size) >
6836             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6837                 return;
6838         shmem_base[0] =  bp->common.shmem_base;
6839         shmem2_base[0] = bp->common.shmem2_base;
6840         if (!CHIP_IS_E1x(bp)) {
6841                 shmem_base[1] =
6842                         SHMEM2_RD(bp, other_shmem_base_addr);
6843                 shmem2_base[1] =
6844                         SHMEM2_RD(bp, other_shmem2_base_addr);
6845         }
6846         bnx2x_acquire_phy_lock(bp);
6847         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6848                               bp->common.chip_id);
6849         bnx2x_release_phy_lock(bp);
6850 }
6851
6852 /**
6853  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6854  *
6855  * @bp:         driver handle
6856  */
6857 static int bnx2x_init_hw_common(struct bnx2x *bp)
6858 {
6859         u32 val;
6860
6861         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6862
6863         /*
6864          * take the RESET lock to protect undi_unload flow from accessing
6865          * registers while we're resetting the chip
6866          */
6867         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6868
6869         bnx2x_reset_common(bp);
6870         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6871
6872         val = 0xfffc;
6873         if (CHIP_IS_E3(bp)) {
6874                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6875                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6876         }
6877         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6878
6879         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6880
6881         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6882
6883         if (!CHIP_IS_E1x(bp)) {
6884                 u8 abs_func_id;
6885
6886                 /**
6887                  * 4-port mode or 2-port mode we need to turn of master-enable
6888                  * for everyone, after that, turn it back on for self.
6889                  * so, we disregard multi-function or not, and always disable
6890                  * for all functions on the given path, this means 0,2,4,6 for
6891                  * path 0 and 1,3,5,7 for path 1
6892                  */
6893                 for (abs_func_id = BP_PATH(bp);
6894                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6895                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6896                                 REG_WR(bp,
6897                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6898                                     1);
6899                                 continue;
6900                         }
6901
6902                         bnx2x_pretend_func(bp, abs_func_id);
6903                         /* clear pf enable */
6904                         bnx2x_pf_disable(bp);
6905                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6906                 }
6907         }
6908
6909         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6910         if (CHIP_IS_E1(bp)) {
6911                 /* enable HW interrupt from PXP on USDM overflow
6912                    bit 16 on INT_MASK_0 */
6913                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6914         }
6915
6916         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6917         bnx2x_init_pxp(bp);
6918
6919 #ifdef __BIG_ENDIAN
6920         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6921         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6922         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6923         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6924         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6925         /* make sure this value is 0 */
6926         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6927
6928 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6929         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6930         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6931         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6932         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6933 #endif
6934
6935         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6936
6937         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6938                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6939
6940         /* let the HW do it's magic ... */
6941         msleep(100);
6942         /* finish PXP init */
6943         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6944         if (val != 1) {
6945                 BNX2X_ERR("PXP2 CFG failed\n");
6946                 return -EBUSY;
6947         }
6948         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6949         if (val != 1) {
6950                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6951                 return -EBUSY;
6952         }
6953
6954         /* Timers bug workaround E2 only. We need to set the entire ILT to
6955          * have entries with value "0" and valid bit on.
6956          * This needs to be done by the first PF that is loaded in a path
6957          * (i.e. common phase)
6958          */
6959         if (!CHIP_IS_E1x(bp)) {
6960 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6961  * (i.e. vnic3) to start even if it is marked as "scan-off".
6962  * This occurs when a different function (func2,3) is being marked
6963  * as "scan-off". Real-life scenario for example: if a driver is being
6964  * load-unloaded while func6,7 are down. This will cause the timer to access
6965  * the ilt, translate to a logical address and send a request to read/write.
6966  * Since the ilt for the function that is down is not valid, this will cause
6967  * a translation error which is unrecoverable.
6968  * The Workaround is intended to make sure that when this happens nothing fatal
6969  * will occur. The workaround:
6970  *      1.  First PF driver which loads on a path will:
6971  *              a.  After taking the chip out of reset, by using pretend,
6972  *                  it will write "0" to the following registers of
6973  *                  the other vnics.
6974  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6975  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6976  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6977  *                  And for itself it will write '1' to
6978  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6979  *                  dmae-operations (writing to pram for example.)
6980  *                  note: can be done for only function 6,7 but cleaner this
6981  *                        way.
6982  *              b.  Write zero+valid to the entire ILT.
6983  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6984  *                  VNIC3 (of that port). The range allocated will be the
6985  *                  entire ILT. This is needed to prevent  ILT range error.
6986  *      2.  Any PF driver load flow:
6987  *              a.  ILT update with the physical addresses of the allocated
6988  *                  logical pages.
6989  *              b.  Wait 20msec. - note that this timeout is needed to make
6990  *                  sure there are no requests in one of the PXP internal
6991  *                  queues with "old" ILT addresses.
6992  *              c.  PF enable in the PGLC.
6993  *              d.  Clear the was_error of the PF in the PGLC. (could have
6994  *                  occurred while driver was down)
6995  *              e.  PF enable in the CFC (WEAK + STRONG)
6996  *              f.  Timers scan enable
6997  *      3.  PF driver unload flow:
6998  *              a.  Clear the Timers scan_en.
6999  *              b.  Polling for scan_on=0 for that PF.
7000  *              c.  Clear the PF enable bit in the PXP.
7001  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7002  *              e.  Write zero+valid to all ILT entries (The valid bit must
7003  *                  stay set)
7004  *              f.  If this is VNIC 3 of a port then also init
7005  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7006  *                  to the last entry in the ILT.
7007  *
7008  *      Notes:
7009  *      Currently the PF error in the PGLC is non recoverable.
7010  *      In the future the there will be a recovery routine for this error.
7011  *      Currently attention is masked.
7012  *      Having an MCP lock on the load/unload process does not guarantee that
7013  *      there is no Timer disable during Func6/7 enable. This is because the
7014  *      Timers scan is currently being cleared by the MCP on FLR.
7015  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7016  *      there is error before clearing it. But the flow above is simpler and
7017  *      more general.
7018  *      All ILT entries are written by zero+valid and not just PF6/7
7019  *      ILT entries since in the future the ILT entries allocation for
7020  *      PF-s might be dynamic.
7021  */
7022                 struct ilt_client_info ilt_cli;
7023                 struct bnx2x_ilt ilt;
7024                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7025                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7026
7027                 /* initialize dummy TM client */
7028                 ilt_cli.start = 0;
7029                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7030                 ilt_cli.client_num = ILT_CLIENT_TM;
7031
7032                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7033                  * Step 2: set the timers first/last ilt entry to point
7034                  * to the entire range to prevent ILT range error for 3rd/4th
7035                  * vnic (this code assumes existence of the vnic)
7036                  *
7037                  * both steps performed by call to bnx2x_ilt_client_init_op()
7038                  * with dummy TM client
7039                  *
7040                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7041                  * and his brother are split registers
7042                  */
7043                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7044                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7045                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7046
7047                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7048                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7049                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7050         }
7051
7052         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7053         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7054
7055         if (!CHIP_IS_E1x(bp)) {
7056                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7057                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7058                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7059
7060                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7061
7062                 /* let the HW do it's magic ... */
7063                 do {
7064                         msleep(200);
7065                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7066                 } while (factor-- && (val != 1));
7067
7068                 if (val != 1) {
7069                         BNX2X_ERR("ATC_INIT failed\n");
7070                         return -EBUSY;
7071                 }
7072         }
7073
7074         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7075
7076         bnx2x_iov_init_dmae(bp);
7077
7078         /* clean the DMAE memory */
7079         bp->dmae_ready = 1;
7080         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7081
7082         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7083
7084         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7085
7086         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7087
7088         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7089
7090         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7091         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7092         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7093         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7094
7095         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7096
7097         /* QM queues pointers table */
7098         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7099
7100         /* soft reset pulse */
7101         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7102         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7103
7104         if (CNIC_SUPPORT(bp))
7105                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7106
7107         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7108
7109         if (!CHIP_REV_IS_SLOW(bp))
7110                 /* enable hw interrupt from doorbell Q */
7111                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7112
7113         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7114
7115         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7116         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7117
7118         if (!CHIP_IS_E1(bp))
7119                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7120
7121         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7122                 if (IS_MF_AFEX(bp)) {
7123                         /* configure that VNTag and VLAN headers must be
7124                          * received in afex mode
7125                          */
7126                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7127                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7128                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7129                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7130                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7131                 } else {
7132                         /* Bit-map indicating which L2 hdrs may appear
7133                          * after the basic Ethernet header
7134                          */
7135                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7136                                bp->path_has_ovlan ? 7 : 6);
7137                 }
7138         }
7139
7140         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7141         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7142         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7143         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7144
7145         if (!CHIP_IS_E1x(bp)) {
7146                 /* reset VFC memories */
7147                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7148                            VFC_MEMORIES_RST_REG_CAM_RST |
7149                            VFC_MEMORIES_RST_REG_RAM_RST);
7150                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7151                            VFC_MEMORIES_RST_REG_CAM_RST |
7152                            VFC_MEMORIES_RST_REG_RAM_RST);
7153
7154                 msleep(20);
7155         }
7156
7157         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7158         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7159         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7160         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7161
7162         /* sync semi rtc */
7163         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7164                0x80000000);
7165         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7166                0x80000000);
7167
7168         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7169         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7170         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7171
7172         if (!CHIP_IS_E1x(bp)) {
7173                 if (IS_MF_AFEX(bp)) {
7174                         /* configure that VNTag and VLAN headers must be
7175                          * sent in afex mode
7176                          */
7177                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7178                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7179                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7180                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7181                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7182                 } else {
7183                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7184                                bp->path_has_ovlan ? 7 : 6);
7185                 }
7186         }
7187
7188         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7189
7190         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7191
7192         if (CNIC_SUPPORT(bp)) {
7193                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7194                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7195                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7196                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7197                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7198                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7199                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7200                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7201                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7202                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7203         }
7204         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7205
7206         if (sizeof(union cdu_context) != 1024)
7207                 /* we currently assume that a context is 1024 bytes */
7208                 dev_alert(&bp->pdev->dev,
7209                           "please adjust the size of cdu_context(%ld)\n",
7210                           (long)sizeof(union cdu_context));
7211
7212         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7213         val = (4 << 24) + (0 << 12) + 1024;
7214         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7215
7216         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7217         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7218         /* enable context validation interrupt from CFC */
7219         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7220
7221         /* set the thresholds to prevent CFC/CDU race */
7222         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7223
7224         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7225
7226         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7227                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7228
7229         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7230         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7231
7232         /* Reset PCIE errors for debug */
7233         REG_WR(bp, 0x2814, 0xffffffff);
7234         REG_WR(bp, 0x3820, 0xffffffff);
7235
7236         if (!CHIP_IS_E1x(bp)) {
7237                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7238                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7239                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7240                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7241                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7242                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7243                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7244                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7245                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7246                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7247                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7248         }
7249
7250         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7251         if (!CHIP_IS_E1(bp)) {
7252                 /* in E3 this done in per-port section */
7253                 if (!CHIP_IS_E3(bp))
7254                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7255         }
7256         if (CHIP_IS_E1H(bp))
7257                 /* not applicable for E2 (and above ...) */
7258                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7259
7260         if (CHIP_REV_IS_SLOW(bp))
7261                 msleep(200);
7262
7263         /* finish CFC init */
7264         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7265         if (val != 1) {
7266                 BNX2X_ERR("CFC LL_INIT failed\n");
7267                 return -EBUSY;
7268         }
7269         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7270         if (val != 1) {
7271                 BNX2X_ERR("CFC AC_INIT failed\n");
7272                 return -EBUSY;
7273         }
7274         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7275         if (val != 1) {
7276                 BNX2X_ERR("CFC CAM_INIT failed\n");
7277                 return -EBUSY;
7278         }
7279         REG_WR(bp, CFC_REG_DEBUG0, 0);
7280
7281         if (CHIP_IS_E1(bp)) {
7282                 /* read NIG statistic
7283                    to see if this is our first up since powerup */
7284                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7285                 val = *bnx2x_sp(bp, wb_data[0]);
7286
7287                 /* do internal memory self test */
7288                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7289                         BNX2X_ERR("internal mem self test failed\n");
7290                         return -EBUSY;
7291                 }
7292         }
7293
7294         bnx2x_setup_fan_failure_detection(bp);
7295
7296         /* clear PXP2 attentions */
7297         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7298
7299         bnx2x_enable_blocks_attention(bp);
7300         bnx2x_enable_blocks_parity(bp);
7301
7302         if (!BP_NOMCP(bp)) {
7303                 if (CHIP_IS_E1x(bp))
7304                         bnx2x__common_init_phy(bp);
7305         } else
7306                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7307
7308         return 0;
7309 }
7310
7311 /**
7312  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7313  *
7314  * @bp:         driver handle
7315  */
7316 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7317 {
7318         int rc = bnx2x_init_hw_common(bp);
7319
7320         if (rc)
7321                 return rc;
7322
7323         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7324         if (!BP_NOMCP(bp))
7325                 bnx2x__common_init_phy(bp);
7326
7327         return 0;
7328 }
7329
7330 static int bnx2x_init_hw_port(struct bnx2x *bp)
7331 {
7332         int port = BP_PORT(bp);
7333         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7334         u32 low, high;
7335         u32 val, reg;
7336
7337         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7338
7339         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7340
7341         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7342         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7343         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7344
7345         /* Timers bug workaround: disables the pf_master bit in pglue at
7346          * common phase, we need to enable it here before any dmae access are
7347          * attempted. Therefore we manually added the enable-master to the
7348          * port phase (it also happens in the function phase)
7349          */
7350         if (!CHIP_IS_E1x(bp))
7351                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7352
7353         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7354         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7355         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7356         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7357
7358         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7359         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7360         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7361         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7362
7363         /* QM cid (connection) count */
7364         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7365
7366         if (CNIC_SUPPORT(bp)) {
7367                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7368                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7369                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7370         }
7371
7372         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7373
7374         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7375
7376         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7377
7378                 if (IS_MF(bp))
7379                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7380                 else if (bp->dev->mtu > 4096) {
7381                         if (bp->flags & ONE_PORT_FLAG)
7382                                 low = 160;
7383                         else {
7384                                 val = bp->dev->mtu;
7385                                 /* (24*1024 + val*4)/256 */
7386                                 low = 96 + (val/64) +
7387                                                 ((val % 64) ? 1 : 0);
7388                         }
7389                 } else
7390                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7391                 high = low + 56;        /* 14*1024/256 */
7392                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7393                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7394         }
7395
7396         if (CHIP_MODE_IS_4_PORT(bp))
7397                 REG_WR(bp, (BP_PORT(bp) ?
7398                             BRB1_REG_MAC_GUARANTIED_1 :
7399                             BRB1_REG_MAC_GUARANTIED_0), 40);
7400
7401         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7402         if (CHIP_IS_E3B0(bp)) {
7403                 if (IS_MF_AFEX(bp)) {
7404                         /* configure headers for AFEX mode */
7405                         REG_WR(bp, BP_PORT(bp) ?
7406                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7407                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7408                         REG_WR(bp, BP_PORT(bp) ?
7409                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7410                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7411                         REG_WR(bp, BP_PORT(bp) ?
7412                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7413                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7414                 } else {
7415                         /* Ovlan exists only if we are in multi-function +
7416                          * switch-dependent mode, in switch-independent there
7417                          * is no ovlan headers
7418                          */
7419                         REG_WR(bp, BP_PORT(bp) ?
7420                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7421                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7422                                (bp->path_has_ovlan ? 7 : 6));
7423                 }
7424         }
7425
7426         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7427         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7428         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7429         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7430
7431         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7432         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7433         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7434         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7435
7436         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7437         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7438
7439         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7440
7441         if (CHIP_IS_E1x(bp)) {
7442                 /* configure PBF to work without PAUSE mtu 9000 */
7443                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7444
7445                 /* update threshold */
7446                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7447                 /* update init credit */
7448                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7449
7450                 /* probe changes */
7451                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7452                 udelay(50);
7453                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7454         }
7455
7456         if (CNIC_SUPPORT(bp))
7457                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7458
7459         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7460         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7461
7462         if (CHIP_IS_E1(bp)) {
7463                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7464                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7465         }
7466         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7467
7468         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7469
7470         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7471         /* init aeu_mask_attn_func_0/1:
7472          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7473          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7474          *             bits 4-7 are used for "per vn group attention" */
7475         val = IS_MF(bp) ? 0xF7 : 0x7;
7476         /* Enable DCBX attention for all but E1 */
7477         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7478         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7479
7480         /* SCPAD_PARITY should NOT trigger close the gates */
7481         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7482         REG_WR(bp, reg,
7483                REG_RD(bp, reg) &
7484                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7485
7486         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7487         REG_WR(bp, reg,
7488                REG_RD(bp, reg) &
7489                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7490
7491         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7492
7493         if (!CHIP_IS_E1x(bp)) {
7494                 /* Bit-map indicating which L2 hdrs may appear after the
7495                  * basic Ethernet header
7496                  */
7497                 if (IS_MF_AFEX(bp))
7498                         REG_WR(bp, BP_PORT(bp) ?
7499                                NIG_REG_P1_HDRS_AFTER_BASIC :
7500                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7501                 else
7502                         REG_WR(bp, BP_PORT(bp) ?
7503                                NIG_REG_P1_HDRS_AFTER_BASIC :
7504                                NIG_REG_P0_HDRS_AFTER_BASIC,
7505                                IS_MF_SD(bp) ? 7 : 6);
7506
7507                 if (CHIP_IS_E3(bp))
7508                         REG_WR(bp, BP_PORT(bp) ?
7509                                    NIG_REG_LLH1_MF_MODE :
7510                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7511         }
7512         if (!CHIP_IS_E3(bp))
7513                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7514
7515         if (!CHIP_IS_E1(bp)) {
7516                 /* 0x2 disable mf_ov, 0x1 enable */
7517                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7518                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7519
7520                 if (!CHIP_IS_E1x(bp)) {
7521                         val = 0;
7522                         switch (bp->mf_mode) {
7523                         case MULTI_FUNCTION_SD:
7524                                 val = 1;
7525                                 break;
7526                         case MULTI_FUNCTION_SI:
7527                         case MULTI_FUNCTION_AFEX:
7528                                 val = 2;
7529                                 break;
7530                         }
7531
7532                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7533                                                   NIG_REG_LLH0_CLS_TYPE), val);
7534                 }
7535                 {
7536                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7537                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7538                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7539                 }
7540         }
7541
7542         /* If SPIO5 is set to generate interrupts, enable it for this port */
7543         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7544         if (val & MISC_SPIO_SPIO5) {
7545                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7546                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7547                 val = REG_RD(bp, reg_addr);
7548                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7549                 REG_WR(bp, reg_addr, val);
7550         }
7551
7552         return 0;
7553 }
7554
7555 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7556 {
7557         int reg;
7558         u32 wb_write[2];
7559
7560         if (CHIP_IS_E1(bp))
7561                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7562         else
7563                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7564
7565         wb_write[0] = ONCHIP_ADDR1(addr);
7566         wb_write[1] = ONCHIP_ADDR2(addr);
7567         REG_WR_DMAE(bp, reg, wb_write, 2);
7568 }
7569
7570 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7571 {
7572         u32 data, ctl, cnt = 100;
7573         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7574         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7575         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7576         u32 sb_bit =  1 << (idu_sb_id%32);
7577         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7578         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7579
7580         /* Not supported in BC mode */
7581         if (CHIP_INT_MODE_IS_BC(bp))
7582                 return;
7583
7584         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7585                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7586                 IGU_REGULAR_CLEANUP_SET                         |
7587                 IGU_REGULAR_BCLEANUP;
7588
7589         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7590               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7591               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7592
7593         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7594                          data, igu_addr_data);
7595         REG_WR(bp, igu_addr_data, data);
7596         mmiowb();
7597         barrier();
7598         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7599                           ctl, igu_addr_ctl);
7600         REG_WR(bp, igu_addr_ctl, ctl);
7601         mmiowb();
7602         barrier();
7603
7604         /* wait for clean up to finish */
7605         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7606                 msleep(20);
7607
7608         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7609                 DP(NETIF_MSG_HW,
7610                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7611                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7612         }
7613 }
7614
7615 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7616 {
7617         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7618 }
7619
7620 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7621 {
7622         u32 i, base = FUNC_ILT_BASE(func);
7623         for (i = base; i < base + ILT_PER_FUNC; i++)
7624                 bnx2x_ilt_wr(bp, i, 0);
7625 }
7626
7627 static void bnx2x_init_searcher(struct bnx2x *bp)
7628 {
7629         int port = BP_PORT(bp);
7630         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7631         /* T1 hash bits value determines the T1 number of entries */
7632         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7633 }
7634
7635 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7636 {
7637         int rc;
7638         struct bnx2x_func_state_params func_params = {NULL};
7639         struct bnx2x_func_switch_update_params *switch_update_params =
7640                 &func_params.params.switch_update;
7641
7642         /* Prepare parameters for function state transitions */
7643         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7644         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7645
7646         func_params.f_obj = &bp->func_obj;
7647         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7648
7649         /* Function parameters */
7650         switch_update_params->suspend = suspend;
7651
7652         rc = bnx2x_func_state_change(bp, &func_params);
7653
7654         return rc;
7655 }
7656
7657 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7658 {
7659         int rc, i, port = BP_PORT(bp);
7660         int vlan_en = 0, mac_en[NUM_MACS];
7661
7662         /* Close input from network */
7663         if (bp->mf_mode == SINGLE_FUNCTION) {
7664                 bnx2x_set_rx_filter(&bp->link_params, 0);
7665         } else {
7666                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7667                                    NIG_REG_LLH0_FUNC_EN);
7668                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7669                           NIG_REG_LLH0_FUNC_EN, 0);
7670                 for (i = 0; i < NUM_MACS; i++) {
7671                         mac_en[i] = REG_RD(bp, port ?
7672                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7673                                               4 * i) :
7674                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7675                                               4 * i));
7676                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7677                                               4 * i) :
7678                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7679                 }
7680         }
7681
7682         /* Close BMC to host */
7683         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7684                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7685
7686         /* Suspend Tx switching to the PF. Completion of this ramrod
7687          * further guarantees that all the packets of that PF / child
7688          * VFs in BRB were processed by the Parser, so it is safe to
7689          * change the NIC_MODE register.
7690          */
7691         rc = bnx2x_func_switch_update(bp, 1);
7692         if (rc) {
7693                 BNX2X_ERR("Can't suspend tx-switching!\n");
7694                 return rc;
7695         }
7696
7697         /* Change NIC_MODE register */
7698         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7699
7700         /* Open input from network */
7701         if (bp->mf_mode == SINGLE_FUNCTION) {
7702                 bnx2x_set_rx_filter(&bp->link_params, 1);
7703         } else {
7704                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7705                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7706                 for (i = 0; i < NUM_MACS; i++) {
7707                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7708                                               4 * i) :
7709                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7710                                   mac_en[i]);
7711                 }
7712         }
7713
7714         /* Enable BMC to host */
7715         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7716                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7717
7718         /* Resume Tx switching to the PF */
7719         rc = bnx2x_func_switch_update(bp, 0);
7720         if (rc) {
7721                 BNX2X_ERR("Can't resume tx-switching!\n");
7722                 return rc;
7723         }
7724
7725         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7726         return 0;
7727 }
7728
7729 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7730 {
7731         int rc;
7732
7733         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7734
7735         if (CONFIGURE_NIC_MODE(bp)) {
7736                 /* Configure searcher as part of function hw init */
7737                 bnx2x_init_searcher(bp);
7738
7739                 /* Reset NIC mode */
7740                 rc = bnx2x_reset_nic_mode(bp);
7741                 if (rc)
7742                         BNX2X_ERR("Can't change NIC mode!\n");
7743                 return rc;
7744         }
7745
7746         return 0;
7747 }
7748
7749 static int bnx2x_init_hw_func(struct bnx2x *bp)
7750 {
7751         int port = BP_PORT(bp);
7752         int func = BP_FUNC(bp);
7753         int init_phase = PHASE_PF0 + func;
7754         struct bnx2x_ilt *ilt = BP_ILT(bp);
7755         u16 cdu_ilt_start;
7756         u32 addr, val;
7757         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7758         int i, main_mem_width, rc;
7759
7760         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7761
7762         /* FLR cleanup - hmmm */
7763         if (!CHIP_IS_E1x(bp)) {
7764                 rc = bnx2x_pf_flr_clnup(bp);
7765                 if (rc) {
7766                         bnx2x_fw_dump(bp);
7767                         return rc;
7768                 }
7769         }
7770
7771         /* set MSI reconfigure capability */
7772         if (bp->common.int_block == INT_BLOCK_HC) {
7773                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7774                 val = REG_RD(bp, addr);
7775                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7776                 REG_WR(bp, addr, val);
7777         }
7778
7779         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7780         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7781
7782         ilt = BP_ILT(bp);
7783         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7784
7785         if (IS_SRIOV(bp))
7786                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7787         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7788
7789         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7790          * those of the VFs, so start line should be reset
7791          */
7792         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7793         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7794                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7795                 ilt->lines[cdu_ilt_start + i].page_mapping =
7796                         bp->context[i].cxt_mapping;
7797                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7798         }
7799
7800         bnx2x_ilt_init_op(bp, INITOP_SET);
7801
7802         if (!CONFIGURE_NIC_MODE(bp)) {
7803                 bnx2x_init_searcher(bp);
7804                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7805                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7806         } else {
7807                 /* Set NIC mode */
7808                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7809                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7810         }
7811
7812         if (!CHIP_IS_E1x(bp)) {
7813                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7814
7815                 /* Turn on a single ISR mode in IGU if driver is going to use
7816                  * INT#x or MSI
7817                  */
7818                 if (!(bp->flags & USING_MSIX_FLAG))
7819                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7820                 /*
7821                  * Timers workaround bug: function init part.
7822                  * Need to wait 20msec after initializing ILT,
7823                  * needed to make sure there are no requests in
7824                  * one of the PXP internal queues with "old" ILT addresses
7825                  */
7826                 msleep(20);
7827                 /*
7828                  * Master enable - Due to WB DMAE writes performed before this
7829                  * register is re-initialized as part of the regular function
7830                  * init
7831                  */
7832                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7833                 /* Enable the function in IGU */
7834                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7835         }
7836
7837         bp->dmae_ready = 1;
7838
7839         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7840
7841         if (!CHIP_IS_E1x(bp))
7842                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7843
7844         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7845         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7846         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7847         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7848         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7849         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7850         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7851         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7852         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7853         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7854         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7855         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7856         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7857
7858         if (!CHIP_IS_E1x(bp))
7859                 REG_WR(bp, QM_REG_PF_EN, 1);
7860
7861         if (!CHIP_IS_E1x(bp)) {
7862                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7863                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7864                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7865                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7866         }
7867         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7868
7869         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7870         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7871         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7872
7873         bnx2x_iov_init_dq(bp);
7874
7875         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7876         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7877         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7878         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7879         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7880         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7881         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7882         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7883         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7884         if (!CHIP_IS_E1x(bp))
7885                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7886
7887         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7888
7889         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7890
7891         if (!CHIP_IS_E1x(bp))
7892                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7893
7894         if (IS_MF(bp)) {
7895                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7896                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7897         }
7898
7899         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7900
7901         /* HC init per function */
7902         if (bp->common.int_block == INT_BLOCK_HC) {
7903                 if (CHIP_IS_E1H(bp)) {
7904                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7905
7906                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7907                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7908                 }
7909                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7910
7911         } else {
7912                 int num_segs, sb_idx, prod_offset;
7913
7914                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7915
7916                 if (!CHIP_IS_E1x(bp)) {
7917                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7918                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7919                 }
7920
7921                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7922
7923                 if (!CHIP_IS_E1x(bp)) {
7924                         int dsb_idx = 0;
7925                         /**
7926                          * Producer memory:
7927                          * E2 mode: address 0-135 match to the mapping memory;
7928                          * 136 - PF0 default prod; 137 - PF1 default prod;
7929                          * 138 - PF2 default prod; 139 - PF3 default prod;
7930                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7931                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7932                          * 144-147 reserved.
7933                          *
7934                          * E1.5 mode - In backward compatible mode;
7935                          * for non default SB; each even line in the memory
7936                          * holds the U producer and each odd line hold
7937                          * the C producer. The first 128 producers are for
7938                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7939                          * producers are for the DSB for each PF.
7940                          * Each PF has five segments: (the order inside each
7941                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7942                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7943                          * 144-147 attn prods;
7944                          */
7945                         /* non-default-status-blocks */
7946                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7947                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7948                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7949                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7950                                         num_segs;
7951
7952                                 for (i = 0; i < num_segs; i++) {
7953                                         addr = IGU_REG_PROD_CONS_MEMORY +
7954                                                         (prod_offset + i) * 4;
7955                                         REG_WR(bp, addr, 0);
7956                                 }
7957                                 /* send consumer update with value 0 */
7958                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7959                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7960                                 bnx2x_igu_clear_sb(bp,
7961                                                    bp->igu_base_sb + sb_idx);
7962                         }
7963
7964                         /* default-status-blocks */
7965                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7966                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7967
7968                         if (CHIP_MODE_IS_4_PORT(bp))
7969                                 dsb_idx = BP_FUNC(bp);
7970                         else
7971                                 dsb_idx = BP_VN(bp);
7972
7973                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7974                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7975                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7976
7977                         /*
7978                          * igu prods come in chunks of E1HVN_MAX (4) -
7979                          * does not matters what is the current chip mode
7980                          */
7981                         for (i = 0; i < (num_segs * E1HVN_MAX);
7982                              i += E1HVN_MAX) {
7983                                 addr = IGU_REG_PROD_CONS_MEMORY +
7984                                                         (prod_offset + i)*4;
7985                                 REG_WR(bp, addr, 0);
7986                         }
7987                         /* send consumer update with 0 */
7988                         if (CHIP_INT_MODE_IS_BC(bp)) {
7989                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7990                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7991                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7992                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7993                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7994                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7995                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7996                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7997                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7998                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7999                         } else {
8000                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8001                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8002                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8003                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8004                         }
8005                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8006
8007                         /* !!! These should become driver const once
8008                            rf-tool supports split-68 const */
8009                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8010                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8011                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8012                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8013                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8014                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8015                 }
8016         }
8017
8018         /* Reset PCIE errors for debug */
8019         REG_WR(bp, 0x2114, 0xffffffff);
8020         REG_WR(bp, 0x2120, 0xffffffff);
8021
8022         if (CHIP_IS_E1x(bp)) {
8023                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8024                 main_mem_base = HC_REG_MAIN_MEMORY +
8025                                 BP_PORT(bp) * (main_mem_size * 4);
8026                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8027                 main_mem_width = 8;
8028
8029                 val = REG_RD(bp, main_mem_prty_clr);
8030                 if (val)
8031                         DP(NETIF_MSG_HW,
8032                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8033                            val);
8034
8035                 /* Clear "false" parity errors in MSI-X table */
8036                 for (i = main_mem_base;
8037                      i < main_mem_base + main_mem_size * 4;
8038                      i += main_mem_width) {
8039                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8040                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8041                                          i, main_mem_width / 4);
8042                 }
8043                 /* Clear HC parity attention */
8044                 REG_RD(bp, main_mem_prty_clr);
8045         }
8046
8047 #ifdef BNX2X_STOP_ON_ERROR
8048         /* Enable STORMs SP logging */
8049         REG_WR8(bp, BAR_USTRORM_INTMEM +
8050                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8051         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8052                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8053         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8054                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8055         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8056                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8057 #endif
8058
8059         bnx2x_phy_probe(&bp->link_params);
8060
8061         return 0;
8062 }
8063
8064 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8065 {
8066         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8067
8068         if (!CHIP_IS_E1x(bp))
8069                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8070                                sizeof(struct host_hc_status_block_e2));
8071         else
8072                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8073                                sizeof(struct host_hc_status_block_e1x));
8074
8075         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8076 }
8077
8078 void bnx2x_free_mem(struct bnx2x *bp)
8079 {
8080         int i;
8081
8082         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8083                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8084
8085         if (IS_VF(bp))
8086                 return;
8087
8088         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8089                        sizeof(struct host_sp_status_block));
8090
8091         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8092                        sizeof(struct bnx2x_slowpath));
8093
8094         for (i = 0; i < L2_ILT_LINES(bp); i++)
8095                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8096                                bp->context[i].size);
8097         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8098
8099         BNX2X_FREE(bp->ilt->lines);
8100
8101         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8102
8103         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8104                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8105
8106         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8107
8108         bnx2x_iov_free_mem(bp);
8109 }
8110
8111 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8112 {
8113         if (!CHIP_IS_E1x(bp)) {
8114                 /* size = the status block + ramrod buffers */
8115                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8116                                                     sizeof(struct host_hc_status_block_e2));
8117                 if (!bp->cnic_sb.e2_sb)
8118                         goto alloc_mem_err;
8119         } else {
8120                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8121                                                      sizeof(struct host_hc_status_block_e1x));
8122                 if (!bp->cnic_sb.e1x_sb)
8123                         goto alloc_mem_err;
8124         }
8125
8126         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8127                 /* allocate searcher T2 table, as it wasn't allocated before */
8128                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8129                 if (!bp->t2)
8130                         goto alloc_mem_err;
8131         }
8132
8133         /* write address to which L5 should insert its values */
8134         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8135                 &bp->slowpath->drv_info_to_mcp;
8136
8137         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8138                 goto alloc_mem_err;
8139
8140         return 0;
8141
8142 alloc_mem_err:
8143         bnx2x_free_mem_cnic(bp);
8144         BNX2X_ERR("Can't allocate memory\n");
8145         return -ENOMEM;
8146 }
8147
8148 int bnx2x_alloc_mem(struct bnx2x *bp)
8149 {
8150         int i, allocated, context_size;
8151
8152         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8153                 /* allocate searcher T2 table */
8154                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8155                 if (!bp->t2)
8156                         goto alloc_mem_err;
8157         }
8158
8159         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8160                                              sizeof(struct host_sp_status_block));
8161         if (!bp->def_status_blk)
8162                 goto alloc_mem_err;
8163
8164         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8165                                        sizeof(struct bnx2x_slowpath));
8166         if (!bp->slowpath)
8167                 goto alloc_mem_err;
8168
8169         /* Allocate memory for CDU context:
8170          * This memory is allocated separately and not in the generic ILT
8171          * functions because CDU differs in few aspects:
8172          * 1. There are multiple entities allocating memory for context -
8173          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8174          * its own ILT lines.
8175          * 2. Since CDU page-size is not a single 4KB page (which is the case
8176          * for the other ILT clients), to be efficient we want to support
8177          * allocation of sub-page-size in the last entry.
8178          * 3. Context pointers are used by the driver to pass to FW / update
8179          * the context (for the other ILT clients the pointers are used just to
8180          * free the memory during unload).
8181          */
8182         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8183
8184         for (i = 0, allocated = 0; allocated < context_size; i++) {
8185                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8186                                           (context_size - allocated));
8187                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8188                                                       bp->context[i].size);
8189                 if (!bp->context[i].vcxt)
8190                         goto alloc_mem_err;
8191                 allocated += bp->context[i].size;
8192         }
8193         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8194                                  GFP_KERNEL);
8195         if (!bp->ilt->lines)
8196                 goto alloc_mem_err;
8197
8198         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8199                 goto alloc_mem_err;
8200
8201         if (bnx2x_iov_alloc_mem(bp))
8202                 goto alloc_mem_err;
8203
8204         /* Slow path ring */
8205         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8206         if (!bp->spq)
8207                 goto alloc_mem_err;
8208
8209         /* EQ */
8210         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8211                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8212         if (!bp->eq_ring)
8213                 goto alloc_mem_err;
8214
8215         return 0;
8216
8217 alloc_mem_err:
8218         bnx2x_free_mem(bp);
8219         BNX2X_ERR("Can't allocate memory\n");
8220         return -ENOMEM;
8221 }
8222
8223 /*
8224  * Init service functions
8225  */
8226
8227 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8228                       struct bnx2x_vlan_mac_obj *obj, bool set,
8229                       int mac_type, unsigned long *ramrod_flags)
8230 {
8231         int rc;
8232         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8233
8234         memset(&ramrod_param, 0, sizeof(ramrod_param));
8235
8236         /* Fill general parameters */
8237         ramrod_param.vlan_mac_obj = obj;
8238         ramrod_param.ramrod_flags = *ramrod_flags;
8239
8240         /* Fill a user request section if needed */
8241         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8242                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8243
8244                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8245
8246                 /* Set the command: ADD or DEL */
8247                 if (set)
8248                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8249                 else
8250                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8251         }
8252
8253         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8254
8255         if (rc == -EEXIST) {
8256                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8257                 /* do not treat adding same MAC as error */
8258                 rc = 0;
8259         } else if (rc < 0)
8260                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8261
8262         return rc;
8263 }
8264
8265 int bnx2x_del_all_macs(struct bnx2x *bp,
8266                        struct bnx2x_vlan_mac_obj *mac_obj,
8267                        int mac_type, bool wait_for_comp)
8268 {
8269         int rc;
8270         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8271
8272         /* Wait for completion of requested */
8273         if (wait_for_comp)
8274                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8275
8276         /* Set the mac type of addresses we want to clear */
8277         __set_bit(mac_type, &vlan_mac_flags);
8278
8279         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8280         if (rc < 0)
8281                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8282
8283         return rc;
8284 }
8285
8286 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8287 {
8288         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8289             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8290                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8291                    "Ignoring Zero MAC for STORAGE SD mode\n");
8292                 return 0;
8293         }
8294
8295         if (IS_PF(bp)) {
8296                 unsigned long ramrod_flags = 0;
8297
8298                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8299                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8300                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8301                                          &bp->sp_objs->mac_obj, set,
8302                                          BNX2X_ETH_MAC, &ramrod_flags);
8303         } else { /* vf */
8304                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8305                                              bp->fp->index, true);
8306         }
8307 }
8308
8309 int bnx2x_setup_leading(struct bnx2x *bp)
8310 {
8311         if (IS_PF(bp))
8312                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8313         else /* VF */
8314                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8315 }
8316
8317 /**
8318  * bnx2x_set_int_mode - configure interrupt mode
8319  *
8320  * @bp:         driver handle
8321  *
8322  * In case of MSI-X it will also try to enable MSI-X.
8323  */
8324 int bnx2x_set_int_mode(struct bnx2x *bp)
8325 {
8326         int rc = 0;
8327
8328         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8329                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8330                 return -EINVAL;
8331         }
8332
8333         switch (int_mode) {
8334         case BNX2X_INT_MODE_MSIX:
8335                 /* attempt to enable msix */
8336                 rc = bnx2x_enable_msix(bp);
8337
8338                 /* msix attained */
8339                 if (!rc)
8340                         return 0;
8341
8342                 /* vfs use only msix */
8343                 if (rc && IS_VF(bp))
8344                         return rc;
8345
8346                 /* failed to enable multiple MSI-X */
8347                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8348                                bp->num_queues,
8349                                1 + bp->num_cnic_queues);
8350
8351                 /* falling through... */
8352         case BNX2X_INT_MODE_MSI:
8353                 bnx2x_enable_msi(bp);
8354
8355                 /* falling through... */
8356         case BNX2X_INT_MODE_INTX:
8357                 bp->num_ethernet_queues = 1;
8358                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8359                 BNX2X_DEV_INFO("set number of queues to 1\n");
8360                 break;
8361         default:
8362                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8363                 return -EINVAL;
8364         }
8365         return 0;
8366 }
8367
8368 /* must be called prior to any HW initializations */
8369 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8370 {
8371         if (IS_SRIOV(bp))
8372                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8373         return L2_ILT_LINES(bp);
8374 }
8375
8376 void bnx2x_ilt_set_info(struct bnx2x *bp)
8377 {
8378         struct ilt_client_info *ilt_client;
8379         struct bnx2x_ilt *ilt = BP_ILT(bp);
8380         u16 line = 0;
8381
8382         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8383         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8384
8385         /* CDU */
8386         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8387         ilt_client->client_num = ILT_CLIENT_CDU;
8388         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8389         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8390         ilt_client->start = line;
8391         line += bnx2x_cid_ilt_lines(bp);
8392
8393         if (CNIC_SUPPORT(bp))
8394                 line += CNIC_ILT_LINES;
8395         ilt_client->end = line - 1;
8396
8397         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8398            ilt_client->start,
8399            ilt_client->end,
8400            ilt_client->page_size,
8401            ilt_client->flags,
8402            ilog2(ilt_client->page_size >> 12));
8403
8404         /* QM */
8405         if (QM_INIT(bp->qm_cid_count)) {
8406                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8407                 ilt_client->client_num = ILT_CLIENT_QM;
8408                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8409                 ilt_client->flags = 0;
8410                 ilt_client->start = line;
8411
8412                 /* 4 bytes for each cid */
8413                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8414                                                          QM_ILT_PAGE_SZ);
8415
8416                 ilt_client->end = line - 1;
8417
8418                 DP(NETIF_MSG_IFUP,
8419                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8420                    ilt_client->start,
8421                    ilt_client->end,
8422                    ilt_client->page_size,
8423                    ilt_client->flags,
8424                    ilog2(ilt_client->page_size >> 12));
8425         }
8426
8427         if (CNIC_SUPPORT(bp)) {
8428                 /* SRC */
8429                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8430                 ilt_client->client_num = ILT_CLIENT_SRC;
8431                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8432                 ilt_client->flags = 0;
8433                 ilt_client->start = line;
8434                 line += SRC_ILT_LINES;
8435                 ilt_client->end = line - 1;
8436
8437                 DP(NETIF_MSG_IFUP,
8438                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8439                    ilt_client->start,
8440                    ilt_client->end,
8441                    ilt_client->page_size,
8442                    ilt_client->flags,
8443                    ilog2(ilt_client->page_size >> 12));
8444
8445                 /* TM */
8446                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8447                 ilt_client->client_num = ILT_CLIENT_TM;
8448                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8449                 ilt_client->flags = 0;
8450                 ilt_client->start = line;
8451                 line += TM_ILT_LINES;
8452                 ilt_client->end = line - 1;
8453
8454                 DP(NETIF_MSG_IFUP,
8455                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8456                    ilt_client->start,
8457                    ilt_client->end,
8458                    ilt_client->page_size,
8459                    ilt_client->flags,
8460                    ilog2(ilt_client->page_size >> 12));
8461         }
8462
8463         BUG_ON(line > ILT_MAX_LINES);
8464 }
8465
8466 /**
8467  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8468  *
8469  * @bp:                 driver handle
8470  * @fp:                 pointer to fastpath
8471  * @init_params:        pointer to parameters structure
8472  *
8473  * parameters configured:
8474  *      - HC configuration
8475  *      - Queue's CDU context
8476  */
8477 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8478         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8479 {
8480         u8 cos;
8481         int cxt_index, cxt_offset;
8482
8483         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8484         if (!IS_FCOE_FP(fp)) {
8485                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8486                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8487
8488                 /* If HC is supported, enable host coalescing in the transition
8489                  * to INIT state.
8490                  */
8491                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8492                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8493
8494                 /* HC rate */
8495                 init_params->rx.hc_rate = bp->rx_ticks ?
8496                         (1000000 / bp->rx_ticks) : 0;
8497                 init_params->tx.hc_rate = bp->tx_ticks ?
8498                         (1000000 / bp->tx_ticks) : 0;
8499
8500                 /* FW SB ID */
8501                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8502                         fp->fw_sb_id;
8503
8504                 /*
8505                  * CQ index among the SB indices: FCoE clients uses the default
8506                  * SB, therefore it's different.
8507                  */
8508                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8509                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8510         }
8511
8512         /* set maximum number of COSs supported by this queue */
8513         init_params->max_cos = fp->max_cos;
8514
8515         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8516             fp->index, init_params->max_cos);
8517
8518         /* set the context pointers queue object */
8519         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8520                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8521                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8522                                 ILT_PAGE_CIDS);
8523                 init_params->cxts[cos] =
8524                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8525         }
8526 }
8527
8528 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8529                         struct bnx2x_queue_state_params *q_params,
8530                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8531                         int tx_index, bool leading)
8532 {
8533         memset(tx_only_params, 0, sizeof(*tx_only_params));
8534
8535         /* Set the command */
8536         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8537
8538         /* Set tx-only QUEUE flags: don't zero statistics */
8539         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8540
8541         /* choose the index of the cid to send the slow path on */
8542         tx_only_params->cid_index = tx_index;
8543
8544         /* Set general TX_ONLY_SETUP parameters */
8545         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8546
8547         /* Set Tx TX_ONLY_SETUP parameters */
8548         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8549
8550         DP(NETIF_MSG_IFUP,
8551            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8552            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8553            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8554            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8555
8556         /* send the ramrod */
8557         return bnx2x_queue_state_change(bp, q_params);
8558 }
8559
8560 /**
8561  * bnx2x_setup_queue - setup queue
8562  *
8563  * @bp:         driver handle
8564  * @fp:         pointer to fastpath
8565  * @leading:    is leading
8566  *
8567  * This function performs 2 steps in a Queue state machine
8568  *      actually: 1) RESET->INIT 2) INIT->SETUP
8569  */
8570
8571 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8572                        bool leading)
8573 {
8574         struct bnx2x_queue_state_params q_params = {NULL};
8575         struct bnx2x_queue_setup_params *setup_params =
8576                                                 &q_params.params.setup;
8577         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8578                                                 &q_params.params.tx_only;
8579         int rc;
8580         u8 tx_index;
8581
8582         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8583
8584         /* reset IGU state skip FCoE L2 queue */
8585         if (!IS_FCOE_FP(fp))
8586                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8587                              IGU_INT_ENABLE, 0);
8588
8589         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8590         /* We want to wait for completion in this context */
8591         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8592
8593         /* Prepare the INIT parameters */
8594         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8595
8596         /* Set the command */
8597         q_params.cmd = BNX2X_Q_CMD_INIT;
8598
8599         /* Change the state to INIT */
8600         rc = bnx2x_queue_state_change(bp, &q_params);
8601         if (rc) {
8602                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8603                 return rc;
8604         }
8605
8606         DP(NETIF_MSG_IFUP, "init complete\n");
8607
8608         /* Now move the Queue to the SETUP state... */
8609         memset(setup_params, 0, sizeof(*setup_params));
8610
8611         /* Set QUEUE flags */
8612         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8613
8614         /* Set general SETUP parameters */
8615         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8616                                 FIRST_TX_COS_INDEX);
8617
8618         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8619                             &setup_params->rxq_params);
8620
8621         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8622                            FIRST_TX_COS_INDEX);
8623
8624         /* Set the command */
8625         q_params.cmd = BNX2X_Q_CMD_SETUP;
8626
8627         if (IS_FCOE_FP(fp))
8628                 bp->fcoe_init = true;
8629
8630         /* Change the state to SETUP */
8631         rc = bnx2x_queue_state_change(bp, &q_params);
8632         if (rc) {
8633                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8634                 return rc;
8635         }
8636
8637         /* loop through the relevant tx-only indices */
8638         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8639               tx_index < fp->max_cos;
8640               tx_index++) {
8641
8642                 /* prepare and send tx-only ramrod*/
8643                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8644                                           tx_only_params, tx_index, leading);
8645                 if (rc) {
8646                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8647                                   fp->index, tx_index);
8648                         return rc;
8649                 }
8650         }
8651
8652         return rc;
8653 }
8654
8655 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8656 {
8657         struct bnx2x_fastpath *fp = &bp->fp[index];
8658         struct bnx2x_fp_txdata *txdata;
8659         struct bnx2x_queue_state_params q_params = {NULL};
8660         int rc, tx_index;
8661
8662         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8663
8664         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8665         /* We want to wait for completion in this context */
8666         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8667
8668         /* close tx-only connections */
8669         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8670              tx_index < fp->max_cos;
8671              tx_index++){
8672
8673                 /* ascertain this is a normal queue*/
8674                 txdata = fp->txdata_ptr[tx_index];
8675
8676                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8677                                                         txdata->txq_index);
8678
8679                 /* send halt terminate on tx-only connection */
8680                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8681                 memset(&q_params.params.terminate, 0,
8682                        sizeof(q_params.params.terminate));
8683                 q_params.params.terminate.cid_index = tx_index;
8684
8685                 rc = bnx2x_queue_state_change(bp, &q_params);
8686                 if (rc)
8687                         return rc;
8688
8689                 /* send halt terminate on tx-only connection */
8690                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8691                 memset(&q_params.params.cfc_del, 0,
8692                        sizeof(q_params.params.cfc_del));
8693                 q_params.params.cfc_del.cid_index = tx_index;
8694                 rc = bnx2x_queue_state_change(bp, &q_params);
8695                 if (rc)
8696                         return rc;
8697         }
8698         /* Stop the primary connection: */
8699         /* ...halt the connection */
8700         q_params.cmd = BNX2X_Q_CMD_HALT;
8701         rc = bnx2x_queue_state_change(bp, &q_params);
8702         if (rc)
8703                 return rc;
8704
8705         /* ...terminate the connection */
8706         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8707         memset(&q_params.params.terminate, 0,
8708                sizeof(q_params.params.terminate));
8709         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8710         rc = bnx2x_queue_state_change(bp, &q_params);
8711         if (rc)
8712                 return rc;
8713         /* ...delete cfc entry */
8714         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8715         memset(&q_params.params.cfc_del, 0,
8716                sizeof(q_params.params.cfc_del));
8717         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8718         return bnx2x_queue_state_change(bp, &q_params);
8719 }
8720
8721 static void bnx2x_reset_func(struct bnx2x *bp)
8722 {
8723         int port = BP_PORT(bp);
8724         int func = BP_FUNC(bp);
8725         int i;
8726
8727         /* Disable the function in the FW */
8728         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8729         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8730         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8731         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8732
8733         /* FP SBs */
8734         for_each_eth_queue(bp, i) {
8735                 struct bnx2x_fastpath *fp = &bp->fp[i];
8736                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8737                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8738                            SB_DISABLED);
8739         }
8740
8741         if (CNIC_LOADED(bp))
8742                 /* CNIC SB */
8743                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8744                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8745                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8746
8747         /* SP SB */
8748         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8749                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8750                 SB_DISABLED);
8751
8752         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8753                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8754                        0);
8755
8756         /* Configure IGU */
8757         if (bp->common.int_block == INT_BLOCK_HC) {
8758                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8759                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8760         } else {
8761                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8762                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8763         }
8764
8765         if (CNIC_LOADED(bp)) {
8766                 /* Disable Timer scan */
8767                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8768                 /*
8769                  * Wait for at least 10ms and up to 2 second for the timers
8770                  * scan to complete
8771                  */
8772                 for (i = 0; i < 200; i++) {
8773                         usleep_range(10000, 20000);
8774                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8775                                 break;
8776                 }
8777         }
8778         /* Clear ILT */
8779         bnx2x_clear_func_ilt(bp, func);
8780
8781         /* Timers workaround bug for E2: if this is vnic-3,
8782          * we need to set the entire ilt range for this timers.
8783          */
8784         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8785                 struct ilt_client_info ilt_cli;
8786                 /* use dummy TM client */
8787                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8788                 ilt_cli.start = 0;
8789                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8790                 ilt_cli.client_num = ILT_CLIENT_TM;
8791
8792                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8793         }
8794
8795         /* this assumes that reset_port() called before reset_func()*/
8796         if (!CHIP_IS_E1x(bp))
8797                 bnx2x_pf_disable(bp);
8798
8799         bp->dmae_ready = 0;
8800 }
8801
8802 static void bnx2x_reset_port(struct bnx2x *bp)
8803 {
8804         int port = BP_PORT(bp);
8805         u32 val;
8806
8807         /* Reset physical Link */
8808         bnx2x__link_reset(bp);
8809
8810         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8811
8812         /* Do not rcv packets to BRB */
8813         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8814         /* Do not direct rcv packets that are not for MCP to the BRB */
8815         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8816                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8817
8818         /* Configure AEU */
8819         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8820
8821         msleep(100);
8822         /* Check for BRB port occupancy */
8823         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8824         if (val)
8825                 DP(NETIF_MSG_IFDOWN,
8826                    "BRB1 is not empty  %d blocks are occupied\n", val);
8827
8828         /* TODO: Close Doorbell port? */
8829 }
8830
8831 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8832 {
8833         struct bnx2x_func_state_params func_params = {NULL};
8834
8835         /* Prepare parameters for function state transitions */
8836         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8837
8838         func_params.f_obj = &bp->func_obj;
8839         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8840
8841         func_params.params.hw_init.load_phase = load_code;
8842
8843         return bnx2x_func_state_change(bp, &func_params);
8844 }
8845
8846 static int bnx2x_func_stop(struct bnx2x *bp)
8847 {
8848         struct bnx2x_func_state_params func_params = {NULL};
8849         int rc;
8850
8851         /* Prepare parameters for function state transitions */
8852         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8853         func_params.f_obj = &bp->func_obj;
8854         func_params.cmd = BNX2X_F_CMD_STOP;
8855
8856         /*
8857          * Try to stop the function the 'good way'. If fails (in case
8858          * of a parity error during bnx2x_chip_cleanup()) and we are
8859          * not in a debug mode, perform a state transaction in order to
8860          * enable further HW_RESET transaction.
8861          */
8862         rc = bnx2x_func_state_change(bp, &func_params);
8863         if (rc) {
8864 #ifdef BNX2X_STOP_ON_ERROR
8865                 return rc;
8866 #else
8867                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8868                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8869                 return bnx2x_func_state_change(bp, &func_params);
8870 #endif
8871         }
8872
8873         return 0;
8874 }
8875
8876 /**
8877  * bnx2x_send_unload_req - request unload mode from the MCP.
8878  *
8879  * @bp:                 driver handle
8880  * @unload_mode:        requested function's unload mode
8881  *
8882  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8883  */
8884 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8885 {
8886         u32 reset_code = 0;
8887         int port = BP_PORT(bp);
8888
8889         /* Select the UNLOAD request mode */
8890         if (unload_mode == UNLOAD_NORMAL)
8891                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8892
8893         else if (bp->flags & NO_WOL_FLAG)
8894                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8895
8896         else if (bp->wol) {
8897                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8898                 u8 *mac_addr = bp->dev->dev_addr;
8899                 struct pci_dev *pdev = bp->pdev;
8900                 u32 val;
8901                 u16 pmc;
8902
8903                 /* The mac address is written to entries 1-4 to
8904                  * preserve entry 0 which is used by the PMF
8905                  */
8906                 u8 entry = (BP_VN(bp) + 1)*8;
8907
8908                 val = (mac_addr[0] << 8) | mac_addr[1];
8909                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8910
8911                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8912                       (mac_addr[4] << 8) | mac_addr[5];
8913                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8914
8915                 /* Enable the PME and clear the status */
8916                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8917                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8918                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8919
8920                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8921
8922         } else
8923                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8924
8925         /* Send the request to the MCP */
8926         if (!BP_NOMCP(bp))
8927                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8928         else {
8929                 int path = BP_PATH(bp);
8930
8931                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8932                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8933                    bnx2x_load_count[path][2]);
8934                 bnx2x_load_count[path][0]--;
8935                 bnx2x_load_count[path][1 + port]--;
8936                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8937                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8938                    bnx2x_load_count[path][2]);
8939                 if (bnx2x_load_count[path][0] == 0)
8940                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8941                 else if (bnx2x_load_count[path][1 + port] == 0)
8942                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8943                 else
8944                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8945         }
8946
8947         return reset_code;
8948 }
8949
8950 /**
8951  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8952  *
8953  * @bp:         driver handle
8954  * @keep_link:          true iff link should be kept up
8955  */
8956 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8957 {
8958         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8959
8960         /* Report UNLOAD_DONE to MCP */
8961         if (!BP_NOMCP(bp))
8962                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8963 }
8964
8965 static int bnx2x_func_wait_started(struct bnx2x *bp)
8966 {
8967         int tout = 50;
8968         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8969
8970         if (!bp->port.pmf)
8971                 return 0;
8972
8973         /*
8974          * (assumption: No Attention from MCP at this stage)
8975          * PMF probably in the middle of TX disable/enable transaction
8976          * 1. Sync IRS for default SB
8977          * 2. Sync SP queue - this guarantees us that attention handling started
8978          * 3. Wait, that TX disable/enable transaction completes
8979          *
8980          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8981          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8982          * received completion for the transaction the state is TX_STOPPED.
8983          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8984          * transaction.
8985          */
8986
8987         /* make sure default SB ISR is done */
8988         if (msix)
8989                 synchronize_irq(bp->msix_table[0].vector);
8990         else
8991                 synchronize_irq(bp->pdev->irq);
8992
8993         flush_workqueue(bnx2x_wq);
8994         flush_workqueue(bnx2x_iov_wq);
8995
8996         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8997                                 BNX2X_F_STATE_STARTED && tout--)
8998                 msleep(20);
8999
9000         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9001                                                 BNX2X_F_STATE_STARTED) {
9002 #ifdef BNX2X_STOP_ON_ERROR
9003                 BNX2X_ERR("Wrong function state\n");
9004                 return -EBUSY;
9005 #else
9006                 /*
9007                  * Failed to complete the transaction in a "good way"
9008                  * Force both transactions with CLR bit
9009                  */
9010                 struct bnx2x_func_state_params func_params = {NULL};
9011
9012                 DP(NETIF_MSG_IFDOWN,
9013                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
9014
9015                 func_params.f_obj = &bp->func_obj;
9016                 __set_bit(RAMROD_DRV_CLR_ONLY,
9017                                         &func_params.ramrod_flags);
9018
9019                 /* STARTED-->TX_ST0PPED */
9020                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9021                 bnx2x_func_state_change(bp, &func_params);
9022
9023                 /* TX_ST0PPED-->STARTED */
9024                 func_params.cmd = BNX2X_F_CMD_TX_START;
9025                 return bnx2x_func_state_change(bp, &func_params);
9026 #endif
9027         }
9028
9029         return 0;
9030 }
9031
9032 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9033 {
9034         int port = BP_PORT(bp);
9035         int i, rc = 0;
9036         u8 cos;
9037         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9038         u32 reset_code;
9039
9040         /* Wait until tx fastpath tasks complete */
9041         for_each_tx_queue(bp, i) {
9042                 struct bnx2x_fastpath *fp = &bp->fp[i];
9043
9044                 for_each_cos_in_tx_queue(fp, cos)
9045                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9046 #ifdef BNX2X_STOP_ON_ERROR
9047                 if (rc)
9048                         return;
9049 #endif
9050         }
9051
9052         /* Give HW time to discard old tx messages */
9053         usleep_range(1000, 2000);
9054
9055         /* Clean all ETH MACs */
9056         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9057                                 false);
9058         if (rc < 0)
9059                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9060
9061         /* Clean up UC list  */
9062         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9063                                 true);
9064         if (rc < 0)
9065                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9066                           rc);
9067
9068         /* Disable LLH */
9069         if (!CHIP_IS_E1(bp))
9070                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9071
9072         /* Set "drop all" (stop Rx).
9073          * We need to take a netif_addr_lock() here in order to prevent
9074          * a race between the completion code and this code.
9075          */
9076         netif_addr_lock_bh(bp->dev);
9077         /* Schedule the rx_mode command */
9078         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9079                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9080         else
9081                 bnx2x_set_storm_rx_mode(bp);
9082
9083         /* Cleanup multicast configuration */
9084         rparam.mcast_obj = &bp->mcast_obj;
9085         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9086         if (rc < 0)
9087                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9088
9089         netif_addr_unlock_bh(bp->dev);
9090
9091         bnx2x_iov_chip_cleanup(bp);
9092
9093         /*
9094          * Send the UNLOAD_REQUEST to the MCP. This will return if
9095          * this function should perform FUNC, PORT or COMMON HW
9096          * reset.
9097          */
9098         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9099
9100         /*
9101          * (assumption: No Attention from MCP at this stage)
9102          * PMF probably in the middle of TX disable/enable transaction
9103          */
9104         rc = bnx2x_func_wait_started(bp);
9105         if (rc) {
9106                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9107 #ifdef BNX2X_STOP_ON_ERROR
9108                 return;
9109 #endif
9110         }
9111
9112         /* Close multi and leading connections
9113          * Completions for ramrods are collected in a synchronous way
9114          */
9115         for_each_eth_queue(bp, i)
9116                 if (bnx2x_stop_queue(bp, i))
9117 #ifdef BNX2X_STOP_ON_ERROR
9118                         return;
9119 #else
9120                         goto unload_error;
9121 #endif
9122
9123         if (CNIC_LOADED(bp)) {
9124                 for_each_cnic_queue(bp, i)
9125                         if (bnx2x_stop_queue(bp, i))
9126 #ifdef BNX2X_STOP_ON_ERROR
9127                                 return;
9128 #else
9129                                 goto unload_error;
9130 #endif
9131         }
9132
9133         /* If SP settings didn't get completed so far - something
9134          * very wrong has happen.
9135          */
9136         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9137                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9138
9139 #ifndef BNX2X_STOP_ON_ERROR
9140 unload_error:
9141 #endif
9142         rc = bnx2x_func_stop(bp);
9143         if (rc) {
9144                 BNX2X_ERR("Function stop failed!\n");
9145 #ifdef BNX2X_STOP_ON_ERROR
9146                 return;
9147 #endif
9148         }
9149
9150         /* Disable HW interrupts, NAPI */
9151         bnx2x_netif_stop(bp, 1);
9152         /* Delete all NAPI objects */
9153         bnx2x_del_all_napi(bp);
9154         if (CNIC_LOADED(bp))
9155                 bnx2x_del_all_napi_cnic(bp);
9156
9157         /* Release IRQs */
9158         bnx2x_free_irq(bp);
9159
9160         /* Reset the chip */
9161         rc = bnx2x_reset_hw(bp, reset_code);
9162         if (rc)
9163                 BNX2X_ERR("HW_RESET failed\n");
9164
9165         /* Report UNLOAD_DONE to MCP */
9166         bnx2x_send_unload_done(bp, keep_link);
9167 }
9168
9169 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9170 {
9171         u32 val;
9172
9173         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9174
9175         if (CHIP_IS_E1(bp)) {
9176                 int port = BP_PORT(bp);
9177                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9178                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9179
9180                 val = REG_RD(bp, addr);
9181                 val &= ~(0x300);
9182                 REG_WR(bp, addr, val);
9183         } else {
9184                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9185                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9186                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9187                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9188         }
9189 }
9190
9191 /* Close gates #2, #3 and #4: */
9192 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9193 {
9194         u32 val;
9195
9196         /* Gates #2 and #4a are closed/opened for "not E1" only */
9197         if (!CHIP_IS_E1(bp)) {
9198                 /* #4 */
9199                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9200                 /* #2 */
9201                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9202         }
9203
9204         /* #3 */
9205         if (CHIP_IS_E1x(bp)) {
9206                 /* Prevent interrupts from HC on both ports */
9207                 val = REG_RD(bp, HC_REG_CONFIG_1);
9208                 REG_WR(bp, HC_REG_CONFIG_1,
9209                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9210                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9211
9212                 val = REG_RD(bp, HC_REG_CONFIG_0);
9213                 REG_WR(bp, HC_REG_CONFIG_0,
9214                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9215                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9216         } else {
9217                 /* Prevent incoming interrupts in IGU */
9218                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9219
9220                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9221                        (!close) ?
9222                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9223                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9224         }
9225
9226         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9227                 close ? "closing" : "opening");
9228         mmiowb();
9229 }
9230
9231 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9232
9233 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9234 {
9235         /* Do some magic... */
9236         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9237         *magic_val = val & SHARED_MF_CLP_MAGIC;
9238         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9239 }
9240
9241 /**
9242  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9243  *
9244  * @bp:         driver handle
9245  * @magic_val:  old value of the `magic' bit.
9246  */
9247 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9248 {
9249         /* Restore the `magic' bit value... */
9250         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9251         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9252                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9253 }
9254
9255 /**
9256  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9257  *
9258  * @bp:         driver handle
9259  * @magic_val:  old value of 'magic' bit.
9260  *
9261  * Takes care of CLP configurations.
9262  */
9263 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9264 {
9265         u32 shmem;
9266         u32 validity_offset;
9267
9268         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9269
9270         /* Set `magic' bit in order to save MF config */
9271         if (!CHIP_IS_E1(bp))
9272                 bnx2x_clp_reset_prep(bp, magic_val);
9273
9274         /* Get shmem offset */
9275         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9276         validity_offset =
9277                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9278
9279         /* Clear validity map flags */
9280         if (shmem > 0)
9281                 REG_WR(bp, shmem + validity_offset, 0);
9282 }
9283
9284 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9285 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9286
9287 /**
9288  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9289  *
9290  * @bp: driver handle
9291  */
9292 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9293 {
9294         /* special handling for emulation and FPGA,
9295            wait 10 times longer */
9296         if (CHIP_REV_IS_SLOW(bp))
9297                 msleep(MCP_ONE_TIMEOUT*10);
9298         else
9299                 msleep(MCP_ONE_TIMEOUT);
9300 }
9301
9302 /*
9303  * initializes bp->common.shmem_base and waits for validity signature to appear
9304  */
9305 static int bnx2x_init_shmem(struct bnx2x *bp)
9306 {
9307         int cnt = 0;
9308         u32 val = 0;
9309
9310         do {
9311                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9312                 if (bp->common.shmem_base) {
9313                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9314                         if (val & SHR_MEM_VALIDITY_MB)
9315                                 return 0;
9316                 }
9317
9318                 bnx2x_mcp_wait_one(bp);
9319
9320         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9321
9322         BNX2X_ERR("BAD MCP validity signature\n");
9323
9324         return -ENODEV;
9325 }
9326
9327 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9328 {
9329         int rc = bnx2x_init_shmem(bp);
9330
9331         /* Restore the `magic' bit value */
9332         if (!CHIP_IS_E1(bp))
9333                 bnx2x_clp_reset_done(bp, magic_val);
9334
9335         return rc;
9336 }
9337
9338 static void bnx2x_pxp_prep(struct bnx2x *bp)
9339 {
9340         if (!CHIP_IS_E1(bp)) {
9341                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9342                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9343                 mmiowb();
9344         }
9345 }
9346
9347 /*
9348  * Reset the whole chip except for:
9349  *      - PCIE core
9350  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9351  *              one reset bit)
9352  *      - IGU
9353  *      - MISC (including AEU)
9354  *      - GRC
9355  *      - RBCN, RBCP
9356  */
9357 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9358 {
9359         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9360         u32 global_bits2, stay_reset2;
9361
9362         /*
9363          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9364          * (per chip) blocks.
9365          */
9366         global_bits2 =
9367                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9368                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9369
9370         /* Don't reset the following blocks.
9371          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9372          *            reset, as in 4 port device they might still be owned
9373          *            by the MCP (there is only one leader per path).
9374          */
9375         not_reset_mask1 =
9376                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9377                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9378                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9379
9380         not_reset_mask2 =
9381                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9382                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9383                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9384                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9385                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9386                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9387                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9388                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9389                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9390                 MISC_REGISTERS_RESET_REG_2_PGLC |
9391                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9392                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9393                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9394                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9395                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9396                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9397
9398         /*
9399          * Keep the following blocks in reset:
9400          *  - all xxMACs are handled by the bnx2x_link code.
9401          */
9402         stay_reset2 =
9403                 MISC_REGISTERS_RESET_REG_2_XMAC |
9404                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9405
9406         /* Full reset masks according to the chip */
9407         reset_mask1 = 0xffffffff;
9408
9409         if (CHIP_IS_E1(bp))
9410                 reset_mask2 = 0xffff;
9411         else if (CHIP_IS_E1H(bp))
9412                 reset_mask2 = 0x1ffff;
9413         else if (CHIP_IS_E2(bp))
9414                 reset_mask2 = 0xfffff;
9415         else /* CHIP_IS_E3 */
9416                 reset_mask2 = 0x3ffffff;
9417
9418         /* Don't reset global blocks unless we need to */
9419         if (!global)
9420                 reset_mask2 &= ~global_bits2;
9421
9422         /*
9423          * In case of attention in the QM, we need to reset PXP
9424          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9425          * because otherwise QM reset would release 'close the gates' shortly
9426          * before resetting the PXP, then the PSWRQ would send a write
9427          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9428          * read the payload data from PSWWR, but PSWWR would not
9429          * respond. The write queue in PGLUE would stuck, dmae commands
9430          * would not return. Therefore it's important to reset the second
9431          * reset register (containing the
9432          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9433          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9434          * bit).
9435          */
9436         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9437                reset_mask2 & (~not_reset_mask2));
9438
9439         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9440                reset_mask1 & (~not_reset_mask1));
9441
9442         barrier();
9443         mmiowb();
9444
9445         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9446                reset_mask2 & (~stay_reset2));
9447
9448         barrier();
9449         mmiowb();
9450
9451         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9452         mmiowb();
9453 }
9454
9455 /**
9456  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9457  * It should get cleared in no more than 1s.
9458  *
9459  * @bp: driver handle
9460  *
9461  * It should get cleared in no more than 1s. Returns 0 if
9462  * pending writes bit gets cleared.
9463  */
9464 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9465 {
9466         u32 cnt = 1000;
9467         u32 pend_bits = 0;
9468
9469         do {
9470                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9471
9472                 if (pend_bits == 0)
9473                         break;
9474
9475                 usleep_range(1000, 2000);
9476         } while (cnt-- > 0);
9477
9478         if (cnt <= 0) {
9479                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9480                           pend_bits);
9481                 return -EBUSY;
9482         }
9483
9484         return 0;
9485 }
9486
9487 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9488 {
9489         int cnt = 1000;
9490         u32 val = 0;
9491         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9492         u32 tags_63_32 = 0;
9493
9494         /* Empty the Tetris buffer, wait for 1s */
9495         do {
9496                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9497                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9498                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9499                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9500                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9501                 if (CHIP_IS_E3(bp))
9502                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9503
9504                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9505                     ((port_is_idle_0 & 0x1) == 0x1) &&
9506                     ((port_is_idle_1 & 0x1) == 0x1) &&
9507                     (pgl_exp_rom2 == 0xffffffff) &&
9508                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9509                         break;
9510                 usleep_range(1000, 2000);
9511         } while (cnt-- > 0);
9512
9513         if (cnt <= 0) {
9514                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9515                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9516                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9517                           pgl_exp_rom2);
9518                 return -EAGAIN;
9519         }
9520
9521         barrier();
9522
9523         /* Close gates #2, #3 and #4 */
9524         bnx2x_set_234_gates(bp, true);
9525
9526         /* Poll for IGU VQs for 57712 and newer chips */
9527         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9528                 return -EAGAIN;
9529
9530         /* TBD: Indicate that "process kill" is in progress to MCP */
9531
9532         /* Clear "unprepared" bit */
9533         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9534         barrier();
9535
9536         /* Make sure all is written to the chip before the reset */
9537         mmiowb();
9538
9539         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9540          * PSWHST, GRC and PSWRD Tetris buffer.
9541          */
9542         usleep_range(1000, 2000);
9543
9544         /* Prepare to chip reset: */
9545         /* MCP */
9546         if (global)
9547                 bnx2x_reset_mcp_prep(bp, &val);
9548
9549         /* PXP */
9550         bnx2x_pxp_prep(bp);
9551         barrier();
9552
9553         /* reset the chip */
9554         bnx2x_process_kill_chip_reset(bp, global);
9555         barrier();
9556
9557         /* clear errors in PGB */
9558         if (!CHIP_IS_E1x(bp))
9559                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9560
9561         /* Recover after reset: */
9562         /* MCP */
9563         if (global && bnx2x_reset_mcp_comp(bp, val))
9564                 return -EAGAIN;
9565
9566         /* TBD: Add resetting the NO_MCP mode DB here */
9567
9568         /* Open the gates #2, #3 and #4 */
9569         bnx2x_set_234_gates(bp, false);
9570
9571         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9572          * reset state, re-enable attentions. */
9573
9574         return 0;
9575 }
9576
9577 static int bnx2x_leader_reset(struct bnx2x *bp)
9578 {
9579         int rc = 0;
9580         bool global = bnx2x_reset_is_global(bp);
9581         u32 load_code;
9582
9583         /* if not going to reset MCP - load "fake" driver to reset HW while
9584          * driver is owner of the HW
9585          */
9586         if (!global && !BP_NOMCP(bp)) {
9587                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9588                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9589                 if (!load_code) {
9590                         BNX2X_ERR("MCP response failure, aborting\n");
9591                         rc = -EAGAIN;
9592                         goto exit_leader_reset;
9593                 }
9594                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9595                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9596                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9597                         rc = -EAGAIN;
9598                         goto exit_leader_reset2;
9599                 }
9600                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9601                 if (!load_code) {
9602                         BNX2X_ERR("MCP response failure, aborting\n");
9603                         rc = -EAGAIN;
9604                         goto exit_leader_reset2;
9605                 }
9606         }
9607
9608         /* Try to recover after the failure */
9609         if (bnx2x_process_kill(bp, global)) {
9610                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9611                           BP_PATH(bp));
9612                 rc = -EAGAIN;
9613                 goto exit_leader_reset2;
9614         }
9615
9616         /*
9617          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9618          * state.
9619          */
9620         bnx2x_set_reset_done(bp);
9621         if (global)
9622                 bnx2x_clear_reset_global(bp);
9623
9624 exit_leader_reset2:
9625         /* unload "fake driver" if it was loaded */
9626         if (!global && !BP_NOMCP(bp)) {
9627                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9628                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9629         }
9630 exit_leader_reset:
9631         bp->is_leader = 0;
9632         bnx2x_release_leader_lock(bp);
9633         smp_mb();
9634         return rc;
9635 }
9636
9637 static void bnx2x_recovery_failed(struct bnx2x *bp)
9638 {
9639         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9640
9641         /* Disconnect this device */
9642         netif_device_detach(bp->dev);
9643
9644         /*
9645          * Block ifup for all function on this engine until "process kill"
9646          * or power cycle.
9647          */
9648         bnx2x_set_reset_in_progress(bp);
9649
9650         /* Shut down the power */
9651         bnx2x_set_power_state(bp, PCI_D3hot);
9652
9653         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9654
9655         smp_mb();
9656 }
9657
9658 /*
9659  * Assumption: runs under rtnl lock. This together with the fact
9660  * that it's called only from bnx2x_sp_rtnl() ensure that it
9661  * will never be called when netif_running(bp->dev) is false.
9662  */
9663 static void bnx2x_parity_recover(struct bnx2x *bp)
9664 {
9665         bool global = false;
9666         u32 error_recovered, error_unrecovered;
9667         bool is_parity;
9668
9669         DP(NETIF_MSG_HW, "Handling parity\n");
9670         while (1) {
9671                 switch (bp->recovery_state) {
9672                 case BNX2X_RECOVERY_INIT:
9673                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9674                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9675                         WARN_ON(!is_parity);
9676
9677                         /* Try to get a LEADER_LOCK HW lock */
9678                         if (bnx2x_trylock_leader_lock(bp)) {
9679                                 bnx2x_set_reset_in_progress(bp);
9680                                 /*
9681                                  * Check if there is a global attention and if
9682                                  * there was a global attention, set the global
9683                                  * reset bit.
9684                                  */
9685
9686                                 if (global)
9687                                         bnx2x_set_reset_global(bp);
9688
9689                                 bp->is_leader = 1;
9690                         }
9691
9692                         /* Stop the driver */
9693                         /* If interface has been removed - break */
9694                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9695                                 return;
9696
9697                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9698
9699                         /* Ensure "is_leader", MCP command sequence and
9700                          * "recovery_state" update values are seen on other
9701                          * CPUs.
9702                          */
9703                         smp_mb();
9704                         break;
9705
9706                 case BNX2X_RECOVERY_WAIT:
9707                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9708                         if (bp->is_leader) {
9709                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9710                                 bool other_load_status =
9711                                         bnx2x_get_load_status(bp, other_engine);
9712                                 bool load_status =
9713                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9714                                 global = bnx2x_reset_is_global(bp);
9715
9716                                 /*
9717                                  * In case of a parity in a global block, let
9718                                  * the first leader that performs a
9719                                  * leader_reset() reset the global blocks in
9720                                  * order to clear global attentions. Otherwise
9721                                  * the gates will remain closed for that
9722                                  * engine.
9723                                  */
9724                                 if (load_status ||
9725                                     (global && other_load_status)) {
9726                                         /* Wait until all other functions get
9727                                          * down.
9728                                          */
9729                                         schedule_delayed_work(&bp->sp_rtnl_task,
9730                                                                 HZ/10);
9731                                         return;
9732                                 } else {
9733                                         /* If all other functions got down -
9734                                          * try to bring the chip back to
9735                                          * normal. In any case it's an exit
9736                                          * point for a leader.
9737                                          */
9738                                         if (bnx2x_leader_reset(bp)) {
9739                                                 bnx2x_recovery_failed(bp);
9740                                                 return;
9741                                         }
9742
9743                                         /* If we are here, means that the
9744                                          * leader has succeeded and doesn't
9745                                          * want to be a leader any more. Try
9746                                          * to continue as a none-leader.
9747                                          */
9748                                         break;
9749                                 }
9750                         } else { /* non-leader */
9751                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9752                                         /* Try to get a LEADER_LOCK HW lock as
9753                                          * long as a former leader may have
9754                                          * been unloaded by the user or
9755                                          * released a leadership by another
9756                                          * reason.
9757                                          */
9758                                         if (bnx2x_trylock_leader_lock(bp)) {
9759                                                 /* I'm a leader now! Restart a
9760                                                  * switch case.
9761                                                  */
9762                                                 bp->is_leader = 1;
9763                                                 break;
9764                                         }
9765
9766                                         schedule_delayed_work(&bp->sp_rtnl_task,
9767                                                                 HZ/10);
9768                                         return;
9769
9770                                 } else {
9771                                         /*
9772                                          * If there was a global attention, wait
9773                                          * for it to be cleared.
9774                                          */
9775                                         if (bnx2x_reset_is_global(bp)) {
9776                                                 schedule_delayed_work(
9777                                                         &bp->sp_rtnl_task,
9778                                                         HZ/10);
9779                                                 return;
9780                                         }
9781
9782                                         error_recovered =
9783                                           bp->eth_stats.recoverable_error;
9784                                         error_unrecovered =
9785                                           bp->eth_stats.unrecoverable_error;
9786                                         bp->recovery_state =
9787                                                 BNX2X_RECOVERY_NIC_LOADING;
9788                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9789                                                 error_unrecovered++;
9790                                                 netdev_err(bp->dev,
9791                                                            "Recovery failed. Power cycle needed\n");
9792                                                 /* Disconnect this device */
9793                                                 netif_device_detach(bp->dev);
9794                                                 /* Shut down the power */
9795                                                 bnx2x_set_power_state(
9796                                                         bp, PCI_D3hot);
9797                                                 smp_mb();
9798                                         } else {
9799                                                 bp->recovery_state =
9800                                                         BNX2X_RECOVERY_DONE;
9801                                                 error_recovered++;
9802                                                 smp_mb();
9803                                         }
9804                                         bp->eth_stats.recoverable_error =
9805                                                 error_recovered;
9806                                         bp->eth_stats.unrecoverable_error =
9807                                                 error_unrecovered;
9808
9809                                         return;
9810                                 }
9811                         }
9812                 default:
9813                         return;
9814                 }
9815         }
9816 }
9817
9818 static int bnx2x_close(struct net_device *dev);
9819
9820 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9821  * scheduled on a general queue in order to prevent a dead lock.
9822  */
9823 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9824 {
9825         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9826
9827         rtnl_lock();
9828
9829         if (!netif_running(bp->dev)) {
9830                 rtnl_unlock();
9831                 return;
9832         }
9833
9834         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9835 #ifdef BNX2X_STOP_ON_ERROR
9836                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9837                           "you will need to reboot when done\n");
9838                 goto sp_rtnl_not_reset;
9839 #endif
9840                 /*
9841                  * Clear all pending SP commands as we are going to reset the
9842                  * function anyway.
9843                  */
9844                 bp->sp_rtnl_state = 0;
9845                 smp_mb();
9846
9847                 bnx2x_parity_recover(bp);
9848
9849                 rtnl_unlock();
9850                 return;
9851         }
9852
9853         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9854 #ifdef BNX2X_STOP_ON_ERROR
9855                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9856                           "you will need to reboot when done\n");
9857                 goto sp_rtnl_not_reset;
9858 #endif
9859
9860                 /*
9861                  * Clear all pending SP commands as we are going to reset the
9862                  * function anyway.
9863                  */
9864                 bp->sp_rtnl_state = 0;
9865                 smp_mb();
9866
9867                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9868                 bnx2x_nic_load(bp, LOAD_NORMAL);
9869
9870                 rtnl_unlock();
9871                 return;
9872         }
9873 #ifdef BNX2X_STOP_ON_ERROR
9874 sp_rtnl_not_reset:
9875 #endif
9876         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9877                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9878         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9879                 bnx2x_after_function_update(bp);
9880         /*
9881          * in case of fan failure we need to reset id if the "stop on error"
9882          * debug flag is set, since we trying to prevent permanent overheating
9883          * damage
9884          */
9885         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9886                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9887                 netif_device_detach(bp->dev);
9888                 bnx2x_close(bp->dev);
9889                 rtnl_unlock();
9890                 return;
9891         }
9892
9893         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9894                 DP(BNX2X_MSG_SP,
9895                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9896                 bnx2x_vfpf_set_mcast(bp->dev);
9897         }
9898         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9899                                &bp->sp_rtnl_state)){
9900                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9901                         bnx2x_tx_disable(bp);
9902                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9903                 }
9904         }
9905
9906         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9907                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9908                 bnx2x_set_rx_mode_inner(bp);
9909         }
9910
9911         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9912                                &bp->sp_rtnl_state))
9913                 bnx2x_pf_set_vfs_vlan(bp);
9914
9915         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9916                 bnx2x_dcbx_stop_hw_tx(bp);
9917                 bnx2x_dcbx_resume_hw_tx(bp);
9918         }
9919
9920         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
9921                                &bp->sp_rtnl_state))
9922                 bnx2x_update_mng_version(bp);
9923
9924         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9925          * can be called from other contexts as well)
9926          */
9927         rtnl_unlock();
9928
9929         /* enable SR-IOV if applicable */
9930         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9931                                                &bp->sp_rtnl_state)) {
9932                 bnx2x_disable_sriov(bp);
9933                 bnx2x_enable_sriov(bp);
9934         }
9935 }
9936
9937 static void bnx2x_period_task(struct work_struct *work)
9938 {
9939         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9940
9941         if (!netif_running(bp->dev))
9942                 goto period_task_exit;
9943
9944         if (CHIP_REV_IS_SLOW(bp)) {
9945                 BNX2X_ERR("period task called on emulation, ignoring\n");
9946                 goto period_task_exit;
9947         }
9948
9949         bnx2x_acquire_phy_lock(bp);
9950         /*
9951          * The barrier is needed to ensure the ordering between the writing to
9952          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9953          * the reading here.
9954          */
9955         smp_mb();
9956         if (bp->port.pmf) {
9957                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9958
9959                 /* Re-queue task in 1 sec */
9960                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9961         }
9962
9963         bnx2x_release_phy_lock(bp);
9964 period_task_exit:
9965         return;
9966 }
9967
9968 /*
9969  * Init service functions
9970  */
9971
9972 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9973 {
9974         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9975         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9976         return base + (BP_ABS_FUNC(bp)) * stride;
9977 }
9978
9979 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9980                                         struct bnx2x_mac_vals *vals)
9981 {
9982         u32 val, base_addr, offset, mask, reset_reg;
9983         bool mac_stopped = false;
9984         u8 port = BP_PORT(bp);
9985
9986         /* reset addresses as they also mark which values were changed */
9987         vals->bmac_addr = 0;
9988         vals->umac_addr = 0;
9989         vals->xmac_addr = 0;
9990         vals->emac_addr = 0;
9991
9992         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9993
9994         if (!CHIP_IS_E3(bp)) {
9995                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9996                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9997                 if ((mask & reset_reg) && val) {
9998                         u32 wb_data[2];
9999                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10000                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10001                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10002                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10003                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10004
10005                         /*
10006                          * use rd/wr since we cannot use dmae. This is safe
10007                          * since MCP won't access the bus due to the request
10008                          * to unload, and no function on the path can be
10009                          * loaded at this time.
10010                          */
10011                         wb_data[0] = REG_RD(bp, base_addr + offset);
10012                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10013                         vals->bmac_addr = base_addr + offset;
10014                         vals->bmac_val[0] = wb_data[0];
10015                         vals->bmac_val[1] = wb_data[1];
10016                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10017                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10018                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10019                 }
10020                 BNX2X_DEV_INFO("Disable emac Rx\n");
10021                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10022                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10023                 REG_WR(bp, vals->emac_addr, 0);
10024                 mac_stopped = true;
10025         } else {
10026                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10027                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10028                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10029                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10030                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10031                                val & ~(1 << 1));
10032                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10033                                val | (1 << 1));
10034                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10035                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10036                         REG_WR(bp, vals->xmac_addr, 0);
10037                         mac_stopped = true;
10038                 }
10039                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10040                 if (mask & reset_reg) {
10041                         BNX2X_DEV_INFO("Disable umac Rx\n");
10042                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10043                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10044                         vals->umac_val = REG_RD(bp, vals->umac_addr);
10045                         REG_WR(bp, vals->umac_addr, 0);
10046                         mac_stopped = true;
10047                 }
10048         }
10049
10050         if (mac_stopped)
10051                 msleep(20);
10052 }
10053
10054 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10055 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10056 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10057 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10058
10059 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10060 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10061 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10062 #define BNX2X_PREV_UNDI_MF_PORT(p) (BAR_TSTRORM_INTMEM + 0x150c + ((p) << 4))
10063 #define BNX2X_PREV_UNDI_MF_FUNC(f) (BAR_TSTRORM_INTMEM + 0x184c + ((f) << 4))
10064
10065 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10066 {
10067         /* UNDI marks its presence in DORQ -
10068          * it initializes CID offset for normal bell to 0x7
10069          */
10070         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10071             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10072                 return false;
10073
10074         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10075                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10076                 return true;
10077         }
10078
10079         return false;
10080 }
10081
10082 static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
10083 {
10084         u8 major, minor, version;
10085         u32 fw;
10086
10087         /* Must check that FW is loaded */
10088         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10089              MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
10090                 BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
10091                 return false;
10092         }
10093
10094         /* Read Currently loaded FW version */
10095         fw = REG_RD(bp, XSEM_REG_PRAM);
10096         major = fw & 0xff;
10097         minor = (fw >> 0x8) & 0xff;
10098         version = (fw >> 0x10) & 0xff;
10099         BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
10100                        fw, major, minor, version);
10101
10102         if (major > BCM_5710_UNDI_FW_MF_MAJOR)
10103                 return true;
10104
10105         if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10106             (minor > BCM_5710_UNDI_FW_MF_MINOR))
10107                 return true;
10108
10109         if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10110             (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
10111             (version >= BCM_5710_UNDI_FW_MF_VERS))
10112                 return true;
10113
10114         return false;
10115 }
10116
10117 static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
10118 {
10119         int i;
10120
10121         /* Due to legacy (FW) code, the first function on each engine has a
10122          * different offset macro from the rest of the functions.
10123          * Setting this for all 8 functions is harmless regardless of whether
10124          * this is actually a multi-function device.
10125          */
10126         for (i = 0; i < 2; i++)
10127                 REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
10128
10129         for (i = 2; i < 8; i++)
10130                 REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
10131
10132         BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
10133 }
10134
10135 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
10136 {
10137         u16 rcq, bd;
10138         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
10139
10140         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10141         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10142
10143         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10144         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
10145
10146         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10147                        port, bd, rcq);
10148 }
10149
10150 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10151 {
10152         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10153                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10154         if (!rc) {
10155                 BNX2X_ERR("MCP response failure, aborting\n");
10156                 return -EBUSY;
10157         }
10158
10159         return 0;
10160 }
10161
10162 static struct bnx2x_prev_path_list *
10163                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10164 {
10165         struct bnx2x_prev_path_list *tmp_list;
10166
10167         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10168                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10169                     bp->pdev->bus->number == tmp_list->bus &&
10170                     BP_PATH(bp) == tmp_list->path)
10171                         return tmp_list;
10172
10173         return NULL;
10174 }
10175
10176 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10177 {
10178         struct bnx2x_prev_path_list *tmp_list;
10179         int rc;
10180
10181         rc = down_interruptible(&bnx2x_prev_sem);
10182         if (rc) {
10183                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10184                 return rc;
10185         }
10186
10187         tmp_list = bnx2x_prev_path_get_entry(bp);
10188         if (tmp_list) {
10189                 tmp_list->aer = 1;
10190                 rc = 0;
10191         } else {
10192                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10193                           BP_PATH(bp));
10194         }
10195
10196         up(&bnx2x_prev_sem);
10197
10198         return rc;
10199 }
10200
10201 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10202 {
10203         struct bnx2x_prev_path_list *tmp_list;
10204         bool rc = false;
10205
10206         if (down_trylock(&bnx2x_prev_sem))
10207                 return false;
10208
10209         tmp_list = bnx2x_prev_path_get_entry(bp);
10210         if (tmp_list) {
10211                 if (tmp_list->aer) {
10212                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10213                            BP_PATH(bp));
10214                 } else {
10215                         rc = true;
10216                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10217                                        BP_PATH(bp));
10218                 }
10219         }
10220
10221         up(&bnx2x_prev_sem);
10222
10223         return rc;
10224 }
10225
10226 bool bnx2x_port_after_undi(struct bnx2x *bp)
10227 {
10228         struct bnx2x_prev_path_list *entry;
10229         bool val;
10230
10231         down(&bnx2x_prev_sem);
10232
10233         entry = bnx2x_prev_path_get_entry(bp);
10234         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10235
10236         up(&bnx2x_prev_sem);
10237
10238         return val;
10239 }
10240
10241 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10242 {
10243         struct bnx2x_prev_path_list *tmp_list;
10244         int rc;
10245
10246         rc = down_interruptible(&bnx2x_prev_sem);
10247         if (rc) {
10248                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10249                 return rc;
10250         }
10251
10252         /* Check whether the entry for this path already exists */
10253         tmp_list = bnx2x_prev_path_get_entry(bp);
10254         if (tmp_list) {
10255                 if (!tmp_list->aer) {
10256                         BNX2X_ERR("Re-Marking the path.\n");
10257                 } else {
10258                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10259                            BP_PATH(bp));
10260                         tmp_list->aer = 0;
10261                 }
10262                 up(&bnx2x_prev_sem);
10263                 return 0;
10264         }
10265         up(&bnx2x_prev_sem);
10266
10267         /* Create an entry for this path and add it */
10268         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10269         if (!tmp_list) {
10270                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10271                 return -ENOMEM;
10272         }
10273
10274         tmp_list->bus = bp->pdev->bus->number;
10275         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10276         tmp_list->path = BP_PATH(bp);
10277         tmp_list->aer = 0;
10278         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10279
10280         rc = down_interruptible(&bnx2x_prev_sem);
10281         if (rc) {
10282                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10283                 kfree(tmp_list);
10284         } else {
10285                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10286                    BP_PATH(bp));
10287                 list_add(&tmp_list->list, &bnx2x_prev_list);
10288                 up(&bnx2x_prev_sem);
10289         }
10290
10291         return rc;
10292 }
10293
10294 static int bnx2x_do_flr(struct bnx2x *bp)
10295 {
10296         struct pci_dev *dev = bp->pdev;
10297
10298         if (CHIP_IS_E1x(bp)) {
10299                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10300                 return -EINVAL;
10301         }
10302
10303         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10304         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10305                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10306                           bp->common.bc_ver);
10307                 return -EINVAL;
10308         }
10309
10310         if (!pci_wait_for_pending_transaction(dev))
10311                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10312
10313         BNX2X_DEV_INFO("Initiating FLR\n");
10314         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10315
10316         return 0;
10317 }
10318
10319 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10320 {
10321         int rc;
10322
10323         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10324
10325         /* Test if previous unload process was already finished for this path */
10326         if (bnx2x_prev_is_path_marked(bp))
10327                 return bnx2x_prev_mcp_done(bp);
10328
10329         BNX2X_DEV_INFO("Path is unmarked\n");
10330
10331         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10332         if (bnx2x_prev_is_after_undi(bp))
10333                 goto out;
10334
10335         /* If function has FLR capabilities, and existing FW version matches
10336          * the one required, then FLR will be sufficient to clean any residue
10337          * left by previous driver
10338          */
10339         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10340
10341         if (!rc) {
10342                 /* fw version is good */
10343                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10344                 rc = bnx2x_do_flr(bp);
10345         }
10346
10347         if (!rc) {
10348                 /* FLR was performed */
10349                 BNX2X_DEV_INFO("FLR successful\n");
10350                 return 0;
10351         }
10352
10353         BNX2X_DEV_INFO("Could not FLR\n");
10354
10355 out:
10356         /* Close the MCP request, return failure*/
10357         rc = bnx2x_prev_mcp_done(bp);
10358         if (!rc)
10359                 rc = BNX2X_PREV_WAIT_NEEDED;
10360
10361         return rc;
10362 }
10363
10364 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10365 {
10366         u32 reset_reg, tmp_reg = 0, rc;
10367         bool prev_undi = false;
10368         struct bnx2x_mac_vals mac_vals;
10369
10370         /* It is possible a previous function received 'common' answer,
10371          * but hasn't loaded yet, therefore creating a scenario of
10372          * multiple functions receiving 'common' on the same path.
10373          */
10374         BNX2X_DEV_INFO("Common unload Flow\n");
10375
10376         memset(&mac_vals, 0, sizeof(mac_vals));
10377
10378         if (bnx2x_prev_is_path_marked(bp))
10379                 return bnx2x_prev_mcp_done(bp);
10380
10381         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10382
10383         /* Reset should be performed after BRB is emptied */
10384         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10385                 u32 timer_count = 1000;
10386                 bool need_write = true;
10387
10388                 /* Close the MAC Rx to prevent BRB from filling up */
10389                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10390
10391                 /* close LLH filters towards the BRB */
10392                 bnx2x_set_rx_filter(&bp->link_params, 0);
10393
10394                 /* Check if the UNDI driver was previously loaded */
10395                 if (bnx2x_prev_is_after_undi(bp)) {
10396                         prev_undi = true;
10397                         /* clear the UNDI indication */
10398                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10399                         /* clear possible idle check errors */
10400                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10401                 }
10402                 if (!CHIP_IS_E1x(bp))
10403                         /* block FW from writing to host */
10404                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10405
10406                 /* wait until BRB is empty */
10407                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10408                 while (timer_count) {
10409                         u32 prev_brb = tmp_reg;
10410
10411                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10412                         if (!tmp_reg)
10413                                 break;
10414
10415                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10416
10417                         /* reset timer as long as BRB actually gets emptied */
10418                         if (prev_brb > tmp_reg)
10419                                 timer_count = 1000;
10420                         else
10421                                 timer_count--;
10422
10423                         /* New UNDI FW supports MF and contains better
10424                          * cleaning methods - might be redundant but harmless.
10425                          */
10426                         if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10427                                 if (need_write) {
10428                                         bnx2x_prev_unload_undi_mf(bp);
10429                                         need_write = false;
10430                                 }
10431                         } else if (prev_undi) {
10432                                 /* If UNDI resides in memory,
10433                                  * manually increment it
10434                                  */
10435                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10436                         }
10437                         udelay(10);
10438                 }
10439
10440                 if (!timer_count)
10441                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10442         }
10443
10444         /* No packets are in the pipeline, path is ready for reset */
10445         bnx2x_reset_common(bp);
10446
10447         if (mac_vals.xmac_addr)
10448                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10449         if (mac_vals.umac_addr)
10450                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10451         if (mac_vals.emac_addr)
10452                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10453         if (mac_vals.bmac_addr) {
10454                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10455                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10456         }
10457
10458         rc = bnx2x_prev_mark_path(bp, prev_undi);
10459         if (rc) {
10460                 bnx2x_prev_mcp_done(bp);
10461                 return rc;
10462         }
10463
10464         return bnx2x_prev_mcp_done(bp);
10465 }
10466
10467 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10468  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10469  * the addresses of the transaction, resulting in was-error bit set in the pci
10470  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10471  * to clear the interrupt which detected this from the pglueb and the was done
10472  * bit
10473  */
10474 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10475 {
10476         if (!CHIP_IS_E1x(bp)) {
10477                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10478                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10479                         DP(BNX2X_MSG_SP,
10480                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10481                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10482                                1 << BP_FUNC(bp));
10483                 }
10484         }
10485 }
10486
10487 static int bnx2x_prev_unload(struct bnx2x *bp)
10488 {
10489         int time_counter = 10;
10490         u32 rc, fw, hw_lock_reg, hw_lock_val;
10491         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10492
10493         /* clear hw from errors which may have resulted from an interrupted
10494          * dmae transaction.
10495          */
10496         bnx2x_prev_interrupted_dmae(bp);
10497
10498         /* Release previously held locks */
10499         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10500                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10501                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10502
10503         hw_lock_val = REG_RD(bp, hw_lock_reg);
10504         if (hw_lock_val) {
10505                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10506                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10507                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10508                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10509                 }
10510
10511                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10512                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10513         } else
10514                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10515
10516         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10517                 BNX2X_DEV_INFO("Release previously held alr\n");
10518                 bnx2x_release_alr(bp);
10519         }
10520
10521         do {
10522                 int aer = 0;
10523                 /* Lock MCP using an unload request */
10524                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10525                 if (!fw) {
10526                         BNX2X_ERR("MCP response failure, aborting\n");
10527                         rc = -EBUSY;
10528                         break;
10529                 }
10530
10531                 rc = down_interruptible(&bnx2x_prev_sem);
10532                 if (rc) {
10533                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10534                                   rc);
10535                 } else {
10536                         /* If Path is marked by EEH, ignore unload status */
10537                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10538                                  bnx2x_prev_path_get_entry(bp)->aer);
10539                         up(&bnx2x_prev_sem);
10540                 }
10541
10542                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10543                         rc = bnx2x_prev_unload_common(bp);
10544                         break;
10545                 }
10546
10547                 /* non-common reply from MCP might require looping */
10548                 rc = bnx2x_prev_unload_uncommon(bp);
10549                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10550                         break;
10551
10552                 msleep(20);
10553         } while (--time_counter);
10554
10555         if (!time_counter || rc) {
10556                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10557                 rc = -EPROBE_DEFER;
10558         }
10559
10560         /* Mark function if its port was used to boot from SAN */
10561         if (bnx2x_port_after_undi(bp))
10562                 bp->link_params.feature_config_flags |=
10563                         FEATURE_CONFIG_BOOT_FROM_SAN;
10564
10565         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10566
10567         return rc;
10568 }
10569
10570 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10571 {
10572         u32 val, val2, val3, val4, id, boot_mode;
10573         u16 pmc;
10574
10575         /* Get the chip revision id and number. */
10576         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10577         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10578         id = ((val & 0xffff) << 16);
10579         val = REG_RD(bp, MISC_REG_CHIP_REV);
10580         id |= ((val & 0xf) << 12);
10581
10582         /* Metal is read from PCI regs, but we can't access >=0x400 from
10583          * the configuration space (so we need to reg_rd)
10584          */
10585         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10586         id |= (((val >> 24) & 0xf) << 4);
10587         val = REG_RD(bp, MISC_REG_BOND_ID);
10588         id |= (val & 0xf);
10589         bp->common.chip_id = id;
10590
10591         /* force 57811 according to MISC register */
10592         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10593                 if (CHIP_IS_57810(bp))
10594                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10595                                 (bp->common.chip_id & 0x0000FFFF);
10596                 else if (CHIP_IS_57810_MF(bp))
10597                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10598                                 (bp->common.chip_id & 0x0000FFFF);
10599                 bp->common.chip_id |= 0x1;
10600         }
10601
10602         /* Set doorbell size */
10603         bp->db_size = (1 << BNX2X_DB_SHIFT);
10604
10605         if (!CHIP_IS_E1x(bp)) {
10606                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10607                 if ((val & 1) == 0)
10608                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10609                 else
10610                         val = (val >> 1) & 1;
10611                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10612                                                        "2_PORT_MODE");
10613                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10614                                                  CHIP_2_PORT_MODE;
10615
10616                 if (CHIP_MODE_IS_4_PORT(bp))
10617                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10618                 else
10619                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10620         } else {
10621                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10622                 bp->pfid = bp->pf_num;                  /* 0..7 */
10623         }
10624
10625         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10626
10627         bp->link_params.chip_id = bp->common.chip_id;
10628         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10629
10630         val = (REG_RD(bp, 0x2874) & 0x55);
10631         if ((bp->common.chip_id & 0x1) ||
10632             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10633                 bp->flags |= ONE_PORT_FLAG;
10634                 BNX2X_DEV_INFO("single port device\n");
10635         }
10636
10637         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10638         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10639                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10640         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10641                        bp->common.flash_size, bp->common.flash_size);
10642
10643         bnx2x_init_shmem(bp);
10644
10645         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10646                                         MISC_REG_GENERIC_CR_1 :
10647                                         MISC_REG_GENERIC_CR_0));
10648
10649         bp->link_params.shmem_base = bp->common.shmem_base;
10650         bp->link_params.shmem2_base = bp->common.shmem2_base;
10651         if (SHMEM2_RD(bp, size) >
10652             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10653                 bp->link_params.lfa_base =
10654                 REG_RD(bp, bp->common.shmem2_base +
10655                        (u32)offsetof(struct shmem2_region,
10656                                      lfa_host_addr[BP_PORT(bp)]));
10657         else
10658                 bp->link_params.lfa_base = 0;
10659         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10660                        bp->common.shmem_base, bp->common.shmem2_base);
10661
10662         if (!bp->common.shmem_base) {
10663                 BNX2X_DEV_INFO("MCP not active\n");
10664                 bp->flags |= NO_MCP_FLAG;
10665                 return;
10666         }
10667
10668         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10669         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10670
10671         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10672                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10673                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10674
10675         bp->link_params.feature_config_flags = 0;
10676         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10677         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10678                 bp->link_params.feature_config_flags |=
10679                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10680         else
10681                 bp->link_params.feature_config_flags &=
10682                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10683
10684         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10685         bp->common.bc_ver = val;
10686         BNX2X_DEV_INFO("bc_ver %X\n", val);
10687         if (val < BNX2X_BC_VER) {
10688                 /* for now only warn
10689                  * later we might need to enforce this */
10690                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10691                           BNX2X_BC_VER, val);
10692         }
10693         bp->link_params.feature_config_flags |=
10694                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10695                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10696
10697         bp->link_params.feature_config_flags |=
10698                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10699                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10700         bp->link_params.feature_config_flags |=
10701                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10702                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10703         bp->link_params.feature_config_flags |=
10704                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10705                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10706
10707         bp->link_params.feature_config_flags |=
10708                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10709                 FEATURE_CONFIG_MT_SUPPORT : 0;
10710
10711         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10712                         BC_SUPPORTS_PFC_STATS : 0;
10713
10714         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10715                         BC_SUPPORTS_FCOE_FEATURES : 0;
10716
10717         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10718                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10719
10720         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10721                         BC_SUPPORTS_RMMOD_CMD : 0;
10722
10723         boot_mode = SHMEM_RD(bp,
10724                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10725                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10726         switch (boot_mode) {
10727         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10728                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10729                 break;
10730         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10731                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10732                 break;
10733         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10734                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10735                 break;
10736         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10737                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10738                 break;
10739         }
10740
10741         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10742         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10743
10744         BNX2X_DEV_INFO("%sWoL capable\n",
10745                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10746
10747         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10748         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10749         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10750         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10751
10752         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10753                  val, val2, val3, val4);
10754 }
10755
10756 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10757 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10758
10759 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10760 {
10761         int pfid = BP_FUNC(bp);
10762         int igu_sb_id;
10763         u32 val;
10764         u8 fid, igu_sb_cnt = 0;
10765
10766         bp->igu_base_sb = 0xff;
10767         if (CHIP_INT_MODE_IS_BC(bp)) {
10768                 int vn = BP_VN(bp);
10769                 igu_sb_cnt = bp->igu_sb_cnt;
10770                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10771                         FP_SB_MAX_E1x;
10772
10773                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10774                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10775
10776                 return 0;
10777         }
10778
10779         /* IGU in normal mode - read CAM */
10780         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10781              igu_sb_id++) {
10782                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10783                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10784                         continue;
10785                 fid = IGU_FID(val);
10786                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10787                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10788                                 continue;
10789                         if (IGU_VEC(val) == 0)
10790                                 /* default status block */
10791                                 bp->igu_dsb_id = igu_sb_id;
10792                         else {
10793                                 if (bp->igu_base_sb == 0xff)
10794                                         bp->igu_base_sb = igu_sb_id;
10795                                 igu_sb_cnt++;
10796                         }
10797                 }
10798         }
10799
10800 #ifdef CONFIG_PCI_MSI
10801         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10802          * optional that number of CAM entries will not be equal to the value
10803          * advertised in PCI.
10804          * Driver should use the minimal value of both as the actual status
10805          * block count
10806          */
10807         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10808 #endif
10809
10810         if (igu_sb_cnt == 0) {
10811                 BNX2X_ERR("CAM configuration error\n");
10812                 return -EINVAL;
10813         }
10814
10815         return 0;
10816 }
10817
10818 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10819 {
10820         int cfg_size = 0, idx, port = BP_PORT(bp);
10821
10822         /* Aggregation of supported attributes of all external phys */
10823         bp->port.supported[0] = 0;
10824         bp->port.supported[1] = 0;
10825         switch (bp->link_params.num_phys) {
10826         case 1:
10827                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10828                 cfg_size = 1;
10829                 break;
10830         case 2:
10831                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10832                 cfg_size = 1;
10833                 break;
10834         case 3:
10835                 if (bp->link_params.multi_phy_config &
10836                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10837                         bp->port.supported[1] =
10838                                 bp->link_params.phy[EXT_PHY1].supported;
10839                         bp->port.supported[0] =
10840                                 bp->link_params.phy[EXT_PHY2].supported;
10841                 } else {
10842                         bp->port.supported[0] =
10843                                 bp->link_params.phy[EXT_PHY1].supported;
10844                         bp->port.supported[1] =
10845                                 bp->link_params.phy[EXT_PHY2].supported;
10846                 }
10847                 cfg_size = 2;
10848                 break;
10849         }
10850
10851         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10852                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10853                            SHMEM_RD(bp,
10854                            dev_info.port_hw_config[port].external_phy_config),
10855                            SHMEM_RD(bp,
10856                            dev_info.port_hw_config[port].external_phy_config2));
10857                         return;
10858         }
10859
10860         if (CHIP_IS_E3(bp))
10861                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10862         else {
10863                 switch (switch_cfg) {
10864                 case SWITCH_CFG_1G:
10865                         bp->port.phy_addr = REG_RD(
10866                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10867                         break;
10868                 case SWITCH_CFG_10G:
10869                         bp->port.phy_addr = REG_RD(
10870                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10871                         break;
10872                 default:
10873                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10874                                   bp->port.link_config[0]);
10875                         return;
10876                 }
10877         }
10878         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10879         /* mask what we support according to speed_cap_mask per configuration */
10880         for (idx = 0; idx < cfg_size; idx++) {
10881                 if (!(bp->link_params.speed_cap_mask[idx] &
10882                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10883                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10884
10885                 if (!(bp->link_params.speed_cap_mask[idx] &
10886                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10887                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10888
10889                 if (!(bp->link_params.speed_cap_mask[idx] &
10890                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10891                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10892
10893                 if (!(bp->link_params.speed_cap_mask[idx] &
10894                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10895                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10896
10897                 if (!(bp->link_params.speed_cap_mask[idx] &
10898                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10899                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10900                                                      SUPPORTED_1000baseT_Full);
10901
10902                 if (!(bp->link_params.speed_cap_mask[idx] &
10903                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10904                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10905
10906                 if (!(bp->link_params.speed_cap_mask[idx] &
10907                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10908                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10909
10910                 if (!(bp->link_params.speed_cap_mask[idx] &
10911                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10912                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10913         }
10914
10915         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10916                        bp->port.supported[1]);
10917 }
10918
10919 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10920 {
10921         u32 link_config, idx, cfg_size = 0;
10922         bp->port.advertising[0] = 0;
10923         bp->port.advertising[1] = 0;
10924         switch (bp->link_params.num_phys) {
10925         case 1:
10926         case 2:
10927                 cfg_size = 1;
10928                 break;
10929         case 3:
10930                 cfg_size = 2;
10931                 break;
10932         }
10933         for (idx = 0; idx < cfg_size; idx++) {
10934                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10935                 link_config = bp->port.link_config[idx];
10936                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10937                 case PORT_FEATURE_LINK_SPEED_AUTO:
10938                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10939                                 bp->link_params.req_line_speed[idx] =
10940                                         SPEED_AUTO_NEG;
10941                                 bp->port.advertising[idx] |=
10942                                         bp->port.supported[idx];
10943                                 if (bp->link_params.phy[EXT_PHY1].type ==
10944                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10945                                         bp->port.advertising[idx] |=
10946                                         (SUPPORTED_100baseT_Half |
10947                                          SUPPORTED_100baseT_Full);
10948                         } else {
10949                                 /* force 10G, no AN */
10950                                 bp->link_params.req_line_speed[idx] =
10951                                         SPEED_10000;
10952                                 bp->port.advertising[idx] |=
10953                                         (ADVERTISED_10000baseT_Full |
10954                                          ADVERTISED_FIBRE);
10955                                 continue;
10956                         }
10957                         break;
10958
10959                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10960                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10961                                 bp->link_params.req_line_speed[idx] =
10962                                         SPEED_10;
10963                                 bp->port.advertising[idx] |=
10964                                         (ADVERTISED_10baseT_Full |
10965                                          ADVERTISED_TP);
10966                         } else {
10967                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10968                                             link_config,
10969                                     bp->link_params.speed_cap_mask[idx]);
10970                                 return;
10971                         }
10972                         break;
10973
10974                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10975                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10976                                 bp->link_params.req_line_speed[idx] =
10977                                         SPEED_10;
10978                                 bp->link_params.req_duplex[idx] =
10979                                         DUPLEX_HALF;
10980                                 bp->port.advertising[idx] |=
10981                                         (ADVERTISED_10baseT_Half |
10982                                          ADVERTISED_TP);
10983                         } else {
10984                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10985                                             link_config,
10986                                           bp->link_params.speed_cap_mask[idx]);
10987                                 return;
10988                         }
10989                         break;
10990
10991                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10992                         if (bp->port.supported[idx] &
10993                             SUPPORTED_100baseT_Full) {
10994                                 bp->link_params.req_line_speed[idx] =
10995                                         SPEED_100;
10996                                 bp->port.advertising[idx] |=
10997                                         (ADVERTISED_100baseT_Full |
10998                                          ADVERTISED_TP);
10999                         } else {
11000                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11001                                             link_config,
11002                                           bp->link_params.speed_cap_mask[idx]);
11003                                 return;
11004                         }
11005                         break;
11006
11007                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11008                         if (bp->port.supported[idx] &
11009                             SUPPORTED_100baseT_Half) {
11010                                 bp->link_params.req_line_speed[idx] =
11011                                                                 SPEED_100;
11012                                 bp->link_params.req_duplex[idx] =
11013                                                                 DUPLEX_HALF;
11014                                 bp->port.advertising[idx] |=
11015                                         (ADVERTISED_100baseT_Half |
11016                                          ADVERTISED_TP);
11017                         } else {
11018                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11019                                     link_config,
11020                                     bp->link_params.speed_cap_mask[idx]);
11021                                 return;
11022                         }
11023                         break;
11024
11025                 case PORT_FEATURE_LINK_SPEED_1G:
11026                         if (bp->port.supported[idx] &
11027                             SUPPORTED_1000baseT_Full) {
11028                                 bp->link_params.req_line_speed[idx] =
11029                                         SPEED_1000;
11030                                 bp->port.advertising[idx] |=
11031                                         (ADVERTISED_1000baseT_Full |
11032                                          ADVERTISED_TP);
11033                         } else {
11034                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11035                                     link_config,
11036                                     bp->link_params.speed_cap_mask[idx]);
11037                                 return;
11038                         }
11039                         break;
11040
11041                 case PORT_FEATURE_LINK_SPEED_2_5G:
11042                         if (bp->port.supported[idx] &
11043                             SUPPORTED_2500baseX_Full) {
11044                                 bp->link_params.req_line_speed[idx] =
11045                                         SPEED_2500;
11046                                 bp->port.advertising[idx] |=
11047                                         (ADVERTISED_2500baseX_Full |
11048                                                 ADVERTISED_TP);
11049                         } else {
11050                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11051                                     link_config,
11052                                     bp->link_params.speed_cap_mask[idx]);
11053                                 return;
11054                         }
11055                         break;
11056
11057                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11058                         if (bp->port.supported[idx] &
11059                             SUPPORTED_10000baseT_Full) {
11060                                 bp->link_params.req_line_speed[idx] =
11061                                         SPEED_10000;
11062                                 bp->port.advertising[idx] |=
11063                                         (ADVERTISED_10000baseT_Full |
11064                                                 ADVERTISED_FIBRE);
11065                         } else {
11066                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11067                                     link_config,
11068                                     bp->link_params.speed_cap_mask[idx]);
11069                                 return;
11070                         }
11071                         break;
11072                 case PORT_FEATURE_LINK_SPEED_20G:
11073                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11074
11075                         break;
11076                 default:
11077                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11078                                   link_config);
11079                                 bp->link_params.req_line_speed[idx] =
11080                                                         SPEED_AUTO_NEG;
11081                                 bp->port.advertising[idx] =
11082                                                 bp->port.supported[idx];
11083                         break;
11084                 }
11085
11086                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11087                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11088                 if (bp->link_params.req_flow_ctrl[idx] ==
11089                     BNX2X_FLOW_CTRL_AUTO) {
11090                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11091                                 bp->link_params.req_flow_ctrl[idx] =
11092                                                         BNX2X_FLOW_CTRL_NONE;
11093                         else
11094                                 bnx2x_set_requested_fc(bp);
11095                 }
11096
11097                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11098                                bp->link_params.req_line_speed[idx],
11099                                bp->link_params.req_duplex[idx],
11100                                bp->link_params.req_flow_ctrl[idx],
11101                                bp->port.advertising[idx]);
11102         }
11103 }
11104
11105 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11106 {
11107         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11108         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11109         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11110         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11111 }
11112
11113 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11114 {
11115         int port = BP_PORT(bp);
11116         u32 config;
11117         u32 ext_phy_type, ext_phy_config, eee_mode;
11118
11119         bp->link_params.bp = bp;
11120         bp->link_params.port = port;
11121
11122         bp->link_params.lane_config =
11123                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11124
11125         bp->link_params.speed_cap_mask[0] =
11126                 SHMEM_RD(bp,
11127                          dev_info.port_hw_config[port].speed_capability_mask) &
11128                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11129         bp->link_params.speed_cap_mask[1] =
11130                 SHMEM_RD(bp,
11131                          dev_info.port_hw_config[port].speed_capability_mask2) &
11132                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11133         bp->port.link_config[0] =
11134                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11135
11136         bp->port.link_config[1] =
11137                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11138
11139         bp->link_params.multi_phy_config =
11140                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11141         /* If the device is capable of WoL, set the default state according
11142          * to the HW
11143          */
11144         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11145         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11146                    (config & PORT_FEATURE_WOL_ENABLED));
11147
11148         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11149             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11150                 bp->flags |= NO_ISCSI_FLAG;
11151         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11152             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11153                 bp->flags |= NO_FCOE_FLAG;
11154
11155         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11156                        bp->link_params.lane_config,
11157                        bp->link_params.speed_cap_mask[0],
11158                        bp->port.link_config[0]);
11159
11160         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11161                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11162         bnx2x_phy_probe(&bp->link_params);
11163         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11164
11165         bnx2x_link_settings_requested(bp);
11166
11167         /*
11168          * If connected directly, work with the internal PHY, otherwise, work
11169          * with the external PHY
11170          */
11171         ext_phy_config =
11172                 SHMEM_RD(bp,
11173                          dev_info.port_hw_config[port].external_phy_config);
11174         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11175         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11176                 bp->mdio.prtad = bp->port.phy_addr;
11177
11178         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11179                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11180                 bp->mdio.prtad =
11181                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11182
11183         /* Configure link feature according to nvram value */
11184         eee_mode = (((SHMEM_RD(bp, dev_info.
11185                       port_feature_config[port].eee_power_mode)) &
11186                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11187                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11188         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11189                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11190                                            EEE_MODE_ENABLE_LPI |
11191                                            EEE_MODE_OUTPUT_TIME;
11192         } else {
11193                 bp->link_params.eee_mode = 0;
11194         }
11195 }
11196
11197 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11198 {
11199         u32 no_flags = NO_ISCSI_FLAG;
11200         int port = BP_PORT(bp);
11201         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11202                                 drv_lic_key[port].max_iscsi_conn);
11203
11204         if (!CNIC_SUPPORT(bp)) {
11205                 bp->flags |= no_flags;
11206                 return;
11207         }
11208
11209         /* Get the number of maximum allowed iSCSI connections */
11210         bp->cnic_eth_dev.max_iscsi_conn =
11211                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11212                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11213
11214         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11215                        bp->cnic_eth_dev.max_iscsi_conn);
11216
11217         /*
11218          * If maximum allowed number of connections is zero -
11219          * disable the feature.
11220          */
11221         if (!bp->cnic_eth_dev.max_iscsi_conn)
11222                 bp->flags |= no_flags;
11223 }
11224
11225 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11226 {
11227         /* Port info */
11228         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11229                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11230         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11231                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11232
11233         /* Node info */
11234         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11235                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11236         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11237                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11238 }
11239
11240 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11241 {
11242         u8 count = 0;
11243
11244         if (IS_MF(bp)) {
11245                 u8 fid;
11246
11247                 /* iterate over absolute function ids for this path: */
11248                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11249                         if (IS_MF_SD(bp)) {
11250                                 u32 cfg = MF_CFG_RD(bp,
11251                                                     func_mf_config[fid].config);
11252
11253                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11254                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11255                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11256                                         count++;
11257                         } else {
11258                                 u32 cfg = MF_CFG_RD(bp,
11259                                                     func_ext_config[fid].
11260                                                                       func_cfg);
11261
11262                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11263                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11264                                         count++;
11265                         }
11266                 }
11267         } else { /* SF */
11268                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11269
11270                 for (port = 0; port < port_cnt; port++) {
11271                         u32 lic = SHMEM_RD(bp,
11272                                            drv_lic_key[port].max_fcoe_conn) ^
11273                                   FW_ENCODE_32BIT_PATTERN;
11274                         if (lic)
11275                                 count++;
11276                 }
11277         }
11278
11279         return count;
11280 }
11281
11282 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11283 {
11284         int port = BP_PORT(bp);
11285         int func = BP_ABS_FUNC(bp);
11286         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11287                                 drv_lic_key[port].max_fcoe_conn);
11288         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11289
11290         if (!CNIC_SUPPORT(bp)) {
11291                 bp->flags |= NO_FCOE_FLAG;
11292                 return;
11293         }
11294
11295         /* Get the number of maximum allowed FCoE connections */
11296         bp->cnic_eth_dev.max_fcoe_conn =
11297                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11298                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11299
11300         /* Calculate the number of maximum allowed FCoE tasks */
11301         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11302
11303         /* check if FCoE resources must be shared between different functions */
11304         if (num_fcoe_func)
11305                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11306
11307         /* Read the WWN: */
11308         if (!IS_MF(bp)) {
11309                 /* Port info */
11310                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11311                         SHMEM_RD(bp,
11312                                  dev_info.port_hw_config[port].
11313                                  fcoe_wwn_port_name_upper);
11314                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11315                         SHMEM_RD(bp,
11316                                  dev_info.port_hw_config[port].
11317                                  fcoe_wwn_port_name_lower);
11318
11319                 /* Node info */
11320                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11321                         SHMEM_RD(bp,
11322                                  dev_info.port_hw_config[port].
11323                                  fcoe_wwn_node_name_upper);
11324                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11325                         SHMEM_RD(bp,
11326                                  dev_info.port_hw_config[port].
11327                                  fcoe_wwn_node_name_lower);
11328         } else if (!IS_MF_SD(bp)) {
11329                 /*
11330                  * Read the WWN info only if the FCoE feature is enabled for
11331                  * this function.
11332                  */
11333                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11334                         bnx2x_get_ext_wwn_info(bp, func);
11335
11336         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11337                 bnx2x_get_ext_wwn_info(bp, func);
11338         }
11339
11340         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11341
11342         /*
11343          * If maximum allowed number of connections is zero -
11344          * disable the feature.
11345          */
11346         if (!bp->cnic_eth_dev.max_fcoe_conn)
11347                 bp->flags |= NO_FCOE_FLAG;
11348 }
11349
11350 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11351 {
11352         /*
11353          * iSCSI may be dynamically disabled but reading
11354          * info here we will decrease memory usage by driver
11355          * if the feature is disabled for good
11356          */
11357         bnx2x_get_iscsi_info(bp);
11358         bnx2x_get_fcoe_info(bp);
11359 }
11360
11361 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11362 {
11363         u32 val, val2;
11364         int func = BP_ABS_FUNC(bp);
11365         int port = BP_PORT(bp);
11366         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11367         u8 *fip_mac = bp->fip_mac;
11368
11369         if (IS_MF(bp)) {
11370                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11371                  * FCoE MAC then the appropriate feature should be disabled.
11372                  * In non SD mode features configuration comes from struct
11373                  * func_ext_config.
11374                  */
11375                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11376                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11377                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11378                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11379                                                  iscsi_mac_addr_upper);
11380                                 val = MF_CFG_RD(bp, func_ext_config[func].
11381                                                 iscsi_mac_addr_lower);
11382                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11383                                 BNX2X_DEV_INFO
11384                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11385                         } else {
11386                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11387                         }
11388
11389                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11390                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11391                                                  fcoe_mac_addr_upper);
11392                                 val = MF_CFG_RD(bp, func_ext_config[func].
11393                                                 fcoe_mac_addr_lower);
11394                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11395                                 BNX2X_DEV_INFO
11396                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11397                         } else {
11398                                 bp->flags |= NO_FCOE_FLAG;
11399                         }
11400
11401                         bp->mf_ext_config = cfg;
11402
11403                 } else { /* SD MODE */
11404                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11405                                 /* use primary mac as iscsi mac */
11406                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11407
11408                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11409                                 BNX2X_DEV_INFO
11410                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11411                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11412                                 /* use primary mac as fip mac */
11413                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11414                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11415                                 BNX2X_DEV_INFO
11416                                         ("Read FIP MAC: %pM\n", fip_mac);
11417                         }
11418                 }
11419
11420                 /* If this is a storage-only interface, use SAN mac as
11421                  * primary MAC. Notice that for SD this is already the case,
11422                  * as the SAN mac was copied from the primary MAC.
11423                  */
11424                 if (IS_MF_FCOE_AFEX(bp))
11425                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11426         } else {
11427                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11428                                 iscsi_mac_upper);
11429                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11430                                iscsi_mac_lower);
11431                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11432
11433                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11434                                 fcoe_fip_mac_upper);
11435                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11436                                fcoe_fip_mac_lower);
11437                 bnx2x_set_mac_buf(fip_mac, val, val2);
11438         }
11439
11440         /* Disable iSCSI OOO if MAC configuration is invalid. */
11441         if (!is_valid_ether_addr(iscsi_mac)) {
11442                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11443                 memset(iscsi_mac, 0, ETH_ALEN);
11444         }
11445
11446         /* Disable FCoE if MAC configuration is invalid. */
11447         if (!is_valid_ether_addr(fip_mac)) {
11448                 bp->flags |= NO_FCOE_FLAG;
11449                 memset(bp->fip_mac, 0, ETH_ALEN);
11450         }
11451 }
11452
11453 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11454 {
11455         u32 val, val2;
11456         int func = BP_ABS_FUNC(bp);
11457         int port = BP_PORT(bp);
11458
11459         /* Zero primary MAC configuration */
11460         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11461
11462         if (BP_NOMCP(bp)) {
11463                 BNX2X_ERROR("warning: random MAC workaround active\n");
11464                 eth_hw_addr_random(bp->dev);
11465         } else if (IS_MF(bp)) {
11466                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11467                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11468                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11469                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11470                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11471
11472                 if (CNIC_SUPPORT(bp))
11473                         bnx2x_get_cnic_mac_hwinfo(bp);
11474         } else {
11475                 /* in SF read MACs from port configuration */
11476                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11477                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11478                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11479
11480                 if (CNIC_SUPPORT(bp))
11481                         bnx2x_get_cnic_mac_hwinfo(bp);
11482         }
11483
11484         if (!BP_NOMCP(bp)) {
11485                 /* Read physical port identifier from shmem */
11486                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11487                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11488                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11489                 bp->flags |= HAS_PHYS_PORT_ID;
11490         }
11491
11492         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11493
11494         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11495                 dev_err(&bp->pdev->dev,
11496                         "bad Ethernet MAC address configuration: %pM\n"
11497                         "change it manually before bringing up the appropriate network interface\n",
11498                         bp->dev->dev_addr);
11499 }
11500
11501 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11502 {
11503         int tmp;
11504         u32 cfg;
11505
11506         if (IS_VF(bp))
11507                 return 0;
11508
11509         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11510                 /* Take function: tmp = func */
11511                 tmp = BP_ABS_FUNC(bp);
11512                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11513                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11514         } else {
11515                 /* Take port: tmp = port */
11516                 tmp = BP_PORT(bp);
11517                 cfg = SHMEM_RD(bp,
11518                                dev_info.port_hw_config[tmp].generic_features);
11519                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11520         }
11521         return cfg;
11522 }
11523
11524 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11525 {
11526         int /*abs*/func = BP_ABS_FUNC(bp);
11527         int vn;
11528         u32 val = 0;
11529         int rc = 0;
11530
11531         bnx2x_get_common_hwinfo(bp);
11532
11533         /*
11534          * initialize IGU parameters
11535          */
11536         if (CHIP_IS_E1x(bp)) {
11537                 bp->common.int_block = INT_BLOCK_HC;
11538
11539                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11540                 bp->igu_base_sb = 0;
11541         } else {
11542                 bp->common.int_block = INT_BLOCK_IGU;
11543
11544                 /* do not allow device reset during IGU info processing */
11545                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11546
11547                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11548
11549                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11550                         int tout = 5000;
11551
11552                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11553
11554                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11555                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11556                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11557
11558                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11559                                 tout--;
11560                                 usleep_range(1000, 2000);
11561                         }
11562
11563                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11564                                 dev_err(&bp->pdev->dev,
11565                                         "FORCING Normal Mode failed!!!\n");
11566                                 bnx2x_release_hw_lock(bp,
11567                                                       HW_LOCK_RESOURCE_RESET);
11568                                 return -EPERM;
11569                         }
11570                 }
11571
11572                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11573                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11574                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11575                 } else
11576                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11577
11578                 rc = bnx2x_get_igu_cam_info(bp);
11579                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11580                 if (rc)
11581                         return rc;
11582         }
11583
11584         /*
11585          * set base FW non-default (fast path) status block id, this value is
11586          * used to initialize the fw_sb_id saved on the fp/queue structure to
11587          * determine the id used by the FW.
11588          */
11589         if (CHIP_IS_E1x(bp))
11590                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11591         else /*
11592               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11593               * the same queue are indicated on the same IGU SB). So we prefer
11594               * FW and IGU SBs to be the same value.
11595               */
11596                 bp->base_fw_ndsb = bp->igu_base_sb;
11597
11598         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11599                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11600                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11601
11602         /*
11603          * Initialize MF configuration
11604          */
11605
11606         bp->mf_ov = 0;
11607         bp->mf_mode = 0;
11608         vn = BP_VN(bp);
11609
11610         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11611                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11612                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11613                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11614
11615                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11616                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11617                 else
11618                         bp->common.mf_cfg_base = bp->common.shmem_base +
11619                                 offsetof(struct shmem_region, func_mb) +
11620                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11621                 /*
11622                  * get mf configuration:
11623                  * 1. Existence of MF configuration
11624                  * 2. MAC address must be legal (check only upper bytes)
11625                  *    for  Switch-Independent mode;
11626                  *    OVLAN must be legal for Switch-Dependent mode
11627                  * 3. SF_MODE configures specific MF mode
11628                  */
11629                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11630                         /* get mf configuration */
11631                         val = SHMEM_RD(bp,
11632                                        dev_info.shared_feature_config.config);
11633                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11634
11635                         switch (val) {
11636                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11637                                 val = MF_CFG_RD(bp, func_mf_config[func].
11638                                                 mac_upper);
11639                                 /* check for legal mac (upper bytes)*/
11640                                 if (val != 0xffff) {
11641                                         bp->mf_mode = MULTI_FUNCTION_SI;
11642                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11643                                                    func_mf_config[func].config);
11644                                 } else
11645                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11646                                 break;
11647                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11648                                 if ((!CHIP_IS_E1x(bp)) &&
11649                                     (MF_CFG_RD(bp, func_mf_config[func].
11650                                                mac_upper) != 0xffff) &&
11651                                     (SHMEM2_HAS(bp,
11652                                                 afex_driver_support))) {
11653                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11654                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11655                                                 func_mf_config[func].config);
11656                                 } else {
11657                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11658                                 }
11659                                 break;
11660                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11661                                 /* get OV configuration */
11662                                 val = MF_CFG_RD(bp,
11663                                         func_mf_config[FUNC_0].e1hov_tag);
11664                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11665
11666                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11667                                         bp->mf_mode = MULTI_FUNCTION_SD;
11668                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11669                                                 func_mf_config[func].config);
11670                                 } else
11671                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11672                                 break;
11673                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11674                                 bp->mf_config[vn] = 0;
11675                                 break;
11676                         default:
11677                                 /* Unknown configuration: reset mf_config */
11678                                 bp->mf_config[vn] = 0;
11679                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11680                         }
11681                 }
11682
11683                 BNX2X_DEV_INFO("%s function mode\n",
11684                                IS_MF(bp) ? "multi" : "single");
11685
11686                 switch (bp->mf_mode) {
11687                 case MULTI_FUNCTION_SD:
11688                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11689                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11690                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11691                                 bp->mf_ov = val;
11692                                 bp->path_has_ovlan = true;
11693
11694                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11695                                                func, bp->mf_ov, bp->mf_ov);
11696                         } else {
11697                                 dev_err(&bp->pdev->dev,
11698                                         "No valid MF OV for func %d, aborting\n",
11699                                         func);
11700                                 return -EPERM;
11701                         }
11702                         break;
11703                 case MULTI_FUNCTION_AFEX:
11704                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11705                         break;
11706                 case MULTI_FUNCTION_SI:
11707                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11708                                        func);
11709                         break;
11710                 default:
11711                         if (vn) {
11712                                 dev_err(&bp->pdev->dev,
11713                                         "VN %d is in a single function mode, aborting\n",
11714                                         vn);
11715                                 return -EPERM;
11716                         }
11717                         break;
11718                 }
11719
11720                 /* check if other port on the path needs ovlan:
11721                  * Since MF configuration is shared between ports
11722                  * Possible mixed modes are only
11723                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11724                  */
11725                 if (CHIP_MODE_IS_4_PORT(bp) &&
11726                     !bp->path_has_ovlan &&
11727                     !IS_MF(bp) &&
11728                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11729                         u8 other_port = !BP_PORT(bp);
11730                         u8 other_func = BP_PATH(bp) + 2*other_port;
11731                         val = MF_CFG_RD(bp,
11732                                         func_mf_config[other_func].e1hov_tag);
11733                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11734                                 bp->path_has_ovlan = true;
11735                 }
11736         }
11737
11738         /* adjust igu_sb_cnt to MF for E1H */
11739         if (CHIP_IS_E1H(bp) && IS_MF(bp))
11740                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11741
11742         /* port info */
11743         bnx2x_get_port_hwinfo(bp);
11744
11745         /* Get MAC addresses */
11746         bnx2x_get_mac_hwinfo(bp);
11747
11748         bnx2x_get_cnic_info(bp);
11749
11750         return rc;
11751 }
11752
11753 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11754 {
11755         int cnt, i, block_end, rodi;
11756         char vpd_start[BNX2X_VPD_LEN+1];
11757         char str_id_reg[VENDOR_ID_LEN+1];
11758         char str_id_cap[VENDOR_ID_LEN+1];
11759         char *vpd_data;
11760         char *vpd_extended_data = NULL;
11761         u8 len;
11762
11763         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11764         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11765
11766         if (cnt < BNX2X_VPD_LEN)
11767                 goto out_not_found;
11768
11769         /* VPD RO tag should be first tag after identifier string, hence
11770          * we should be able to find it in first BNX2X_VPD_LEN chars
11771          */
11772         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11773                              PCI_VPD_LRDT_RO_DATA);
11774         if (i < 0)
11775                 goto out_not_found;
11776
11777         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11778                     pci_vpd_lrdt_size(&vpd_start[i]);
11779
11780         i += PCI_VPD_LRDT_TAG_SIZE;
11781
11782         if (block_end > BNX2X_VPD_LEN) {
11783                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11784                 if (vpd_extended_data  == NULL)
11785                         goto out_not_found;
11786
11787                 /* read rest of vpd image into vpd_extended_data */
11788                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11789                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11790                                    block_end - BNX2X_VPD_LEN,
11791                                    vpd_extended_data + BNX2X_VPD_LEN);
11792                 if (cnt < (block_end - BNX2X_VPD_LEN))
11793                         goto out_not_found;
11794                 vpd_data = vpd_extended_data;
11795         } else
11796                 vpd_data = vpd_start;
11797
11798         /* now vpd_data holds full vpd content in both cases */
11799
11800         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11801                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11802         if (rodi < 0)
11803                 goto out_not_found;
11804
11805         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11806
11807         if (len != VENDOR_ID_LEN)
11808                 goto out_not_found;
11809
11810         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11811
11812         /* vendor specific info */
11813         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11814         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11815         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11816             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11817
11818                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11819                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11820                 if (rodi >= 0) {
11821                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11822
11823                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11824
11825                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11826                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11827                                 bp->fw_ver[len] = ' ';
11828                         }
11829                 }
11830                 kfree(vpd_extended_data);
11831                 return;
11832         }
11833 out_not_found:
11834         kfree(vpd_extended_data);
11835         return;
11836 }
11837
11838 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11839 {
11840         u32 flags = 0;
11841
11842         if (CHIP_REV_IS_FPGA(bp))
11843                 SET_FLAGS(flags, MODE_FPGA);
11844         else if (CHIP_REV_IS_EMUL(bp))
11845                 SET_FLAGS(flags, MODE_EMUL);
11846         else
11847                 SET_FLAGS(flags, MODE_ASIC);
11848
11849         if (CHIP_MODE_IS_4_PORT(bp))
11850                 SET_FLAGS(flags, MODE_PORT4);
11851         else
11852                 SET_FLAGS(flags, MODE_PORT2);
11853
11854         if (CHIP_IS_E2(bp))
11855                 SET_FLAGS(flags, MODE_E2);
11856         else if (CHIP_IS_E3(bp)) {
11857                 SET_FLAGS(flags, MODE_E3);
11858                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11859                         SET_FLAGS(flags, MODE_E3_A0);
11860                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11861                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11862         }
11863
11864         if (IS_MF(bp)) {
11865                 SET_FLAGS(flags, MODE_MF);
11866                 switch (bp->mf_mode) {
11867                 case MULTI_FUNCTION_SD:
11868                         SET_FLAGS(flags, MODE_MF_SD);
11869                         break;
11870                 case MULTI_FUNCTION_SI:
11871                         SET_FLAGS(flags, MODE_MF_SI);
11872                         break;
11873                 case MULTI_FUNCTION_AFEX:
11874                         SET_FLAGS(flags, MODE_MF_AFEX);
11875                         break;
11876                 }
11877         } else
11878                 SET_FLAGS(flags, MODE_SF);
11879
11880 #if defined(__LITTLE_ENDIAN)
11881         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11882 #else /*(__BIG_ENDIAN)*/
11883         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11884 #endif
11885         INIT_MODE_FLAGS(bp) = flags;
11886 }
11887
11888 static int bnx2x_init_bp(struct bnx2x *bp)
11889 {
11890         int func;
11891         int rc;
11892
11893         mutex_init(&bp->port.phy_mutex);
11894         mutex_init(&bp->fw_mb_mutex);
11895         mutex_init(&bp->drv_info_mutex);
11896         bp->drv_info_mng_owner = false;
11897         spin_lock_init(&bp->stats_lock);
11898         sema_init(&bp->stats_sema, 1);
11899
11900         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11901         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11902         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11903         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
11904         if (IS_PF(bp)) {
11905                 rc = bnx2x_get_hwinfo(bp);
11906                 if (rc)
11907                         return rc;
11908         } else {
11909                 eth_zero_addr(bp->dev->dev_addr);
11910         }
11911
11912         bnx2x_set_modes_bitmap(bp);
11913
11914         rc = bnx2x_alloc_mem_bp(bp);
11915         if (rc)
11916                 return rc;
11917
11918         bnx2x_read_fwinfo(bp);
11919
11920         func = BP_FUNC(bp);
11921
11922         /* need to reset chip if undi was active */
11923         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11924                 /* init fw_seq */
11925                 bp->fw_seq =
11926                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11927                                                         DRV_MSG_SEQ_NUMBER_MASK;
11928                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11929
11930                 rc = bnx2x_prev_unload(bp);
11931                 if (rc) {
11932                         bnx2x_free_mem_bp(bp);
11933                         return rc;
11934                 }
11935         }
11936
11937         if (CHIP_REV_IS_FPGA(bp))
11938                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11939
11940         if (BP_NOMCP(bp) && (func == 0))
11941                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11942
11943         bp->disable_tpa = disable_tpa;
11944         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11945         /* Reduce memory usage in kdump environment by disabling TPA */
11946         bp->disable_tpa |= reset_devices;
11947
11948         /* Set TPA flags */
11949         if (bp->disable_tpa) {
11950                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11951                 bp->dev->features &= ~NETIF_F_LRO;
11952         } else {
11953                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11954                 bp->dev->features |= NETIF_F_LRO;
11955         }
11956
11957         if (CHIP_IS_E1(bp))
11958                 bp->dropless_fc = 0;
11959         else
11960                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11961
11962         bp->mrrs = mrrs;
11963
11964         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11965         if (IS_VF(bp))
11966                 bp->rx_ring_size = MAX_RX_AVAIL;
11967
11968         /* make sure that the numbers are in the right granularity */
11969         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11970         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11971
11972         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11973
11974         init_timer(&bp->timer);
11975         bp->timer.expires = jiffies + bp->current_interval;
11976         bp->timer.data = (unsigned long) bp;
11977         bp->timer.function = bnx2x_timer;
11978
11979         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11980             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11981             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11982             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11983                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11984                 bnx2x_dcbx_init_params(bp);
11985         } else {
11986                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11987         }
11988
11989         if (CHIP_IS_E1x(bp))
11990                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11991         else
11992                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11993
11994         /* multiple tx priority */
11995         if (IS_VF(bp))
11996                 bp->max_cos = 1;
11997         else if (CHIP_IS_E1x(bp))
11998                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11999         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12000                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12001         else if (CHIP_IS_E3B0(bp))
12002                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12003         else
12004                 BNX2X_ERR("unknown chip %x revision %x\n",
12005                           CHIP_NUM(bp), CHIP_REV(bp));
12006         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12007
12008         /* We need at least one default status block for slow-path events,
12009          * second status block for the L2 queue, and a third status block for
12010          * CNIC if supported.
12011          */
12012         if (IS_VF(bp))
12013                 bp->min_msix_vec_cnt = 1;
12014         else if (CNIC_SUPPORT(bp))
12015                 bp->min_msix_vec_cnt = 3;
12016         else /* PF w/o cnic */
12017                 bp->min_msix_vec_cnt = 2;
12018         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12019
12020         bp->dump_preset_idx = 1;
12021
12022         return rc;
12023 }
12024
12025 /****************************************************************************
12026 * General service functions
12027 ****************************************************************************/
12028
12029 /*
12030  * net_device service functions
12031  */
12032
12033 /* called with rtnl_lock */
12034 static int bnx2x_open(struct net_device *dev)
12035 {
12036         struct bnx2x *bp = netdev_priv(dev);
12037         int rc;
12038
12039         bp->stats_init = true;
12040
12041         netif_carrier_off(dev);
12042
12043         bnx2x_set_power_state(bp, PCI_D0);
12044
12045         /* If parity had happen during the unload, then attentions
12046          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12047          * want the first function loaded on the current engine to
12048          * complete the recovery.
12049          * Parity recovery is only relevant for PF driver.
12050          */
12051         if (IS_PF(bp)) {
12052                 int other_engine = BP_PATH(bp) ? 0 : 1;
12053                 bool other_load_status, load_status;
12054                 bool global = false;
12055
12056                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12057                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12058                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12059                     bnx2x_chk_parity_attn(bp, &global, true)) {
12060                         do {
12061                                 /* If there are attentions and they are in a
12062                                  * global blocks, set the GLOBAL_RESET bit
12063                                  * regardless whether it will be this function
12064                                  * that will complete the recovery or not.
12065                                  */
12066                                 if (global)
12067                                         bnx2x_set_reset_global(bp);
12068
12069                                 /* Only the first function on the current
12070                                  * engine should try to recover in open. In case
12071                                  * of attentions in global blocks only the first
12072                                  * in the chip should try to recover.
12073                                  */
12074                                 if ((!load_status &&
12075                                      (!global || !other_load_status)) &&
12076                                       bnx2x_trylock_leader_lock(bp) &&
12077                                       !bnx2x_leader_reset(bp)) {
12078                                         netdev_info(bp->dev,
12079                                                     "Recovered in open\n");
12080                                         break;
12081                                 }
12082
12083                                 /* recovery has failed... */
12084                                 bnx2x_set_power_state(bp, PCI_D3hot);
12085                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12086
12087                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12088                                           "If you still see this message after a few retries then power cycle is required.\n");
12089
12090                                 return -EAGAIN;
12091                         } while (0);
12092                 }
12093         }
12094
12095         bp->recovery_state = BNX2X_RECOVERY_DONE;
12096         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12097         if (rc)
12098                 return rc;
12099         return 0;
12100 }
12101
12102 /* called with rtnl_lock */
12103 static int bnx2x_close(struct net_device *dev)
12104 {
12105         struct bnx2x *bp = netdev_priv(dev);
12106
12107         /* Unload the driver, release IRQs */
12108         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12109
12110         return 0;
12111 }
12112
12113 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12114                                       struct bnx2x_mcast_ramrod_params *p)
12115 {
12116         int mc_count = netdev_mc_count(bp->dev);
12117         struct bnx2x_mcast_list_elem *mc_mac =
12118                 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12119         struct netdev_hw_addr *ha;
12120
12121         if (!mc_mac)
12122                 return -ENOMEM;
12123
12124         INIT_LIST_HEAD(&p->mcast_list);
12125
12126         netdev_for_each_mc_addr(ha, bp->dev) {
12127                 mc_mac->mac = bnx2x_mc_addr(ha);
12128                 list_add_tail(&mc_mac->link, &p->mcast_list);
12129                 mc_mac++;
12130         }
12131
12132         p->mcast_list_len = mc_count;
12133
12134         return 0;
12135 }
12136
12137 static void bnx2x_free_mcast_macs_list(
12138         struct bnx2x_mcast_ramrod_params *p)
12139 {
12140         struct bnx2x_mcast_list_elem *mc_mac =
12141                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12142                                  link);
12143
12144         WARN_ON(!mc_mac);
12145         kfree(mc_mac);
12146 }
12147
12148 /**
12149  * bnx2x_set_uc_list - configure a new unicast MACs list.
12150  *
12151  * @bp: driver handle
12152  *
12153  * We will use zero (0) as a MAC type for these MACs.
12154  */
12155 static int bnx2x_set_uc_list(struct bnx2x *bp)
12156 {
12157         int rc;
12158         struct net_device *dev = bp->dev;
12159         struct netdev_hw_addr *ha;
12160         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12161         unsigned long ramrod_flags = 0;
12162
12163         /* First schedule a cleanup up of old configuration */
12164         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12165         if (rc < 0) {
12166                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12167                 return rc;
12168         }
12169
12170         netdev_for_each_uc_addr(ha, dev) {
12171                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12172                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12173                 if (rc == -EEXIST) {
12174                         DP(BNX2X_MSG_SP,
12175                            "Failed to schedule ADD operations: %d\n", rc);
12176                         /* do not treat adding same MAC as error */
12177                         rc = 0;
12178
12179                 } else if (rc < 0) {
12180
12181                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12182                                   rc);
12183                         return rc;
12184                 }
12185         }
12186
12187         /* Execute the pending commands */
12188         __set_bit(RAMROD_CONT, &ramrod_flags);
12189         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12190                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12191 }
12192
12193 static int bnx2x_set_mc_list(struct bnx2x *bp)
12194 {
12195         struct net_device *dev = bp->dev;
12196         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12197         int rc = 0;
12198
12199         rparam.mcast_obj = &bp->mcast_obj;
12200
12201         /* first, clear all configured multicast MACs */
12202         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12203         if (rc < 0) {
12204                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12205                 return rc;
12206         }
12207
12208         /* then, configure a new MACs list */
12209         if (netdev_mc_count(dev)) {
12210                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12211                 if (rc) {
12212                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12213                                   rc);
12214                         return rc;
12215                 }
12216
12217                 /* Now add the new MACs */
12218                 rc = bnx2x_config_mcast(bp, &rparam,
12219                                         BNX2X_MCAST_CMD_ADD);
12220                 if (rc < 0)
12221                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12222                                   rc);
12223
12224                 bnx2x_free_mcast_macs_list(&rparam);
12225         }
12226
12227         return rc;
12228 }
12229
12230 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12231 static void bnx2x_set_rx_mode(struct net_device *dev)
12232 {
12233         struct bnx2x *bp = netdev_priv(dev);
12234
12235         if (bp->state != BNX2X_STATE_OPEN) {
12236                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12237                 return;
12238         } else {
12239                 /* Schedule an SP task to handle rest of change */
12240                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12241                                        NETIF_MSG_IFUP);
12242         }
12243 }
12244
12245 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12246 {
12247         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12248
12249         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12250
12251         netif_addr_lock_bh(bp->dev);
12252
12253         if (bp->dev->flags & IFF_PROMISC) {
12254                 rx_mode = BNX2X_RX_MODE_PROMISC;
12255         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12256                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12257                     CHIP_IS_E1(bp))) {
12258                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12259         } else {
12260                 if (IS_PF(bp)) {
12261                         /* some multicasts */
12262                         if (bnx2x_set_mc_list(bp) < 0)
12263                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12264
12265                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12266                         netif_addr_unlock_bh(bp->dev);
12267                         if (bnx2x_set_uc_list(bp) < 0)
12268                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12269                         netif_addr_lock_bh(bp->dev);
12270                 } else {
12271                         /* configuring mcast to a vf involves sleeping (when we
12272                          * wait for the pf's response).
12273                          */
12274                         bnx2x_schedule_sp_rtnl(bp,
12275                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12276                 }
12277         }
12278
12279         bp->rx_mode = rx_mode;
12280         /* handle ISCSI SD mode */
12281         if (IS_MF_ISCSI_SD(bp))
12282                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12283
12284         /* Schedule the rx_mode command */
12285         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12286                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12287                 netif_addr_unlock_bh(bp->dev);
12288                 return;
12289         }
12290
12291         if (IS_PF(bp)) {
12292                 bnx2x_set_storm_rx_mode(bp);
12293                 netif_addr_unlock_bh(bp->dev);
12294         } else {
12295                 /* VF will need to request the PF to make this change, and so
12296                  * the VF needs to release the bottom-half lock prior to the
12297                  * request (as it will likely require sleep on the VF side)
12298                  */
12299                 netif_addr_unlock_bh(bp->dev);
12300                 bnx2x_vfpf_storm_rx_mode(bp);
12301         }
12302 }
12303
12304 /* called with rtnl_lock */
12305 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12306                            int devad, u16 addr)
12307 {
12308         struct bnx2x *bp = netdev_priv(netdev);
12309         u16 value;
12310         int rc;
12311
12312         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12313            prtad, devad, addr);
12314
12315         /* The HW expects different devad if CL22 is used */
12316         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12317
12318         bnx2x_acquire_phy_lock(bp);
12319         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12320         bnx2x_release_phy_lock(bp);
12321         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12322
12323         if (!rc)
12324                 rc = value;
12325         return rc;
12326 }
12327
12328 /* called with rtnl_lock */
12329 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12330                             u16 addr, u16 value)
12331 {
12332         struct bnx2x *bp = netdev_priv(netdev);
12333         int rc;
12334
12335         DP(NETIF_MSG_LINK,
12336            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12337            prtad, devad, addr, value);
12338
12339         /* The HW expects different devad if CL22 is used */
12340         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12341
12342         bnx2x_acquire_phy_lock(bp);
12343         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12344         bnx2x_release_phy_lock(bp);
12345         return rc;
12346 }
12347
12348 /* called with rtnl_lock */
12349 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12350 {
12351         struct bnx2x *bp = netdev_priv(dev);
12352         struct mii_ioctl_data *mdio = if_mii(ifr);
12353
12354         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12355            mdio->phy_id, mdio->reg_num, mdio->val_in);
12356
12357         if (!netif_running(dev))
12358                 return -EAGAIN;
12359
12360         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12361 }
12362
12363 #ifdef CONFIG_NET_POLL_CONTROLLER
12364 static void poll_bnx2x(struct net_device *dev)
12365 {
12366         struct bnx2x *bp = netdev_priv(dev);
12367         int i;
12368
12369         for_each_eth_queue(bp, i) {
12370                 struct bnx2x_fastpath *fp = &bp->fp[i];
12371                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12372         }
12373 }
12374 #endif
12375
12376 static int bnx2x_validate_addr(struct net_device *dev)
12377 {
12378         struct bnx2x *bp = netdev_priv(dev);
12379
12380         /* query the bulletin board for mac address configured by the PF */
12381         if (IS_VF(bp))
12382                 bnx2x_sample_bulletin(bp);
12383
12384         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12385                 BNX2X_ERR("Non-valid Ethernet address\n");
12386                 return -EADDRNOTAVAIL;
12387         }
12388         return 0;
12389 }
12390
12391 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12392                                   struct netdev_phys_port_id *ppid)
12393 {
12394         struct bnx2x *bp = netdev_priv(netdev);
12395
12396         if (!(bp->flags & HAS_PHYS_PORT_ID))
12397                 return -EOPNOTSUPP;
12398
12399         ppid->id_len = sizeof(bp->phys_port_id);
12400         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12401
12402         return 0;
12403 }
12404
12405 static const struct net_device_ops bnx2x_netdev_ops = {
12406         .ndo_open               = bnx2x_open,
12407         .ndo_stop               = bnx2x_close,
12408         .ndo_start_xmit         = bnx2x_start_xmit,
12409         .ndo_select_queue       = bnx2x_select_queue,
12410         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12411         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12412         .ndo_validate_addr      = bnx2x_validate_addr,
12413         .ndo_do_ioctl           = bnx2x_ioctl,
12414         .ndo_change_mtu         = bnx2x_change_mtu,
12415         .ndo_fix_features       = bnx2x_fix_features,
12416         .ndo_set_features       = bnx2x_set_features,
12417         .ndo_tx_timeout         = bnx2x_tx_timeout,
12418 #ifdef CONFIG_NET_POLL_CONTROLLER
12419         .ndo_poll_controller    = poll_bnx2x,
12420 #endif
12421         .ndo_setup_tc           = bnx2x_setup_tc,
12422 #ifdef CONFIG_BNX2X_SRIOV
12423         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12424         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12425         .ndo_get_vf_config      = bnx2x_get_vf_config,
12426 #endif
12427 #ifdef NETDEV_FCOE_WWNN
12428         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12429 #endif
12430
12431 #ifdef CONFIG_NET_RX_BUSY_POLL
12432         .ndo_busy_poll          = bnx2x_low_latency_recv,
12433 #endif
12434         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12435         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
12436 };
12437
12438 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12439 {
12440         struct device *dev = &bp->pdev->dev;
12441
12442         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12443             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12444                 dev_err(dev, "System does not support DMA, aborting\n");
12445                 return -EIO;
12446         }
12447
12448         return 0;
12449 }
12450
12451 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12452 {
12453         if (bp->flags & AER_ENABLED) {
12454                 pci_disable_pcie_error_reporting(bp->pdev);
12455                 bp->flags &= ~AER_ENABLED;
12456         }
12457 }
12458
12459 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12460                           struct net_device *dev, unsigned long board_type)
12461 {
12462         int rc;
12463         u32 pci_cfg_dword;
12464         bool chip_is_e1x = (board_type == BCM57710 ||
12465                             board_type == BCM57711 ||
12466                             board_type == BCM57711E);
12467
12468         SET_NETDEV_DEV(dev, &pdev->dev);
12469
12470         bp->dev = dev;
12471         bp->pdev = pdev;
12472
12473         rc = pci_enable_device(pdev);
12474         if (rc) {
12475                 dev_err(&bp->pdev->dev,
12476                         "Cannot enable PCI device, aborting\n");
12477                 goto err_out;
12478         }
12479
12480         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12481                 dev_err(&bp->pdev->dev,
12482                         "Cannot find PCI device base address, aborting\n");
12483                 rc = -ENODEV;
12484                 goto err_out_disable;
12485         }
12486
12487         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12488                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12489                 rc = -ENODEV;
12490                 goto err_out_disable;
12491         }
12492
12493         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12494         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12495             PCICFG_REVESION_ID_ERROR_VAL) {
12496                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12497                 rc = -ENODEV;
12498                 goto err_out_disable;
12499         }
12500
12501         if (atomic_read(&pdev->enable_cnt) == 1) {
12502                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12503                 if (rc) {
12504                         dev_err(&bp->pdev->dev,
12505                                 "Cannot obtain PCI resources, aborting\n");
12506                         goto err_out_disable;
12507                 }
12508
12509                 pci_set_master(pdev);
12510                 pci_save_state(pdev);
12511         }
12512
12513         if (IS_PF(bp)) {
12514                 if (!pdev->pm_cap) {
12515                         dev_err(&bp->pdev->dev,
12516                                 "Cannot find power management capability, aborting\n");
12517                         rc = -EIO;
12518                         goto err_out_release;
12519                 }
12520         }
12521
12522         if (!pci_is_pcie(pdev)) {
12523                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12524                 rc = -EIO;
12525                 goto err_out_release;
12526         }
12527
12528         rc = bnx2x_set_coherency_mask(bp);
12529         if (rc)
12530                 goto err_out_release;
12531
12532         dev->mem_start = pci_resource_start(pdev, 0);
12533         dev->base_addr = dev->mem_start;
12534         dev->mem_end = pci_resource_end(pdev, 0);
12535
12536         dev->irq = pdev->irq;
12537
12538         bp->regview = pci_ioremap_bar(pdev, 0);
12539         if (!bp->regview) {
12540                 dev_err(&bp->pdev->dev,
12541                         "Cannot map register space, aborting\n");
12542                 rc = -ENOMEM;
12543                 goto err_out_release;
12544         }
12545
12546         /* In E1/E1H use pci device function given by kernel.
12547          * In E2/E3 read physical function from ME register since these chips
12548          * support Physical Device Assignment where kernel BDF maybe arbitrary
12549          * (depending on hypervisor).
12550          */
12551         if (chip_is_e1x) {
12552                 bp->pf_num = PCI_FUNC(pdev->devfn);
12553         } else {
12554                 /* chip is E2/3*/
12555                 pci_read_config_dword(bp->pdev,
12556                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12557                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12558                                   ME_REG_ABS_PF_NUM_SHIFT);
12559         }
12560         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12561
12562         /* clean indirect addresses */
12563         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12564                                PCICFG_VENDOR_ID_OFFSET);
12565
12566         /* AER (Advanced Error reporting) configuration */
12567         rc = pci_enable_pcie_error_reporting(pdev);
12568         if (!rc)
12569                 bp->flags |= AER_ENABLED;
12570         else
12571                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12572
12573         /*
12574          * Clean the following indirect addresses for all functions since it
12575          * is not used by the driver.
12576          */
12577         if (IS_PF(bp)) {
12578                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12579                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12580                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12581                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12582
12583                 if (chip_is_e1x) {
12584                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12585                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12586                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12587                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12588                 }
12589
12590                 /* Enable internal target-read (in case we are probed after PF
12591                  * FLR). Must be done prior to any BAR read access. Only for
12592                  * 57712 and up
12593                  */
12594                 if (!chip_is_e1x)
12595                         REG_WR(bp,
12596                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12597         }
12598
12599         dev->watchdog_timeo = TX_TIMEOUT;
12600
12601         dev->netdev_ops = &bnx2x_netdev_ops;
12602         bnx2x_set_ethtool_ops(bp, dev);
12603
12604         dev->priv_flags |= IFF_UNICAST_FLT;
12605
12606         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12607                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12608                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12609                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12610         if (!CHIP_IS_E1x(bp)) {
12611                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12612                                     NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12613                 dev->hw_enc_features =
12614                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12615                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12616                         NETIF_F_GSO_IPIP |
12617                         NETIF_F_GSO_SIT |
12618                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12619         }
12620
12621         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12622                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12623
12624         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12625         dev->features |= NETIF_F_HIGHDMA;
12626
12627         /* Add Loopback capability to the device */
12628         dev->hw_features |= NETIF_F_LOOPBACK;
12629
12630 #ifdef BCM_DCBNL
12631         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12632 #endif
12633
12634         /* get_port_hwinfo() will set prtad and mmds properly */
12635         bp->mdio.prtad = MDIO_PRTAD_NONE;
12636         bp->mdio.mmds = 0;
12637         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12638         bp->mdio.dev = dev;
12639         bp->mdio.mdio_read = bnx2x_mdio_read;
12640         bp->mdio.mdio_write = bnx2x_mdio_write;
12641
12642         return 0;
12643
12644 err_out_release:
12645         if (atomic_read(&pdev->enable_cnt) == 1)
12646                 pci_release_regions(pdev);
12647
12648 err_out_disable:
12649         pci_disable_device(pdev);
12650
12651 err_out:
12652         return rc;
12653 }
12654
12655 static int bnx2x_check_firmware(struct bnx2x *bp)
12656 {
12657         const struct firmware *firmware = bp->firmware;
12658         struct bnx2x_fw_file_hdr *fw_hdr;
12659         struct bnx2x_fw_file_section *sections;
12660         u32 offset, len, num_ops;
12661         __be16 *ops_offsets;
12662         int i;
12663         const u8 *fw_ver;
12664
12665         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12666                 BNX2X_ERR("Wrong FW size\n");
12667                 return -EINVAL;
12668         }
12669
12670         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12671         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12672
12673         /* Make sure none of the offsets and sizes make us read beyond
12674          * the end of the firmware data */
12675         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12676                 offset = be32_to_cpu(sections[i].offset);
12677                 len = be32_to_cpu(sections[i].len);
12678                 if (offset + len > firmware->size) {
12679                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12680                         return -EINVAL;
12681                 }
12682         }
12683
12684         /* Likewise for the init_ops offsets */
12685         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12686         ops_offsets = (__force __be16 *)(firmware->data + offset);
12687         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12688
12689         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12690                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12691                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12692                         return -EINVAL;
12693                 }
12694         }
12695
12696         /* Check FW version */
12697         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12698         fw_ver = firmware->data + offset;
12699         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12700             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12701             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12702             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12703                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12704                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12705                        BCM_5710_FW_MAJOR_VERSION,
12706                        BCM_5710_FW_MINOR_VERSION,
12707                        BCM_5710_FW_REVISION_VERSION,
12708                        BCM_5710_FW_ENGINEERING_VERSION);
12709                 return -EINVAL;
12710         }
12711
12712         return 0;
12713 }
12714
12715 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12716 {
12717         const __be32 *source = (const __be32 *)_source;
12718         u32 *target = (u32 *)_target;
12719         u32 i;
12720
12721         for (i = 0; i < n/4; i++)
12722                 target[i] = be32_to_cpu(source[i]);
12723 }
12724
12725 /*
12726    Ops array is stored in the following format:
12727    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12728  */
12729 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12730 {
12731         const __be32 *source = (const __be32 *)_source;
12732         struct raw_op *target = (struct raw_op *)_target;
12733         u32 i, j, tmp;
12734
12735         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12736                 tmp = be32_to_cpu(source[j]);
12737                 target[i].op = (tmp >> 24) & 0xff;
12738                 target[i].offset = tmp & 0xffffff;
12739                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12740         }
12741 }
12742
12743 /* IRO array is stored in the following format:
12744  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12745  */
12746 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12747 {
12748         const __be32 *source = (const __be32 *)_source;
12749         struct iro *target = (struct iro *)_target;
12750         u32 i, j, tmp;
12751
12752         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12753                 target[i].base = be32_to_cpu(source[j]);
12754                 j++;
12755                 tmp = be32_to_cpu(source[j]);
12756                 target[i].m1 = (tmp >> 16) & 0xffff;
12757                 target[i].m2 = tmp & 0xffff;
12758                 j++;
12759                 tmp = be32_to_cpu(source[j]);
12760                 target[i].m3 = (tmp >> 16) & 0xffff;
12761                 target[i].size = tmp & 0xffff;
12762                 j++;
12763         }
12764 }
12765
12766 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12767 {
12768         const __be16 *source = (const __be16 *)_source;
12769         u16 *target = (u16 *)_target;
12770         u32 i;
12771
12772         for (i = 0; i < n/2; i++)
12773                 target[i] = be16_to_cpu(source[i]);
12774 }
12775
12776 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12777 do {                                                                    \
12778         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12779         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12780         if (!bp->arr)                                                   \
12781                 goto lbl;                                               \
12782         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12783              (u8 *)bp->arr, len);                                       \
12784 } while (0)
12785
12786 static int bnx2x_init_firmware(struct bnx2x *bp)
12787 {
12788         const char *fw_file_name;
12789         struct bnx2x_fw_file_hdr *fw_hdr;
12790         int rc;
12791
12792         if (bp->firmware)
12793                 return 0;
12794
12795         if (CHIP_IS_E1(bp))
12796                 fw_file_name = FW_FILE_NAME_E1;
12797         else if (CHIP_IS_E1H(bp))
12798                 fw_file_name = FW_FILE_NAME_E1H;
12799         else if (!CHIP_IS_E1x(bp))
12800                 fw_file_name = FW_FILE_NAME_E2;
12801         else {
12802                 BNX2X_ERR("Unsupported chip revision\n");
12803                 return -EINVAL;
12804         }
12805         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12806
12807         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12808         if (rc) {
12809                 BNX2X_ERR("Can't load firmware file %s\n",
12810                           fw_file_name);
12811                 goto request_firmware_exit;
12812         }
12813
12814         rc = bnx2x_check_firmware(bp);
12815         if (rc) {
12816                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12817                 goto request_firmware_exit;
12818         }
12819
12820         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12821
12822         /* Initialize the pointers to the init arrays */
12823         /* Blob */
12824         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12825
12826         /* Opcodes */
12827         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12828
12829         /* Offsets */
12830         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12831                             be16_to_cpu_n);
12832
12833         /* STORMs firmware */
12834         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12835                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12836         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12837                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12838         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12839                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12840         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12841                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12842         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12843                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12844         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12845                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12846         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12847                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12848         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12849                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12850         /* IRO */
12851         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12852
12853         return 0;
12854
12855 iro_alloc_err:
12856         kfree(bp->init_ops_offsets);
12857 init_offsets_alloc_err:
12858         kfree(bp->init_ops);
12859 init_ops_alloc_err:
12860         kfree(bp->init_data);
12861 request_firmware_exit:
12862         release_firmware(bp->firmware);
12863         bp->firmware = NULL;
12864
12865         return rc;
12866 }
12867
12868 static void bnx2x_release_firmware(struct bnx2x *bp)
12869 {
12870         kfree(bp->init_ops_offsets);
12871         kfree(bp->init_ops);
12872         kfree(bp->init_data);
12873         release_firmware(bp->firmware);
12874         bp->firmware = NULL;
12875 }
12876
12877 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12878         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12879         .init_hw_cmn      = bnx2x_init_hw_common,
12880         .init_hw_port     = bnx2x_init_hw_port,
12881         .init_hw_func     = bnx2x_init_hw_func,
12882
12883         .reset_hw_cmn     = bnx2x_reset_common,
12884         .reset_hw_port    = bnx2x_reset_port,
12885         .reset_hw_func    = bnx2x_reset_func,
12886
12887         .gunzip_init      = bnx2x_gunzip_init,
12888         .gunzip_end       = bnx2x_gunzip_end,
12889
12890         .init_fw          = bnx2x_init_firmware,
12891         .release_fw       = bnx2x_release_firmware,
12892 };
12893
12894 void bnx2x__init_func_obj(struct bnx2x *bp)
12895 {
12896         /* Prepare DMAE related driver resources */
12897         bnx2x_setup_dmae(bp);
12898
12899         bnx2x_init_func_obj(bp, &bp->func_obj,
12900                             bnx2x_sp(bp, func_rdata),
12901                             bnx2x_sp_mapping(bp, func_rdata),
12902                             bnx2x_sp(bp, func_afex_rdata),
12903                             bnx2x_sp_mapping(bp, func_afex_rdata),
12904                             &bnx2x_func_sp_drv);
12905 }
12906
12907 /* must be called after sriov-enable */
12908 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12909 {
12910         int cid_count = BNX2X_L2_MAX_CID(bp);
12911
12912         if (IS_SRIOV(bp))
12913                 cid_count += BNX2X_VF_CIDS;
12914
12915         if (CNIC_SUPPORT(bp))
12916                 cid_count += CNIC_CID_MAX;
12917
12918         return roundup(cid_count, QM_CID_ROUND);
12919 }
12920
12921 /**
12922  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12923  *
12924  * @dev:        pci device
12925  *
12926  */
12927 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12928 {
12929         int index;
12930         u16 control = 0;
12931
12932         /*
12933          * If MSI-X is not supported - return number of SBs needed to support
12934          * one fast path queue: one FP queue + SB for CNIC
12935          */
12936         if (!pdev->msix_cap) {
12937                 dev_info(&pdev->dev, "no msix capability found\n");
12938                 return 1 + cnic_cnt;
12939         }
12940         dev_info(&pdev->dev, "msix capability found\n");
12941
12942         /*
12943          * The value in the PCI configuration space is the index of the last
12944          * entry, namely one less than the actual size of the table, which is
12945          * exactly what we want to return from this function: number of all SBs
12946          * without the default SB.
12947          * For VFs there is no default SB, then we return (index+1).
12948          */
12949         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
12950
12951         index = control & PCI_MSIX_FLAGS_QSIZE;
12952
12953         return index;
12954 }
12955
12956 static int set_max_cos_est(int chip_id)
12957 {
12958         switch (chip_id) {
12959         case BCM57710:
12960         case BCM57711:
12961         case BCM57711E:
12962                 return BNX2X_MULTI_TX_COS_E1X;
12963         case BCM57712:
12964         case BCM57712_MF:
12965                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12966         case BCM57800:
12967         case BCM57800_MF:
12968         case BCM57810:
12969         case BCM57810_MF:
12970         case BCM57840_4_10:
12971         case BCM57840_2_20:
12972         case BCM57840_O:
12973         case BCM57840_MFO:
12974         case BCM57840_MF:
12975         case BCM57811:
12976         case BCM57811_MF:
12977                 return BNX2X_MULTI_TX_COS_E3B0;
12978         case BCM57712_VF:
12979         case BCM57800_VF:
12980         case BCM57810_VF:
12981         case BCM57840_VF:
12982         case BCM57811_VF:
12983                 return 1;
12984         default:
12985                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12986                 return -ENODEV;
12987         }
12988 }
12989
12990 static int set_is_vf(int chip_id)
12991 {
12992         switch (chip_id) {
12993         case BCM57712_VF:
12994         case BCM57800_VF:
12995         case BCM57810_VF:
12996         case BCM57840_VF:
12997         case BCM57811_VF:
12998                 return true;
12999         default:
13000                 return false;
13001         }
13002 }
13003
13004 static int bnx2x_init_one(struct pci_dev *pdev,
13005                                     const struct pci_device_id *ent)
13006 {
13007         struct net_device *dev = NULL;
13008         struct bnx2x *bp;
13009         enum pcie_link_width pcie_width;
13010         enum pci_bus_speed pcie_speed;
13011         int rc, max_non_def_sbs;
13012         int rx_count, tx_count, rss_count, doorbell_size;
13013         int max_cos_est;
13014         bool is_vf;
13015         int cnic_cnt;
13016
13017         /* An estimated maximum supported CoS number according to the chip
13018          * version.
13019          * We will try to roughly estimate the maximum number of CoSes this chip
13020          * may support in order to minimize the memory allocated for Tx
13021          * netdev_queue's. This number will be accurately calculated during the
13022          * initialization of bp->max_cos based on the chip versions AND chip
13023          * revision in the bnx2x_init_bp().
13024          */
13025         max_cos_est = set_max_cos_est(ent->driver_data);
13026         if (max_cos_est < 0)
13027                 return max_cos_est;
13028         is_vf = set_is_vf(ent->driver_data);
13029         cnic_cnt = is_vf ? 0 : 1;
13030
13031         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13032
13033         /* add another SB for VF as it has no default SB */
13034         max_non_def_sbs += is_vf ? 1 : 0;
13035
13036         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13037         rss_count = max_non_def_sbs - cnic_cnt;
13038
13039         if (rss_count < 1)
13040                 return -EINVAL;
13041
13042         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13043         rx_count = rss_count + cnic_cnt;
13044
13045         /* Maximum number of netdev Tx queues:
13046          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13047          */
13048         tx_count = rss_count * max_cos_est + cnic_cnt;
13049
13050         /* dev zeroed in init_etherdev */
13051         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13052         if (!dev)
13053                 return -ENOMEM;
13054
13055         bp = netdev_priv(dev);
13056
13057         bp->flags = 0;
13058         if (is_vf)
13059                 bp->flags |= IS_VF_FLAG;
13060
13061         bp->igu_sb_cnt = max_non_def_sbs;
13062         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13063         bp->msg_enable = debug;
13064         bp->cnic_support = cnic_cnt;
13065         bp->cnic_probe = bnx2x_cnic_probe;
13066
13067         pci_set_drvdata(pdev, dev);
13068
13069         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13070         if (rc < 0) {
13071                 free_netdev(dev);
13072                 return rc;
13073         }
13074
13075         BNX2X_DEV_INFO("This is a %s function\n",
13076                        IS_PF(bp) ? "physical" : "virtual");
13077         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13078         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13079         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13080                        tx_count, rx_count);
13081
13082         rc = bnx2x_init_bp(bp);
13083         if (rc)
13084                 goto init_one_exit;
13085
13086         /* Map doorbells here as we need the real value of bp->max_cos which
13087          * is initialized in bnx2x_init_bp() to determine the number of
13088          * l2 connections.
13089          */
13090         if (IS_VF(bp)) {
13091                 bp->doorbells = bnx2x_vf_doorbells(bp);
13092                 rc = bnx2x_vf_pci_alloc(bp);
13093                 if (rc)
13094                         goto init_one_exit;
13095         } else {
13096                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13097                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13098                         dev_err(&bp->pdev->dev,
13099                                 "Cannot map doorbells, bar size too small, aborting\n");
13100                         rc = -ENOMEM;
13101                         goto init_one_exit;
13102                 }
13103                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13104                                                 doorbell_size);
13105         }
13106         if (!bp->doorbells) {
13107                 dev_err(&bp->pdev->dev,
13108                         "Cannot map doorbell space, aborting\n");
13109                 rc = -ENOMEM;
13110                 goto init_one_exit;
13111         }
13112
13113         if (IS_VF(bp)) {
13114                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13115                 if (rc)
13116                         goto init_one_exit;
13117         }
13118
13119         /* Enable SRIOV if capability found in configuration space */
13120         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13121         if (rc)
13122                 goto init_one_exit;
13123
13124         /* calc qm_cid_count */
13125         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13126         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13127
13128         /* disable FCOE L2 queue for E1x*/
13129         if (CHIP_IS_E1x(bp))
13130                 bp->flags |= NO_FCOE_FLAG;
13131
13132         /* Set bp->num_queues for MSI-X mode*/
13133         bnx2x_set_num_queues(bp);
13134
13135         /* Configure interrupt mode: try to enable MSI-X/MSI if
13136          * needed.
13137          */
13138         rc = bnx2x_set_int_mode(bp);
13139         if (rc) {
13140                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13141                 goto init_one_exit;
13142         }
13143         BNX2X_DEV_INFO("set interrupts successfully\n");
13144
13145         /* register the net device */
13146         rc = register_netdev(dev);
13147         if (rc) {
13148                 dev_err(&pdev->dev, "Cannot register net device\n");
13149                 goto init_one_exit;
13150         }
13151         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13152
13153         if (!NO_FCOE(bp)) {
13154                 /* Add storage MAC address */
13155                 rtnl_lock();
13156                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13157                 rtnl_unlock();
13158         }
13159         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13160             pcie_speed == PCI_SPEED_UNKNOWN ||
13161             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13162                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13163         else
13164                 BNX2X_DEV_INFO(
13165                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13166                        board_info[ent->driver_data].name,
13167                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13168                        pcie_width,
13169                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13170                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13171                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13172                        "Unknown",
13173                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
13174
13175         return 0;
13176
13177 init_one_exit:
13178         bnx2x_disable_pcie_error_reporting(bp);
13179
13180         if (bp->regview)
13181                 iounmap(bp->regview);
13182
13183         if (IS_PF(bp) && bp->doorbells)
13184                 iounmap(bp->doorbells);
13185
13186         free_netdev(dev);
13187
13188         if (atomic_read(&pdev->enable_cnt) == 1)
13189                 pci_release_regions(pdev);
13190
13191         pci_disable_device(pdev);
13192
13193         return rc;
13194 }
13195
13196 static void __bnx2x_remove(struct pci_dev *pdev,
13197                            struct net_device *dev,
13198                            struct bnx2x *bp,
13199                            bool remove_netdev)
13200 {
13201         /* Delete storage MAC address */
13202         if (!NO_FCOE(bp)) {
13203                 rtnl_lock();
13204                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13205                 rtnl_unlock();
13206         }
13207
13208 #ifdef BCM_DCBNL
13209         /* Delete app tlvs from dcbnl */
13210         bnx2x_dcbnl_update_applist(bp, true);
13211 #endif
13212
13213         if (IS_PF(bp) &&
13214             !BP_NOMCP(bp) &&
13215             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13216                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13217
13218         /* Close the interface - either directly or implicitly */
13219         if (remove_netdev) {
13220                 unregister_netdev(dev);
13221         } else {
13222                 rtnl_lock();
13223                 dev_close(dev);
13224                 rtnl_unlock();
13225         }
13226
13227         bnx2x_iov_remove_one(bp);
13228
13229         /* Power on: we can't let PCI layer write to us while we are in D3 */
13230         if (IS_PF(bp))
13231                 bnx2x_set_power_state(bp, PCI_D0);
13232
13233         /* Disable MSI/MSI-X */
13234         bnx2x_disable_msi(bp);
13235
13236         /* Power off */
13237         if (IS_PF(bp))
13238                 bnx2x_set_power_state(bp, PCI_D3hot);
13239
13240         /* Make sure RESET task is not scheduled before continuing */
13241         cancel_delayed_work_sync(&bp->sp_rtnl_task);
13242
13243         /* send message via vfpf channel to release the resources of this vf */
13244         if (IS_VF(bp))
13245                 bnx2x_vfpf_release(bp);
13246
13247         /* Assumes no further PCIe PM changes will occur */
13248         if (system_state == SYSTEM_POWER_OFF) {
13249                 pci_wake_from_d3(pdev, bp->wol);
13250                 pci_set_power_state(pdev, PCI_D3hot);
13251         }
13252
13253         bnx2x_disable_pcie_error_reporting(bp);
13254         if (remove_netdev) {
13255                 if (bp->regview)
13256                         iounmap(bp->regview);
13257
13258                 /* For vfs, doorbells are part of the regview and were unmapped
13259                  * along with it. FW is only loaded by PF.
13260                  */
13261                 if (IS_PF(bp)) {
13262                         if (bp->doorbells)
13263                                 iounmap(bp->doorbells);
13264
13265                         bnx2x_release_firmware(bp);
13266                 } else {
13267                         bnx2x_vf_pci_dealloc(bp);
13268                 }
13269                 bnx2x_free_mem_bp(bp);
13270
13271                 free_netdev(dev);
13272
13273                 if (atomic_read(&pdev->enable_cnt) == 1)
13274                         pci_release_regions(pdev);
13275
13276                 pci_disable_device(pdev);
13277         }
13278 }
13279
13280 static void bnx2x_remove_one(struct pci_dev *pdev)
13281 {
13282         struct net_device *dev = pci_get_drvdata(pdev);
13283         struct bnx2x *bp;
13284
13285         if (!dev) {
13286                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13287                 return;
13288         }
13289         bp = netdev_priv(dev);
13290
13291         __bnx2x_remove(pdev, dev, bp, true);
13292 }
13293
13294 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13295 {
13296         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13297
13298         bp->rx_mode = BNX2X_RX_MODE_NONE;
13299
13300         if (CNIC_LOADED(bp))
13301                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13302
13303         /* Stop Tx */
13304         bnx2x_tx_disable(bp);
13305         /* Delete all NAPI objects */
13306         bnx2x_del_all_napi(bp);
13307         if (CNIC_LOADED(bp))
13308                 bnx2x_del_all_napi_cnic(bp);
13309         netdev_reset_tc(bp->dev);
13310
13311         del_timer_sync(&bp->timer);
13312         cancel_delayed_work_sync(&bp->sp_task);
13313         cancel_delayed_work_sync(&bp->period_task);
13314
13315         spin_lock_bh(&bp->stats_lock);
13316         bp->stats_state = STATS_STATE_DISABLED;
13317         spin_unlock_bh(&bp->stats_lock);
13318
13319         bnx2x_save_statistics(bp);
13320
13321         netif_carrier_off(bp->dev);
13322
13323         return 0;
13324 }
13325
13326 /**
13327  * bnx2x_io_error_detected - called when PCI error is detected
13328  * @pdev: Pointer to PCI device
13329  * @state: The current pci connection state
13330  *
13331  * This function is called after a PCI bus error affecting
13332  * this device has been detected.
13333  */
13334 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13335                                                 pci_channel_state_t state)
13336 {
13337         struct net_device *dev = pci_get_drvdata(pdev);
13338         struct bnx2x *bp = netdev_priv(dev);
13339
13340         rtnl_lock();
13341
13342         BNX2X_ERR("IO error detected\n");
13343
13344         netif_device_detach(dev);
13345
13346         if (state == pci_channel_io_perm_failure) {
13347                 rtnl_unlock();
13348                 return PCI_ERS_RESULT_DISCONNECT;
13349         }
13350
13351         if (netif_running(dev))
13352                 bnx2x_eeh_nic_unload(bp);
13353
13354         bnx2x_prev_path_mark_eeh(bp);
13355
13356         pci_disable_device(pdev);
13357
13358         rtnl_unlock();
13359
13360         /* Request a slot reset */
13361         return PCI_ERS_RESULT_NEED_RESET;
13362 }
13363
13364 /**
13365  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13366  * @pdev: Pointer to PCI device
13367  *
13368  * Restart the card from scratch, as if from a cold-boot.
13369  */
13370 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13371 {
13372         struct net_device *dev = pci_get_drvdata(pdev);
13373         struct bnx2x *bp = netdev_priv(dev);
13374         int i;
13375
13376         rtnl_lock();
13377         BNX2X_ERR("IO slot reset initializing...\n");
13378         if (pci_enable_device(pdev)) {
13379                 dev_err(&pdev->dev,
13380                         "Cannot re-enable PCI device after reset\n");
13381                 rtnl_unlock();
13382                 return PCI_ERS_RESULT_DISCONNECT;
13383         }
13384
13385         pci_set_master(pdev);
13386         pci_restore_state(pdev);
13387         pci_save_state(pdev);
13388
13389         if (netif_running(dev))
13390                 bnx2x_set_power_state(bp, PCI_D0);
13391
13392         if (netif_running(dev)) {
13393                 BNX2X_ERR("IO slot reset --> driver unload\n");
13394
13395                 /* MCP should have been reset; Need to wait for validity */
13396                 bnx2x_init_shmem(bp);
13397
13398                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13399                         u32 v;
13400
13401                         v = SHMEM2_RD(bp,
13402                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13403                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13404                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13405                 }
13406                 bnx2x_drain_tx_queues(bp);
13407                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13408                 bnx2x_netif_stop(bp, 1);
13409                 bnx2x_free_irq(bp);
13410
13411                 /* Report UNLOAD_DONE to MCP */
13412                 bnx2x_send_unload_done(bp, true);
13413
13414                 bp->sp_state = 0;
13415                 bp->port.pmf = 0;
13416
13417                 bnx2x_prev_unload(bp);
13418
13419                 /* We should have reseted the engine, so It's fair to
13420                  * assume the FW will no longer write to the bnx2x driver.
13421                  */
13422                 bnx2x_squeeze_objects(bp);
13423                 bnx2x_free_skbs(bp);
13424                 for_each_rx_queue(bp, i)
13425                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13426                 bnx2x_free_fp_mem(bp);
13427                 bnx2x_free_mem(bp);
13428
13429                 bp->state = BNX2X_STATE_CLOSED;
13430         }
13431
13432         rtnl_unlock();
13433
13434         /* If AER, perform cleanup of the PCIe registers */
13435         if (bp->flags & AER_ENABLED) {
13436                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
13437                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13438                 else
13439                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13440         }
13441
13442         return PCI_ERS_RESULT_RECOVERED;
13443 }
13444
13445 /**
13446  * bnx2x_io_resume - called when traffic can start flowing again
13447  * @pdev: Pointer to PCI device
13448  *
13449  * This callback is called when the error recovery driver tells us that
13450  * its OK to resume normal operation.
13451  */
13452 static void bnx2x_io_resume(struct pci_dev *pdev)
13453 {
13454         struct net_device *dev = pci_get_drvdata(pdev);
13455         struct bnx2x *bp = netdev_priv(dev);
13456
13457         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13458                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13459                 return;
13460         }
13461
13462         rtnl_lock();
13463
13464         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13465                                                         DRV_MSG_SEQ_NUMBER_MASK;
13466
13467         if (netif_running(dev))
13468                 bnx2x_nic_load(bp, LOAD_NORMAL);
13469
13470         netif_device_attach(dev);
13471
13472         rtnl_unlock();
13473 }
13474
13475 static const struct pci_error_handlers bnx2x_err_handler = {
13476         .error_detected = bnx2x_io_error_detected,
13477         .slot_reset     = bnx2x_io_slot_reset,
13478         .resume         = bnx2x_io_resume,
13479 };
13480
13481 static void bnx2x_shutdown(struct pci_dev *pdev)
13482 {
13483         struct net_device *dev = pci_get_drvdata(pdev);
13484         struct bnx2x *bp;
13485
13486         if (!dev)
13487                 return;
13488
13489         bp = netdev_priv(dev);
13490         if (!bp)
13491                 return;
13492
13493         rtnl_lock();
13494         netif_device_detach(dev);
13495         rtnl_unlock();
13496
13497         /* Don't remove the netdevice, as there are scenarios which will cause
13498          * the kernel to hang, e.g., when trying to remove bnx2i while the
13499          * rootfs is mounted from SAN.
13500          */
13501         __bnx2x_remove(pdev, dev, bp, false);
13502 }
13503
13504 static struct pci_driver bnx2x_pci_driver = {
13505         .name        = DRV_MODULE_NAME,
13506         .id_table    = bnx2x_pci_tbl,
13507         .probe       = bnx2x_init_one,
13508         .remove      = bnx2x_remove_one,
13509         .suspend     = bnx2x_suspend,
13510         .resume      = bnx2x_resume,
13511         .err_handler = &bnx2x_err_handler,
13512 #ifdef CONFIG_BNX2X_SRIOV
13513         .sriov_configure = bnx2x_sriov_configure,
13514 #endif
13515         .shutdown    = bnx2x_shutdown,
13516 };
13517
13518 static int __init bnx2x_init(void)
13519 {
13520         int ret;
13521
13522         pr_info("%s", version);
13523
13524         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13525         if (bnx2x_wq == NULL) {
13526                 pr_err("Cannot create workqueue\n");
13527                 return -ENOMEM;
13528         }
13529         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13530         if (!bnx2x_iov_wq) {
13531                 pr_err("Cannot create iov workqueue\n");
13532                 destroy_workqueue(bnx2x_wq);
13533                 return -ENOMEM;
13534         }
13535
13536         ret = pci_register_driver(&bnx2x_pci_driver);
13537         if (ret) {
13538                 pr_err("Cannot register driver\n");
13539                 destroy_workqueue(bnx2x_wq);
13540                 destroy_workqueue(bnx2x_iov_wq);
13541         }
13542         return ret;
13543 }
13544
13545 static void __exit bnx2x_cleanup(void)
13546 {
13547         struct list_head *pos, *q;
13548
13549         pci_unregister_driver(&bnx2x_pci_driver);
13550
13551         destroy_workqueue(bnx2x_wq);
13552         destroy_workqueue(bnx2x_iov_wq);
13553
13554         /* Free globally allocated resources */
13555         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13556                 struct bnx2x_prev_path_list *tmp =
13557                         list_entry(pos, struct bnx2x_prev_path_list, list);
13558                 list_del(pos);
13559                 kfree(tmp);
13560         }
13561 }
13562
13563 void bnx2x_notify_link_changed(struct bnx2x *bp)
13564 {
13565         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13566 }
13567
13568 module_init(bnx2x_init);
13569 module_exit(bnx2x_cleanup);
13570
13571 /**
13572  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13573  *
13574  * @bp:         driver handle
13575  * @set:        set or clear the CAM entry
13576  *
13577  * This function will wait until the ramrod completion returns.
13578  * Return 0 if success, -ENODEV if ramrod doesn't return.
13579  */
13580 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13581 {
13582         unsigned long ramrod_flags = 0;
13583
13584         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13585         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13586                                  &bp->iscsi_l2_mac_obj, true,
13587                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13588 }
13589
13590 /* count denotes the number of new completions we have seen */
13591 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13592 {
13593         struct eth_spe *spe;
13594         int cxt_index, cxt_offset;
13595
13596 #ifdef BNX2X_STOP_ON_ERROR
13597         if (unlikely(bp->panic))
13598                 return;
13599 #endif
13600
13601         spin_lock_bh(&bp->spq_lock);
13602         BUG_ON(bp->cnic_spq_pending < count);
13603         bp->cnic_spq_pending -= count;
13604
13605         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13606                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13607                                 & SPE_HDR_CONN_TYPE) >>
13608                                 SPE_HDR_CONN_TYPE_SHIFT;
13609                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13610                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13611
13612                 /* Set validation for iSCSI L2 client before sending SETUP
13613                  *  ramrod
13614                  */
13615                 if (type == ETH_CONNECTION_TYPE) {
13616                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13617                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13618                                         ILT_PAGE_CIDS;
13619                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13620                                         (cxt_index * ILT_PAGE_CIDS);
13621                                 bnx2x_set_ctx_validation(bp,
13622                                         &bp->context[cxt_index].
13623                                                          vcxt[cxt_offset].eth,
13624                                         BNX2X_ISCSI_ETH_CID(bp));
13625                         }
13626                 }
13627
13628                 /*
13629                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13630                  * and in the air. We also check that number of outstanding
13631                  * COMMON ramrods is not more than the EQ and SPQ can
13632                  * accommodate.
13633                  */
13634                 if (type == ETH_CONNECTION_TYPE) {
13635                         if (!atomic_read(&bp->cq_spq_left))
13636                                 break;
13637                         else
13638                                 atomic_dec(&bp->cq_spq_left);
13639                 } else if (type == NONE_CONNECTION_TYPE) {
13640                         if (!atomic_read(&bp->eq_spq_left))
13641                                 break;
13642                         else
13643                                 atomic_dec(&bp->eq_spq_left);
13644                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13645                            (type == FCOE_CONNECTION_TYPE)) {
13646                         if (bp->cnic_spq_pending >=
13647                             bp->cnic_eth_dev.max_kwqe_pending)
13648                                 break;
13649                         else
13650                                 bp->cnic_spq_pending++;
13651                 } else {
13652                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13653                         bnx2x_panic();
13654                         break;
13655                 }
13656
13657                 spe = bnx2x_sp_get_next(bp);
13658                 *spe = *bp->cnic_kwq_cons;
13659
13660                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13661                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13662
13663                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13664                         bp->cnic_kwq_cons = bp->cnic_kwq;
13665                 else
13666                         bp->cnic_kwq_cons++;
13667         }
13668         bnx2x_sp_prod_update(bp);
13669         spin_unlock_bh(&bp->spq_lock);
13670 }
13671
13672 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13673                                struct kwqe_16 *kwqes[], u32 count)
13674 {
13675         struct bnx2x *bp = netdev_priv(dev);
13676         int i;
13677
13678 #ifdef BNX2X_STOP_ON_ERROR
13679         if (unlikely(bp->panic)) {
13680                 BNX2X_ERR("Can't post to SP queue while panic\n");
13681                 return -EIO;
13682         }
13683 #endif
13684
13685         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13686             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13687                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13688                 return -EAGAIN;
13689         }
13690
13691         spin_lock_bh(&bp->spq_lock);
13692
13693         for (i = 0; i < count; i++) {
13694                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13695
13696                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13697                         break;
13698
13699                 *bp->cnic_kwq_prod = *spe;
13700
13701                 bp->cnic_kwq_pending++;
13702
13703                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13704                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13705                    spe->data.update_data_addr.hi,
13706                    spe->data.update_data_addr.lo,
13707                    bp->cnic_kwq_pending);
13708
13709                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13710                         bp->cnic_kwq_prod = bp->cnic_kwq;
13711                 else
13712                         bp->cnic_kwq_prod++;
13713         }
13714
13715         spin_unlock_bh(&bp->spq_lock);
13716
13717         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13718                 bnx2x_cnic_sp_post(bp, 0);
13719
13720         return i;
13721 }
13722
13723 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13724 {
13725         struct cnic_ops *c_ops;
13726         int rc = 0;
13727
13728         mutex_lock(&bp->cnic_mutex);
13729         c_ops = rcu_dereference_protected(bp->cnic_ops,
13730                                           lockdep_is_held(&bp->cnic_mutex));
13731         if (c_ops)
13732                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13733         mutex_unlock(&bp->cnic_mutex);
13734
13735         return rc;
13736 }
13737
13738 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13739 {
13740         struct cnic_ops *c_ops;
13741         int rc = 0;
13742
13743         rcu_read_lock();
13744         c_ops = rcu_dereference(bp->cnic_ops);
13745         if (c_ops)
13746                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13747         rcu_read_unlock();
13748
13749         return rc;
13750 }
13751
13752 /*
13753  * for commands that have no data
13754  */
13755 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13756 {
13757         struct cnic_ctl_info ctl = {0};
13758
13759         ctl.cmd = cmd;
13760
13761         return bnx2x_cnic_ctl_send(bp, &ctl);
13762 }
13763
13764 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13765 {
13766         struct cnic_ctl_info ctl = {0};
13767
13768         /* first we tell CNIC and only then we count this as a completion */
13769         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13770         ctl.data.comp.cid = cid;
13771         ctl.data.comp.error = err;
13772
13773         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13774         bnx2x_cnic_sp_post(bp, 0);
13775 }
13776
13777 /* Called with netif_addr_lock_bh() taken.
13778  * Sets an rx_mode config for an iSCSI ETH client.
13779  * Doesn't block.
13780  * Completion should be checked outside.
13781  */
13782 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13783 {
13784         unsigned long accept_flags = 0, ramrod_flags = 0;
13785         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13786         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13787
13788         if (start) {
13789                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13790                  * because it's the only way for UIO Queue to accept
13791                  * multicasts (in non-promiscuous mode only one Queue per
13792                  * function will receive multicast packets (leading in our
13793                  * case).
13794                  */
13795                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13796                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13797                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13798                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13799
13800                 /* Clear STOP_PENDING bit if START is requested */
13801                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13802
13803                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13804         } else
13805                 /* Clear START_PENDING bit if STOP is requested */
13806                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13807
13808         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13809                 set_bit(sched_state, &bp->sp_state);
13810         else {
13811                 __set_bit(RAMROD_RX, &ramrod_flags);
13812                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13813                                     ramrod_flags);
13814         }
13815 }
13816
13817 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13818 {
13819         struct bnx2x *bp = netdev_priv(dev);
13820         int rc = 0;
13821
13822         switch (ctl->cmd) {
13823         case DRV_CTL_CTXTBL_WR_CMD: {
13824                 u32 index = ctl->data.io.offset;
13825                 dma_addr_t addr = ctl->data.io.dma_addr;
13826
13827                 bnx2x_ilt_wr(bp, index, addr);
13828                 break;
13829         }
13830
13831         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13832                 int count = ctl->data.credit.credit_count;
13833
13834                 bnx2x_cnic_sp_post(bp, count);
13835                 break;
13836         }
13837
13838         /* rtnl_lock is held.  */
13839         case DRV_CTL_START_L2_CMD: {
13840                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13841                 unsigned long sp_bits = 0;
13842
13843                 /* Configure the iSCSI classification object */
13844                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13845                                    cp->iscsi_l2_client_id,
13846                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13847                                    bnx2x_sp(bp, mac_rdata),
13848                                    bnx2x_sp_mapping(bp, mac_rdata),
13849                                    BNX2X_FILTER_MAC_PENDING,
13850                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13851                                    &bp->macs_pool);
13852
13853                 /* Set iSCSI MAC address */
13854                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13855                 if (rc)
13856                         break;
13857
13858                 mmiowb();
13859                 barrier();
13860
13861                 /* Start accepting on iSCSI L2 ring */
13862
13863                 netif_addr_lock_bh(dev);
13864                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13865                 netif_addr_unlock_bh(dev);
13866
13867                 /* bits to wait on */
13868                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13869                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13870
13871                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13872                         BNX2X_ERR("rx_mode completion timed out!\n");
13873
13874                 break;
13875         }
13876
13877         /* rtnl_lock is held.  */
13878         case DRV_CTL_STOP_L2_CMD: {
13879                 unsigned long sp_bits = 0;
13880
13881                 /* Stop accepting on iSCSI L2 ring */
13882                 netif_addr_lock_bh(dev);
13883                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13884                 netif_addr_unlock_bh(dev);
13885
13886                 /* bits to wait on */
13887                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13888                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13889
13890                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13891                         BNX2X_ERR("rx_mode completion timed out!\n");
13892
13893                 mmiowb();
13894                 barrier();
13895
13896                 /* Unset iSCSI L2 MAC */
13897                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13898                                         BNX2X_ISCSI_ETH_MAC, true);
13899                 break;
13900         }
13901         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13902                 int count = ctl->data.credit.credit_count;
13903
13904                 smp_mb__before_atomic();
13905                 atomic_add(count, &bp->cq_spq_left);
13906                 smp_mb__after_atomic();
13907                 break;
13908         }
13909         case DRV_CTL_ULP_REGISTER_CMD: {
13910                 int ulp_type = ctl->data.register_data.ulp_type;
13911
13912                 if (CHIP_IS_E3(bp)) {
13913                         int idx = BP_FW_MB_IDX(bp);
13914                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13915                         int path = BP_PATH(bp);
13916                         int port = BP_PORT(bp);
13917                         int i;
13918                         u32 scratch_offset;
13919                         u32 *host_addr;
13920
13921                         /* first write capability to shmem2 */
13922                         if (ulp_type == CNIC_ULP_ISCSI)
13923                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13924                         else if (ulp_type == CNIC_ULP_FCOE)
13925                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13926                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13927
13928                         if ((ulp_type != CNIC_ULP_FCOE) ||
13929                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13930                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13931                                 break;
13932
13933                         /* if reached here - should write fcoe capabilities */
13934                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13935                         if (!scratch_offset)
13936                                 break;
13937                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13938                                                    fcoe_features[path][port]);
13939                         host_addr = (u32 *) &(ctl->data.register_data.
13940                                               fcoe_features);
13941                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13942                              i += 4)
13943                                 REG_WR(bp, scratch_offset + i,
13944                                        *(host_addr + i/4));
13945                 }
13946                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13947                 break;
13948         }
13949
13950         case DRV_CTL_ULP_UNREGISTER_CMD: {
13951                 int ulp_type = ctl->data.ulp_type;
13952
13953                 if (CHIP_IS_E3(bp)) {
13954                         int idx = BP_FW_MB_IDX(bp);
13955                         u32 cap;
13956
13957                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13958                         if (ulp_type == CNIC_ULP_ISCSI)
13959                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13960                         else if (ulp_type == CNIC_ULP_FCOE)
13961                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13962                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13963                 }
13964                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13965                 break;
13966         }
13967
13968         default:
13969                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13970                 rc = -EINVAL;
13971         }
13972
13973         return rc;
13974 }
13975
13976 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13977 {
13978         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13979
13980         if (bp->flags & USING_MSIX_FLAG) {
13981                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13982                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13983                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13984         } else {
13985                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13986                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13987         }
13988         if (!CHIP_IS_E1x(bp))
13989                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13990         else
13991                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13992
13993         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13994         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13995         cp->irq_arr[1].status_blk = bp->def_status_blk;
13996         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13997         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13998
13999         cp->num_irq = 2;
14000 }
14001
14002 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14003 {
14004         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14005
14006         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14007                              bnx2x_cid_ilt_lines(bp);
14008         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14009         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14010         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14011
14012         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14013            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14014            cp->iscsi_l2_cid);
14015
14016         if (NO_ISCSI_OOO(bp))
14017                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14018 }
14019
14020 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14021                                void *data)
14022 {
14023         struct bnx2x *bp = netdev_priv(dev);
14024         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14025         int rc;
14026
14027         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14028
14029         if (ops == NULL) {
14030                 BNX2X_ERR("NULL ops received\n");
14031                 return -EINVAL;
14032         }
14033
14034         if (!CNIC_SUPPORT(bp)) {
14035                 BNX2X_ERR("Can't register CNIC when not supported\n");
14036                 return -EOPNOTSUPP;
14037         }
14038
14039         if (!CNIC_LOADED(bp)) {
14040                 rc = bnx2x_load_cnic(bp);
14041                 if (rc) {
14042                         BNX2X_ERR("CNIC-related load failed\n");
14043                         return rc;
14044                 }
14045         }
14046
14047         bp->cnic_enabled = true;
14048
14049         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14050         if (!bp->cnic_kwq)
14051                 return -ENOMEM;
14052
14053         bp->cnic_kwq_cons = bp->cnic_kwq;
14054         bp->cnic_kwq_prod = bp->cnic_kwq;
14055         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14056
14057         bp->cnic_spq_pending = 0;
14058         bp->cnic_kwq_pending = 0;
14059
14060         bp->cnic_data = data;
14061
14062         cp->num_irq = 0;
14063         cp->drv_state |= CNIC_DRV_STATE_REGD;
14064         cp->iro_arr = bp->iro_arr;
14065
14066         bnx2x_setup_cnic_irq_info(bp);
14067
14068         rcu_assign_pointer(bp->cnic_ops, ops);
14069
14070         /* Schedule driver to read CNIC driver versions */
14071         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14072
14073         return 0;
14074 }
14075
14076 static int bnx2x_unregister_cnic(struct net_device *dev)
14077 {
14078         struct bnx2x *bp = netdev_priv(dev);
14079         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14080
14081         mutex_lock(&bp->cnic_mutex);
14082         cp->drv_state = 0;
14083         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14084         mutex_unlock(&bp->cnic_mutex);
14085         synchronize_rcu();
14086         bp->cnic_enabled = false;
14087         kfree(bp->cnic_kwq);
14088         bp->cnic_kwq = NULL;
14089
14090         return 0;
14091 }
14092
14093 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14094 {
14095         struct bnx2x *bp = netdev_priv(dev);
14096         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14097
14098         /* If both iSCSI and FCoE are disabled - return NULL in
14099          * order to indicate CNIC that it should not try to work
14100          * with this device.
14101          */
14102         if (NO_ISCSI(bp) && NO_FCOE(bp))
14103                 return NULL;
14104
14105         cp->drv_owner = THIS_MODULE;
14106         cp->chip_id = CHIP_ID(bp);
14107         cp->pdev = bp->pdev;
14108         cp->io_base = bp->regview;
14109         cp->io_base2 = bp->doorbells;
14110         cp->max_kwqe_pending = 8;
14111         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14112         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14113                              bnx2x_cid_ilt_lines(bp);
14114         cp->ctx_tbl_len = CNIC_ILT_LINES;
14115         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14116         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14117         cp->drv_ctl = bnx2x_drv_ctl;
14118         cp->drv_register_cnic = bnx2x_register_cnic;
14119         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14120         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14121         cp->iscsi_l2_client_id =
14122                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14123         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14124
14125         if (NO_ISCSI_OOO(bp))
14126                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14127
14128         if (NO_ISCSI(bp))
14129                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14130
14131         if (NO_FCOE(bp))
14132                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14133
14134         BNX2X_DEV_INFO(
14135                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14136            cp->ctx_blk_size,
14137            cp->ctx_tbl_offset,
14138            cp->ctx_tbl_len,
14139            cp->starting_cid);
14140         return cp;
14141 }
14142
14143 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14144 {
14145         struct bnx2x *bp = fp->bp;
14146         u32 offset = BAR_USTRORM_INTMEM;
14147
14148         if (IS_VF(bp))
14149                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
14150         else if (!CHIP_IS_E1x(bp))
14151                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14152         else
14153                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14154
14155         return offset;
14156 }
14157
14158 /* called only on E1H or E2.
14159  * When pretending to be PF, the pretend value is the function number 0...7
14160  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14161  * combination
14162  */
14163 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14164 {
14165         u32 pretend_reg;
14166
14167         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14168                 return -1;
14169
14170         /* get my own pretend register */
14171         pretend_reg = bnx2x_get_pretend_reg(bp);
14172         REG_WR(bp, pretend_reg, pretend_func_val);
14173         REG_RD(bp, pretend_reg);
14174         return 0;
14175 }