Documentation: embargoed-hardware-issues.rst: Add myself for Power
[sfrench/cifs-2.6.git] / drivers / md / raid1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33
34 #include <trace/events/block.h>
35
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39
40 #define UNSUPPORTED_MDDEV_FLAGS         \
41         ((1L << MD_HAS_JOURNAL) |       \
42          (1L << MD_JOURNAL_CLEAN) |     \
43          (1L << MD_HAS_PPL) |           \
44          (1L << MD_HAS_MULTIPLE_PPLS))
45
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
51
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55                      START, LAST, static inline, raid1_rb);
56
57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58                                 struct serial_info *si, int idx)
59 {
60         unsigned long flags;
61         int ret = 0;
62         sector_t lo = r1_bio->sector;
63         sector_t hi = lo + r1_bio->sectors;
64         struct serial_in_rdev *serial = &rdev->serial[idx];
65
66         spin_lock_irqsave(&serial->serial_lock, flags);
67         /* collision happened */
68         if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69                 ret = -EBUSY;
70         else {
71                 si->start = lo;
72                 si->last = hi;
73                 raid1_rb_insert(si, &serial->serial_rb);
74         }
75         spin_unlock_irqrestore(&serial->serial_lock, flags);
76
77         return ret;
78 }
79
80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81 {
82         struct mddev *mddev = rdev->mddev;
83         struct serial_info *si;
84         int idx = sector_to_idx(r1_bio->sector);
85         struct serial_in_rdev *serial = &rdev->serial[idx];
86
87         if (WARN_ON(!mddev->serial_info_pool))
88                 return;
89         si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90         wait_event(serial->serial_io_wait,
91                    check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92 }
93
94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95 {
96         struct serial_info *si;
97         unsigned long flags;
98         int found = 0;
99         struct mddev *mddev = rdev->mddev;
100         int idx = sector_to_idx(lo);
101         struct serial_in_rdev *serial = &rdev->serial[idx];
102
103         spin_lock_irqsave(&serial->serial_lock, flags);
104         for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105              si; si = raid1_rb_iter_next(si, lo, hi)) {
106                 if (si->start == lo && si->last == hi) {
107                         raid1_rb_remove(si, &serial->serial_rb);
108                         mempool_free(si, mddev->serial_info_pool);
109                         found = 1;
110                         break;
111                 }
112         }
113         if (!found)
114                 WARN(1, "The write IO is not recorded for serialization\n");
115         spin_unlock_irqrestore(&serial->serial_lock, flags);
116         wake_up(&serial->serial_io_wait);
117 }
118
119 /*
120  * for resync bio, r1bio pointer can be retrieved from the per-bio
121  * 'struct resync_pages'.
122  */
123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124 {
125         return get_resync_pages(bio)->raid_bio;
126 }
127
128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129 {
130         struct pool_info *pi = data;
131         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132
133         /* allocate a r1bio with room for raid_disks entries in the bios array */
134         return kzalloc(size, gfp_flags);
135 }
136
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143
144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145 {
146         struct pool_info *pi = data;
147         struct r1bio *r1_bio;
148         struct bio *bio;
149         int need_pages;
150         int j;
151         struct resync_pages *rps;
152
153         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154         if (!r1_bio)
155                 return NULL;
156
157         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158                             gfp_flags);
159         if (!rps)
160                 goto out_free_r1bio;
161
162         /*
163          * Allocate bios : 1 for reading, n-1 for writing
164          */
165         for (j = pi->raid_disks ; j-- ; ) {
166                 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167                 if (!bio)
168                         goto out_free_bio;
169                 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170                 r1_bio->bios[j] = bio;
171         }
172         /*
173          * Allocate RESYNC_PAGES data pages and attach them to
174          * the first bio.
175          * If this is a user-requested check/repair, allocate
176          * RESYNC_PAGES for each bio.
177          */
178         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179                 need_pages = pi->raid_disks;
180         else
181                 need_pages = 1;
182         for (j = 0; j < pi->raid_disks; j++) {
183                 struct resync_pages *rp = &rps[j];
184
185                 bio = r1_bio->bios[j];
186
187                 if (j < need_pages) {
188                         if (resync_alloc_pages(rp, gfp_flags))
189                                 goto out_free_pages;
190                 } else {
191                         memcpy(rp, &rps[0], sizeof(*rp));
192                         resync_get_all_pages(rp);
193                 }
194
195                 rp->raid_bio = r1_bio;
196                 bio->bi_private = rp;
197         }
198
199         r1_bio->master_bio = NULL;
200
201         return r1_bio;
202
203 out_free_pages:
204         while (--j >= 0)
205                 resync_free_pages(&rps[j]);
206
207 out_free_bio:
208         while (++j < pi->raid_disks) {
209                 bio_uninit(r1_bio->bios[j]);
210                 kfree(r1_bio->bios[j]);
211         }
212         kfree(rps);
213
214 out_free_r1bio:
215         rbio_pool_free(r1_bio, data);
216         return NULL;
217 }
218
219 static void r1buf_pool_free(void *__r1_bio, void *data)
220 {
221         struct pool_info *pi = data;
222         int i;
223         struct r1bio *r1bio = __r1_bio;
224         struct resync_pages *rp = NULL;
225
226         for (i = pi->raid_disks; i--; ) {
227                 rp = get_resync_pages(r1bio->bios[i]);
228                 resync_free_pages(rp);
229                 bio_uninit(r1bio->bios[i]);
230                 kfree(r1bio->bios[i]);
231         }
232
233         /* resync pages array stored in the 1st bio's .bi_private */
234         kfree(rp);
235
236         rbio_pool_free(r1bio, data);
237 }
238
239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240 {
241         int i;
242
243         for (i = 0; i < conf->raid_disks * 2; i++) {
244                 struct bio **bio = r1_bio->bios + i;
245                 if (!BIO_SPECIAL(*bio))
246                         bio_put(*bio);
247                 *bio = NULL;
248         }
249 }
250
251 static void free_r1bio(struct r1bio *r1_bio)
252 {
253         struct r1conf *conf = r1_bio->mddev->private;
254
255         put_all_bios(conf, r1_bio);
256         mempool_free(r1_bio, &conf->r1bio_pool);
257 }
258
259 static void put_buf(struct r1bio *r1_bio)
260 {
261         struct r1conf *conf = r1_bio->mddev->private;
262         sector_t sect = r1_bio->sector;
263         int i;
264
265         for (i = 0; i < conf->raid_disks * 2; i++) {
266                 struct bio *bio = r1_bio->bios[i];
267                 if (bio->bi_end_io)
268                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269         }
270
271         mempool_free(r1_bio, &conf->r1buf_pool);
272
273         lower_barrier(conf, sect);
274 }
275
276 static void reschedule_retry(struct r1bio *r1_bio)
277 {
278         unsigned long flags;
279         struct mddev *mddev = r1_bio->mddev;
280         struct r1conf *conf = mddev->private;
281         int idx;
282
283         idx = sector_to_idx(r1_bio->sector);
284         spin_lock_irqsave(&conf->device_lock, flags);
285         list_add(&r1_bio->retry_list, &conf->retry_list);
286         atomic_inc(&conf->nr_queued[idx]);
287         spin_unlock_irqrestore(&conf->device_lock, flags);
288
289         wake_up(&conf->wait_barrier);
290         md_wakeup_thread(mddev->thread);
291 }
292
293 /*
294  * raid_end_bio_io() is called when we have finished servicing a mirrored
295  * operation and are ready to return a success/failure code to the buffer
296  * cache layer.
297  */
298 static void call_bio_endio(struct r1bio *r1_bio)
299 {
300         struct bio *bio = r1_bio->master_bio;
301
302         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303                 bio->bi_status = BLK_STS_IOERR;
304
305         bio_endio(bio);
306 }
307
308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310         struct bio *bio = r1_bio->master_bio;
311         struct r1conf *conf = r1_bio->mddev->private;
312         sector_t sector = r1_bio->sector;
313
314         /* if nobody has done the final endio yet, do it now */
315         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
318                          (unsigned long long) bio->bi_iter.bi_sector,
319                          (unsigned long long) bio_end_sector(bio) - 1);
320
321                 call_bio_endio(r1_bio);
322         }
323
324         free_r1bio(r1_bio);
325         /*
326          * Wake up any possible resync thread that waits for the device
327          * to go idle.  All I/Os, even write-behind writes, are done.
328          */
329         allow_barrier(conf, sector);
330 }
331
332 /*
333  * Update disk head position estimator based on IRQ completion info.
334  */
335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 {
337         struct r1conf *conf = r1_bio->mddev->private;
338
339         conf->mirrors[disk].head_position =
340                 r1_bio->sector + (r1_bio->sectors);
341 }
342
343 /*
344  * Find the disk number which triggered given bio
345  */
346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347 {
348         int mirror;
349         struct r1conf *conf = r1_bio->mddev->private;
350         int raid_disks = conf->raid_disks;
351
352         for (mirror = 0; mirror < raid_disks * 2; mirror++)
353                 if (r1_bio->bios[mirror] == bio)
354                         break;
355
356         BUG_ON(mirror == raid_disks * 2);
357         update_head_pos(mirror, r1_bio);
358
359         return mirror;
360 }
361
362 static void raid1_end_read_request(struct bio *bio)
363 {
364         int uptodate = !bio->bi_status;
365         struct r1bio *r1_bio = bio->bi_private;
366         struct r1conf *conf = r1_bio->mddev->private;
367         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368
369         /*
370          * this branch is our 'one mirror IO has finished' event handler:
371          */
372         update_head_pos(r1_bio->read_disk, r1_bio);
373
374         if (uptodate)
375                 set_bit(R1BIO_Uptodate, &r1_bio->state);
376         else if (test_bit(FailFast, &rdev->flags) &&
377                  test_bit(R1BIO_FailFast, &r1_bio->state))
378                 /* This was a fail-fast read so we definitely
379                  * want to retry */
380                 ;
381         else {
382                 /* If all other devices have failed, we want to return
383                  * the error upwards rather than fail the last device.
384                  * Here we redefine "uptodate" to mean "Don't want to retry"
385                  */
386                 unsigned long flags;
387                 spin_lock_irqsave(&conf->device_lock, flags);
388                 if (r1_bio->mddev->degraded == conf->raid_disks ||
389                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390                      test_bit(In_sync, &rdev->flags)))
391                         uptodate = 1;
392                 spin_unlock_irqrestore(&conf->device_lock, flags);
393         }
394
395         if (uptodate) {
396                 raid_end_bio_io(r1_bio);
397                 rdev_dec_pending(rdev, conf->mddev);
398         } else {
399                 /*
400                  * oops, read error:
401                  */
402                 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403                                    mdname(conf->mddev),
404                                    rdev->bdev,
405                                    (unsigned long long)r1_bio->sector);
406                 set_bit(R1BIO_ReadError, &r1_bio->state);
407                 reschedule_retry(r1_bio);
408                 /* don't drop the reference on read_disk yet */
409         }
410 }
411
412 static void close_write(struct r1bio *r1_bio)
413 {
414         /* it really is the end of this request */
415         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416                 bio_free_pages(r1_bio->behind_master_bio);
417                 bio_put(r1_bio->behind_master_bio);
418                 r1_bio->behind_master_bio = NULL;
419         }
420         /* clear the bitmap if all writes complete successfully */
421         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422                            r1_bio->sectors,
423                            !test_bit(R1BIO_Degraded, &r1_bio->state),
424                            test_bit(R1BIO_BehindIO, &r1_bio->state));
425         md_write_end(r1_bio->mddev);
426 }
427
428 static void r1_bio_write_done(struct r1bio *r1_bio)
429 {
430         if (!atomic_dec_and_test(&r1_bio->remaining))
431                 return;
432
433         if (test_bit(R1BIO_WriteError, &r1_bio->state))
434                 reschedule_retry(r1_bio);
435         else {
436                 close_write(r1_bio);
437                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438                         reschedule_retry(r1_bio);
439                 else
440                         raid_end_bio_io(r1_bio);
441         }
442 }
443
444 static void raid1_end_write_request(struct bio *bio)
445 {
446         struct r1bio *r1_bio = bio->bi_private;
447         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448         struct r1conf *conf = r1_bio->mddev->private;
449         struct bio *to_put = NULL;
450         int mirror = find_bio_disk(r1_bio, bio);
451         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452         bool discard_error;
453         sector_t lo = r1_bio->sector;
454         sector_t hi = r1_bio->sector + r1_bio->sectors;
455
456         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457
458         /*
459          * 'one mirror IO has finished' event handler:
460          */
461         if (bio->bi_status && !discard_error) {
462                 set_bit(WriteErrorSeen, &rdev->flags);
463                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464                         set_bit(MD_RECOVERY_NEEDED, &
465                                 conf->mddev->recovery);
466
467                 if (test_bit(FailFast, &rdev->flags) &&
468                     (bio->bi_opf & MD_FAILFAST) &&
469                     /* We never try FailFast to WriteMostly devices */
470                     !test_bit(WriteMostly, &rdev->flags)) {
471                         md_error(r1_bio->mddev, rdev);
472                 }
473
474                 /*
475                  * When the device is faulty, it is not necessary to
476                  * handle write error.
477                  */
478                 if (!test_bit(Faulty, &rdev->flags))
479                         set_bit(R1BIO_WriteError, &r1_bio->state);
480                 else {
481                         /* Fail the request */
482                         set_bit(R1BIO_Degraded, &r1_bio->state);
483                         /* Finished with this branch */
484                         r1_bio->bios[mirror] = NULL;
485                         to_put = bio;
486                 }
487         } else {
488                 /*
489                  * Set R1BIO_Uptodate in our master bio, so that we
490                  * will return a good error code for to the higher
491                  * levels even if IO on some other mirrored buffer
492                  * fails.
493                  *
494                  * The 'master' represents the composite IO operation
495                  * to user-side. So if something waits for IO, then it
496                  * will wait for the 'master' bio.
497                  */
498                 r1_bio->bios[mirror] = NULL;
499                 to_put = bio;
500                 /*
501                  * Do not set R1BIO_Uptodate if the current device is
502                  * rebuilding or Faulty. This is because we cannot use
503                  * such device for properly reading the data back (we could
504                  * potentially use it, if the current write would have felt
505                  * before rdev->recovery_offset, but for simplicity we don't
506                  * check this here.
507                  */
508                 if (test_bit(In_sync, &rdev->flags) &&
509                     !test_bit(Faulty, &rdev->flags))
510                         set_bit(R1BIO_Uptodate, &r1_bio->state);
511
512                 /* Maybe we can clear some bad blocks. */
513                 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
514                     !discard_error) {
515                         r1_bio->bios[mirror] = IO_MADE_GOOD;
516                         set_bit(R1BIO_MadeGood, &r1_bio->state);
517                 }
518         }
519
520         if (behind) {
521                 if (test_bit(CollisionCheck, &rdev->flags))
522                         remove_serial(rdev, lo, hi);
523                 if (test_bit(WriteMostly, &rdev->flags))
524                         atomic_dec(&r1_bio->behind_remaining);
525
526                 /*
527                  * In behind mode, we ACK the master bio once the I/O
528                  * has safely reached all non-writemostly
529                  * disks. Setting the Returned bit ensures that this
530                  * gets done only once -- we don't ever want to return
531                  * -EIO here, instead we'll wait
532                  */
533                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535                         /* Maybe we can return now */
536                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537                                 struct bio *mbio = r1_bio->master_bio;
538                                 pr_debug("raid1: behind end write sectors"
539                                          " %llu-%llu\n",
540                                          (unsigned long long) mbio->bi_iter.bi_sector,
541                                          (unsigned long long) bio_end_sector(mbio) - 1);
542                                 call_bio_endio(r1_bio);
543                         }
544                 }
545         } else if (rdev->mddev->serialize_policy)
546                 remove_serial(rdev, lo, hi);
547         if (r1_bio->bios[mirror] == NULL)
548                 rdev_dec_pending(rdev, conf->mddev);
549
550         /*
551          * Let's see if all mirrored write operations have finished
552          * already.
553          */
554         r1_bio_write_done(r1_bio);
555
556         if (to_put)
557                 bio_put(to_put);
558 }
559
560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
561                                           sector_t sectors)
562 {
563         sector_t len;
564
565         WARN_ON(sectors == 0);
566         /*
567          * len is the number of sectors from start_sector to end of the
568          * barrier unit which start_sector belongs to.
569          */
570         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571               start_sector;
572
573         if (len > sectors)
574                 len = sectors;
575
576         return len;
577 }
578
579 static void update_read_sectors(struct r1conf *conf, int disk,
580                                 sector_t this_sector, int len)
581 {
582         struct raid1_info *info = &conf->mirrors[disk];
583
584         atomic_inc(&info->rdev->nr_pending);
585         if (info->next_seq_sect != this_sector)
586                 info->seq_start = this_sector;
587         info->next_seq_sect = this_sector + len;
588 }
589
590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
591                              int *max_sectors)
592 {
593         sector_t this_sector = r1_bio->sector;
594         int len = r1_bio->sectors;
595         int disk;
596
597         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598                 struct md_rdev *rdev;
599                 int read_len;
600
601                 if (r1_bio->bios[disk] == IO_BLOCKED)
602                         continue;
603
604                 rdev = conf->mirrors[disk].rdev;
605                 if (!rdev || test_bit(Faulty, &rdev->flags))
606                         continue;
607
608                 /* choose the first disk even if it has some bad blocks. */
609                 read_len = raid1_check_read_range(rdev, this_sector, &len);
610                 if (read_len > 0) {
611                         update_read_sectors(conf, disk, this_sector, read_len);
612                         *max_sectors = read_len;
613                         return disk;
614                 }
615         }
616
617         return -1;
618 }
619
620 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
621                           int *max_sectors)
622 {
623         sector_t this_sector = r1_bio->sector;
624         int best_disk = -1;
625         int best_len = 0;
626         int disk;
627
628         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
629                 struct md_rdev *rdev;
630                 int len;
631                 int read_len;
632
633                 if (r1_bio->bios[disk] == IO_BLOCKED)
634                         continue;
635
636                 rdev = conf->mirrors[disk].rdev;
637                 if (!rdev || test_bit(Faulty, &rdev->flags) ||
638                     test_bit(WriteMostly, &rdev->flags))
639                         continue;
640
641                 /* keep track of the disk with the most readable sectors. */
642                 len = r1_bio->sectors;
643                 read_len = raid1_check_read_range(rdev, this_sector, &len);
644                 if (read_len > best_len) {
645                         best_disk = disk;
646                         best_len = read_len;
647                 }
648         }
649
650         if (best_disk != -1) {
651                 *max_sectors = best_len;
652                 update_read_sectors(conf, best_disk, this_sector, best_len);
653         }
654
655         return best_disk;
656 }
657
658 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
659                             int *max_sectors)
660 {
661         sector_t this_sector = r1_bio->sector;
662         int bb_disk = -1;
663         int bb_read_len = 0;
664         int disk;
665
666         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
667                 struct md_rdev *rdev;
668                 int len;
669                 int read_len;
670
671                 if (r1_bio->bios[disk] == IO_BLOCKED)
672                         continue;
673
674                 rdev = conf->mirrors[disk].rdev;
675                 if (!rdev || test_bit(Faulty, &rdev->flags) ||
676                     !test_bit(WriteMostly, &rdev->flags))
677                         continue;
678
679                 /* there are no bad blocks, we can use this disk */
680                 len = r1_bio->sectors;
681                 read_len = raid1_check_read_range(rdev, this_sector, &len);
682                 if (read_len == r1_bio->sectors) {
683                         update_read_sectors(conf, disk, this_sector, read_len);
684                         return disk;
685                 }
686
687                 /*
688                  * there are partial bad blocks, choose the rdev with largest
689                  * read length.
690                  */
691                 if (read_len > bb_read_len) {
692                         bb_disk = disk;
693                         bb_read_len = read_len;
694                 }
695         }
696
697         if (bb_disk != -1) {
698                 *max_sectors = bb_read_len;
699                 update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
700         }
701
702         return bb_disk;
703 }
704
705 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
706 {
707         /* TODO: address issues with this check and concurrency. */
708         return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
709                conf->mirrors[disk].head_position == r1_bio->sector;
710 }
711
712 /*
713  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
714  * disk. If yes, choose the idle disk.
715  */
716 static bool should_choose_next(struct r1conf *conf, int disk)
717 {
718         struct raid1_info *mirror = &conf->mirrors[disk];
719         int opt_iosize;
720
721         if (!test_bit(Nonrot, &mirror->rdev->flags))
722                 return false;
723
724         opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
725         return opt_iosize > 0 && mirror->seq_start != MaxSector &&
726                mirror->next_seq_sect > opt_iosize &&
727                mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
728 }
729
730 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
731 {
732         if (!rdev || test_bit(Faulty, &rdev->flags))
733                 return false;
734
735         /* still in recovery */
736         if (!test_bit(In_sync, &rdev->flags) &&
737             rdev->recovery_offset < r1_bio->sector + r1_bio->sectors)
738                 return false;
739
740         /* don't read from slow disk unless have to */
741         if (test_bit(WriteMostly, &rdev->flags))
742                 return false;
743
744         /* don't split IO for bad blocks unless have to */
745         if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
746                 return false;
747
748         return true;
749 }
750
751 struct read_balance_ctl {
752         sector_t closest_dist;
753         int closest_dist_disk;
754         int min_pending;
755         int min_pending_disk;
756         int sequential_disk;
757         int readable_disks;
758 };
759
760 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
761 {
762         int disk;
763         struct read_balance_ctl ctl = {
764                 .closest_dist_disk      = -1,
765                 .closest_dist           = MaxSector,
766                 .min_pending_disk       = -1,
767                 .min_pending            = UINT_MAX,
768                 .sequential_disk        = -1,
769         };
770
771         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
772                 struct md_rdev *rdev;
773                 sector_t dist;
774                 unsigned int pending;
775
776                 if (r1_bio->bios[disk] == IO_BLOCKED)
777                         continue;
778
779                 rdev = conf->mirrors[disk].rdev;
780                 if (!rdev_readable(rdev, r1_bio))
781                         continue;
782
783                 /* At least two disks to choose from so failfast is OK */
784                 if (ctl.readable_disks++ == 1)
785                         set_bit(R1BIO_FailFast, &r1_bio->state);
786
787                 pending = atomic_read(&rdev->nr_pending);
788                 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
789
790                 /* Don't change to another disk for sequential reads */
791                 if (is_sequential(conf, disk, r1_bio)) {
792                         if (!should_choose_next(conf, disk))
793                                 return disk;
794
795                         /*
796                          * Add 'pending' to avoid choosing this disk if
797                          * there is other idle disk.
798                          */
799                         pending++;
800                         /*
801                          * If there is no other idle disk, this disk
802                          * will be chosen.
803                          */
804                         ctl.sequential_disk = disk;
805                 }
806
807                 if (ctl.min_pending > pending) {
808                         ctl.min_pending = pending;
809                         ctl.min_pending_disk = disk;
810                 }
811
812                 if (ctl.closest_dist > dist) {
813                         ctl.closest_dist = dist;
814                         ctl.closest_dist_disk = disk;
815                 }
816         }
817
818         /*
819          * sequential IO size exceeds optimal iosize, however, there is no other
820          * idle disk, so choose the sequential disk.
821          */
822         if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
823                 return ctl.sequential_disk;
824
825         /*
826          * If all disks are rotational, choose the closest disk. If any disk is
827          * non-rotational, choose the disk with less pending request even the
828          * disk is rotational, which might/might not be optimal for raids with
829          * mixed ratation/non-rotational disks depending on workload.
830          */
831         if (ctl.min_pending_disk != -1 &&
832             (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
833                 return ctl.min_pending_disk;
834         else
835                 return ctl.closest_dist_disk;
836 }
837
838 /*
839  * This routine returns the disk from which the requested read should be done.
840  *
841  * 1) If resync is in progress, find the first usable disk and use it even if it
842  * has some bad blocks.
843  *
844  * 2) Now that there is no resync, loop through all disks and skipping slow
845  * disks and disks with bad blocks for now. Only pay attention to key disk
846  * choice.
847  *
848  * 3) If we've made it this far, now look for disks with bad blocks and choose
849  * the one with most number of sectors.
850  *
851  * 4) If we are all the way at the end, we have no choice but to use a disk even
852  * if it is write mostly.
853  *
854  * The rdev for the device selected will have nr_pending incremented.
855  */
856 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
857                         int *max_sectors)
858 {
859         int disk;
860
861         clear_bit(R1BIO_FailFast, &r1_bio->state);
862
863         if (raid1_should_read_first(conf->mddev, r1_bio->sector,
864                                     r1_bio->sectors))
865                 return choose_first_rdev(conf, r1_bio, max_sectors);
866
867         disk = choose_best_rdev(conf, r1_bio);
868         if (disk >= 0) {
869                 *max_sectors = r1_bio->sectors;
870                 update_read_sectors(conf, disk, r1_bio->sector,
871                                     r1_bio->sectors);
872                 return disk;
873         }
874
875         /*
876          * If we are here it means we didn't find a perfectly good disk so
877          * now spend a bit more time trying to find one with the most good
878          * sectors.
879          */
880         disk = choose_bb_rdev(conf, r1_bio, max_sectors);
881         if (disk >= 0)
882                 return disk;
883
884         return choose_slow_rdev(conf, r1_bio, max_sectors);
885 }
886
887 static void wake_up_barrier(struct r1conf *conf)
888 {
889         if (wq_has_sleeper(&conf->wait_barrier))
890                 wake_up(&conf->wait_barrier);
891 }
892
893 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
894 {
895         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
896         raid1_prepare_flush_writes(conf->mddev->bitmap);
897         wake_up_barrier(conf);
898
899         while (bio) { /* submit pending writes */
900                 struct bio *next = bio->bi_next;
901
902                 raid1_submit_write(bio);
903                 bio = next;
904                 cond_resched();
905         }
906 }
907
908 static void flush_pending_writes(struct r1conf *conf)
909 {
910         /* Any writes that have been queued but are awaiting
911          * bitmap updates get flushed here.
912          */
913         spin_lock_irq(&conf->device_lock);
914
915         if (conf->pending_bio_list.head) {
916                 struct blk_plug plug;
917                 struct bio *bio;
918
919                 bio = bio_list_get(&conf->pending_bio_list);
920                 spin_unlock_irq(&conf->device_lock);
921
922                 /*
923                  * As this is called in a wait_event() loop (see freeze_array),
924                  * current->state might be TASK_UNINTERRUPTIBLE which will
925                  * cause a warning when we prepare to wait again.  As it is
926                  * rare that this path is taken, it is perfectly safe to force
927                  * us to go around the wait_event() loop again, so the warning
928                  * is a false-positive.  Silence the warning by resetting
929                  * thread state
930                  */
931                 __set_current_state(TASK_RUNNING);
932                 blk_start_plug(&plug);
933                 flush_bio_list(conf, bio);
934                 blk_finish_plug(&plug);
935         } else
936                 spin_unlock_irq(&conf->device_lock);
937 }
938
939 /* Barriers....
940  * Sometimes we need to suspend IO while we do something else,
941  * either some resync/recovery, or reconfigure the array.
942  * To do this we raise a 'barrier'.
943  * The 'barrier' is a counter that can be raised multiple times
944  * to count how many activities are happening which preclude
945  * normal IO.
946  * We can only raise the barrier if there is no pending IO.
947  * i.e. if nr_pending == 0.
948  * We choose only to raise the barrier if no-one is waiting for the
949  * barrier to go down.  This means that as soon as an IO request
950  * is ready, no other operations which require a barrier will start
951  * until the IO request has had a chance.
952  *
953  * So: regular IO calls 'wait_barrier'.  When that returns there
954  *    is no backgroup IO happening,  It must arrange to call
955  *    allow_barrier when it has finished its IO.
956  * backgroup IO calls must call raise_barrier.  Once that returns
957  *    there is no normal IO happeing.  It must arrange to call
958  *    lower_barrier when the particular background IO completes.
959  *
960  * If resync/recovery is interrupted, returns -EINTR;
961  * Otherwise, returns 0.
962  */
963 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
964 {
965         int idx = sector_to_idx(sector_nr);
966
967         spin_lock_irq(&conf->resync_lock);
968
969         /* Wait until no block IO is waiting */
970         wait_event_lock_irq(conf->wait_barrier,
971                             !atomic_read(&conf->nr_waiting[idx]),
972                             conf->resync_lock);
973
974         /* block any new IO from starting */
975         atomic_inc(&conf->barrier[idx]);
976         /*
977          * In raise_barrier() we firstly increase conf->barrier[idx] then
978          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
979          * increase conf->nr_pending[idx] then check conf->barrier[idx].
980          * A memory barrier here to make sure conf->nr_pending[idx] won't
981          * be fetched before conf->barrier[idx] is increased. Otherwise
982          * there will be a race between raise_barrier() and _wait_barrier().
983          */
984         smp_mb__after_atomic();
985
986         /* For these conditions we must wait:
987          * A: while the array is in frozen state
988          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
989          *    existing in corresponding I/O barrier bucket.
990          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
991          *    max resync count which allowed on current I/O barrier bucket.
992          */
993         wait_event_lock_irq(conf->wait_barrier,
994                             (!conf->array_frozen &&
995                              !atomic_read(&conf->nr_pending[idx]) &&
996                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
997                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
998                             conf->resync_lock);
999
1000         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1001                 atomic_dec(&conf->barrier[idx]);
1002                 spin_unlock_irq(&conf->resync_lock);
1003                 wake_up(&conf->wait_barrier);
1004                 return -EINTR;
1005         }
1006
1007         atomic_inc(&conf->nr_sync_pending);
1008         spin_unlock_irq(&conf->resync_lock);
1009
1010         return 0;
1011 }
1012
1013 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1014 {
1015         int idx = sector_to_idx(sector_nr);
1016
1017         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1018
1019         atomic_dec(&conf->barrier[idx]);
1020         atomic_dec(&conf->nr_sync_pending);
1021         wake_up(&conf->wait_barrier);
1022 }
1023
1024 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1025 {
1026         bool ret = true;
1027
1028         /*
1029          * We need to increase conf->nr_pending[idx] very early here,
1030          * then raise_barrier() can be blocked when it waits for
1031          * conf->nr_pending[idx] to be 0. Then we can avoid holding
1032          * conf->resync_lock when there is no barrier raised in same
1033          * barrier unit bucket. Also if the array is frozen, I/O
1034          * should be blocked until array is unfrozen.
1035          */
1036         atomic_inc(&conf->nr_pending[idx]);
1037         /*
1038          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1039          * check conf->barrier[idx]. In raise_barrier() we firstly increase
1040          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1041          * barrier is necessary here to make sure conf->barrier[idx] won't be
1042          * fetched before conf->nr_pending[idx] is increased. Otherwise there
1043          * will be a race between _wait_barrier() and raise_barrier().
1044          */
1045         smp_mb__after_atomic();
1046
1047         /*
1048          * Don't worry about checking two atomic_t variables at same time
1049          * here. If during we check conf->barrier[idx], the array is
1050          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1051          * 0, it is safe to return and make the I/O continue. Because the
1052          * array is frozen, all I/O returned here will eventually complete
1053          * or be queued, no race will happen. See code comment in
1054          * frozen_array().
1055          */
1056         if (!READ_ONCE(conf->array_frozen) &&
1057             !atomic_read(&conf->barrier[idx]))
1058                 return ret;
1059
1060         /*
1061          * After holding conf->resync_lock, conf->nr_pending[idx]
1062          * should be decreased before waiting for barrier to drop.
1063          * Otherwise, we may encounter a race condition because
1064          * raise_barrer() might be waiting for conf->nr_pending[idx]
1065          * to be 0 at same time.
1066          */
1067         spin_lock_irq(&conf->resync_lock);
1068         atomic_inc(&conf->nr_waiting[idx]);
1069         atomic_dec(&conf->nr_pending[idx]);
1070         /*
1071          * In case freeze_array() is waiting for
1072          * get_unqueued_pending() == extra
1073          */
1074         wake_up_barrier(conf);
1075         /* Wait for the barrier in same barrier unit bucket to drop. */
1076
1077         /* Return false when nowait flag is set */
1078         if (nowait) {
1079                 ret = false;
1080         } else {
1081                 wait_event_lock_irq(conf->wait_barrier,
1082                                 !conf->array_frozen &&
1083                                 !atomic_read(&conf->barrier[idx]),
1084                                 conf->resync_lock);
1085                 atomic_inc(&conf->nr_pending[idx]);
1086         }
1087
1088         atomic_dec(&conf->nr_waiting[idx]);
1089         spin_unlock_irq(&conf->resync_lock);
1090         return ret;
1091 }
1092
1093 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1094 {
1095         int idx = sector_to_idx(sector_nr);
1096         bool ret = true;
1097
1098         /*
1099          * Very similar to _wait_barrier(). The difference is, for read
1100          * I/O we don't need wait for sync I/O, but if the whole array
1101          * is frozen, the read I/O still has to wait until the array is
1102          * unfrozen. Since there is no ordering requirement with
1103          * conf->barrier[idx] here, memory barrier is unnecessary as well.
1104          */
1105         atomic_inc(&conf->nr_pending[idx]);
1106
1107         if (!READ_ONCE(conf->array_frozen))
1108                 return ret;
1109
1110         spin_lock_irq(&conf->resync_lock);
1111         atomic_inc(&conf->nr_waiting[idx]);
1112         atomic_dec(&conf->nr_pending[idx]);
1113         /*
1114          * In case freeze_array() is waiting for
1115          * get_unqueued_pending() == extra
1116          */
1117         wake_up_barrier(conf);
1118         /* Wait for array to be unfrozen */
1119
1120         /* Return false when nowait flag is set */
1121         if (nowait) {
1122                 /* Return false when nowait flag is set */
1123                 ret = false;
1124         } else {
1125                 wait_event_lock_irq(conf->wait_barrier,
1126                                 !conf->array_frozen,
1127                                 conf->resync_lock);
1128                 atomic_inc(&conf->nr_pending[idx]);
1129         }
1130
1131         atomic_dec(&conf->nr_waiting[idx]);
1132         spin_unlock_irq(&conf->resync_lock);
1133         return ret;
1134 }
1135
1136 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1137 {
1138         int idx = sector_to_idx(sector_nr);
1139
1140         return _wait_barrier(conf, idx, nowait);
1141 }
1142
1143 static void _allow_barrier(struct r1conf *conf, int idx)
1144 {
1145         atomic_dec(&conf->nr_pending[idx]);
1146         wake_up_barrier(conf);
1147 }
1148
1149 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1150 {
1151         int idx = sector_to_idx(sector_nr);
1152
1153         _allow_barrier(conf, idx);
1154 }
1155
1156 /* conf->resync_lock should be held */
1157 static int get_unqueued_pending(struct r1conf *conf)
1158 {
1159         int idx, ret;
1160
1161         ret = atomic_read(&conf->nr_sync_pending);
1162         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1163                 ret += atomic_read(&conf->nr_pending[idx]) -
1164                         atomic_read(&conf->nr_queued[idx]);
1165
1166         return ret;
1167 }
1168
1169 static void freeze_array(struct r1conf *conf, int extra)
1170 {
1171         /* Stop sync I/O and normal I/O and wait for everything to
1172          * go quiet.
1173          * This is called in two situations:
1174          * 1) management command handlers (reshape, remove disk, quiesce).
1175          * 2) one normal I/O request failed.
1176
1177          * After array_frozen is set to 1, new sync IO will be blocked at
1178          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1179          * or wait_read_barrier(). The flying I/Os will either complete or be
1180          * queued. When everything goes quite, there are only queued I/Os left.
1181
1182          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1183          * barrier bucket index which this I/O request hits. When all sync and
1184          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1185          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1186          * in handle_read_error(), we may call freeze_array() before trying to
1187          * fix the read error. In this case, the error read I/O is not queued,
1188          * so get_unqueued_pending() == 1.
1189          *
1190          * Therefore before this function returns, we need to wait until
1191          * get_unqueued_pendings(conf) gets equal to extra. For
1192          * normal I/O context, extra is 1, in rested situations extra is 0.
1193          */
1194         spin_lock_irq(&conf->resync_lock);
1195         conf->array_frozen = 1;
1196         mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1197         wait_event_lock_irq_cmd(
1198                 conf->wait_barrier,
1199                 get_unqueued_pending(conf) == extra,
1200                 conf->resync_lock,
1201                 flush_pending_writes(conf));
1202         spin_unlock_irq(&conf->resync_lock);
1203 }
1204 static void unfreeze_array(struct r1conf *conf)
1205 {
1206         /* reverse the effect of the freeze */
1207         spin_lock_irq(&conf->resync_lock);
1208         conf->array_frozen = 0;
1209         spin_unlock_irq(&conf->resync_lock);
1210         wake_up(&conf->wait_barrier);
1211 }
1212
1213 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1214                                            struct bio *bio)
1215 {
1216         int size = bio->bi_iter.bi_size;
1217         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1218         int i = 0;
1219         struct bio *behind_bio = NULL;
1220
1221         behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1222                                       &r1_bio->mddev->bio_set);
1223
1224         /* discard op, we don't support writezero/writesame yet */
1225         if (!bio_has_data(bio)) {
1226                 behind_bio->bi_iter.bi_size = size;
1227                 goto skip_copy;
1228         }
1229
1230         while (i < vcnt && size) {
1231                 struct page *page;
1232                 int len = min_t(int, PAGE_SIZE, size);
1233
1234                 page = alloc_page(GFP_NOIO);
1235                 if (unlikely(!page))
1236                         goto free_pages;
1237
1238                 if (!bio_add_page(behind_bio, page, len, 0)) {
1239                         put_page(page);
1240                         goto free_pages;
1241                 }
1242
1243                 size -= len;
1244                 i++;
1245         }
1246
1247         bio_copy_data(behind_bio, bio);
1248 skip_copy:
1249         r1_bio->behind_master_bio = behind_bio;
1250         set_bit(R1BIO_BehindIO, &r1_bio->state);
1251
1252         return;
1253
1254 free_pages:
1255         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1256                  bio->bi_iter.bi_size);
1257         bio_free_pages(behind_bio);
1258         bio_put(behind_bio);
1259 }
1260
1261 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1262 {
1263         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1264                                                   cb);
1265         struct mddev *mddev = plug->cb.data;
1266         struct r1conf *conf = mddev->private;
1267         struct bio *bio;
1268
1269         if (from_schedule) {
1270                 spin_lock_irq(&conf->device_lock);
1271                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1272                 spin_unlock_irq(&conf->device_lock);
1273                 wake_up_barrier(conf);
1274                 md_wakeup_thread(mddev->thread);
1275                 kfree(plug);
1276                 return;
1277         }
1278
1279         /* we aren't scheduling, so we can do the write-out directly. */
1280         bio = bio_list_get(&plug->pending);
1281         flush_bio_list(conf, bio);
1282         kfree(plug);
1283 }
1284
1285 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1286 {
1287         r1_bio->master_bio = bio;
1288         r1_bio->sectors = bio_sectors(bio);
1289         r1_bio->state = 0;
1290         r1_bio->mddev = mddev;
1291         r1_bio->sector = bio->bi_iter.bi_sector;
1292 }
1293
1294 static inline struct r1bio *
1295 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1296 {
1297         struct r1conf *conf = mddev->private;
1298         struct r1bio *r1_bio;
1299
1300         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1301         /* Ensure no bio records IO_BLOCKED */
1302         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1303         init_r1bio(r1_bio, mddev, bio);
1304         return r1_bio;
1305 }
1306
1307 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1308                                int max_read_sectors, struct r1bio *r1_bio)
1309 {
1310         struct r1conf *conf = mddev->private;
1311         struct raid1_info *mirror;
1312         struct bio *read_bio;
1313         struct bitmap *bitmap = mddev->bitmap;
1314         const enum req_op op = bio_op(bio);
1315         const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1316         int max_sectors;
1317         int rdisk;
1318         bool r1bio_existed = !!r1_bio;
1319         char b[BDEVNAME_SIZE];
1320
1321         /*
1322          * If r1_bio is set, we are blocking the raid1d thread
1323          * so there is a tiny risk of deadlock.  So ask for
1324          * emergency memory if needed.
1325          */
1326         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1327
1328         if (r1bio_existed) {
1329                 /* Need to get the block device name carefully */
1330                 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
1331
1332                 if (rdev)
1333                         snprintf(b, sizeof(b), "%pg", rdev->bdev);
1334                 else
1335                         strcpy(b, "???");
1336         }
1337
1338         /*
1339          * Still need barrier for READ in case that whole
1340          * array is frozen.
1341          */
1342         if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1343                                 bio->bi_opf & REQ_NOWAIT)) {
1344                 bio_wouldblock_error(bio);
1345                 return;
1346         }
1347
1348         if (!r1_bio)
1349                 r1_bio = alloc_r1bio(mddev, bio);
1350         else
1351                 init_r1bio(r1_bio, mddev, bio);
1352         r1_bio->sectors = max_read_sectors;
1353
1354         /*
1355          * make_request() can abort the operation when read-ahead is being
1356          * used and no empty request is available.
1357          */
1358         rdisk = read_balance(conf, r1_bio, &max_sectors);
1359
1360         if (rdisk < 0) {
1361                 /* couldn't find anywhere to read from */
1362                 if (r1bio_existed) {
1363                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1364                                             mdname(mddev),
1365                                             b,
1366                                             (unsigned long long)r1_bio->sector);
1367                 }
1368                 raid_end_bio_io(r1_bio);
1369                 return;
1370         }
1371         mirror = conf->mirrors + rdisk;
1372
1373         if (r1bio_existed)
1374                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1375                                     mdname(mddev),
1376                                     (unsigned long long)r1_bio->sector,
1377                                     mirror->rdev->bdev);
1378
1379         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1380             bitmap) {
1381                 /*
1382                  * Reading from a write-mostly device must take care not to
1383                  * over-take any writes that are 'behind'
1384                  */
1385                 mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1386                 wait_event(bitmap->behind_wait,
1387                            atomic_read(&bitmap->behind_writes) == 0);
1388         }
1389
1390         if (max_sectors < bio_sectors(bio)) {
1391                 struct bio *split = bio_split(bio, max_sectors,
1392                                               gfp, &conf->bio_split);
1393                 bio_chain(split, bio);
1394                 submit_bio_noacct(bio);
1395                 bio = split;
1396                 r1_bio->master_bio = bio;
1397                 r1_bio->sectors = max_sectors;
1398         }
1399
1400         r1_bio->read_disk = rdisk;
1401         if (!r1bio_existed) {
1402                 md_account_bio(mddev, &bio);
1403                 r1_bio->master_bio = bio;
1404         }
1405         read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1406                                    &mddev->bio_set);
1407
1408         r1_bio->bios[rdisk] = read_bio;
1409
1410         read_bio->bi_iter.bi_sector = r1_bio->sector +
1411                 mirror->rdev->data_offset;
1412         read_bio->bi_end_io = raid1_end_read_request;
1413         read_bio->bi_opf = op | do_sync;
1414         if (test_bit(FailFast, &mirror->rdev->flags) &&
1415             test_bit(R1BIO_FailFast, &r1_bio->state))
1416                 read_bio->bi_opf |= MD_FAILFAST;
1417         read_bio->bi_private = r1_bio;
1418         mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1419         submit_bio_noacct(read_bio);
1420 }
1421
1422 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1423                                 int max_write_sectors)
1424 {
1425         struct r1conf *conf = mddev->private;
1426         struct r1bio *r1_bio;
1427         int i, disks;
1428         struct bitmap *bitmap = mddev->bitmap;
1429         unsigned long flags;
1430         struct md_rdev *blocked_rdev;
1431         int first_clone;
1432         int max_sectors;
1433         bool write_behind = false;
1434         bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1435
1436         if (mddev_is_clustered(mddev) &&
1437              md_cluster_ops->area_resyncing(mddev, WRITE,
1438                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1439
1440                 DEFINE_WAIT(w);
1441                 if (bio->bi_opf & REQ_NOWAIT) {
1442                         bio_wouldblock_error(bio);
1443                         return;
1444                 }
1445                 for (;;) {
1446                         prepare_to_wait(&conf->wait_barrier,
1447                                         &w, TASK_IDLE);
1448                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1449                                                         bio->bi_iter.bi_sector,
1450                                                         bio_end_sector(bio)))
1451                                 break;
1452                         schedule();
1453                 }
1454                 finish_wait(&conf->wait_barrier, &w);
1455         }
1456
1457         /*
1458          * Register the new request and wait if the reconstruction
1459          * thread has put up a bar for new requests.
1460          * Continue immediately if no resync is active currently.
1461          */
1462         if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1463                                 bio->bi_opf & REQ_NOWAIT)) {
1464                 bio_wouldblock_error(bio);
1465                 return;
1466         }
1467
1468  retry_write:
1469         r1_bio = alloc_r1bio(mddev, bio);
1470         r1_bio->sectors = max_write_sectors;
1471
1472         /* first select target devices under rcu_lock and
1473          * inc refcount on their rdev.  Record them by setting
1474          * bios[x] to bio
1475          * If there are known/acknowledged bad blocks on any device on
1476          * which we have seen a write error, we want to avoid writing those
1477          * blocks.
1478          * This potentially requires several writes to write around
1479          * the bad blocks.  Each set of writes gets it's own r1bio
1480          * with a set of bios attached.
1481          */
1482
1483         disks = conf->raid_disks * 2;
1484         blocked_rdev = NULL;
1485         max_sectors = r1_bio->sectors;
1486         for (i = 0;  i < disks; i++) {
1487                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1488
1489                 /*
1490                  * The write-behind io is only attempted on drives marked as
1491                  * write-mostly, which means we could allocate write behind
1492                  * bio later.
1493                  */
1494                 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1495                         write_behind = true;
1496
1497                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1498                         atomic_inc(&rdev->nr_pending);
1499                         blocked_rdev = rdev;
1500                         break;
1501                 }
1502                 r1_bio->bios[i] = NULL;
1503                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1504                         if (i < conf->raid_disks)
1505                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1506                         continue;
1507                 }
1508
1509                 atomic_inc(&rdev->nr_pending);
1510                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1511                         sector_t first_bad;
1512                         int bad_sectors;
1513                         int is_bad;
1514
1515                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1516                                              &first_bad, &bad_sectors);
1517                         if (is_bad < 0) {
1518                                 /* mustn't write here until the bad block is
1519                                  * acknowledged*/
1520                                 set_bit(BlockedBadBlocks, &rdev->flags);
1521                                 blocked_rdev = rdev;
1522                                 break;
1523                         }
1524                         if (is_bad && first_bad <= r1_bio->sector) {
1525                                 /* Cannot write here at all */
1526                                 bad_sectors -= (r1_bio->sector - first_bad);
1527                                 if (bad_sectors < max_sectors)
1528                                         /* mustn't write more than bad_sectors
1529                                          * to other devices yet
1530                                          */
1531                                         max_sectors = bad_sectors;
1532                                 rdev_dec_pending(rdev, mddev);
1533                                 /* We don't set R1BIO_Degraded as that
1534                                  * only applies if the disk is
1535                                  * missing, so it might be re-added,
1536                                  * and we want to know to recover this
1537                                  * chunk.
1538                                  * In this case the device is here,
1539                                  * and the fact that this chunk is not
1540                                  * in-sync is recorded in the bad
1541                                  * block log
1542                                  */
1543                                 continue;
1544                         }
1545                         if (is_bad) {
1546                                 int good_sectors = first_bad - r1_bio->sector;
1547                                 if (good_sectors < max_sectors)
1548                                         max_sectors = good_sectors;
1549                         }
1550                 }
1551                 r1_bio->bios[i] = bio;
1552         }
1553
1554         if (unlikely(blocked_rdev)) {
1555                 /* Wait for this device to become unblocked */
1556                 int j;
1557
1558                 for (j = 0; j < i; j++)
1559                         if (r1_bio->bios[j])
1560                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1561                 free_r1bio(r1_bio);
1562                 allow_barrier(conf, bio->bi_iter.bi_sector);
1563
1564                 if (bio->bi_opf & REQ_NOWAIT) {
1565                         bio_wouldblock_error(bio);
1566                         return;
1567                 }
1568                 mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1569                                 blocked_rdev->raid_disk);
1570                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1571                 wait_barrier(conf, bio->bi_iter.bi_sector, false);
1572                 goto retry_write;
1573         }
1574
1575         /*
1576          * When using a bitmap, we may call alloc_behind_master_bio below.
1577          * alloc_behind_master_bio allocates a copy of the data payload a page
1578          * at a time and thus needs a new bio that can fit the whole payload
1579          * this bio in page sized chunks.
1580          */
1581         if (write_behind && bitmap)
1582                 max_sectors = min_t(int, max_sectors,
1583                                     BIO_MAX_VECS * (PAGE_SIZE >> 9));
1584         if (max_sectors < bio_sectors(bio)) {
1585                 struct bio *split = bio_split(bio, max_sectors,
1586                                               GFP_NOIO, &conf->bio_split);
1587                 bio_chain(split, bio);
1588                 submit_bio_noacct(bio);
1589                 bio = split;
1590                 r1_bio->master_bio = bio;
1591                 r1_bio->sectors = max_sectors;
1592         }
1593
1594         md_account_bio(mddev, &bio);
1595         r1_bio->master_bio = bio;
1596         atomic_set(&r1_bio->remaining, 1);
1597         atomic_set(&r1_bio->behind_remaining, 0);
1598
1599         first_clone = 1;
1600
1601         for (i = 0; i < disks; i++) {
1602                 struct bio *mbio = NULL;
1603                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1604                 if (!r1_bio->bios[i])
1605                         continue;
1606
1607                 if (first_clone) {
1608                         /* do behind I/O ?
1609                          * Not if there are too many, or cannot
1610                          * allocate memory, or a reader on WriteMostly
1611                          * is waiting for behind writes to flush */
1612                         if (bitmap && write_behind &&
1613                             (atomic_read(&bitmap->behind_writes)
1614                              < mddev->bitmap_info.max_write_behind) &&
1615                             !waitqueue_active(&bitmap->behind_wait)) {
1616                                 alloc_behind_master_bio(r1_bio, bio);
1617                         }
1618
1619                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1620                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1621                         first_clone = 0;
1622                 }
1623
1624                 if (r1_bio->behind_master_bio) {
1625                         mbio = bio_alloc_clone(rdev->bdev,
1626                                                r1_bio->behind_master_bio,
1627                                                GFP_NOIO, &mddev->bio_set);
1628                         if (test_bit(CollisionCheck, &rdev->flags))
1629                                 wait_for_serialization(rdev, r1_bio);
1630                         if (test_bit(WriteMostly, &rdev->flags))
1631                                 atomic_inc(&r1_bio->behind_remaining);
1632                 } else {
1633                         mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1634                                                &mddev->bio_set);
1635
1636                         if (mddev->serialize_policy)
1637                                 wait_for_serialization(rdev, r1_bio);
1638                 }
1639
1640                 r1_bio->bios[i] = mbio;
1641
1642                 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1643                 mbio->bi_end_io = raid1_end_write_request;
1644                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1645                 if (test_bit(FailFast, &rdev->flags) &&
1646                     !test_bit(WriteMostly, &rdev->flags) &&
1647                     conf->raid_disks - mddev->degraded > 1)
1648                         mbio->bi_opf |= MD_FAILFAST;
1649                 mbio->bi_private = r1_bio;
1650
1651                 atomic_inc(&r1_bio->remaining);
1652                 mddev_trace_remap(mddev, mbio, r1_bio->sector);
1653                 /* flush_pending_writes() needs access to the rdev so...*/
1654                 mbio->bi_bdev = (void *)rdev;
1655                 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1656                         spin_lock_irqsave(&conf->device_lock, flags);
1657                         bio_list_add(&conf->pending_bio_list, mbio);
1658                         spin_unlock_irqrestore(&conf->device_lock, flags);
1659                         md_wakeup_thread(mddev->thread);
1660                 }
1661         }
1662
1663         r1_bio_write_done(r1_bio);
1664
1665         /* In case raid1d snuck in to freeze_array */
1666         wake_up_barrier(conf);
1667 }
1668
1669 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1670 {
1671         sector_t sectors;
1672
1673         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1674             && md_flush_request(mddev, bio))
1675                 return true;
1676
1677         /*
1678          * There is a limit to the maximum size, but
1679          * the read/write handler might find a lower limit
1680          * due to bad blocks.  To avoid multiple splits,
1681          * we pass the maximum number of sectors down
1682          * and let the lower level perform the split.
1683          */
1684         sectors = align_to_barrier_unit_end(
1685                 bio->bi_iter.bi_sector, bio_sectors(bio));
1686
1687         if (bio_data_dir(bio) == READ)
1688                 raid1_read_request(mddev, bio, sectors, NULL);
1689         else {
1690                 if (!md_write_start(mddev,bio))
1691                         return false;
1692                 raid1_write_request(mddev, bio, sectors);
1693         }
1694         return true;
1695 }
1696
1697 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1698 {
1699         struct r1conf *conf = mddev->private;
1700         int i;
1701
1702         lockdep_assert_held(&mddev->lock);
1703
1704         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1705                    conf->raid_disks - mddev->degraded);
1706         for (i = 0; i < conf->raid_disks; i++) {
1707                 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1708
1709                 seq_printf(seq, "%s",
1710                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1711         }
1712         seq_printf(seq, "]");
1713 }
1714
1715 /**
1716  * raid1_error() - RAID1 error handler.
1717  * @mddev: affected md device.
1718  * @rdev: member device to fail.
1719  *
1720  * The routine acknowledges &rdev failure and determines new @mddev state.
1721  * If it failed, then:
1722  *      - &MD_BROKEN flag is set in &mddev->flags.
1723  *      - recovery is disabled.
1724  * Otherwise, it must be degraded:
1725  *      - recovery is interrupted.
1726  *      - &mddev->degraded is bumped.
1727  *
1728  * @rdev is marked as &Faulty excluding case when array is failed and
1729  * &mddev->fail_last_dev is off.
1730  */
1731 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1732 {
1733         struct r1conf *conf = mddev->private;
1734         unsigned long flags;
1735
1736         spin_lock_irqsave(&conf->device_lock, flags);
1737
1738         if (test_bit(In_sync, &rdev->flags) &&
1739             (conf->raid_disks - mddev->degraded) == 1) {
1740                 set_bit(MD_BROKEN, &mddev->flags);
1741
1742                 if (!mddev->fail_last_dev) {
1743                         conf->recovery_disabled = mddev->recovery_disabled;
1744                         spin_unlock_irqrestore(&conf->device_lock, flags);
1745                         return;
1746                 }
1747         }
1748         set_bit(Blocked, &rdev->flags);
1749         if (test_and_clear_bit(In_sync, &rdev->flags))
1750                 mddev->degraded++;
1751         set_bit(Faulty, &rdev->flags);
1752         spin_unlock_irqrestore(&conf->device_lock, flags);
1753         /*
1754          * if recovery is running, make sure it aborts.
1755          */
1756         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1757         set_mask_bits(&mddev->sb_flags, 0,
1758                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1759         pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1760                 "md/raid1:%s: Operation continuing on %d devices.\n",
1761                 mdname(mddev), rdev->bdev,
1762                 mdname(mddev), conf->raid_disks - mddev->degraded);
1763 }
1764
1765 static void print_conf(struct r1conf *conf)
1766 {
1767         int i;
1768
1769         pr_debug("RAID1 conf printout:\n");
1770         if (!conf) {
1771                 pr_debug("(!conf)\n");
1772                 return;
1773         }
1774         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1775                  conf->raid_disks);
1776
1777         lockdep_assert_held(&conf->mddev->reconfig_mutex);
1778         for (i = 0; i < conf->raid_disks; i++) {
1779                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1780                 if (rdev)
1781                         pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1782                                  i, !test_bit(In_sync, &rdev->flags),
1783                                  !test_bit(Faulty, &rdev->flags),
1784                                  rdev->bdev);
1785         }
1786 }
1787
1788 static void close_sync(struct r1conf *conf)
1789 {
1790         int idx;
1791
1792         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1793                 _wait_barrier(conf, idx, false);
1794                 _allow_barrier(conf, idx);
1795         }
1796
1797         mempool_exit(&conf->r1buf_pool);
1798 }
1799
1800 static int raid1_spare_active(struct mddev *mddev)
1801 {
1802         int i;
1803         struct r1conf *conf = mddev->private;
1804         int count = 0;
1805         unsigned long flags;
1806
1807         /*
1808          * Find all failed disks within the RAID1 configuration
1809          * and mark them readable.
1810          * Called under mddev lock, so rcu protection not needed.
1811          * device_lock used to avoid races with raid1_end_read_request
1812          * which expects 'In_sync' flags and ->degraded to be consistent.
1813          */
1814         spin_lock_irqsave(&conf->device_lock, flags);
1815         for (i = 0; i < conf->raid_disks; i++) {
1816                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1817                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1818                 if (repl
1819                     && !test_bit(Candidate, &repl->flags)
1820                     && repl->recovery_offset == MaxSector
1821                     && !test_bit(Faulty, &repl->flags)
1822                     && !test_and_set_bit(In_sync, &repl->flags)) {
1823                         /* replacement has just become active */
1824                         if (!rdev ||
1825                             !test_and_clear_bit(In_sync, &rdev->flags))
1826                                 count++;
1827                         if (rdev) {
1828                                 /* Replaced device not technically
1829                                  * faulty, but we need to be sure
1830                                  * it gets removed and never re-added
1831                                  */
1832                                 set_bit(Faulty, &rdev->flags);
1833                                 sysfs_notify_dirent_safe(
1834                                         rdev->sysfs_state);
1835                         }
1836                 }
1837                 if (rdev
1838                     && rdev->recovery_offset == MaxSector
1839                     && !test_bit(Faulty, &rdev->flags)
1840                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1841                         count++;
1842                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1843                 }
1844         }
1845         mddev->degraded -= count;
1846         spin_unlock_irqrestore(&conf->device_lock, flags);
1847
1848         print_conf(conf);
1849         return count;
1850 }
1851
1852 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1853                            bool replacement)
1854 {
1855         struct raid1_info *info = conf->mirrors + disk;
1856
1857         if (replacement)
1858                 info += conf->raid_disks;
1859
1860         if (info->rdev)
1861                 return false;
1862
1863         if (bdev_nonrot(rdev->bdev)) {
1864                 set_bit(Nonrot, &rdev->flags);
1865                 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1866         }
1867
1868         rdev->raid_disk = disk;
1869         info->head_position = 0;
1870         info->seq_start = MaxSector;
1871         WRITE_ONCE(info->rdev, rdev);
1872
1873         return true;
1874 }
1875
1876 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1877 {
1878         struct raid1_info *info = conf->mirrors + disk;
1879         struct md_rdev *rdev = info->rdev;
1880
1881         if (!rdev || test_bit(In_sync, &rdev->flags) ||
1882             atomic_read(&rdev->nr_pending))
1883                 return false;
1884
1885         /* Only remove non-faulty devices if recovery is not possible. */
1886         if (!test_bit(Faulty, &rdev->flags) &&
1887             rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1888             rdev->mddev->degraded < conf->raid_disks)
1889                 return false;
1890
1891         if (test_and_clear_bit(Nonrot, &rdev->flags))
1892                 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1893
1894         WRITE_ONCE(info->rdev, NULL);
1895         return true;
1896 }
1897
1898 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1899 {
1900         struct r1conf *conf = mddev->private;
1901         int err = -EEXIST;
1902         int mirror = 0, repl_slot = -1;
1903         struct raid1_info *p;
1904         int first = 0;
1905         int last = conf->raid_disks - 1;
1906
1907         if (mddev->recovery_disabled == conf->recovery_disabled)
1908                 return -EBUSY;
1909
1910         if (md_integrity_add_rdev(rdev, mddev))
1911                 return -ENXIO;
1912
1913         if (rdev->raid_disk >= 0)
1914                 first = last = rdev->raid_disk;
1915
1916         /*
1917          * find the disk ... but prefer rdev->saved_raid_disk
1918          * if possible.
1919          */
1920         if (rdev->saved_raid_disk >= 0 &&
1921             rdev->saved_raid_disk >= first &&
1922             rdev->saved_raid_disk < conf->raid_disks &&
1923             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1924                 first = last = rdev->saved_raid_disk;
1925
1926         for (mirror = first; mirror <= last; mirror++) {
1927                 p = conf->mirrors + mirror;
1928                 if (!p->rdev) {
1929                         err = mddev_stack_new_rdev(mddev, rdev);
1930                         if (err)
1931                                 return err;
1932
1933                         raid1_add_conf(conf, rdev, mirror, false);
1934                         /* As all devices are equivalent, we don't need a full recovery
1935                          * if this was recently any drive of the array
1936                          */
1937                         if (rdev->saved_raid_disk < 0)
1938                                 conf->fullsync = 1;
1939                         break;
1940                 }
1941                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1942                     p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1943                         repl_slot = mirror;
1944         }
1945
1946         if (err && repl_slot >= 0) {
1947                 /* Add this device as a replacement */
1948                 clear_bit(In_sync, &rdev->flags);
1949                 set_bit(Replacement, &rdev->flags);
1950                 raid1_add_conf(conf, rdev, repl_slot, true);
1951                 err = 0;
1952                 conf->fullsync = 1;
1953         }
1954
1955         print_conf(conf);
1956         return err;
1957 }
1958
1959 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1960 {
1961         struct r1conf *conf = mddev->private;
1962         int err = 0;
1963         int number = rdev->raid_disk;
1964         struct raid1_info *p = conf->mirrors + number;
1965
1966         if (unlikely(number >= conf->raid_disks))
1967                 goto abort;
1968
1969         if (rdev != p->rdev) {
1970                 number += conf->raid_disks;
1971                 p = conf->mirrors + number;
1972         }
1973
1974         print_conf(conf);
1975         if (rdev == p->rdev) {
1976                 if (!raid1_remove_conf(conf, number)) {
1977                         err = -EBUSY;
1978                         goto abort;
1979                 }
1980
1981                 if (number < conf->raid_disks &&
1982                     conf->mirrors[conf->raid_disks + number].rdev) {
1983                         /* We just removed a device that is being replaced.
1984                          * Move down the replacement.  We drain all IO before
1985                          * doing this to avoid confusion.
1986                          */
1987                         struct md_rdev *repl =
1988                                 conf->mirrors[conf->raid_disks + number].rdev;
1989                         freeze_array(conf, 0);
1990                         if (atomic_read(&repl->nr_pending)) {
1991                                 /* It means that some queued IO of retry_list
1992                                  * hold repl. Thus, we cannot set replacement
1993                                  * as NULL, avoiding rdev NULL pointer
1994                                  * dereference in sync_request_write and
1995                                  * handle_write_finished.
1996                                  */
1997                                 err = -EBUSY;
1998                                 unfreeze_array(conf);
1999                                 goto abort;
2000                         }
2001                         clear_bit(Replacement, &repl->flags);
2002                         WRITE_ONCE(p->rdev, repl);
2003                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
2004                         unfreeze_array(conf);
2005                 }
2006
2007                 clear_bit(WantReplacement, &rdev->flags);
2008                 err = md_integrity_register(mddev);
2009         }
2010 abort:
2011
2012         print_conf(conf);
2013         return err;
2014 }
2015
2016 static void end_sync_read(struct bio *bio)
2017 {
2018         struct r1bio *r1_bio = get_resync_r1bio(bio);
2019
2020         update_head_pos(r1_bio->read_disk, r1_bio);
2021
2022         /*
2023          * we have read a block, now it needs to be re-written,
2024          * or re-read if the read failed.
2025          * We don't do much here, just schedule handling by raid1d
2026          */
2027         if (!bio->bi_status)
2028                 set_bit(R1BIO_Uptodate, &r1_bio->state);
2029
2030         if (atomic_dec_and_test(&r1_bio->remaining))
2031                 reschedule_retry(r1_bio);
2032 }
2033
2034 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2035 {
2036         sector_t sync_blocks = 0;
2037         sector_t s = r1_bio->sector;
2038         long sectors_to_go = r1_bio->sectors;
2039
2040         /* make sure these bits don't get cleared. */
2041         do {
2042                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
2043                 s += sync_blocks;
2044                 sectors_to_go -= sync_blocks;
2045         } while (sectors_to_go > 0);
2046 }
2047
2048 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2049 {
2050         if (atomic_dec_and_test(&r1_bio->remaining)) {
2051                 struct mddev *mddev = r1_bio->mddev;
2052                 int s = r1_bio->sectors;
2053
2054                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2055                     test_bit(R1BIO_WriteError, &r1_bio->state))
2056                         reschedule_retry(r1_bio);
2057                 else {
2058                         put_buf(r1_bio);
2059                         md_done_sync(mddev, s, uptodate);
2060                 }
2061         }
2062 }
2063
2064 static void end_sync_write(struct bio *bio)
2065 {
2066         int uptodate = !bio->bi_status;
2067         struct r1bio *r1_bio = get_resync_r1bio(bio);
2068         struct mddev *mddev = r1_bio->mddev;
2069         struct r1conf *conf = mddev->private;
2070         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2071
2072         if (!uptodate) {
2073                 abort_sync_write(mddev, r1_bio);
2074                 set_bit(WriteErrorSeen, &rdev->flags);
2075                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2076                         set_bit(MD_RECOVERY_NEEDED, &
2077                                 mddev->recovery);
2078                 set_bit(R1BIO_WriteError, &r1_bio->state);
2079         } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2080                    !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2081                                       r1_bio->sector, r1_bio->sectors)) {
2082                 set_bit(R1BIO_MadeGood, &r1_bio->state);
2083         }
2084
2085         put_sync_write_buf(r1_bio, uptodate);
2086 }
2087
2088 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2089                            int sectors, struct page *page, blk_opf_t rw)
2090 {
2091         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2092                 /* success */
2093                 return 1;
2094         if (rw == REQ_OP_WRITE) {
2095                 set_bit(WriteErrorSeen, &rdev->flags);
2096                 if (!test_and_set_bit(WantReplacement,
2097                                       &rdev->flags))
2098                         set_bit(MD_RECOVERY_NEEDED, &
2099                                 rdev->mddev->recovery);
2100         }
2101         /* need to record an error - either for the block or the device */
2102         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2103                 md_error(rdev->mddev, rdev);
2104         return 0;
2105 }
2106
2107 static int fix_sync_read_error(struct r1bio *r1_bio)
2108 {
2109         /* Try some synchronous reads of other devices to get
2110          * good data, much like with normal read errors.  Only
2111          * read into the pages we already have so we don't
2112          * need to re-issue the read request.
2113          * We don't need to freeze the array, because being in an
2114          * active sync request, there is no normal IO, and
2115          * no overlapping syncs.
2116          * We don't need to check is_badblock() again as we
2117          * made sure that anything with a bad block in range
2118          * will have bi_end_io clear.
2119          */
2120         struct mddev *mddev = r1_bio->mddev;
2121         struct r1conf *conf = mddev->private;
2122         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2123         struct page **pages = get_resync_pages(bio)->pages;
2124         sector_t sect = r1_bio->sector;
2125         int sectors = r1_bio->sectors;
2126         int idx = 0;
2127         struct md_rdev *rdev;
2128
2129         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2130         if (test_bit(FailFast, &rdev->flags)) {
2131                 /* Don't try recovering from here - just fail it
2132                  * ... unless it is the last working device of course */
2133                 md_error(mddev, rdev);
2134                 if (test_bit(Faulty, &rdev->flags))
2135                         /* Don't try to read from here, but make sure
2136                          * put_buf does it's thing
2137                          */
2138                         bio->bi_end_io = end_sync_write;
2139         }
2140
2141         while(sectors) {
2142                 int s = sectors;
2143                 int d = r1_bio->read_disk;
2144                 int success = 0;
2145                 int start;
2146
2147                 if (s > (PAGE_SIZE>>9))
2148                         s = PAGE_SIZE >> 9;
2149                 do {
2150                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2151                                 /* No rcu protection needed here devices
2152                                  * can only be removed when no resync is
2153                                  * active, and resync is currently active
2154                                  */
2155                                 rdev = conf->mirrors[d].rdev;
2156                                 if (sync_page_io(rdev, sect, s<<9,
2157                                                  pages[idx],
2158                                                  REQ_OP_READ, false)) {
2159                                         success = 1;
2160                                         break;
2161                                 }
2162                         }
2163                         d++;
2164                         if (d == conf->raid_disks * 2)
2165                                 d = 0;
2166                 } while (!success && d != r1_bio->read_disk);
2167
2168                 if (!success) {
2169                         int abort = 0;
2170                         /* Cannot read from anywhere, this block is lost.
2171                          * Record a bad block on each device.  If that doesn't
2172                          * work just disable and interrupt the recovery.
2173                          * Don't fail devices as that won't really help.
2174                          */
2175                         pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2176                                             mdname(mddev), bio->bi_bdev,
2177                                             (unsigned long long)r1_bio->sector);
2178                         for (d = 0; d < conf->raid_disks * 2; d++) {
2179                                 rdev = conf->mirrors[d].rdev;
2180                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2181                                         continue;
2182                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2183                                         abort = 1;
2184                         }
2185                         if (abort) {
2186                                 conf->recovery_disabled =
2187                                         mddev->recovery_disabled;
2188                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2189                                 md_done_sync(mddev, r1_bio->sectors, 0);
2190                                 put_buf(r1_bio);
2191                                 return 0;
2192                         }
2193                         /* Try next page */
2194                         sectors -= s;
2195                         sect += s;
2196                         idx++;
2197                         continue;
2198                 }
2199
2200                 start = d;
2201                 /* write it back and re-read */
2202                 while (d != r1_bio->read_disk) {
2203                         if (d == 0)
2204                                 d = conf->raid_disks * 2;
2205                         d--;
2206                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2207                                 continue;
2208                         rdev = conf->mirrors[d].rdev;
2209                         if (r1_sync_page_io(rdev, sect, s,
2210                                             pages[idx],
2211                                             REQ_OP_WRITE) == 0) {
2212                                 r1_bio->bios[d]->bi_end_io = NULL;
2213                                 rdev_dec_pending(rdev, mddev);
2214                         }
2215                 }
2216                 d = start;
2217                 while (d != r1_bio->read_disk) {
2218                         if (d == 0)
2219                                 d = conf->raid_disks * 2;
2220                         d--;
2221                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2222                                 continue;
2223                         rdev = conf->mirrors[d].rdev;
2224                         if (r1_sync_page_io(rdev, sect, s,
2225                                             pages[idx],
2226                                             REQ_OP_READ) != 0)
2227                                 atomic_add(s, &rdev->corrected_errors);
2228                 }
2229                 sectors -= s;
2230                 sect += s;
2231                 idx ++;
2232         }
2233         set_bit(R1BIO_Uptodate, &r1_bio->state);
2234         bio->bi_status = 0;
2235         return 1;
2236 }
2237
2238 static void process_checks(struct r1bio *r1_bio)
2239 {
2240         /* We have read all readable devices.  If we haven't
2241          * got the block, then there is no hope left.
2242          * If we have, then we want to do a comparison
2243          * and skip the write if everything is the same.
2244          * If any blocks failed to read, then we need to
2245          * attempt an over-write
2246          */
2247         struct mddev *mddev = r1_bio->mddev;
2248         struct r1conf *conf = mddev->private;
2249         int primary;
2250         int i;
2251         int vcnt;
2252
2253         /* Fix variable parts of all bios */
2254         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2255         for (i = 0; i < conf->raid_disks * 2; i++) {
2256                 blk_status_t status;
2257                 struct bio *b = r1_bio->bios[i];
2258                 struct resync_pages *rp = get_resync_pages(b);
2259                 if (b->bi_end_io != end_sync_read)
2260                         continue;
2261                 /* fixup the bio for reuse, but preserve errno */
2262                 status = b->bi_status;
2263                 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2264                 b->bi_status = status;
2265                 b->bi_iter.bi_sector = r1_bio->sector +
2266                         conf->mirrors[i].rdev->data_offset;
2267                 b->bi_end_io = end_sync_read;
2268                 rp->raid_bio = r1_bio;
2269                 b->bi_private = rp;
2270
2271                 /* initialize bvec table again */
2272                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2273         }
2274         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2275                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2276                     !r1_bio->bios[primary]->bi_status) {
2277                         r1_bio->bios[primary]->bi_end_io = NULL;
2278                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2279                         break;
2280                 }
2281         r1_bio->read_disk = primary;
2282         for (i = 0; i < conf->raid_disks * 2; i++) {
2283                 int j = 0;
2284                 struct bio *pbio = r1_bio->bios[primary];
2285                 struct bio *sbio = r1_bio->bios[i];
2286                 blk_status_t status = sbio->bi_status;
2287                 struct page **ppages = get_resync_pages(pbio)->pages;
2288                 struct page **spages = get_resync_pages(sbio)->pages;
2289                 struct bio_vec *bi;
2290                 int page_len[RESYNC_PAGES] = { 0 };
2291                 struct bvec_iter_all iter_all;
2292
2293                 if (sbio->bi_end_io != end_sync_read)
2294                         continue;
2295                 /* Now we can 'fixup' the error value */
2296                 sbio->bi_status = 0;
2297
2298                 bio_for_each_segment_all(bi, sbio, iter_all)
2299                         page_len[j++] = bi->bv_len;
2300
2301                 if (!status) {
2302                         for (j = vcnt; j-- ; ) {
2303                                 if (memcmp(page_address(ppages[j]),
2304                                            page_address(spages[j]),
2305                                            page_len[j]))
2306                                         break;
2307                         }
2308                 } else
2309                         j = 0;
2310                 if (j >= 0)
2311                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2312                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2313                               && !status)) {
2314                         /* No need to write to this device. */
2315                         sbio->bi_end_io = NULL;
2316                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2317                         continue;
2318                 }
2319
2320                 bio_copy_data(sbio, pbio);
2321         }
2322 }
2323
2324 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2325 {
2326         struct r1conf *conf = mddev->private;
2327         int i;
2328         int disks = conf->raid_disks * 2;
2329         struct bio *wbio;
2330
2331         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2332                 /* ouch - failed to read all of that. */
2333                 if (!fix_sync_read_error(r1_bio))
2334                         return;
2335
2336         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2337                 process_checks(r1_bio);
2338
2339         /*
2340          * schedule writes
2341          */
2342         atomic_set(&r1_bio->remaining, 1);
2343         for (i = 0; i < disks ; i++) {
2344                 wbio = r1_bio->bios[i];
2345                 if (wbio->bi_end_io == NULL ||
2346                     (wbio->bi_end_io == end_sync_read &&
2347                      (i == r1_bio->read_disk ||
2348                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2349                         continue;
2350                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2351                         abort_sync_write(mddev, r1_bio);
2352                         continue;
2353                 }
2354
2355                 wbio->bi_opf = REQ_OP_WRITE;
2356                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2357                         wbio->bi_opf |= MD_FAILFAST;
2358
2359                 wbio->bi_end_io = end_sync_write;
2360                 atomic_inc(&r1_bio->remaining);
2361                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2362
2363                 submit_bio_noacct(wbio);
2364         }
2365
2366         put_sync_write_buf(r1_bio, 1);
2367 }
2368
2369 /*
2370  * This is a kernel thread which:
2371  *
2372  *      1.      Retries failed read operations on working mirrors.
2373  *      2.      Updates the raid superblock when problems encounter.
2374  *      3.      Performs writes following reads for array synchronising.
2375  */
2376
2377 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2378 {
2379         sector_t sect = r1_bio->sector;
2380         int sectors = r1_bio->sectors;
2381         int read_disk = r1_bio->read_disk;
2382         struct mddev *mddev = conf->mddev;
2383         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2384
2385         if (exceed_read_errors(mddev, rdev)) {
2386                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2387                 return;
2388         }
2389
2390         while(sectors) {
2391                 int s = sectors;
2392                 int d = read_disk;
2393                 int success = 0;
2394                 int start;
2395
2396                 if (s > (PAGE_SIZE>>9))
2397                         s = PAGE_SIZE >> 9;
2398
2399                 do {
2400                         rdev = conf->mirrors[d].rdev;
2401                         if (rdev &&
2402                             (test_bit(In_sync, &rdev->flags) ||
2403                              (!test_bit(Faulty, &rdev->flags) &&
2404                               rdev->recovery_offset >= sect + s)) &&
2405                             rdev_has_badblock(rdev, sect, s) == 0) {
2406                                 atomic_inc(&rdev->nr_pending);
2407                                 if (sync_page_io(rdev, sect, s<<9,
2408                                          conf->tmppage, REQ_OP_READ, false))
2409                                         success = 1;
2410                                 rdev_dec_pending(rdev, mddev);
2411                                 if (success)
2412                                         break;
2413                         }
2414
2415                         d++;
2416                         if (d == conf->raid_disks * 2)
2417                                 d = 0;
2418                 } while (d != read_disk);
2419
2420                 if (!success) {
2421                         /* Cannot read from anywhere - mark it bad */
2422                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2423                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2424                                 md_error(mddev, rdev);
2425                         break;
2426                 }
2427                 /* write it back and re-read */
2428                 start = d;
2429                 while (d != read_disk) {
2430                         if (d==0)
2431                                 d = conf->raid_disks * 2;
2432                         d--;
2433                         rdev = conf->mirrors[d].rdev;
2434                         if (rdev &&
2435                             !test_bit(Faulty, &rdev->flags)) {
2436                                 atomic_inc(&rdev->nr_pending);
2437                                 r1_sync_page_io(rdev, sect, s,
2438                                                 conf->tmppage, REQ_OP_WRITE);
2439                                 rdev_dec_pending(rdev, mddev);
2440                         }
2441                 }
2442                 d = start;
2443                 while (d != read_disk) {
2444                         if (d==0)
2445                                 d = conf->raid_disks * 2;
2446                         d--;
2447                         rdev = conf->mirrors[d].rdev;
2448                         if (rdev &&
2449                             !test_bit(Faulty, &rdev->flags)) {
2450                                 atomic_inc(&rdev->nr_pending);
2451                                 if (r1_sync_page_io(rdev, sect, s,
2452                                                 conf->tmppage, REQ_OP_READ)) {
2453                                         atomic_add(s, &rdev->corrected_errors);
2454                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2455                                                 mdname(mddev), s,
2456                                                 (unsigned long long)(sect +
2457                                                                      rdev->data_offset),
2458                                                 rdev->bdev);
2459                                 }
2460                                 rdev_dec_pending(rdev, mddev);
2461                         }
2462                 }
2463                 sectors -= s;
2464                 sect += s;
2465         }
2466 }
2467
2468 static int narrow_write_error(struct r1bio *r1_bio, int i)
2469 {
2470         struct mddev *mddev = r1_bio->mddev;
2471         struct r1conf *conf = mddev->private;
2472         struct md_rdev *rdev = conf->mirrors[i].rdev;
2473
2474         /* bio has the data to be written to device 'i' where
2475          * we just recently had a write error.
2476          * We repeatedly clone the bio and trim down to one block,
2477          * then try the write.  Where the write fails we record
2478          * a bad block.
2479          * It is conceivable that the bio doesn't exactly align with
2480          * blocks.  We must handle this somehow.
2481          *
2482          * We currently own a reference on the rdev.
2483          */
2484
2485         int block_sectors;
2486         sector_t sector;
2487         int sectors;
2488         int sect_to_write = r1_bio->sectors;
2489         int ok = 1;
2490
2491         if (rdev->badblocks.shift < 0)
2492                 return 0;
2493
2494         block_sectors = roundup(1 << rdev->badblocks.shift,
2495                                 bdev_logical_block_size(rdev->bdev) >> 9);
2496         sector = r1_bio->sector;
2497         sectors = ((sector + block_sectors)
2498                    & ~(sector_t)(block_sectors - 1))
2499                 - sector;
2500
2501         while (sect_to_write) {
2502                 struct bio *wbio;
2503                 if (sectors > sect_to_write)
2504                         sectors = sect_to_write;
2505                 /* Write at 'sector' for 'sectors'*/
2506
2507                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2508                         wbio = bio_alloc_clone(rdev->bdev,
2509                                                r1_bio->behind_master_bio,
2510                                                GFP_NOIO, &mddev->bio_set);
2511                 } else {
2512                         wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2513                                                GFP_NOIO, &mddev->bio_set);
2514                 }
2515
2516                 wbio->bi_opf = REQ_OP_WRITE;
2517                 wbio->bi_iter.bi_sector = r1_bio->sector;
2518                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2519
2520                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2521                 wbio->bi_iter.bi_sector += rdev->data_offset;
2522
2523                 if (submit_bio_wait(wbio) < 0)
2524                         /* failure! */
2525                         ok = rdev_set_badblocks(rdev, sector,
2526                                                 sectors, 0)
2527                                 && ok;
2528
2529                 bio_put(wbio);
2530                 sect_to_write -= sectors;
2531                 sector += sectors;
2532                 sectors = block_sectors;
2533         }
2534         return ok;
2535 }
2536
2537 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2538 {
2539         int m;
2540         int s = r1_bio->sectors;
2541         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2542                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2543                 struct bio *bio = r1_bio->bios[m];
2544                 if (bio->bi_end_io == NULL)
2545                         continue;
2546                 if (!bio->bi_status &&
2547                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2548                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2549                 }
2550                 if (bio->bi_status &&
2551                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2552                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2553                                 md_error(conf->mddev, rdev);
2554                 }
2555         }
2556         put_buf(r1_bio);
2557         md_done_sync(conf->mddev, s, 1);
2558 }
2559
2560 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2561 {
2562         int m, idx;
2563         bool fail = false;
2564
2565         for (m = 0; m < conf->raid_disks * 2 ; m++)
2566                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2567                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2568                         rdev_clear_badblocks(rdev,
2569                                              r1_bio->sector,
2570                                              r1_bio->sectors, 0);
2571                         rdev_dec_pending(rdev, conf->mddev);
2572                 } else if (r1_bio->bios[m] != NULL) {
2573                         /* This drive got a write error.  We need to
2574                          * narrow down and record precise write
2575                          * errors.
2576                          */
2577                         fail = true;
2578                         if (!narrow_write_error(r1_bio, m)) {
2579                                 md_error(conf->mddev,
2580                                          conf->mirrors[m].rdev);
2581                                 /* an I/O failed, we can't clear the bitmap */
2582                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2583                         }
2584                         rdev_dec_pending(conf->mirrors[m].rdev,
2585                                          conf->mddev);
2586                 }
2587         if (fail) {
2588                 spin_lock_irq(&conf->device_lock);
2589                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2590                 idx = sector_to_idx(r1_bio->sector);
2591                 atomic_inc(&conf->nr_queued[idx]);
2592                 spin_unlock_irq(&conf->device_lock);
2593                 /*
2594                  * In case freeze_array() is waiting for condition
2595                  * get_unqueued_pending() == extra to be true.
2596                  */
2597                 wake_up(&conf->wait_barrier);
2598                 md_wakeup_thread(conf->mddev->thread);
2599         } else {
2600                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2601                         close_write(r1_bio);
2602                 raid_end_bio_io(r1_bio);
2603         }
2604 }
2605
2606 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2607 {
2608         struct mddev *mddev = conf->mddev;
2609         struct bio *bio;
2610         struct md_rdev *rdev;
2611         sector_t sector;
2612
2613         clear_bit(R1BIO_ReadError, &r1_bio->state);
2614         /* we got a read error. Maybe the drive is bad.  Maybe just
2615          * the block and we can fix it.
2616          * We freeze all other IO, and try reading the block from
2617          * other devices.  When we find one, we re-write
2618          * and check it that fixes the read error.
2619          * This is all done synchronously while the array is
2620          * frozen
2621          */
2622
2623         bio = r1_bio->bios[r1_bio->read_disk];
2624         bio_put(bio);
2625         r1_bio->bios[r1_bio->read_disk] = NULL;
2626
2627         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2628         if (mddev->ro == 0
2629             && !test_bit(FailFast, &rdev->flags)) {
2630                 freeze_array(conf, 1);
2631                 fix_read_error(conf, r1_bio);
2632                 unfreeze_array(conf);
2633         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2634                 md_error(mddev, rdev);
2635         } else {
2636                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2637         }
2638
2639         rdev_dec_pending(rdev, conf->mddev);
2640         sector = r1_bio->sector;
2641         bio = r1_bio->master_bio;
2642
2643         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2644         r1_bio->state = 0;
2645         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2646         allow_barrier(conf, sector);
2647 }
2648
2649 static void raid1d(struct md_thread *thread)
2650 {
2651         struct mddev *mddev = thread->mddev;
2652         struct r1bio *r1_bio;
2653         unsigned long flags;
2654         struct r1conf *conf = mddev->private;
2655         struct list_head *head = &conf->retry_list;
2656         struct blk_plug plug;
2657         int idx;
2658
2659         md_check_recovery(mddev);
2660
2661         if (!list_empty_careful(&conf->bio_end_io_list) &&
2662             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2663                 LIST_HEAD(tmp);
2664                 spin_lock_irqsave(&conf->device_lock, flags);
2665                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2666                         list_splice_init(&conf->bio_end_io_list, &tmp);
2667                 spin_unlock_irqrestore(&conf->device_lock, flags);
2668                 while (!list_empty(&tmp)) {
2669                         r1_bio = list_first_entry(&tmp, struct r1bio,
2670                                                   retry_list);
2671                         list_del(&r1_bio->retry_list);
2672                         idx = sector_to_idx(r1_bio->sector);
2673                         atomic_dec(&conf->nr_queued[idx]);
2674                         if (mddev->degraded)
2675                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2676                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2677                                 close_write(r1_bio);
2678                         raid_end_bio_io(r1_bio);
2679                 }
2680         }
2681
2682         blk_start_plug(&plug);
2683         for (;;) {
2684
2685                 flush_pending_writes(conf);
2686
2687                 spin_lock_irqsave(&conf->device_lock, flags);
2688                 if (list_empty(head)) {
2689                         spin_unlock_irqrestore(&conf->device_lock, flags);
2690                         break;
2691                 }
2692                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2693                 list_del(head->prev);
2694                 idx = sector_to_idx(r1_bio->sector);
2695                 atomic_dec(&conf->nr_queued[idx]);
2696                 spin_unlock_irqrestore(&conf->device_lock, flags);
2697
2698                 mddev = r1_bio->mddev;
2699                 conf = mddev->private;
2700                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2701                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2702                             test_bit(R1BIO_WriteError, &r1_bio->state))
2703                                 handle_sync_write_finished(conf, r1_bio);
2704                         else
2705                                 sync_request_write(mddev, r1_bio);
2706                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2707                            test_bit(R1BIO_WriteError, &r1_bio->state))
2708                         handle_write_finished(conf, r1_bio);
2709                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2710                         handle_read_error(conf, r1_bio);
2711                 else
2712                         WARN_ON_ONCE(1);
2713
2714                 cond_resched();
2715                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2716                         md_check_recovery(mddev);
2717         }
2718         blk_finish_plug(&plug);
2719 }
2720
2721 static int init_resync(struct r1conf *conf)
2722 {
2723         int buffs;
2724
2725         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2726         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2727
2728         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2729                             r1buf_pool_free, conf->poolinfo);
2730 }
2731
2732 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2733 {
2734         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2735         struct resync_pages *rps;
2736         struct bio *bio;
2737         int i;
2738
2739         for (i = conf->poolinfo->raid_disks; i--; ) {
2740                 bio = r1bio->bios[i];
2741                 rps = bio->bi_private;
2742                 bio_reset(bio, NULL, 0);
2743                 bio->bi_private = rps;
2744         }
2745         r1bio->master_bio = NULL;
2746         return r1bio;
2747 }
2748
2749 /*
2750  * perform a "sync" on one "block"
2751  *
2752  * We need to make sure that no normal I/O request - particularly write
2753  * requests - conflict with active sync requests.
2754  *
2755  * This is achieved by tracking pending requests and a 'barrier' concept
2756  * that can be installed to exclude normal IO requests.
2757  */
2758
2759 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2760                                    int *skipped)
2761 {
2762         struct r1conf *conf = mddev->private;
2763         struct r1bio *r1_bio;
2764         struct bio *bio;
2765         sector_t max_sector, nr_sectors;
2766         int disk = -1;
2767         int i;
2768         int wonly = -1;
2769         int write_targets = 0, read_targets = 0;
2770         sector_t sync_blocks;
2771         int still_degraded = 0;
2772         int good_sectors = RESYNC_SECTORS;
2773         int min_bad = 0; /* number of sectors that are bad in all devices */
2774         int idx = sector_to_idx(sector_nr);
2775         int page_idx = 0;
2776
2777         if (!mempool_initialized(&conf->r1buf_pool))
2778                 if (init_resync(conf))
2779                         return 0;
2780
2781         max_sector = mddev->dev_sectors;
2782         if (sector_nr >= max_sector) {
2783                 /* If we aborted, we need to abort the
2784                  * sync on the 'current' bitmap chunk (there will
2785                  * only be one in raid1 resync.
2786                  * We can find the current addess in mddev->curr_resync
2787                  */
2788                 if (mddev->curr_resync < max_sector) /* aborted */
2789                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2790                                            &sync_blocks, 1);
2791                 else /* completed sync */
2792                         conf->fullsync = 0;
2793
2794                 md_bitmap_close_sync(mddev->bitmap);
2795                 close_sync(conf);
2796
2797                 if (mddev_is_clustered(mddev)) {
2798                         conf->cluster_sync_low = 0;
2799                         conf->cluster_sync_high = 0;
2800                 }
2801                 return 0;
2802         }
2803
2804         if (mddev->bitmap == NULL &&
2805             mddev->recovery_cp == MaxSector &&
2806             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2807             conf->fullsync == 0) {
2808                 *skipped = 1;
2809                 return max_sector - sector_nr;
2810         }
2811         /* before building a request, check if we can skip these blocks..
2812          * This call the bitmap_start_sync doesn't actually record anything
2813          */
2814         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2815             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2816                 /* We can skip this block, and probably several more */
2817                 *skipped = 1;
2818                 return sync_blocks;
2819         }
2820
2821         /*
2822          * If there is non-resync activity waiting for a turn, then let it
2823          * though before starting on this new sync request.
2824          */
2825         if (atomic_read(&conf->nr_waiting[idx]))
2826                 schedule_timeout_uninterruptible(1);
2827
2828         /* we are incrementing sector_nr below. To be safe, we check against
2829          * sector_nr + two times RESYNC_SECTORS
2830          */
2831
2832         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2833                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2834
2835
2836         if (raise_barrier(conf, sector_nr))
2837                 return 0;
2838
2839         r1_bio = raid1_alloc_init_r1buf(conf);
2840
2841         /*
2842          * If we get a correctably read error during resync or recovery,
2843          * we might want to read from a different device.  So we
2844          * flag all drives that could conceivably be read from for READ,
2845          * and any others (which will be non-In_sync devices) for WRITE.
2846          * If a read fails, we try reading from something else for which READ
2847          * is OK.
2848          */
2849
2850         r1_bio->mddev = mddev;
2851         r1_bio->sector = sector_nr;
2852         r1_bio->state = 0;
2853         set_bit(R1BIO_IsSync, &r1_bio->state);
2854         /* make sure good_sectors won't go across barrier unit boundary */
2855         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2856
2857         for (i = 0; i < conf->raid_disks * 2; i++) {
2858                 struct md_rdev *rdev;
2859                 bio = r1_bio->bios[i];
2860
2861                 rdev = conf->mirrors[i].rdev;
2862                 if (rdev == NULL ||
2863                     test_bit(Faulty, &rdev->flags)) {
2864                         if (i < conf->raid_disks)
2865                                 still_degraded = 1;
2866                 } else if (!test_bit(In_sync, &rdev->flags)) {
2867                         bio->bi_opf = REQ_OP_WRITE;
2868                         bio->bi_end_io = end_sync_write;
2869                         write_targets ++;
2870                 } else {
2871                         /* may need to read from here */
2872                         sector_t first_bad = MaxSector;
2873                         int bad_sectors;
2874
2875                         if (is_badblock(rdev, sector_nr, good_sectors,
2876                                         &first_bad, &bad_sectors)) {
2877                                 if (first_bad > sector_nr)
2878                                         good_sectors = first_bad - sector_nr;
2879                                 else {
2880                                         bad_sectors -= (sector_nr - first_bad);
2881                                         if (min_bad == 0 ||
2882                                             min_bad > bad_sectors)
2883                                                 min_bad = bad_sectors;
2884                                 }
2885                         }
2886                         if (sector_nr < first_bad) {
2887                                 if (test_bit(WriteMostly, &rdev->flags)) {
2888                                         if (wonly < 0)
2889                                                 wonly = i;
2890                                 } else {
2891                                         if (disk < 0)
2892                                                 disk = i;
2893                                 }
2894                                 bio->bi_opf = REQ_OP_READ;
2895                                 bio->bi_end_io = end_sync_read;
2896                                 read_targets++;
2897                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2898                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2899                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2900                                 /*
2901                                  * The device is suitable for reading (InSync),
2902                                  * but has bad block(s) here. Let's try to correct them,
2903                                  * if we are doing resync or repair. Otherwise, leave
2904                                  * this device alone for this sync request.
2905                                  */
2906                                 bio->bi_opf = REQ_OP_WRITE;
2907                                 bio->bi_end_io = end_sync_write;
2908                                 write_targets++;
2909                         }
2910                 }
2911                 if (rdev && bio->bi_end_io) {
2912                         atomic_inc(&rdev->nr_pending);
2913                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2914                         bio_set_dev(bio, rdev->bdev);
2915                         if (test_bit(FailFast, &rdev->flags))
2916                                 bio->bi_opf |= MD_FAILFAST;
2917                 }
2918         }
2919         if (disk < 0)
2920                 disk = wonly;
2921         r1_bio->read_disk = disk;
2922
2923         if (read_targets == 0 && min_bad > 0) {
2924                 /* These sectors are bad on all InSync devices, so we
2925                  * need to mark them bad on all write targets
2926                  */
2927                 int ok = 1;
2928                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2929                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2930                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2931                                 ok = rdev_set_badblocks(rdev, sector_nr,
2932                                                         min_bad, 0
2933                                         ) && ok;
2934                         }
2935                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2936                 *skipped = 1;
2937                 put_buf(r1_bio);
2938
2939                 if (!ok) {
2940                         /* Cannot record the badblocks, so need to
2941                          * abort the resync.
2942                          * If there are multiple read targets, could just
2943                          * fail the really bad ones ???
2944                          */
2945                         conf->recovery_disabled = mddev->recovery_disabled;
2946                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2947                         return 0;
2948                 } else
2949                         return min_bad;
2950
2951         }
2952         if (min_bad > 0 && min_bad < good_sectors) {
2953                 /* only resync enough to reach the next bad->good
2954                  * transition */
2955                 good_sectors = min_bad;
2956         }
2957
2958         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2959                 /* extra read targets are also write targets */
2960                 write_targets += read_targets-1;
2961
2962         if (write_targets == 0 || read_targets == 0) {
2963                 /* There is nowhere to write, so all non-sync
2964                  * drives must be failed - so we are finished
2965                  */
2966                 sector_t rv;
2967                 if (min_bad > 0)
2968                         max_sector = sector_nr + min_bad;
2969                 rv = max_sector - sector_nr;
2970                 *skipped = 1;
2971                 put_buf(r1_bio);
2972                 return rv;
2973         }
2974
2975         if (max_sector > mddev->resync_max)
2976                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2977         if (max_sector > sector_nr + good_sectors)
2978                 max_sector = sector_nr + good_sectors;
2979         nr_sectors = 0;
2980         sync_blocks = 0;
2981         do {
2982                 struct page *page;
2983                 int len = PAGE_SIZE;
2984                 if (sector_nr + (len>>9) > max_sector)
2985                         len = (max_sector - sector_nr) << 9;
2986                 if (len == 0)
2987                         break;
2988                 if (sync_blocks == 0) {
2989                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2990                                                   &sync_blocks, still_degraded) &&
2991                             !conf->fullsync &&
2992                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2993                                 break;
2994                         if ((len >> 9) > sync_blocks)
2995                                 len = sync_blocks<<9;
2996                 }
2997
2998                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2999                         struct resync_pages *rp;
3000
3001                         bio = r1_bio->bios[i];
3002                         rp = get_resync_pages(bio);
3003                         if (bio->bi_end_io) {
3004                                 page = resync_fetch_page(rp, page_idx);
3005
3006                                 /*
3007                                  * won't fail because the vec table is big
3008                                  * enough to hold all these pages
3009                                  */
3010                                 __bio_add_page(bio, page, len, 0);
3011                         }
3012                 }
3013                 nr_sectors += len>>9;
3014                 sector_nr += len>>9;
3015                 sync_blocks -= (len>>9);
3016         } while (++page_idx < RESYNC_PAGES);
3017
3018         r1_bio->sectors = nr_sectors;
3019
3020         if (mddev_is_clustered(mddev) &&
3021                         conf->cluster_sync_high < sector_nr + nr_sectors) {
3022                 conf->cluster_sync_low = mddev->curr_resync_completed;
3023                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3024                 /* Send resync message */
3025                 md_cluster_ops->resync_info_update(mddev,
3026                                 conf->cluster_sync_low,
3027                                 conf->cluster_sync_high);
3028         }
3029
3030         /* For a user-requested sync, we read all readable devices and do a
3031          * compare
3032          */
3033         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3034                 atomic_set(&r1_bio->remaining, read_targets);
3035                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3036                         bio = r1_bio->bios[i];
3037                         if (bio->bi_end_io == end_sync_read) {
3038                                 read_targets--;
3039                                 md_sync_acct_bio(bio, nr_sectors);
3040                                 if (read_targets == 1)
3041                                         bio->bi_opf &= ~MD_FAILFAST;
3042                                 submit_bio_noacct(bio);
3043                         }
3044                 }
3045         } else {
3046                 atomic_set(&r1_bio->remaining, 1);
3047                 bio = r1_bio->bios[r1_bio->read_disk];
3048                 md_sync_acct_bio(bio, nr_sectors);
3049                 if (read_targets == 1)
3050                         bio->bi_opf &= ~MD_FAILFAST;
3051                 submit_bio_noacct(bio);
3052         }
3053         return nr_sectors;
3054 }
3055
3056 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3057 {
3058         if (sectors)
3059                 return sectors;
3060
3061         return mddev->dev_sectors;
3062 }
3063
3064 static struct r1conf *setup_conf(struct mddev *mddev)
3065 {
3066         struct r1conf *conf;
3067         int i;
3068         struct raid1_info *disk;
3069         struct md_rdev *rdev;
3070         int err = -ENOMEM;
3071
3072         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3073         if (!conf)
3074                 goto abort;
3075
3076         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3077                                    sizeof(atomic_t), GFP_KERNEL);
3078         if (!conf->nr_pending)
3079                 goto abort;
3080
3081         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3082                                    sizeof(atomic_t), GFP_KERNEL);
3083         if (!conf->nr_waiting)
3084                 goto abort;
3085
3086         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3087                                   sizeof(atomic_t), GFP_KERNEL);
3088         if (!conf->nr_queued)
3089                 goto abort;
3090
3091         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3092                                 sizeof(atomic_t), GFP_KERNEL);
3093         if (!conf->barrier)
3094                 goto abort;
3095
3096         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3097                                             mddev->raid_disks, 2),
3098                                 GFP_KERNEL);
3099         if (!conf->mirrors)
3100                 goto abort;
3101
3102         conf->tmppage = alloc_page(GFP_KERNEL);
3103         if (!conf->tmppage)
3104                 goto abort;
3105
3106         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3107         if (!conf->poolinfo)
3108                 goto abort;
3109         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3110         err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3111                            rbio_pool_free, conf->poolinfo);
3112         if (err)
3113                 goto abort;
3114
3115         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3116         if (err)
3117                 goto abort;
3118
3119         conf->poolinfo->mddev = mddev;
3120
3121         err = -EINVAL;
3122         spin_lock_init(&conf->device_lock);
3123         conf->raid_disks = mddev->raid_disks;
3124         rdev_for_each(rdev, mddev) {
3125                 int disk_idx = rdev->raid_disk;
3126
3127                 if (disk_idx >= conf->raid_disks || disk_idx < 0)
3128                         continue;
3129
3130                 if (!raid1_add_conf(conf, rdev, disk_idx,
3131                                     test_bit(Replacement, &rdev->flags)))
3132                         goto abort;
3133         }
3134         conf->mddev = mddev;
3135         INIT_LIST_HEAD(&conf->retry_list);
3136         INIT_LIST_HEAD(&conf->bio_end_io_list);
3137
3138         spin_lock_init(&conf->resync_lock);
3139         init_waitqueue_head(&conf->wait_barrier);
3140
3141         bio_list_init(&conf->pending_bio_list);
3142         conf->recovery_disabled = mddev->recovery_disabled - 1;
3143
3144         err = -EIO;
3145         for (i = 0; i < conf->raid_disks * 2; i++) {
3146
3147                 disk = conf->mirrors + i;
3148
3149                 if (i < conf->raid_disks &&
3150                     disk[conf->raid_disks].rdev) {
3151                         /* This slot has a replacement. */
3152                         if (!disk->rdev) {
3153                                 /* No original, just make the replacement
3154                                  * a recovering spare
3155                                  */
3156                                 disk->rdev =
3157                                         disk[conf->raid_disks].rdev;
3158                                 disk[conf->raid_disks].rdev = NULL;
3159                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3160                                 /* Original is not in_sync - bad */
3161                                 goto abort;
3162                 }
3163
3164                 if (!disk->rdev ||
3165                     !test_bit(In_sync, &disk->rdev->flags)) {
3166                         disk->head_position = 0;
3167                         if (disk->rdev &&
3168                             (disk->rdev->saved_raid_disk < 0))
3169                                 conf->fullsync = 1;
3170                 }
3171         }
3172
3173         err = -ENOMEM;
3174         rcu_assign_pointer(conf->thread,
3175                            md_register_thread(raid1d, mddev, "raid1"));
3176         if (!conf->thread)
3177                 goto abort;
3178
3179         return conf;
3180
3181  abort:
3182         if (conf) {
3183                 mempool_exit(&conf->r1bio_pool);
3184                 kfree(conf->mirrors);
3185                 safe_put_page(conf->tmppage);
3186                 kfree(conf->poolinfo);
3187                 kfree(conf->nr_pending);
3188                 kfree(conf->nr_waiting);
3189                 kfree(conf->nr_queued);
3190                 kfree(conf->barrier);
3191                 bioset_exit(&conf->bio_split);
3192                 kfree(conf);
3193         }
3194         return ERR_PTR(err);
3195 }
3196
3197 static int raid1_set_limits(struct mddev *mddev)
3198 {
3199         struct queue_limits lim;
3200
3201         blk_set_stacking_limits(&lim);
3202         lim.max_write_zeroes_sectors = 0;
3203         mddev_stack_rdev_limits(mddev, &lim);
3204         return queue_limits_set(mddev->gendisk->queue, &lim);
3205 }
3206
3207 static void raid1_free(struct mddev *mddev, void *priv);
3208 static int raid1_run(struct mddev *mddev)
3209 {
3210         struct r1conf *conf;
3211         int i;
3212         int ret;
3213
3214         if (mddev->level != 1) {
3215                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3216                         mdname(mddev), mddev->level);
3217                 return -EIO;
3218         }
3219         if (mddev->reshape_position != MaxSector) {
3220                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3221                         mdname(mddev));
3222                 return -EIO;
3223         }
3224
3225         /*
3226          * copy the already verified devices into our private RAID1
3227          * bookkeeping area. [whatever we allocate in run(),
3228          * should be freed in raid1_free()]
3229          */
3230         if (mddev->private == NULL)
3231                 conf = setup_conf(mddev);
3232         else
3233                 conf = mddev->private;
3234
3235         if (IS_ERR(conf))
3236                 return PTR_ERR(conf);
3237
3238         if (!mddev_is_dm(mddev)) {
3239                 ret = raid1_set_limits(mddev);
3240                 if (ret)
3241                         goto abort;
3242         }
3243
3244         mddev->degraded = 0;
3245         for (i = 0; i < conf->raid_disks; i++)
3246                 if (conf->mirrors[i].rdev == NULL ||
3247                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3248                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3249                         mddev->degraded++;
3250         /*
3251          * RAID1 needs at least one disk in active
3252          */
3253         if (conf->raid_disks - mddev->degraded < 1) {
3254                 md_unregister_thread(mddev, &conf->thread);
3255                 ret = -EINVAL;
3256                 goto abort;
3257         }
3258
3259         if (conf->raid_disks - mddev->degraded == 1)
3260                 mddev->recovery_cp = MaxSector;
3261
3262         if (mddev->recovery_cp != MaxSector)
3263                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3264                         mdname(mddev));
3265         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3266                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3267                 mddev->raid_disks);
3268
3269         /*
3270          * Ok, everything is just fine now
3271          */
3272         rcu_assign_pointer(mddev->thread, conf->thread);
3273         rcu_assign_pointer(conf->thread, NULL);
3274         mddev->private = conf;
3275         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3276
3277         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3278
3279         ret = md_integrity_register(mddev);
3280         if (ret) {
3281                 md_unregister_thread(mddev, &mddev->thread);
3282                 goto abort;
3283         }
3284         return 0;
3285
3286 abort:
3287         raid1_free(mddev, conf);
3288         return ret;
3289 }
3290
3291 static void raid1_free(struct mddev *mddev, void *priv)
3292 {
3293         struct r1conf *conf = priv;
3294
3295         mempool_exit(&conf->r1bio_pool);
3296         kfree(conf->mirrors);
3297         safe_put_page(conf->tmppage);
3298         kfree(conf->poolinfo);
3299         kfree(conf->nr_pending);
3300         kfree(conf->nr_waiting);
3301         kfree(conf->nr_queued);
3302         kfree(conf->barrier);
3303         bioset_exit(&conf->bio_split);
3304         kfree(conf);
3305 }
3306
3307 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3308 {
3309         /* no resync is happening, and there is enough space
3310          * on all devices, so we can resize.
3311          * We need to make sure resync covers any new space.
3312          * If the array is shrinking we should possibly wait until
3313          * any io in the removed space completes, but it hardly seems
3314          * worth it.
3315          */
3316         sector_t newsize = raid1_size(mddev, sectors, 0);
3317         if (mddev->external_size &&
3318             mddev->array_sectors > newsize)
3319                 return -EINVAL;
3320         if (mddev->bitmap) {
3321                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3322                 if (ret)
3323                         return ret;
3324         }
3325         md_set_array_sectors(mddev, newsize);
3326         if (sectors > mddev->dev_sectors &&
3327             mddev->recovery_cp > mddev->dev_sectors) {
3328                 mddev->recovery_cp = mddev->dev_sectors;
3329                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330         }
3331         mddev->dev_sectors = sectors;
3332         mddev->resync_max_sectors = sectors;
3333         return 0;
3334 }
3335
3336 static int raid1_reshape(struct mddev *mddev)
3337 {
3338         /* We need to:
3339          * 1/ resize the r1bio_pool
3340          * 2/ resize conf->mirrors
3341          *
3342          * We allocate a new r1bio_pool if we can.
3343          * Then raise a device barrier and wait until all IO stops.
3344          * Then resize conf->mirrors and swap in the new r1bio pool.
3345          *
3346          * At the same time, we "pack" the devices so that all the missing
3347          * devices have the higher raid_disk numbers.
3348          */
3349         mempool_t newpool, oldpool;
3350         struct pool_info *newpoolinfo;
3351         struct raid1_info *newmirrors;
3352         struct r1conf *conf = mddev->private;
3353         int cnt, raid_disks;
3354         unsigned long flags;
3355         int d, d2;
3356         int ret;
3357
3358         memset(&newpool, 0, sizeof(newpool));
3359         memset(&oldpool, 0, sizeof(oldpool));
3360
3361         /* Cannot change chunk_size, layout, or level */
3362         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3363             mddev->layout != mddev->new_layout ||
3364             mddev->level != mddev->new_level) {
3365                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3366                 mddev->new_layout = mddev->layout;
3367                 mddev->new_level = mddev->level;
3368                 return -EINVAL;
3369         }
3370
3371         if (!mddev_is_clustered(mddev))
3372                 md_allow_write(mddev);
3373
3374         raid_disks = mddev->raid_disks + mddev->delta_disks;
3375
3376         if (raid_disks < conf->raid_disks) {
3377                 cnt=0;
3378                 for (d= 0; d < conf->raid_disks; d++)
3379                         if (conf->mirrors[d].rdev)
3380                                 cnt++;
3381                 if (cnt > raid_disks)
3382                         return -EBUSY;
3383         }
3384
3385         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3386         if (!newpoolinfo)
3387                 return -ENOMEM;
3388         newpoolinfo->mddev = mddev;
3389         newpoolinfo->raid_disks = raid_disks * 2;
3390
3391         ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3392                            rbio_pool_free, newpoolinfo);
3393         if (ret) {
3394                 kfree(newpoolinfo);
3395                 return ret;
3396         }
3397         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3398                                          raid_disks, 2),
3399                              GFP_KERNEL);
3400         if (!newmirrors) {
3401                 kfree(newpoolinfo);
3402                 mempool_exit(&newpool);
3403                 return -ENOMEM;
3404         }
3405
3406         freeze_array(conf, 0);
3407
3408         /* ok, everything is stopped */
3409         oldpool = conf->r1bio_pool;
3410         conf->r1bio_pool = newpool;
3411
3412         for (d = d2 = 0; d < conf->raid_disks; d++) {
3413                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3414                 if (rdev && rdev->raid_disk != d2) {
3415                         sysfs_unlink_rdev(mddev, rdev);
3416                         rdev->raid_disk = d2;
3417                         sysfs_unlink_rdev(mddev, rdev);
3418                         if (sysfs_link_rdev(mddev, rdev))
3419                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3420                                         mdname(mddev), rdev->raid_disk);
3421                 }
3422                 if (rdev)
3423                         newmirrors[d2++].rdev = rdev;
3424         }
3425         kfree(conf->mirrors);
3426         conf->mirrors = newmirrors;
3427         kfree(conf->poolinfo);
3428         conf->poolinfo = newpoolinfo;
3429
3430         spin_lock_irqsave(&conf->device_lock, flags);
3431         mddev->degraded += (raid_disks - conf->raid_disks);
3432         spin_unlock_irqrestore(&conf->device_lock, flags);
3433         conf->raid_disks = mddev->raid_disks = raid_disks;
3434         mddev->delta_disks = 0;
3435
3436         unfreeze_array(conf);
3437
3438         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3439         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3440         md_wakeup_thread(mddev->thread);
3441
3442         mempool_exit(&oldpool);
3443         return 0;
3444 }
3445
3446 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3447 {
3448         struct r1conf *conf = mddev->private;
3449
3450         if (quiesce)
3451                 freeze_array(conf, 0);
3452         else
3453                 unfreeze_array(conf);
3454 }
3455
3456 static void *raid1_takeover(struct mddev *mddev)
3457 {
3458         /* raid1 can take over:
3459          *  raid5 with 2 devices, any layout or chunk size
3460          */
3461         if (mddev->level == 5 && mddev->raid_disks == 2) {
3462                 struct r1conf *conf;
3463                 mddev->new_level = 1;
3464                 mddev->new_layout = 0;
3465                 mddev->new_chunk_sectors = 0;
3466                 conf = setup_conf(mddev);
3467                 if (!IS_ERR(conf)) {
3468                         /* Array must appear to be quiesced */
3469                         conf->array_frozen = 1;
3470                         mddev_clear_unsupported_flags(mddev,
3471                                 UNSUPPORTED_MDDEV_FLAGS);
3472                 }
3473                 return conf;
3474         }
3475         return ERR_PTR(-EINVAL);
3476 }
3477
3478 static struct md_personality raid1_personality =
3479 {
3480         .name           = "raid1",
3481         .level          = 1,
3482         .owner          = THIS_MODULE,
3483         .make_request   = raid1_make_request,
3484         .run            = raid1_run,
3485         .free           = raid1_free,
3486         .status         = raid1_status,
3487         .error_handler  = raid1_error,
3488         .hot_add_disk   = raid1_add_disk,
3489         .hot_remove_disk= raid1_remove_disk,
3490         .spare_active   = raid1_spare_active,
3491         .sync_request   = raid1_sync_request,
3492         .resize         = raid1_resize,
3493         .size           = raid1_size,
3494         .check_reshape  = raid1_reshape,
3495         .quiesce        = raid1_quiesce,
3496         .takeover       = raid1_takeover,
3497 };
3498
3499 static int __init raid_init(void)
3500 {
3501         return register_md_personality(&raid1_personality);
3502 }
3503
3504 static void raid_exit(void)
3505 {
3506         unregister_md_personality(&raid1_personality);
3507 }
3508
3509 module_init(raid_init);
3510 module_exit(raid_exit);
3511 MODULE_LICENSE("GPL");
3512 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3513 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3514 MODULE_ALIAS("md-raid1");
3515 MODULE_ALIAS("md-level-1");