Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[jlayton/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41         [HPD_CRT] = SDE_CRT_HOTPLUG,
42         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* For display hotplug interrupt */
84 static void
85 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
86 {
87         assert_spin_locked(&dev_priv->irq_lock);
88
89         if (dev_priv->pm.irqs_disabled) {
90                 WARN(1, "IRQs disabled\n");
91                 dev_priv->pm.regsave.deimr &= ~mask;
92                 return;
93         }
94
95         if ((dev_priv->irq_mask & mask) != 0) {
96                 dev_priv->irq_mask &= ~mask;
97                 I915_WRITE(DEIMR, dev_priv->irq_mask);
98                 POSTING_READ(DEIMR);
99         }
100 }
101
102 static void
103 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
104 {
105         assert_spin_locked(&dev_priv->irq_lock);
106
107         if (dev_priv->pm.irqs_disabled) {
108                 WARN(1, "IRQs disabled\n");
109                 dev_priv->pm.regsave.deimr |= mask;
110                 return;
111         }
112
113         if ((dev_priv->irq_mask & mask) != mask) {
114                 dev_priv->irq_mask |= mask;
115                 I915_WRITE(DEIMR, dev_priv->irq_mask);
116                 POSTING_READ(DEIMR);
117         }
118 }
119
120 /**
121  * ilk_update_gt_irq - update GTIMR
122  * @dev_priv: driver private
123  * @interrupt_mask: mask of interrupt bits to update
124  * @enabled_irq_mask: mask of interrupt bits to enable
125  */
126 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
127                               uint32_t interrupt_mask,
128                               uint32_t enabled_irq_mask)
129 {
130         assert_spin_locked(&dev_priv->irq_lock);
131
132         if (dev_priv->pm.irqs_disabled) {
133                 WARN(1, "IRQs disabled\n");
134                 dev_priv->pm.regsave.gtimr &= ~interrupt_mask;
135                 dev_priv->pm.regsave.gtimr |= (~enabled_irq_mask &
136                                                 interrupt_mask);
137                 return;
138         }
139
140         dev_priv->gt_irq_mask &= ~interrupt_mask;
141         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
142         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
143         POSTING_READ(GTIMR);
144 }
145
146 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
147 {
148         ilk_update_gt_irq(dev_priv, mask, mask);
149 }
150
151 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
152 {
153         ilk_update_gt_irq(dev_priv, mask, 0);
154 }
155
156 /**
157   * snb_update_pm_irq - update GEN6_PMIMR
158   * @dev_priv: driver private
159   * @interrupt_mask: mask of interrupt bits to update
160   * @enabled_irq_mask: mask of interrupt bits to enable
161   */
162 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
163                               uint32_t interrupt_mask,
164                               uint32_t enabled_irq_mask)
165 {
166         uint32_t new_val;
167
168         assert_spin_locked(&dev_priv->irq_lock);
169
170         if (dev_priv->pm.irqs_disabled) {
171                 WARN(1, "IRQs disabled\n");
172                 dev_priv->pm.regsave.gen6_pmimr &= ~interrupt_mask;
173                 dev_priv->pm.regsave.gen6_pmimr |= (~enabled_irq_mask &
174                                                      interrupt_mask);
175                 return;
176         }
177
178         new_val = dev_priv->pm_irq_mask;
179         new_val &= ~interrupt_mask;
180         new_val |= (~enabled_irq_mask & interrupt_mask);
181
182         if (new_val != dev_priv->pm_irq_mask) {
183                 dev_priv->pm_irq_mask = new_val;
184                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
185                 POSTING_READ(GEN6_PMIMR);
186         }
187 }
188
189 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
190 {
191         snb_update_pm_irq(dev_priv, mask, mask);
192 }
193
194 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
195 {
196         snb_update_pm_irq(dev_priv, mask, 0);
197 }
198
199 static bool ivb_can_enable_err_int(struct drm_device *dev)
200 {
201         struct drm_i915_private *dev_priv = dev->dev_private;
202         struct intel_crtc *crtc;
203         enum pipe pipe;
204
205         assert_spin_locked(&dev_priv->irq_lock);
206
207         for_each_pipe(pipe) {
208                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
209
210                 if (crtc->cpu_fifo_underrun_disabled)
211                         return false;
212         }
213
214         return true;
215 }
216
217 static bool cpt_can_enable_serr_int(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         enum pipe pipe;
221         struct intel_crtc *crtc;
222
223         assert_spin_locked(&dev_priv->irq_lock);
224
225         for_each_pipe(pipe) {
226                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
227
228                 if (crtc->pch_fifo_underrun_disabled)
229                         return false;
230         }
231
232         return true;
233 }
234
235 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
236 {
237         struct drm_i915_private *dev_priv = dev->dev_private;
238         u32 reg = PIPESTAT(pipe);
239         u32 pipestat = I915_READ(reg) & 0x7fff0000;
240
241         assert_spin_locked(&dev_priv->irq_lock);
242
243         I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
244         POSTING_READ(reg);
245 }
246
247 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
248                                                  enum pipe pipe, bool enable)
249 {
250         struct drm_i915_private *dev_priv = dev->dev_private;
251         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
252                                           DE_PIPEB_FIFO_UNDERRUN;
253
254         if (enable)
255                 ironlake_enable_display_irq(dev_priv, bit);
256         else
257                 ironlake_disable_display_irq(dev_priv, bit);
258 }
259
260 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
261                                                   enum pipe pipe, bool enable)
262 {
263         struct drm_i915_private *dev_priv = dev->dev_private;
264         if (enable) {
265                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
266
267                 if (!ivb_can_enable_err_int(dev))
268                         return;
269
270                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
271         } else {
272                 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
273
274                 /* Change the state _after_ we've read out the current one. */
275                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
276
277                 if (!was_enabled &&
278                     (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
279                         DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
280                                       pipe_name(pipe));
281                 }
282         }
283 }
284
285 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
286                                                   enum pipe pipe, bool enable)
287 {
288         struct drm_i915_private *dev_priv = dev->dev_private;
289
290         assert_spin_locked(&dev_priv->irq_lock);
291
292         if (enable)
293                 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
294         else
295                 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
296         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
297         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
298 }
299
300 /**
301  * ibx_display_interrupt_update - update SDEIMR
302  * @dev_priv: driver private
303  * @interrupt_mask: mask of interrupt bits to update
304  * @enabled_irq_mask: mask of interrupt bits to enable
305  */
306 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
307                                          uint32_t interrupt_mask,
308                                          uint32_t enabled_irq_mask)
309 {
310         uint32_t sdeimr = I915_READ(SDEIMR);
311         sdeimr &= ~interrupt_mask;
312         sdeimr |= (~enabled_irq_mask & interrupt_mask);
313
314         assert_spin_locked(&dev_priv->irq_lock);
315
316         if (dev_priv->pm.irqs_disabled &&
317             (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
318                 WARN(1, "IRQs disabled\n");
319                 dev_priv->pm.regsave.sdeimr &= ~interrupt_mask;
320                 dev_priv->pm.regsave.sdeimr |= (~enabled_irq_mask &
321                                                  interrupt_mask);
322                 return;
323         }
324
325         I915_WRITE(SDEIMR, sdeimr);
326         POSTING_READ(SDEIMR);
327 }
328 #define ibx_enable_display_interrupt(dev_priv, bits) \
329         ibx_display_interrupt_update((dev_priv), (bits), (bits))
330 #define ibx_disable_display_interrupt(dev_priv, bits) \
331         ibx_display_interrupt_update((dev_priv), (bits), 0)
332
333 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
334                                             enum transcoder pch_transcoder,
335                                             bool enable)
336 {
337         struct drm_i915_private *dev_priv = dev->dev_private;
338         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
339                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
340
341         if (enable)
342                 ibx_enable_display_interrupt(dev_priv, bit);
343         else
344                 ibx_disable_display_interrupt(dev_priv, bit);
345 }
346
347 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
348                                             enum transcoder pch_transcoder,
349                                             bool enable)
350 {
351         struct drm_i915_private *dev_priv = dev->dev_private;
352
353         if (enable) {
354                 I915_WRITE(SERR_INT,
355                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
356
357                 if (!cpt_can_enable_serr_int(dev))
358                         return;
359
360                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
361         } else {
362                 uint32_t tmp = I915_READ(SERR_INT);
363                 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
364
365                 /* Change the state _after_ we've read out the current one. */
366                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
367
368                 if (!was_enabled &&
369                     (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
370                         DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
371                                       transcoder_name(pch_transcoder));
372                 }
373         }
374 }
375
376 /**
377  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
378  * @dev: drm device
379  * @pipe: pipe
380  * @enable: true if we want to report FIFO underrun errors, false otherwise
381  *
382  * This function makes us disable or enable CPU fifo underruns for a specific
383  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
384  * reporting for one pipe may also disable all the other CPU error interruts for
385  * the other pipes, due to the fact that there's just one interrupt mask/enable
386  * bit for all the pipes.
387  *
388  * Returns the previous state of underrun reporting.
389  */
390 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
391                                              enum pipe pipe, bool enable)
392 {
393         struct drm_i915_private *dev_priv = dev->dev_private;
394         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
396         bool ret;
397
398         assert_spin_locked(&dev_priv->irq_lock);
399
400         ret = !intel_crtc->cpu_fifo_underrun_disabled;
401
402         if (enable == ret)
403                 goto done;
404
405         intel_crtc->cpu_fifo_underrun_disabled = !enable;
406
407         if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
408                 i9xx_clear_fifo_underrun(dev, pipe);
409         else if (IS_GEN5(dev) || IS_GEN6(dev))
410                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
411         else if (IS_GEN7(dev))
412                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
413         else if (IS_GEN8(dev))
414                 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
415
416 done:
417         return ret;
418 }
419
420 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
421                                            enum pipe pipe, bool enable)
422 {
423         struct drm_i915_private *dev_priv = dev->dev_private;
424         unsigned long flags;
425         bool ret;
426
427         spin_lock_irqsave(&dev_priv->irq_lock, flags);
428         ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
429         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
430
431         return ret;
432 }
433
434 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
435                                                   enum pipe pipe)
436 {
437         struct drm_i915_private *dev_priv = dev->dev_private;
438         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
439         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
440
441         return !intel_crtc->cpu_fifo_underrun_disabled;
442 }
443
444 /**
445  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
446  * @dev: drm device
447  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
448  * @enable: true if we want to report FIFO underrun errors, false otherwise
449  *
450  * This function makes us disable or enable PCH fifo underruns for a specific
451  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
452  * underrun reporting for one transcoder may also disable all the other PCH
453  * error interruts for the other transcoders, due to the fact that there's just
454  * one interrupt mask/enable bit for all the transcoders.
455  *
456  * Returns the previous state of underrun reporting.
457  */
458 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
459                                            enum transcoder pch_transcoder,
460                                            bool enable)
461 {
462         struct drm_i915_private *dev_priv = dev->dev_private;
463         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
465         unsigned long flags;
466         bool ret;
467
468         /*
469          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
470          * has only one pch transcoder A that all pipes can use. To avoid racy
471          * pch transcoder -> pipe lookups from interrupt code simply store the
472          * underrun statistics in crtc A. Since we never expose this anywhere
473          * nor use it outside of the fifo underrun code here using the "wrong"
474          * crtc on LPT won't cause issues.
475          */
476
477         spin_lock_irqsave(&dev_priv->irq_lock, flags);
478
479         ret = !intel_crtc->pch_fifo_underrun_disabled;
480
481         if (enable == ret)
482                 goto done;
483
484         intel_crtc->pch_fifo_underrun_disabled = !enable;
485
486         if (HAS_PCH_IBX(dev))
487                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
488         else
489                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
490
491 done:
492         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
493         return ret;
494 }
495
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499                        u32 enable_mask, u32 status_mask)
500 {
501         u32 reg = PIPESTAT(pipe);
502         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504         assert_spin_locked(&dev_priv->irq_lock);
505
506         if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
507                          status_mask & ~PIPESTAT_INT_STATUS_MASK))
508                 return;
509
510         if ((pipestat & enable_mask) == enable_mask)
511                 return;
512
513         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
514
515         /* Enable the interrupt, clear any pending status */
516         pipestat |= enable_mask | status_mask;
517         I915_WRITE(reg, pipestat);
518         POSTING_READ(reg);
519 }
520
521 static void
522 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
523                         u32 enable_mask, u32 status_mask)
524 {
525         u32 reg = PIPESTAT(pipe);
526         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
527
528         assert_spin_locked(&dev_priv->irq_lock);
529
530         if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
531                          status_mask & ~PIPESTAT_INT_STATUS_MASK))
532                 return;
533
534         if ((pipestat & enable_mask) == 0)
535                 return;
536
537         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
538
539         pipestat &= ~enable_mask;
540         I915_WRITE(reg, pipestat);
541         POSTING_READ(reg);
542 }
543
544 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
545 {
546         u32 enable_mask = status_mask << 16;
547
548         /*
549          * On pipe A we don't support the PSR interrupt yet, on pipe B the
550          * same bit MBZ.
551          */
552         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
553                 return 0;
554
555         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
556                          SPRITE0_FLIP_DONE_INT_EN_VLV |
557                          SPRITE1_FLIP_DONE_INT_EN_VLV);
558         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
559                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
560         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
561                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
562
563         return enable_mask;
564 }
565
566 void
567 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
568                      u32 status_mask)
569 {
570         u32 enable_mask;
571
572         if (IS_VALLEYVIEW(dev_priv->dev))
573                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
574                                                            status_mask);
575         else
576                 enable_mask = status_mask << 16;
577         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
578 }
579
580 void
581 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
582                       u32 status_mask)
583 {
584         u32 enable_mask;
585
586         if (IS_VALLEYVIEW(dev_priv->dev))
587                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
588                                                            status_mask);
589         else
590                 enable_mask = status_mask << 16;
591         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
592 }
593
594 /**
595  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
596  */
597 static void i915_enable_asle_pipestat(struct drm_device *dev)
598 {
599         struct drm_i915_private *dev_priv = dev->dev_private;
600         unsigned long irqflags;
601
602         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
603                 return;
604
605         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
606
607         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
608         if (INTEL_INFO(dev)->gen >= 4)
609                 i915_enable_pipestat(dev_priv, PIPE_A,
610                                      PIPE_LEGACY_BLC_EVENT_STATUS);
611
612         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
613 }
614
615 /**
616  * i915_pipe_enabled - check if a pipe is enabled
617  * @dev: DRM device
618  * @pipe: pipe to check
619  *
620  * Reading certain registers when the pipe is disabled can hang the chip.
621  * Use this routine to make sure the PLL is running and the pipe is active
622  * before reading such registers if unsure.
623  */
624 static int
625 i915_pipe_enabled(struct drm_device *dev, int pipe)
626 {
627         struct drm_i915_private *dev_priv = dev->dev_private;
628
629         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
630                 /* Locking is horribly broken here, but whatever. */
631                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
632                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
633
634                 return intel_crtc->active;
635         } else {
636                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
637         }
638 }
639
640 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
641 {
642         /* Gen2 doesn't have a hardware frame counter */
643         return 0;
644 }
645
646 /* Called from drm generic code, passed a 'crtc', which
647  * we use as a pipe index
648  */
649 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
650 {
651         struct drm_i915_private *dev_priv = dev->dev_private;
652         unsigned long high_frame;
653         unsigned long low_frame;
654         u32 high1, high2, low, pixel, vbl_start;
655
656         if (!i915_pipe_enabled(dev, pipe)) {
657                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
658                                 "pipe %c\n", pipe_name(pipe));
659                 return 0;
660         }
661
662         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
663                 struct intel_crtc *intel_crtc =
664                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
665                 const struct drm_display_mode *mode =
666                         &intel_crtc->config.adjusted_mode;
667
668                 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
669         } else {
670                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
671                 u32 htotal;
672
673                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
674                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
675
676                 vbl_start *= htotal;
677         }
678
679         high_frame = PIPEFRAME(pipe);
680         low_frame = PIPEFRAMEPIXEL(pipe);
681
682         /*
683          * High & low register fields aren't synchronized, so make sure
684          * we get a low value that's stable across two reads of the high
685          * register.
686          */
687         do {
688                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
689                 low   = I915_READ(low_frame);
690                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
691         } while (high1 != high2);
692
693         high1 >>= PIPE_FRAME_HIGH_SHIFT;
694         pixel = low & PIPE_PIXEL_MASK;
695         low >>= PIPE_FRAME_LOW_SHIFT;
696
697         /*
698          * The frame counter increments at beginning of active.
699          * Cook up a vblank counter by also checking the pixel
700          * counter against vblank start.
701          */
702         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
703 }
704
705 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
706 {
707         struct drm_i915_private *dev_priv = dev->dev_private;
708         int reg = PIPE_FRMCOUNT_GM45(pipe);
709
710         if (!i915_pipe_enabled(dev, pipe)) {
711                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
712                                  "pipe %c\n", pipe_name(pipe));
713                 return 0;
714         }
715
716         return I915_READ(reg);
717 }
718
719 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
720 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
721
722 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725         uint32_t status;
726         int reg;
727
728         if (INTEL_INFO(dev)->gen >= 8) {
729                 status = GEN8_PIPE_VBLANK;
730                 reg = GEN8_DE_PIPE_ISR(pipe);
731         } else if (INTEL_INFO(dev)->gen >= 7) {
732                 status = DE_PIPE_VBLANK_IVB(pipe);
733                 reg = DEISR;
734         } else {
735                 status = DE_PIPE_VBLANK(pipe);
736                 reg = DEISR;
737         }
738
739         return __raw_i915_read32(dev_priv, reg) & status;
740 }
741
742 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
743                                     unsigned int flags, int *vpos, int *hpos,
744                                     ktime_t *stime, ktime_t *etime)
745 {
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
748         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
749         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
750         int position;
751         int vbl_start, vbl_end, htotal, vtotal;
752         bool in_vbl = true;
753         int ret = 0;
754         unsigned long irqflags;
755
756         if (!intel_crtc->active) {
757                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
758                                  "pipe %c\n", pipe_name(pipe));
759                 return 0;
760         }
761
762         htotal = mode->crtc_htotal;
763         vtotal = mode->crtc_vtotal;
764         vbl_start = mode->crtc_vblank_start;
765         vbl_end = mode->crtc_vblank_end;
766
767         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
768                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
769                 vbl_end /= 2;
770                 vtotal /= 2;
771         }
772
773         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
774
775         /*
776          * Lock uncore.lock, as we will do multiple timing critical raw
777          * register reads, potentially with preemption disabled, so the
778          * following code must not block on uncore.lock.
779          */
780         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
781         
782         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
783
784         /* Get optional system timestamp before query. */
785         if (stime)
786                 *stime = ktime_get();
787
788         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
789                 /* No obvious pixelcount register. Only query vertical
790                  * scanout position from Display scan line register.
791                  */
792                 if (IS_GEN2(dev))
793                         position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
794                 else
795                         position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
796
797                 if (HAS_DDI(dev)) {
798                         /*
799                          * On HSW HDMI outputs there seems to be a 2 line
800                          * difference, whereas eDP has the normal 1 line
801                          * difference that earlier platforms have. External
802                          * DP is unknown. For now just check for the 2 line
803                          * difference case on all output types on HSW+.
804                          *
805                          * This might misinterpret the scanline counter being
806                          * one line too far along on eDP, but that's less
807                          * dangerous than the alternative since that would lead
808                          * the vblank timestamp code astray when it sees a
809                          * scanline count before vblank_start during a vblank
810                          * interrupt.
811                          */
812                         in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
813                         if ((in_vbl && (position == vbl_start - 2 ||
814                                         position == vbl_start - 1)) ||
815                             (!in_vbl && (position == vbl_end - 2 ||
816                                          position == vbl_end - 1)))
817                                 position = (position + 2) % vtotal;
818                 } else if (HAS_PCH_SPLIT(dev)) {
819                         /*
820                          * The scanline counter increments at the leading edge
821                          * of hsync, ie. it completely misses the active portion
822                          * of the line. Fix up the counter at both edges of vblank
823                          * to get a more accurate picture whether we're in vblank
824                          * or not.
825                          */
826                         in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
827                         if ((in_vbl && position == vbl_start - 1) ||
828                             (!in_vbl && position == vbl_end - 1))
829                                 position = (position + 1) % vtotal;
830                 } else {
831                         /*
832                          * ISR vblank status bits don't work the way we'd want
833                          * them to work on non-PCH platforms (for
834                          * ilk_pipe_in_vblank_locked()), and there doesn't
835                          * appear any other way to determine if we're currently
836                          * in vblank.
837                          *
838                          * Instead let's assume that we're already in vblank if
839                          * we got called from the vblank interrupt and the
840                          * scanline counter value indicates that we're on the
841                          * line just prior to vblank start. This should result
842                          * in the correct answer, unless the vblank interrupt
843                          * delivery really got delayed for almost exactly one
844                          * full frame/field.
845                          */
846                         if (flags & DRM_CALLED_FROM_VBLIRQ &&
847                             position == vbl_start - 1) {
848                                 position = (position + 1) % vtotal;
849
850                                 /* Signal this correction as "applied". */
851                                 ret |= 0x8;
852                         }
853                 }
854         } else {
855                 /* Have access to pixelcount since start of frame.
856                  * We can split this into vertical and horizontal
857                  * scanout position.
858                  */
859                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
860
861                 /* convert to pixel counts */
862                 vbl_start *= htotal;
863                 vbl_end *= htotal;
864                 vtotal *= htotal;
865         }
866
867         /* Get optional system timestamp after query. */
868         if (etime)
869                 *etime = ktime_get();
870
871         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
872
873         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
874
875         in_vbl = position >= vbl_start && position < vbl_end;
876
877         /*
878          * While in vblank, position will be negative
879          * counting up towards 0 at vbl_end. And outside
880          * vblank, position will be positive counting
881          * up since vbl_end.
882          */
883         if (position >= vbl_start)
884                 position -= vbl_end;
885         else
886                 position += vtotal - vbl_end;
887
888         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
889                 *vpos = position;
890                 *hpos = 0;
891         } else {
892                 *vpos = position / htotal;
893                 *hpos = position - (*vpos * htotal);
894         }
895
896         /* In vblank? */
897         if (in_vbl)
898                 ret |= DRM_SCANOUTPOS_INVBL;
899
900         return ret;
901 }
902
903 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
904                               int *max_error,
905                               struct timeval *vblank_time,
906                               unsigned flags)
907 {
908         struct drm_crtc *crtc;
909
910         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
911                 DRM_ERROR("Invalid crtc %d\n", pipe);
912                 return -EINVAL;
913         }
914
915         /* Get drm_crtc to timestamp: */
916         crtc = intel_get_crtc_for_pipe(dev, pipe);
917         if (crtc == NULL) {
918                 DRM_ERROR("Invalid crtc %d\n", pipe);
919                 return -EINVAL;
920         }
921
922         if (!crtc->enabled) {
923                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
924                 return -EBUSY;
925         }
926
927         /* Helper routine in DRM core does all the work: */
928         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
929                                                      vblank_time, flags,
930                                                      crtc,
931                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
932 }
933
934 static bool intel_hpd_irq_event(struct drm_device *dev,
935                                 struct drm_connector *connector)
936 {
937         enum drm_connector_status old_status;
938
939         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
940         old_status = connector->status;
941
942         connector->status = connector->funcs->detect(connector, false);
943         if (old_status == connector->status)
944                 return false;
945
946         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
947                       connector->base.id,
948                       drm_get_connector_name(connector),
949                       drm_get_connector_status_name(old_status),
950                       drm_get_connector_status_name(connector->status));
951
952         return true;
953 }
954
955 /*
956  * Handle hotplug events outside the interrupt handler proper.
957  */
958 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
959
960 static void i915_hotplug_work_func(struct work_struct *work)
961 {
962         struct drm_i915_private *dev_priv =
963                 container_of(work, struct drm_i915_private, hotplug_work);
964         struct drm_device *dev = dev_priv->dev;
965         struct drm_mode_config *mode_config = &dev->mode_config;
966         struct intel_connector *intel_connector;
967         struct intel_encoder *intel_encoder;
968         struct drm_connector *connector;
969         unsigned long irqflags;
970         bool hpd_disabled = false;
971         bool changed = false;
972         u32 hpd_event_bits;
973
974         /* HPD irq before everything is fully set up. */
975         if (!dev_priv->enable_hotplug_processing)
976                 return;
977
978         mutex_lock(&mode_config->mutex);
979         DRM_DEBUG_KMS("running encoder hotplug functions\n");
980
981         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
982
983         hpd_event_bits = dev_priv->hpd_event_bits;
984         dev_priv->hpd_event_bits = 0;
985         list_for_each_entry(connector, &mode_config->connector_list, head) {
986                 intel_connector = to_intel_connector(connector);
987                 intel_encoder = intel_connector->encoder;
988                 if (intel_encoder->hpd_pin > HPD_NONE &&
989                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
990                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
991                         DRM_INFO("HPD interrupt storm detected on connector %s: "
992                                  "switching from hotplug detection to polling\n",
993                                 drm_get_connector_name(connector));
994                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
995                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
996                                 | DRM_CONNECTOR_POLL_DISCONNECT;
997                         hpd_disabled = true;
998                 }
999                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1000                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1001                                       drm_get_connector_name(connector), intel_encoder->hpd_pin);
1002                 }
1003         }
1004          /* if there were no outputs to poll, poll was disabled,
1005           * therefore make sure it's enabled when disabling HPD on
1006           * some connectors */
1007         if (hpd_disabled) {
1008                 drm_kms_helper_poll_enable(dev);
1009                 mod_timer(&dev_priv->hotplug_reenable_timer,
1010                           jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1011         }
1012
1013         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1014
1015         list_for_each_entry(connector, &mode_config->connector_list, head) {
1016                 intel_connector = to_intel_connector(connector);
1017                 intel_encoder = intel_connector->encoder;
1018                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1019                         if (intel_encoder->hot_plug)
1020                                 intel_encoder->hot_plug(intel_encoder);
1021                         if (intel_hpd_irq_event(dev, connector))
1022                                 changed = true;
1023                 }
1024         }
1025         mutex_unlock(&mode_config->mutex);
1026
1027         if (changed)
1028                 drm_kms_helper_hotplug_event(dev);
1029 }
1030
1031 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1032 {
1033         del_timer_sync(&dev_priv->hotplug_reenable_timer);
1034 }
1035
1036 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1037 {
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039         u32 busy_up, busy_down, max_avg, min_avg;
1040         u8 new_delay;
1041
1042         spin_lock(&mchdev_lock);
1043
1044         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1045
1046         new_delay = dev_priv->ips.cur_delay;
1047
1048         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1049         busy_up = I915_READ(RCPREVBSYTUPAVG);
1050         busy_down = I915_READ(RCPREVBSYTDNAVG);
1051         max_avg = I915_READ(RCBMAXAVG);
1052         min_avg = I915_READ(RCBMINAVG);
1053
1054         /* Handle RCS change request from hw */
1055         if (busy_up > max_avg) {
1056                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1057                         new_delay = dev_priv->ips.cur_delay - 1;
1058                 if (new_delay < dev_priv->ips.max_delay)
1059                         new_delay = dev_priv->ips.max_delay;
1060         } else if (busy_down < min_avg) {
1061                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1062                         new_delay = dev_priv->ips.cur_delay + 1;
1063                 if (new_delay > dev_priv->ips.min_delay)
1064                         new_delay = dev_priv->ips.min_delay;
1065         }
1066
1067         if (ironlake_set_drps(dev, new_delay))
1068                 dev_priv->ips.cur_delay = new_delay;
1069
1070         spin_unlock(&mchdev_lock);
1071
1072         return;
1073 }
1074
1075 static void notify_ring(struct drm_device *dev,
1076                         struct intel_ring_buffer *ring)
1077 {
1078         if (ring->obj == NULL)
1079                 return;
1080
1081         trace_i915_gem_request_complete(ring);
1082
1083         wake_up_all(&ring->irq_queue);
1084         i915_queue_hangcheck(dev);
1085 }
1086
1087 static void gen6_pm_rps_work(struct work_struct *work)
1088 {
1089         struct drm_i915_private *dev_priv =
1090                 container_of(work, struct drm_i915_private, rps.work);
1091         u32 pm_iir;
1092         int new_delay, adj;
1093
1094         spin_lock_irq(&dev_priv->irq_lock);
1095         pm_iir = dev_priv->rps.pm_iir;
1096         dev_priv->rps.pm_iir = 0;
1097         /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1098         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1099         spin_unlock_irq(&dev_priv->irq_lock);
1100
1101         /* Make sure we didn't queue anything we're not going to process. */
1102         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1103
1104         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1105                 return;
1106
1107         mutex_lock(&dev_priv->rps.hw_lock);
1108
1109         adj = dev_priv->rps.last_adj;
1110         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1111                 if (adj > 0)
1112                         adj *= 2;
1113                 else
1114                         adj = 1;
1115                 new_delay = dev_priv->rps.cur_freq + adj;
1116
1117                 /*
1118                  * For better performance, jump directly
1119                  * to RPe if we're below it.
1120                  */
1121                 if (new_delay < dev_priv->rps.efficient_freq)
1122                         new_delay = dev_priv->rps.efficient_freq;
1123         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1124                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1125                         new_delay = dev_priv->rps.efficient_freq;
1126                 else
1127                         new_delay = dev_priv->rps.min_freq_softlimit;
1128                 adj = 0;
1129         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1130                 if (adj < 0)
1131                         adj *= 2;
1132                 else
1133                         adj = -1;
1134                 new_delay = dev_priv->rps.cur_freq + adj;
1135         } else { /* unknown event */
1136                 new_delay = dev_priv->rps.cur_freq;
1137         }
1138
1139         /* sysfs frequency interfaces may have snuck in while servicing the
1140          * interrupt
1141          */
1142         new_delay = clamp_t(int, new_delay,
1143                             dev_priv->rps.min_freq_softlimit,
1144                             dev_priv->rps.max_freq_softlimit);
1145
1146         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1147
1148         if (IS_VALLEYVIEW(dev_priv->dev))
1149                 valleyview_set_rps(dev_priv->dev, new_delay);
1150         else
1151                 gen6_set_rps(dev_priv->dev, new_delay);
1152
1153         mutex_unlock(&dev_priv->rps.hw_lock);
1154 }
1155
1156
1157 /**
1158  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1159  * occurred.
1160  * @work: workqueue struct
1161  *
1162  * Doesn't actually do anything except notify userspace. As a consequence of
1163  * this event, userspace should try to remap the bad rows since statistically
1164  * it is likely the same row is more likely to go bad again.
1165  */
1166 static void ivybridge_parity_work(struct work_struct *work)
1167 {
1168         struct drm_i915_private *dev_priv =
1169                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1170         u32 error_status, row, bank, subbank;
1171         char *parity_event[6];
1172         uint32_t misccpctl;
1173         unsigned long flags;
1174         uint8_t slice = 0;
1175
1176         /* We must turn off DOP level clock gating to access the L3 registers.
1177          * In order to prevent a get/put style interface, acquire struct mutex
1178          * any time we access those registers.
1179          */
1180         mutex_lock(&dev_priv->dev->struct_mutex);
1181
1182         /* If we've screwed up tracking, just let the interrupt fire again */
1183         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184                 goto out;
1185
1186         misccpctl = I915_READ(GEN7_MISCCPCTL);
1187         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188         POSTING_READ(GEN7_MISCCPCTL);
1189
1190         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191                 u32 reg;
1192
1193                 slice--;
1194                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195                         break;
1196
1197                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198
1199                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200
1201                 error_status = I915_READ(reg);
1202                 row = GEN7_PARITY_ERROR_ROW(error_status);
1203                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1204                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205
1206                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207                 POSTING_READ(reg);
1208
1209                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214                 parity_event[5] = NULL;
1215
1216                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217                                    KOBJ_CHANGE, parity_event);
1218
1219                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220                           slice, row, bank, subbank);
1221
1222                 kfree(parity_event[4]);
1223                 kfree(parity_event[3]);
1224                 kfree(parity_event[2]);
1225                 kfree(parity_event[1]);
1226         }
1227
1228         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229
1230 out:
1231         WARN_ON(dev_priv->l3_parity.which_slice);
1232         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1233         ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1235
1236         mutex_unlock(&dev_priv->dev->struct_mutex);
1237 }
1238
1239 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240 {
1241         struct drm_i915_private *dev_priv = dev->dev_private;
1242
1243         if (!HAS_L3_DPF(dev))
1244                 return;
1245
1246         spin_lock(&dev_priv->irq_lock);
1247         ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248         spin_unlock(&dev_priv->irq_lock);
1249
1250         iir &= GT_PARITY_ERROR(dev);
1251         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252                 dev_priv->l3_parity.which_slice |= 1 << 1;
1253
1254         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255                 dev_priv->l3_parity.which_slice |= 1 << 0;
1256
1257         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1258 }
1259
1260 static void ilk_gt_irq_handler(struct drm_device *dev,
1261                                struct drm_i915_private *dev_priv,
1262                                u32 gt_iir)
1263 {
1264         if (gt_iir &
1265             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266                 notify_ring(dev, &dev_priv->ring[RCS]);
1267         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268                 notify_ring(dev, &dev_priv->ring[VCS]);
1269 }
1270
1271 static void snb_gt_irq_handler(struct drm_device *dev,
1272                                struct drm_i915_private *dev_priv,
1273                                u32 gt_iir)
1274 {
1275
1276         if (gt_iir &
1277             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278                 notify_ring(dev, &dev_priv->ring[RCS]);
1279         if (gt_iir & GT_BSD_USER_INTERRUPT)
1280                 notify_ring(dev, &dev_priv->ring[VCS]);
1281         if (gt_iir & GT_BLT_USER_INTERRUPT)
1282                 notify_ring(dev, &dev_priv->ring[BCS]);
1283
1284         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285                       GT_BSD_CS_ERROR_INTERRUPT |
1286                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1287                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1288                                   gt_iir);
1289         }
1290
1291         if (gt_iir & GT_PARITY_ERROR(dev))
1292                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1293 }
1294
1295 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1296                                        struct drm_i915_private *dev_priv,
1297                                        u32 master_ctl)
1298 {
1299         u32 rcs, bcs, vcs;
1300         uint32_t tmp = 0;
1301         irqreturn_t ret = IRQ_NONE;
1302
1303         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1304                 tmp = I915_READ(GEN8_GT_IIR(0));
1305                 if (tmp) {
1306                         ret = IRQ_HANDLED;
1307                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1308                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1309                         if (rcs & GT_RENDER_USER_INTERRUPT)
1310                                 notify_ring(dev, &dev_priv->ring[RCS]);
1311                         if (bcs & GT_RENDER_USER_INTERRUPT)
1312                                 notify_ring(dev, &dev_priv->ring[BCS]);
1313                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1314                 } else
1315                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1316         }
1317
1318         if (master_ctl & GEN8_GT_VCS1_IRQ) {
1319                 tmp = I915_READ(GEN8_GT_IIR(1));
1320                 if (tmp) {
1321                         ret = IRQ_HANDLED;
1322                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1323                         if (vcs & GT_RENDER_USER_INTERRUPT)
1324                                 notify_ring(dev, &dev_priv->ring[VCS]);
1325                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1326                 } else
1327                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1328         }
1329
1330         if (master_ctl & GEN8_GT_VECS_IRQ) {
1331                 tmp = I915_READ(GEN8_GT_IIR(3));
1332                 if (tmp) {
1333                         ret = IRQ_HANDLED;
1334                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1335                         if (vcs & GT_RENDER_USER_INTERRUPT)
1336                                 notify_ring(dev, &dev_priv->ring[VECS]);
1337                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1338                 } else
1339                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1340         }
1341
1342         return ret;
1343 }
1344
1345 #define HPD_STORM_DETECT_PERIOD 1000
1346 #define HPD_STORM_THRESHOLD 5
1347
1348 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1349                                          u32 hotplug_trigger,
1350                                          const u32 *hpd)
1351 {
1352         struct drm_i915_private *dev_priv = dev->dev_private;
1353         int i;
1354         bool storm_detected = false;
1355
1356         if (!hotplug_trigger)
1357                 return;
1358
1359         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1360                           hotplug_trigger);
1361
1362         spin_lock(&dev_priv->irq_lock);
1363         for (i = 1; i < HPD_NUM_PINS; i++) {
1364
1365                 if (hpd[i] & hotplug_trigger &&
1366                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1367                         /*
1368                          * On GMCH platforms the interrupt mask bits only
1369                          * prevent irq generation, not the setting of the
1370                          * hotplug bits itself. So only WARN about unexpected
1371                          * interrupts on saner platforms.
1372                          */
1373                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1374                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1375                                   hotplug_trigger, i, hpd[i]);
1376
1377                         continue;
1378                 }
1379
1380                 if (!(hpd[i] & hotplug_trigger) ||
1381                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1382                         continue;
1383
1384                 dev_priv->hpd_event_bits |= (1 << i);
1385                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1386                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1387                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1388                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1389                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1390                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1391                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1392                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1393                         dev_priv->hpd_event_bits &= ~(1 << i);
1394                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1395                         storm_detected = true;
1396                 } else {
1397                         dev_priv->hpd_stats[i].hpd_cnt++;
1398                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1399                                       dev_priv->hpd_stats[i].hpd_cnt);
1400                 }
1401         }
1402
1403         if (storm_detected)
1404                 dev_priv->display.hpd_irq_setup(dev);
1405         spin_unlock(&dev_priv->irq_lock);
1406
1407         /*
1408          * Our hotplug handler can grab modeset locks (by calling down into the
1409          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1410          * queue for otherwise the flush_work in the pageflip code will
1411          * deadlock.
1412          */
1413         schedule_work(&dev_priv->hotplug_work);
1414 }
1415
1416 static void gmbus_irq_handler(struct drm_device *dev)
1417 {
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419
1420         wake_up_all(&dev_priv->gmbus_wait_queue);
1421 }
1422
1423 static void dp_aux_irq_handler(struct drm_device *dev)
1424 {
1425         struct drm_i915_private *dev_priv = dev->dev_private;
1426
1427         wake_up_all(&dev_priv->gmbus_wait_queue);
1428 }
1429
1430 #if defined(CONFIG_DEBUG_FS)
1431 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1432                                          uint32_t crc0, uint32_t crc1,
1433                                          uint32_t crc2, uint32_t crc3,
1434                                          uint32_t crc4)
1435 {
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1438         struct intel_pipe_crc_entry *entry;
1439         int head, tail;
1440
1441         spin_lock(&pipe_crc->lock);
1442
1443         if (!pipe_crc->entries) {
1444                 spin_unlock(&pipe_crc->lock);
1445                 DRM_ERROR("spurious interrupt\n");
1446                 return;
1447         }
1448
1449         head = pipe_crc->head;
1450         tail = pipe_crc->tail;
1451
1452         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1453                 spin_unlock(&pipe_crc->lock);
1454                 DRM_ERROR("CRC buffer overflowing\n");
1455                 return;
1456         }
1457
1458         entry = &pipe_crc->entries[head];
1459
1460         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1461         entry->crc[0] = crc0;
1462         entry->crc[1] = crc1;
1463         entry->crc[2] = crc2;
1464         entry->crc[3] = crc3;
1465         entry->crc[4] = crc4;
1466
1467         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1468         pipe_crc->head = head;
1469
1470         spin_unlock(&pipe_crc->lock);
1471
1472         wake_up_interruptible(&pipe_crc->wq);
1473 }
1474 #else
1475 static inline void
1476 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1477                              uint32_t crc0, uint32_t crc1,
1478                              uint32_t crc2, uint32_t crc3,
1479                              uint32_t crc4) {}
1480 #endif
1481
1482
1483 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1484 {
1485         struct drm_i915_private *dev_priv = dev->dev_private;
1486
1487         display_pipe_crc_irq_handler(dev, pipe,
1488                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1489                                      0, 0, 0, 0);
1490 }
1491
1492 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1493 {
1494         struct drm_i915_private *dev_priv = dev->dev_private;
1495
1496         display_pipe_crc_irq_handler(dev, pipe,
1497                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1498                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1499                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1500                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1501                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1502 }
1503
1504 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1505 {
1506         struct drm_i915_private *dev_priv = dev->dev_private;
1507         uint32_t res1, res2;
1508
1509         if (INTEL_INFO(dev)->gen >= 3)
1510                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1511         else
1512                 res1 = 0;
1513
1514         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1515                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1516         else
1517                 res2 = 0;
1518
1519         display_pipe_crc_irq_handler(dev, pipe,
1520                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1521                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1522                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1523                                      res1, res2);
1524 }
1525
1526 /* The RPS events need forcewake, so we add them to a work queue and mask their
1527  * IMR bits until the work is done. Other interrupts can be processed without
1528  * the work queue. */
1529 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1530 {
1531         if (pm_iir & dev_priv->pm_rps_events) {
1532                 spin_lock(&dev_priv->irq_lock);
1533                 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1534                 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1535                 spin_unlock(&dev_priv->irq_lock);
1536
1537                 queue_work(dev_priv->wq, &dev_priv->rps.work);
1538         }
1539
1540         if (HAS_VEBOX(dev_priv->dev)) {
1541                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1542                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1543
1544                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1545                         i915_handle_error(dev_priv->dev, false,
1546                                           "VEBOX CS error interrupt 0x%08x",
1547                                           pm_iir);
1548                 }
1549         }
1550 }
1551
1552 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1553 {
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         u32 pipe_stats[I915_MAX_PIPES] = { };
1556         int pipe;
1557
1558         spin_lock(&dev_priv->irq_lock);
1559         for_each_pipe(pipe) {
1560                 int reg;
1561                 u32 mask, iir_bit = 0;
1562
1563                 /*
1564                  * PIPESTAT bits get signalled even when the interrupt is
1565                  * disabled with the mask bits, and some of the status bits do
1566                  * not generate interrupts at all (like the underrun bit). Hence
1567                  * we need to be careful that we only handle what we want to
1568                  * handle.
1569                  */
1570                 mask = 0;
1571                 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1572                         mask |= PIPE_FIFO_UNDERRUN_STATUS;
1573
1574                 switch (pipe) {
1575                 case PIPE_A:
1576                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1577                         break;
1578                 case PIPE_B:
1579                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1580                         break;
1581                 }
1582                 if (iir & iir_bit)
1583                         mask |= dev_priv->pipestat_irq_mask[pipe];
1584
1585                 if (!mask)
1586                         continue;
1587
1588                 reg = PIPESTAT(pipe);
1589                 mask |= PIPESTAT_INT_ENABLE_MASK;
1590                 pipe_stats[pipe] = I915_READ(reg) & mask;
1591
1592                 /*
1593                  * Clear the PIPE*STAT regs before the IIR
1594                  */
1595                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1596                                         PIPESTAT_INT_STATUS_MASK))
1597                         I915_WRITE(reg, pipe_stats[pipe]);
1598         }
1599         spin_unlock(&dev_priv->irq_lock);
1600
1601         for_each_pipe(pipe) {
1602                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1603                         drm_handle_vblank(dev, pipe);
1604
1605                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1606                         intel_prepare_page_flip(dev, pipe);
1607                         intel_finish_page_flip(dev, pipe);
1608                 }
1609
1610                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1611                         i9xx_pipe_crc_irq_handler(dev, pipe);
1612
1613                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1614                     intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1615                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1616         }
1617
1618         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1619                 gmbus_irq_handler(dev);
1620 }
1621
1622 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1623 {
1624         struct drm_device *dev = (struct drm_device *) arg;
1625         struct drm_i915_private *dev_priv = dev->dev_private;
1626         u32 iir, gt_iir, pm_iir;
1627         irqreturn_t ret = IRQ_NONE;
1628
1629         while (true) {
1630                 iir = I915_READ(VLV_IIR);
1631                 gt_iir = I915_READ(GTIIR);
1632                 pm_iir = I915_READ(GEN6_PMIIR);
1633
1634                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1635                         goto out;
1636
1637                 ret = IRQ_HANDLED;
1638
1639                 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1640
1641                 valleyview_pipestat_irq_handler(dev, iir);
1642
1643                 /* Consume port.  Then clear IIR or we'll miss events */
1644                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1645                         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1646                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1647
1648                         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1649
1650                         if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1651                                 dp_aux_irq_handler(dev);
1652
1653                         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1654                         I915_READ(PORT_HOTPLUG_STAT);
1655                 }
1656
1657
1658                 if (pm_iir)
1659                         gen6_rps_irq_handler(dev_priv, pm_iir);
1660
1661                 I915_WRITE(GTIIR, gt_iir);
1662                 I915_WRITE(GEN6_PMIIR, pm_iir);
1663                 I915_WRITE(VLV_IIR, iir);
1664         }
1665
1666 out:
1667         return ret;
1668 }
1669
1670 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1671 {
1672         struct drm_i915_private *dev_priv = dev->dev_private;
1673         int pipe;
1674         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1675
1676         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1677
1678         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1679                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1680                                SDE_AUDIO_POWER_SHIFT);
1681                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1682                                  port_name(port));
1683         }
1684
1685         if (pch_iir & SDE_AUX_MASK)
1686                 dp_aux_irq_handler(dev);
1687
1688         if (pch_iir & SDE_GMBUS)
1689                 gmbus_irq_handler(dev);
1690
1691         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1692                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1693
1694         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1695                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1696
1697         if (pch_iir & SDE_POISON)
1698                 DRM_ERROR("PCH poison interrupt\n");
1699
1700         if (pch_iir & SDE_FDI_MASK)
1701                 for_each_pipe(pipe)
1702                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1703                                          pipe_name(pipe),
1704                                          I915_READ(FDI_RX_IIR(pipe)));
1705
1706         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1707                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1708
1709         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1710                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1711
1712         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1713                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1714                                                           false))
1715                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1716
1717         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1718                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1719                                                           false))
1720                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
1721 }
1722
1723 static void ivb_err_int_handler(struct drm_device *dev)
1724 {
1725         struct drm_i915_private *dev_priv = dev->dev_private;
1726         u32 err_int = I915_READ(GEN7_ERR_INT);
1727         enum pipe pipe;
1728
1729         if (err_int & ERR_INT_POISON)
1730                 DRM_ERROR("Poison interrupt\n");
1731
1732         for_each_pipe(pipe) {
1733                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1734                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1735                                                                   false))
1736                                 DRM_ERROR("Pipe %c FIFO underrun\n",
1737                                           pipe_name(pipe));
1738                 }
1739
1740                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1741                         if (IS_IVYBRIDGE(dev))
1742                                 ivb_pipe_crc_irq_handler(dev, pipe);
1743                         else
1744                                 hsw_pipe_crc_irq_handler(dev, pipe);
1745                 }
1746         }
1747
1748         I915_WRITE(GEN7_ERR_INT, err_int);
1749 }
1750
1751 static void cpt_serr_int_handler(struct drm_device *dev)
1752 {
1753         struct drm_i915_private *dev_priv = dev->dev_private;
1754         u32 serr_int = I915_READ(SERR_INT);
1755
1756         if (serr_int & SERR_INT_POISON)
1757                 DRM_ERROR("PCH poison interrupt\n");
1758
1759         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1760                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1761                                                           false))
1762                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1763
1764         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1765                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1766                                                           false))
1767                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
1768
1769         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1770                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1771                                                           false))
1772                         DRM_ERROR("PCH transcoder C FIFO underrun\n");
1773
1774         I915_WRITE(SERR_INT, serr_int);
1775 }
1776
1777 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1778 {
1779         struct drm_i915_private *dev_priv = dev->dev_private;
1780         int pipe;
1781         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1782
1783         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1784
1785         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1786                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1787                                SDE_AUDIO_POWER_SHIFT_CPT);
1788                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1789                                  port_name(port));
1790         }
1791
1792         if (pch_iir & SDE_AUX_MASK_CPT)
1793                 dp_aux_irq_handler(dev);
1794
1795         if (pch_iir & SDE_GMBUS_CPT)
1796                 gmbus_irq_handler(dev);
1797
1798         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1799                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1800
1801         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1802                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1803
1804         if (pch_iir & SDE_FDI_MASK_CPT)
1805                 for_each_pipe(pipe)
1806                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1807                                          pipe_name(pipe),
1808                                          I915_READ(FDI_RX_IIR(pipe)));
1809
1810         if (pch_iir & SDE_ERROR_CPT)
1811                 cpt_serr_int_handler(dev);
1812 }
1813
1814 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1815 {
1816         struct drm_i915_private *dev_priv = dev->dev_private;
1817         enum pipe pipe;
1818
1819         if (de_iir & DE_AUX_CHANNEL_A)
1820                 dp_aux_irq_handler(dev);
1821
1822         if (de_iir & DE_GSE)
1823                 intel_opregion_asle_intr(dev);
1824
1825         if (de_iir & DE_POISON)
1826                 DRM_ERROR("Poison interrupt\n");
1827
1828         for_each_pipe(pipe) {
1829                 if (de_iir & DE_PIPE_VBLANK(pipe))
1830                         drm_handle_vblank(dev, pipe);
1831
1832                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1833                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1834                                 DRM_ERROR("Pipe %c FIFO underrun\n",
1835                                           pipe_name(pipe));
1836
1837                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1838                         i9xx_pipe_crc_irq_handler(dev, pipe);
1839
1840                 /* plane/pipes map 1:1 on ilk+ */
1841                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1842                         intel_prepare_page_flip(dev, pipe);
1843                         intel_finish_page_flip_plane(dev, pipe);
1844                 }
1845         }
1846
1847         /* check event from PCH */
1848         if (de_iir & DE_PCH_EVENT) {
1849                 u32 pch_iir = I915_READ(SDEIIR);
1850
1851                 if (HAS_PCH_CPT(dev))
1852                         cpt_irq_handler(dev, pch_iir);
1853                 else
1854                         ibx_irq_handler(dev, pch_iir);
1855
1856                 /* should clear PCH hotplug event before clear CPU irq */
1857                 I915_WRITE(SDEIIR, pch_iir);
1858         }
1859
1860         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1861                 ironlake_rps_change_irq_handler(dev);
1862 }
1863
1864 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1865 {
1866         struct drm_i915_private *dev_priv = dev->dev_private;
1867         enum pipe pipe;
1868
1869         if (de_iir & DE_ERR_INT_IVB)
1870                 ivb_err_int_handler(dev);
1871
1872         if (de_iir & DE_AUX_CHANNEL_A_IVB)
1873                 dp_aux_irq_handler(dev);
1874
1875         if (de_iir & DE_GSE_IVB)
1876                 intel_opregion_asle_intr(dev);
1877
1878         for_each_pipe(pipe) {
1879                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1880                         drm_handle_vblank(dev, pipe);
1881
1882                 /* plane/pipes map 1:1 on ilk+ */
1883                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1884                         intel_prepare_page_flip(dev, pipe);
1885                         intel_finish_page_flip_plane(dev, pipe);
1886                 }
1887         }
1888
1889         /* check event from PCH */
1890         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1891                 u32 pch_iir = I915_READ(SDEIIR);
1892
1893                 cpt_irq_handler(dev, pch_iir);
1894
1895                 /* clear PCH hotplug event before clear CPU irq */
1896                 I915_WRITE(SDEIIR, pch_iir);
1897         }
1898 }
1899
1900 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1901 {
1902         struct drm_device *dev = (struct drm_device *) arg;
1903         struct drm_i915_private *dev_priv = dev->dev_private;
1904         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1905         irqreturn_t ret = IRQ_NONE;
1906
1907         /* We get interrupts on unclaimed registers, so check for this before we
1908          * do any I915_{READ,WRITE}. */
1909         intel_uncore_check_errors(dev);
1910
1911         /* disable master interrupt before clearing iir  */
1912         de_ier = I915_READ(DEIER);
1913         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1914         POSTING_READ(DEIER);
1915
1916         /* Disable south interrupts. We'll only write to SDEIIR once, so further
1917          * interrupts will will be stored on its back queue, and then we'll be
1918          * able to process them after we restore SDEIER (as soon as we restore
1919          * it, we'll get an interrupt if SDEIIR still has something to process
1920          * due to its back queue). */
1921         if (!HAS_PCH_NOP(dev)) {
1922                 sde_ier = I915_READ(SDEIER);
1923                 I915_WRITE(SDEIER, 0);
1924                 POSTING_READ(SDEIER);
1925         }
1926
1927         gt_iir = I915_READ(GTIIR);
1928         if (gt_iir) {
1929                 if (INTEL_INFO(dev)->gen >= 6)
1930                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1931                 else
1932                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1933                 I915_WRITE(GTIIR, gt_iir);
1934                 ret = IRQ_HANDLED;
1935         }
1936
1937         de_iir = I915_READ(DEIIR);
1938         if (de_iir) {
1939                 if (INTEL_INFO(dev)->gen >= 7)
1940                         ivb_display_irq_handler(dev, de_iir);
1941                 else
1942                         ilk_display_irq_handler(dev, de_iir);
1943                 I915_WRITE(DEIIR, de_iir);
1944                 ret = IRQ_HANDLED;
1945         }
1946
1947         if (INTEL_INFO(dev)->gen >= 6) {
1948                 u32 pm_iir = I915_READ(GEN6_PMIIR);
1949                 if (pm_iir) {
1950                         gen6_rps_irq_handler(dev_priv, pm_iir);
1951                         I915_WRITE(GEN6_PMIIR, pm_iir);
1952                         ret = IRQ_HANDLED;
1953                 }
1954         }
1955
1956         I915_WRITE(DEIER, de_ier);
1957         POSTING_READ(DEIER);
1958         if (!HAS_PCH_NOP(dev)) {
1959                 I915_WRITE(SDEIER, sde_ier);
1960                 POSTING_READ(SDEIER);
1961         }
1962
1963         return ret;
1964 }
1965
1966 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1967 {
1968         struct drm_device *dev = arg;
1969         struct drm_i915_private *dev_priv = dev->dev_private;
1970         u32 master_ctl;
1971         irqreturn_t ret = IRQ_NONE;
1972         uint32_t tmp = 0;
1973         enum pipe pipe;
1974
1975         master_ctl = I915_READ(GEN8_MASTER_IRQ);
1976         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1977         if (!master_ctl)
1978                 return IRQ_NONE;
1979
1980         I915_WRITE(GEN8_MASTER_IRQ, 0);
1981         POSTING_READ(GEN8_MASTER_IRQ);
1982
1983         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1984
1985         if (master_ctl & GEN8_DE_MISC_IRQ) {
1986                 tmp = I915_READ(GEN8_DE_MISC_IIR);
1987                 if (tmp & GEN8_DE_MISC_GSE)
1988                         intel_opregion_asle_intr(dev);
1989                 else if (tmp)
1990                         DRM_ERROR("Unexpected DE Misc interrupt\n");
1991                 else
1992                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1993
1994                 if (tmp) {
1995                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1996                         ret = IRQ_HANDLED;
1997                 }
1998         }
1999
2000         if (master_ctl & GEN8_DE_PORT_IRQ) {
2001                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2002                 if (tmp & GEN8_AUX_CHANNEL_A)
2003                         dp_aux_irq_handler(dev);
2004                 else if (tmp)
2005                         DRM_ERROR("Unexpected DE Port interrupt\n");
2006                 else
2007                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2008
2009                 if (tmp) {
2010                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2011                         ret = IRQ_HANDLED;
2012                 }
2013         }
2014
2015         for_each_pipe(pipe) {
2016                 uint32_t pipe_iir;
2017
2018                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2019                         continue;
2020
2021                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2022                 if (pipe_iir & GEN8_PIPE_VBLANK)
2023                         drm_handle_vblank(dev, pipe);
2024
2025                 if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2026                         intel_prepare_page_flip(dev, pipe);
2027                         intel_finish_page_flip_plane(dev, pipe);
2028                 }
2029
2030                 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2031                         hsw_pipe_crc_irq_handler(dev, pipe);
2032
2033                 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2034                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2035                                                                   false))
2036                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2037                                           pipe_name(pipe));
2038                 }
2039
2040                 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2041                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2042                                   pipe_name(pipe),
2043                                   pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2044                 }
2045
2046                 if (pipe_iir) {
2047                         ret = IRQ_HANDLED;
2048                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2049                 } else
2050                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2051         }
2052
2053         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2054                 /*
2055                  * FIXME(BDW): Assume for now that the new interrupt handling
2056                  * scheme also closed the SDE interrupt handling race we've seen
2057                  * on older pch-split platforms. But this needs testing.
2058                  */
2059                 u32 pch_iir = I915_READ(SDEIIR);
2060
2061                 cpt_irq_handler(dev, pch_iir);
2062
2063                 if (pch_iir) {
2064                         I915_WRITE(SDEIIR, pch_iir);
2065                         ret = IRQ_HANDLED;
2066                 }
2067         }
2068
2069         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2070         POSTING_READ(GEN8_MASTER_IRQ);
2071
2072         return ret;
2073 }
2074
2075 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2076                                bool reset_completed)
2077 {
2078         struct intel_ring_buffer *ring;
2079         int i;
2080
2081         /*
2082          * Notify all waiters for GPU completion events that reset state has
2083          * been changed, and that they need to restart their wait after
2084          * checking for potential errors (and bail out to drop locks if there is
2085          * a gpu reset pending so that i915_error_work_func can acquire them).
2086          */
2087
2088         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2089         for_each_ring(ring, dev_priv, i)
2090                 wake_up_all(&ring->irq_queue);
2091
2092         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2093         wake_up_all(&dev_priv->pending_flip_queue);
2094
2095         /*
2096          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2097          * reset state is cleared.
2098          */
2099         if (reset_completed)
2100                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2101 }
2102
2103 /**
2104  * i915_error_work_func - do process context error handling work
2105  * @work: work struct
2106  *
2107  * Fire an error uevent so userspace can see that a hang or error
2108  * was detected.
2109  */
2110 static void i915_error_work_func(struct work_struct *work)
2111 {
2112         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2113                                                     work);
2114         struct drm_i915_private *dev_priv =
2115                 container_of(error, struct drm_i915_private, gpu_error);
2116         struct drm_device *dev = dev_priv->dev;
2117         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2118         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2119         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2120         int ret;
2121
2122         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2123
2124         /*
2125          * Note that there's only one work item which does gpu resets, so we
2126          * need not worry about concurrent gpu resets potentially incrementing
2127          * error->reset_counter twice. We only need to take care of another
2128          * racing irq/hangcheck declaring the gpu dead for a second time. A
2129          * quick check for that is good enough: schedule_work ensures the
2130          * correct ordering between hang detection and this work item, and since
2131          * the reset in-progress bit is only ever set by code outside of this
2132          * work we don't need to worry about any other races.
2133          */
2134         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2135                 DRM_DEBUG_DRIVER("resetting chip\n");
2136                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2137                                    reset_event);
2138
2139                 /*
2140                  * All state reset _must_ be completed before we update the
2141                  * reset counter, for otherwise waiters might miss the reset
2142                  * pending state and not properly drop locks, resulting in
2143                  * deadlocks with the reset work.
2144                  */
2145                 ret = i915_reset(dev);
2146
2147                 intel_display_handle_reset(dev);
2148
2149                 if (ret == 0) {
2150                         /*
2151                          * After all the gem state is reset, increment the reset
2152                          * counter and wake up everyone waiting for the reset to
2153                          * complete.
2154                          *
2155                          * Since unlock operations are a one-sided barrier only,
2156                          * we need to insert a barrier here to order any seqno
2157                          * updates before
2158                          * the counter increment.
2159                          */
2160                         smp_mb__before_atomic();
2161                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2162
2163                         kobject_uevent_env(&dev->primary->kdev->kobj,
2164                                            KOBJ_CHANGE, reset_done_event);
2165                 } else {
2166                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2167                 }
2168
2169                 /*
2170                  * Note: The wake_up also serves as a memory barrier so that
2171                  * waiters see the update value of the reset counter atomic_t.
2172                  */
2173                 i915_error_wake_up(dev_priv, true);
2174         }
2175 }
2176
2177 static void i915_report_and_clear_eir(struct drm_device *dev)
2178 {
2179         struct drm_i915_private *dev_priv = dev->dev_private;
2180         uint32_t instdone[I915_NUM_INSTDONE_REG];
2181         u32 eir = I915_READ(EIR);
2182         int pipe, i;
2183
2184         if (!eir)
2185                 return;
2186
2187         pr_err("render error detected, EIR: 0x%08x\n", eir);
2188
2189         i915_get_extra_instdone(dev, instdone);
2190
2191         if (IS_G4X(dev)) {
2192                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2193                         u32 ipeir = I915_READ(IPEIR_I965);
2194
2195                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2196                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2197                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2198                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2199                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2200                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2201                         I915_WRITE(IPEIR_I965, ipeir);
2202                         POSTING_READ(IPEIR_I965);
2203                 }
2204                 if (eir & GM45_ERROR_PAGE_TABLE) {
2205                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2206                         pr_err("page table error\n");
2207                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2208                         I915_WRITE(PGTBL_ER, pgtbl_err);
2209                         POSTING_READ(PGTBL_ER);
2210                 }
2211         }
2212
2213         if (!IS_GEN2(dev)) {
2214                 if (eir & I915_ERROR_PAGE_TABLE) {
2215                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2216                         pr_err("page table error\n");
2217                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2218                         I915_WRITE(PGTBL_ER, pgtbl_err);
2219                         POSTING_READ(PGTBL_ER);
2220                 }
2221         }
2222
2223         if (eir & I915_ERROR_MEMORY_REFRESH) {
2224                 pr_err("memory refresh error:\n");
2225                 for_each_pipe(pipe)
2226                         pr_err("pipe %c stat: 0x%08x\n",
2227                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2228                 /* pipestat has already been acked */
2229         }
2230         if (eir & I915_ERROR_INSTRUCTION) {
2231                 pr_err("instruction error\n");
2232                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2233                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2234                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2235                 if (INTEL_INFO(dev)->gen < 4) {
2236                         u32 ipeir = I915_READ(IPEIR);
2237
2238                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2239                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2240                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2241                         I915_WRITE(IPEIR, ipeir);
2242                         POSTING_READ(IPEIR);
2243                 } else {
2244                         u32 ipeir = I915_READ(IPEIR_I965);
2245
2246                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2247                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2248                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2249                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2250                         I915_WRITE(IPEIR_I965, ipeir);
2251                         POSTING_READ(IPEIR_I965);
2252                 }
2253         }
2254
2255         I915_WRITE(EIR, eir);
2256         POSTING_READ(EIR);
2257         eir = I915_READ(EIR);
2258         if (eir) {
2259                 /*
2260                  * some errors might have become stuck,
2261                  * mask them.
2262                  */
2263                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2264                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2265                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2266         }
2267 }
2268
2269 /**
2270  * i915_handle_error - handle an error interrupt
2271  * @dev: drm device
2272  *
2273  * Do some basic checking of regsiter state at error interrupt time and
2274  * dump it to the syslog.  Also call i915_capture_error_state() to make
2275  * sure we get a record and make it available in debugfs.  Fire a uevent
2276  * so userspace knows something bad happened (should trigger collection
2277  * of a ring dump etc.).
2278  */
2279 void i915_handle_error(struct drm_device *dev, bool wedged,
2280                        const char *fmt, ...)
2281 {
2282         struct drm_i915_private *dev_priv = dev->dev_private;
2283         va_list args;
2284         char error_msg[80];
2285
2286         va_start(args, fmt);
2287         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2288         va_end(args);
2289
2290         i915_capture_error_state(dev, wedged, error_msg);
2291         i915_report_and_clear_eir(dev);
2292
2293         if (wedged) {
2294                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2295                                 &dev_priv->gpu_error.reset_counter);
2296
2297                 /*
2298                  * Wakeup waiting processes so that the reset work function
2299                  * i915_error_work_func doesn't deadlock trying to grab various
2300                  * locks. By bumping the reset counter first, the woken
2301                  * processes will see a reset in progress and back off,
2302                  * releasing their locks and then wait for the reset completion.
2303                  * We must do this for _all_ gpu waiters that might hold locks
2304                  * that the reset work needs to acquire.
2305                  *
2306                  * Note: The wake_up serves as the required memory barrier to
2307                  * ensure that the waiters see the updated value of the reset
2308                  * counter atomic_t.
2309                  */
2310                 i915_error_wake_up(dev_priv, false);
2311         }
2312
2313         /*
2314          * Our reset work can grab modeset locks (since it needs to reset the
2315          * state of outstanding pagelips). Hence it must not be run on our own
2316          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2317          * code will deadlock.
2318          */
2319         schedule_work(&dev_priv->gpu_error.work);
2320 }
2321
2322 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2323 {
2324         struct drm_i915_private *dev_priv = dev->dev_private;
2325         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2326         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327         struct drm_i915_gem_object *obj;
2328         struct intel_unpin_work *work;
2329         unsigned long flags;
2330         bool stall_detected;
2331
2332         /* Ignore early vblank irqs */
2333         if (intel_crtc == NULL)
2334                 return;
2335
2336         spin_lock_irqsave(&dev->event_lock, flags);
2337         work = intel_crtc->unpin_work;
2338
2339         if (work == NULL ||
2340             atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2341             !work->enable_stall_check) {
2342                 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2343                 spin_unlock_irqrestore(&dev->event_lock, flags);
2344                 return;
2345         }
2346
2347         /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2348         obj = work->pending_flip_obj;
2349         if (INTEL_INFO(dev)->gen >= 4) {
2350                 int dspsurf = DSPSURF(intel_crtc->plane);
2351                 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2352                                         i915_gem_obj_ggtt_offset(obj);
2353         } else {
2354                 int dspaddr = DSPADDR(intel_crtc->plane);
2355                 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2356                                                         crtc->y * crtc->primary->fb->pitches[0] +
2357                                                         crtc->x * crtc->primary->fb->bits_per_pixel/8);
2358         }
2359
2360         spin_unlock_irqrestore(&dev->event_lock, flags);
2361
2362         if (stall_detected) {
2363                 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2364                 intel_prepare_page_flip(dev, intel_crtc->plane);
2365         }
2366 }
2367
2368 /* Called from drm generic code, passed 'crtc' which
2369  * we use as a pipe index
2370  */
2371 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2372 {
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         unsigned long irqflags;
2375
2376         if (!i915_pipe_enabled(dev, pipe))
2377                 return -EINVAL;
2378
2379         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2380         if (INTEL_INFO(dev)->gen >= 4)
2381                 i915_enable_pipestat(dev_priv, pipe,
2382                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2383         else
2384                 i915_enable_pipestat(dev_priv, pipe,
2385                                      PIPE_VBLANK_INTERRUPT_STATUS);
2386
2387         /* maintain vblank delivery even in deep C-states */
2388         if (INTEL_INFO(dev)->gen == 3)
2389                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2390         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2391
2392         return 0;
2393 }
2394
2395 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2396 {
2397         struct drm_i915_private *dev_priv = dev->dev_private;
2398         unsigned long irqflags;
2399         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2400                                                      DE_PIPE_VBLANK(pipe);
2401
2402         if (!i915_pipe_enabled(dev, pipe))
2403                 return -EINVAL;
2404
2405         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2406         ironlake_enable_display_irq(dev_priv, bit);
2407         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2408
2409         return 0;
2410 }
2411
2412 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2413 {
2414         struct drm_i915_private *dev_priv = dev->dev_private;
2415         unsigned long irqflags;
2416
2417         if (!i915_pipe_enabled(dev, pipe))
2418                 return -EINVAL;
2419
2420         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2421         i915_enable_pipestat(dev_priv, pipe,
2422                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2423         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2424
2425         return 0;
2426 }
2427
2428 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2429 {
2430         struct drm_i915_private *dev_priv = dev->dev_private;
2431         unsigned long irqflags;
2432
2433         if (!i915_pipe_enabled(dev, pipe))
2434                 return -EINVAL;
2435
2436         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2437         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2438         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2439         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2440         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2441         return 0;
2442 }
2443
2444 /* Called from drm generic code, passed 'crtc' which
2445  * we use as a pipe index
2446  */
2447 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2448 {
2449         struct drm_i915_private *dev_priv = dev->dev_private;
2450         unsigned long irqflags;
2451
2452         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2453         if (INTEL_INFO(dev)->gen == 3)
2454                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2455
2456         i915_disable_pipestat(dev_priv, pipe,
2457                               PIPE_VBLANK_INTERRUPT_STATUS |
2458                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2459         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2460 }
2461
2462 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2463 {
2464         struct drm_i915_private *dev_priv = dev->dev_private;
2465         unsigned long irqflags;
2466         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2467                                                      DE_PIPE_VBLANK(pipe);
2468
2469         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2470         ironlake_disable_display_irq(dev_priv, bit);
2471         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2472 }
2473
2474 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2475 {
2476         struct drm_i915_private *dev_priv = dev->dev_private;
2477         unsigned long irqflags;
2478
2479         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2480         i915_disable_pipestat(dev_priv, pipe,
2481                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2482         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2483 }
2484
2485 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2486 {
2487         struct drm_i915_private *dev_priv = dev->dev_private;
2488         unsigned long irqflags;
2489
2490         if (!i915_pipe_enabled(dev, pipe))
2491                 return;
2492
2493         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2494         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2495         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2496         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2497         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2498 }
2499
2500 static u32
2501 ring_last_seqno(struct intel_ring_buffer *ring)
2502 {
2503         return list_entry(ring->request_list.prev,
2504                           struct drm_i915_gem_request, list)->seqno;
2505 }
2506
2507 static bool
2508 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2509 {
2510         return (list_empty(&ring->request_list) ||
2511                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2512 }
2513
2514 static struct intel_ring_buffer *
2515 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2516 {
2517         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2518         u32 cmd, ipehr, head;
2519         int i;
2520
2521         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2522         if ((ipehr & ~(0x3 << 16)) !=
2523             (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
2524                 return NULL;
2525
2526         /*
2527          * HEAD is likely pointing to the dword after the actual command,
2528          * so scan backwards until we find the MBOX. But limit it to just 3
2529          * dwords. Note that we don't care about ACTHD here since that might
2530          * point at at batch, and semaphores are always emitted into the
2531          * ringbuffer itself.
2532          */
2533         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2534
2535         for (i = 4; i; --i) {
2536                 /*
2537                  * Be paranoid and presume the hw has gone off into the wild -
2538                  * our ring is smaller than what the hardware (and hence
2539                  * HEAD_ADDR) allows. Also handles wrap-around.
2540                  */
2541                 head &= ring->size - 1;
2542
2543                 /* This here seems to blow up */
2544                 cmd = ioread32(ring->virtual_start + head);
2545                 if (cmd == ipehr)
2546                         break;
2547
2548                 head -= 4;
2549         }
2550
2551         if (!i)
2552                 return NULL;
2553
2554         *seqno = ioread32(ring->virtual_start + head + 4) + 1;
2555         return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
2556 }
2557
2558 static int semaphore_passed(struct intel_ring_buffer *ring)
2559 {
2560         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2561         struct intel_ring_buffer *signaller;
2562         u32 seqno, ctl;
2563
2564         ring->hangcheck.deadlock = true;
2565
2566         signaller = semaphore_waits_for(ring, &seqno);
2567         if (signaller == NULL || signaller->hangcheck.deadlock)
2568                 return -1;
2569
2570         /* cursory check for an unkickable deadlock */
2571         ctl = I915_READ_CTL(signaller);
2572         if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2573                 return -1;
2574
2575         return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2576 }
2577
2578 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2579 {
2580         struct intel_ring_buffer *ring;
2581         int i;
2582
2583         for_each_ring(ring, dev_priv, i)
2584                 ring->hangcheck.deadlock = false;
2585 }
2586
2587 static enum intel_ring_hangcheck_action
2588 ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2589 {
2590         struct drm_device *dev = ring->dev;
2591         struct drm_i915_private *dev_priv = dev->dev_private;
2592         u32 tmp;
2593
2594         if (ring->hangcheck.acthd != acthd)
2595                 return HANGCHECK_ACTIVE;
2596
2597         if (IS_GEN2(dev))
2598                 return HANGCHECK_HUNG;
2599
2600         /* Is the chip hanging on a WAIT_FOR_EVENT?
2601          * If so we can simply poke the RB_WAIT bit
2602          * and break the hang. This should work on
2603          * all but the second generation chipsets.
2604          */
2605         tmp = I915_READ_CTL(ring);
2606         if (tmp & RING_WAIT) {
2607                 i915_handle_error(dev, false,
2608                                   "Kicking stuck wait on %s",
2609                                   ring->name);
2610                 I915_WRITE_CTL(ring, tmp);
2611                 return HANGCHECK_KICK;
2612         }
2613
2614         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2615                 switch (semaphore_passed(ring)) {
2616                 default:
2617                         return HANGCHECK_HUNG;
2618                 case 1:
2619                         i915_handle_error(dev, false,
2620                                           "Kicking stuck semaphore on %s",
2621                                           ring->name);
2622                         I915_WRITE_CTL(ring, tmp);
2623                         return HANGCHECK_KICK;
2624                 case 0:
2625                         return HANGCHECK_WAIT;
2626                 }
2627         }
2628
2629         return HANGCHECK_HUNG;
2630 }
2631
2632 /**
2633  * This is called when the chip hasn't reported back with completed
2634  * batchbuffers in a long time. We keep track per ring seqno progress and
2635  * if there are no progress, hangcheck score for that ring is increased.
2636  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2637  * we kick the ring. If we see no progress on three subsequent calls
2638  * we assume chip is wedged and try to fix it by resetting the chip.
2639  */
2640 static void i915_hangcheck_elapsed(unsigned long data)
2641 {
2642         struct drm_device *dev = (struct drm_device *)data;
2643         struct drm_i915_private *dev_priv = dev->dev_private;
2644         struct intel_ring_buffer *ring;
2645         int i;
2646         int busy_count = 0, rings_hung = 0;
2647         bool stuck[I915_NUM_RINGS] = { 0 };
2648 #define BUSY 1
2649 #define KICK 5
2650 #define HUNG 20
2651
2652         if (!i915.enable_hangcheck)
2653                 return;
2654
2655         for_each_ring(ring, dev_priv, i) {
2656                 u64 acthd;
2657                 u32 seqno;
2658                 bool busy = true;
2659
2660                 semaphore_clear_deadlocks(dev_priv);
2661
2662                 seqno = ring->get_seqno(ring, false);
2663                 acthd = intel_ring_get_active_head(ring);
2664
2665                 if (ring->hangcheck.seqno == seqno) {
2666                         if (ring_idle(ring, seqno)) {
2667                                 ring->hangcheck.action = HANGCHECK_IDLE;
2668
2669                                 if (waitqueue_active(&ring->irq_queue)) {
2670                                         /* Issue a wake-up to catch stuck h/w. */
2671                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2672                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2673                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2674                                                                   ring->name);
2675                                                 else
2676                                                         DRM_INFO("Fake missed irq on %s\n",
2677                                                                  ring->name);
2678                                                 wake_up_all(&ring->irq_queue);
2679                                         }
2680                                         /* Safeguard against driver failure */
2681                                         ring->hangcheck.score += BUSY;
2682                                 } else
2683                                         busy = false;
2684                         } else {
2685                                 /* We always increment the hangcheck score
2686                                  * if the ring is busy and still processing
2687                                  * the same request, so that no single request
2688                                  * can run indefinitely (such as a chain of
2689                                  * batches). The only time we do not increment
2690                                  * the hangcheck score on this ring, if this
2691                                  * ring is in a legitimate wait for another
2692                                  * ring. In that case the waiting ring is a
2693                                  * victim and we want to be sure we catch the
2694                                  * right culprit. Then every time we do kick
2695                                  * the ring, add a small increment to the
2696                                  * score so that we can catch a batch that is
2697                                  * being repeatedly kicked and so responsible
2698                                  * for stalling the machine.
2699                                  */
2700                                 ring->hangcheck.action = ring_stuck(ring,
2701                                                                     acthd);
2702
2703                                 switch (ring->hangcheck.action) {
2704                                 case HANGCHECK_IDLE:
2705                                 case HANGCHECK_WAIT:
2706                                         break;
2707                                 case HANGCHECK_ACTIVE:
2708                                         ring->hangcheck.score += BUSY;
2709                                         break;
2710                                 case HANGCHECK_KICK:
2711                                         ring->hangcheck.score += KICK;
2712                                         break;
2713                                 case HANGCHECK_HUNG:
2714                                         ring->hangcheck.score += HUNG;
2715                                         stuck[i] = true;
2716                                         break;
2717                                 }
2718                         }
2719                 } else {
2720                         ring->hangcheck.action = HANGCHECK_ACTIVE;
2721
2722                         /* Gradually reduce the count so that we catch DoS
2723                          * attempts across multiple batches.
2724                          */
2725                         if (ring->hangcheck.score > 0)
2726                                 ring->hangcheck.score--;
2727                 }
2728
2729                 ring->hangcheck.seqno = seqno;
2730                 ring->hangcheck.acthd = acthd;
2731                 busy_count += busy;
2732         }
2733
2734         for_each_ring(ring, dev_priv, i) {
2735                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2736                         DRM_INFO("%s on %s\n",
2737                                  stuck[i] ? "stuck" : "no progress",
2738                                  ring->name);
2739                         rings_hung++;
2740                 }
2741         }
2742
2743         if (rings_hung)
2744                 return i915_handle_error(dev, true, "Ring hung");
2745
2746         if (busy_count)
2747                 /* Reset timer case chip hangs without another request
2748                  * being added */
2749                 i915_queue_hangcheck(dev);
2750 }
2751
2752 void i915_queue_hangcheck(struct drm_device *dev)
2753 {
2754         struct drm_i915_private *dev_priv = dev->dev_private;
2755         if (!i915.enable_hangcheck)
2756                 return;
2757
2758         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2759                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2760 }
2761
2762 static void ibx_irq_preinstall(struct drm_device *dev)
2763 {
2764         struct drm_i915_private *dev_priv = dev->dev_private;
2765
2766         if (HAS_PCH_NOP(dev))
2767                 return;
2768
2769         /* south display irq */
2770         I915_WRITE(SDEIMR, 0xffffffff);
2771         /*
2772          * SDEIER is also touched by the interrupt handler to work around missed
2773          * PCH interrupts. Hence we can't update it after the interrupt handler
2774          * is enabled - instead we unconditionally enable all PCH interrupt
2775          * sources here, but then only unmask them as needed with SDEIMR.
2776          */
2777         I915_WRITE(SDEIER, 0xffffffff);
2778         POSTING_READ(SDEIER);
2779 }
2780
2781 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2782 {
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784
2785         /* and GT */
2786         I915_WRITE(GTIMR, 0xffffffff);
2787         I915_WRITE(GTIER, 0x0);
2788         POSTING_READ(GTIER);
2789
2790         if (INTEL_INFO(dev)->gen >= 6) {
2791                 /* and PM */
2792                 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2793                 I915_WRITE(GEN6_PMIER, 0x0);
2794                 POSTING_READ(GEN6_PMIER);
2795         }
2796 }
2797
2798 /* drm_dma.h hooks
2799 */
2800 static void ironlake_irq_preinstall(struct drm_device *dev)
2801 {
2802         struct drm_i915_private *dev_priv = dev->dev_private;
2803
2804         I915_WRITE(HWSTAM, 0xeffe);
2805
2806         I915_WRITE(DEIMR, 0xffffffff);
2807         I915_WRITE(DEIER, 0x0);
2808         POSTING_READ(DEIER);
2809
2810         gen5_gt_irq_preinstall(dev);
2811
2812         ibx_irq_preinstall(dev);
2813 }
2814
2815 static void valleyview_irq_preinstall(struct drm_device *dev)
2816 {
2817         struct drm_i915_private *dev_priv = dev->dev_private;
2818         int pipe;
2819
2820         /* VLV magic */
2821         I915_WRITE(VLV_IMR, 0);
2822         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2823         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2824         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2825
2826         /* and GT */
2827         I915_WRITE(GTIIR, I915_READ(GTIIR));
2828         I915_WRITE(GTIIR, I915_READ(GTIIR));
2829
2830         gen5_gt_irq_preinstall(dev);
2831
2832         I915_WRITE(DPINVGTT, 0xff);
2833
2834         I915_WRITE(PORT_HOTPLUG_EN, 0);
2835         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2836         for_each_pipe(pipe)
2837                 I915_WRITE(PIPESTAT(pipe), 0xffff);
2838         I915_WRITE(VLV_IIR, 0xffffffff);
2839         I915_WRITE(VLV_IMR, 0xffffffff);
2840         I915_WRITE(VLV_IER, 0x0);
2841         POSTING_READ(VLV_IER);
2842 }
2843
2844 static void gen8_irq_preinstall(struct drm_device *dev)
2845 {
2846         struct drm_i915_private *dev_priv = dev->dev_private;
2847         int pipe;
2848
2849         I915_WRITE(GEN8_MASTER_IRQ, 0);
2850         POSTING_READ(GEN8_MASTER_IRQ);
2851
2852         /* IIR can theoretically queue up two events. Be paranoid */
2853 #define GEN8_IRQ_INIT_NDX(type, which) do { \
2854                 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
2855                 POSTING_READ(GEN8_##type##_IMR(which)); \
2856                 I915_WRITE(GEN8_##type##_IER(which), 0); \
2857                 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2858                 POSTING_READ(GEN8_##type##_IIR(which)); \
2859                 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
2860         } while (0)
2861
2862 #define GEN8_IRQ_INIT(type) do { \
2863                 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
2864                 POSTING_READ(GEN8_##type##_IMR); \
2865                 I915_WRITE(GEN8_##type##_IER, 0); \
2866                 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2867                 POSTING_READ(GEN8_##type##_IIR); \
2868                 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
2869         } while (0)
2870
2871         GEN8_IRQ_INIT_NDX(GT, 0);
2872         GEN8_IRQ_INIT_NDX(GT, 1);
2873         GEN8_IRQ_INIT_NDX(GT, 2);
2874         GEN8_IRQ_INIT_NDX(GT, 3);
2875
2876         for_each_pipe(pipe) {
2877                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe);
2878         }
2879
2880         GEN8_IRQ_INIT(DE_PORT);
2881         GEN8_IRQ_INIT(DE_MISC);
2882         GEN8_IRQ_INIT(PCU);
2883 #undef GEN8_IRQ_INIT
2884 #undef GEN8_IRQ_INIT_NDX
2885
2886         POSTING_READ(GEN8_PCU_IIR);
2887
2888         ibx_irq_preinstall(dev);
2889 }
2890
2891 static void ibx_hpd_irq_setup(struct drm_device *dev)
2892 {
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894         struct drm_mode_config *mode_config = &dev->mode_config;
2895         struct intel_encoder *intel_encoder;
2896         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2897
2898         if (HAS_PCH_IBX(dev)) {
2899                 hotplug_irqs = SDE_HOTPLUG_MASK;
2900                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2901                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2902                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2903         } else {
2904                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2905                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2906                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2907                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2908         }
2909
2910         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2911
2912         /*
2913          * Enable digital hotplug on the PCH, and configure the DP short pulse
2914          * duration to 2ms (which is the minimum in the Display Port spec)
2915          *
2916          * This register is the same on all known PCH chips.
2917          */
2918         hotplug = I915_READ(PCH_PORT_HOTPLUG);
2919         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2920         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2921         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2922         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2923         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2924 }
2925
2926 static void ibx_irq_postinstall(struct drm_device *dev)
2927 {
2928         struct drm_i915_private *dev_priv = dev->dev_private;
2929         u32 mask;
2930
2931         if (HAS_PCH_NOP(dev))
2932                 return;
2933
2934         if (HAS_PCH_IBX(dev)) {
2935                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2936         } else {
2937                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2938
2939                 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2940         }
2941
2942         I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2943         I915_WRITE(SDEIMR, ~mask);
2944 }
2945
2946 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2947 {
2948         struct drm_i915_private *dev_priv = dev->dev_private;
2949         u32 pm_irqs, gt_irqs;
2950
2951         pm_irqs = gt_irqs = 0;
2952
2953         dev_priv->gt_irq_mask = ~0;
2954         if (HAS_L3_DPF(dev)) {
2955                 /* L3 parity interrupt is always unmasked. */
2956                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
2957                 gt_irqs |= GT_PARITY_ERROR(dev);
2958         }
2959
2960         gt_irqs |= GT_RENDER_USER_INTERRUPT;
2961         if (IS_GEN5(dev)) {
2962                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2963                            ILK_BSD_USER_INTERRUPT;
2964         } else {
2965                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2966         }
2967
2968         I915_WRITE(GTIIR, I915_READ(GTIIR));
2969         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2970         I915_WRITE(GTIER, gt_irqs);
2971         POSTING_READ(GTIER);
2972
2973         if (INTEL_INFO(dev)->gen >= 6) {
2974                 pm_irqs |= dev_priv->pm_rps_events;
2975
2976                 if (HAS_VEBOX(dev))
2977                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2978
2979                 dev_priv->pm_irq_mask = 0xffffffff;
2980                 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2981                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2982                 I915_WRITE(GEN6_PMIER, pm_irqs);
2983                 POSTING_READ(GEN6_PMIER);
2984         }
2985 }
2986
2987 static int ironlake_irq_postinstall(struct drm_device *dev)
2988 {
2989         unsigned long irqflags;
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991         u32 display_mask, extra_mask;
2992
2993         if (INTEL_INFO(dev)->gen >= 7) {
2994                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2995                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2996                                 DE_PLANEB_FLIP_DONE_IVB |
2997                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
2998                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2999                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3000
3001                 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3002         } else {
3003                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3004                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3005                                 DE_AUX_CHANNEL_A |
3006                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3007                                 DE_POISON);
3008                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3009                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3010         }
3011
3012         dev_priv->irq_mask = ~display_mask;
3013
3014         /* should always can generate irq */
3015         I915_WRITE(DEIIR, I915_READ(DEIIR));
3016         I915_WRITE(DEIMR, dev_priv->irq_mask);
3017         I915_WRITE(DEIER, display_mask | extra_mask);
3018         POSTING_READ(DEIER);
3019
3020         gen5_gt_irq_postinstall(dev);
3021
3022         ibx_irq_postinstall(dev);
3023
3024         if (IS_IRONLAKE_M(dev)) {
3025                 /* Enable PCU event interrupts
3026                  *
3027                  * spinlocking not required here for correctness since interrupt
3028                  * setup is guaranteed to run in single-threaded context. But we
3029                  * need it to make the assert_spin_locked happy. */
3030                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3031                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3032                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3033         }
3034
3035         return 0;
3036 }
3037
3038 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3039 {
3040         u32 pipestat_mask;
3041         u32 iir_mask;
3042
3043         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3044                         PIPE_FIFO_UNDERRUN_STATUS;
3045
3046         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3047         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3048         POSTING_READ(PIPESTAT(PIPE_A));
3049
3050         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3051                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3052
3053         i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3054                                                PIPE_GMBUS_INTERRUPT_STATUS);
3055         i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3056
3057         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3058                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3059                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3060         dev_priv->irq_mask &= ~iir_mask;
3061
3062         I915_WRITE(VLV_IIR, iir_mask);
3063         I915_WRITE(VLV_IIR, iir_mask);
3064         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3065         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3066         POSTING_READ(VLV_IER);
3067 }
3068
3069 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3070 {
3071         u32 pipestat_mask;
3072         u32 iir_mask;
3073
3074         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3075                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3076                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3077
3078         dev_priv->irq_mask |= iir_mask;
3079         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3080         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3081         I915_WRITE(VLV_IIR, iir_mask);
3082         I915_WRITE(VLV_IIR, iir_mask);
3083         POSTING_READ(VLV_IIR);
3084
3085         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3086                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3087
3088         i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3089                                                 PIPE_GMBUS_INTERRUPT_STATUS);
3090         i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3091
3092         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3093                         PIPE_FIFO_UNDERRUN_STATUS;
3094         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3095         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3096         POSTING_READ(PIPESTAT(PIPE_A));
3097 }
3098
3099 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3100 {
3101         assert_spin_locked(&dev_priv->irq_lock);
3102
3103         if (dev_priv->display_irqs_enabled)
3104                 return;
3105
3106         dev_priv->display_irqs_enabled = true;
3107
3108         if (dev_priv->dev->irq_enabled)
3109                 valleyview_display_irqs_install(dev_priv);
3110 }
3111
3112 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3113 {
3114         assert_spin_locked(&dev_priv->irq_lock);
3115
3116         if (!dev_priv->display_irqs_enabled)
3117                 return;
3118
3119         dev_priv->display_irqs_enabled = false;
3120
3121         if (dev_priv->dev->irq_enabled)
3122                 valleyview_display_irqs_uninstall(dev_priv);
3123 }
3124
3125 static int valleyview_irq_postinstall(struct drm_device *dev)
3126 {
3127         struct drm_i915_private *dev_priv = dev->dev_private;
3128         unsigned long irqflags;
3129
3130         dev_priv->irq_mask = ~0;
3131
3132         I915_WRITE(PORT_HOTPLUG_EN, 0);
3133         POSTING_READ(PORT_HOTPLUG_EN);
3134
3135         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3136         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3137         I915_WRITE(VLV_IIR, 0xffffffff);
3138         POSTING_READ(VLV_IER);
3139
3140         /* Interrupt setup is already guaranteed to be single-threaded, this is
3141          * just to make the assert_spin_locked check happy. */
3142         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3143         if (dev_priv->display_irqs_enabled)
3144                 valleyview_display_irqs_install(dev_priv);
3145         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3146
3147         I915_WRITE(VLV_IIR, 0xffffffff);
3148         I915_WRITE(VLV_IIR, 0xffffffff);
3149
3150         gen5_gt_irq_postinstall(dev);
3151
3152         /* ack & enable invalid PTE error interrupts */
3153 #if 0 /* FIXME: add support to irq handler for checking these bits */
3154         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3155         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3156 #endif
3157
3158         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3159
3160         return 0;
3161 }
3162
3163 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3164 {
3165         int i;
3166
3167         /* These are interrupts we'll toggle with the ring mask register */
3168         uint32_t gt_interrupts[] = {
3169                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3170                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3171                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3172                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3173                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3174                 0,
3175                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3176                 };
3177
3178         for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++) {
3179                 u32 tmp = I915_READ(GEN8_GT_IIR(i));
3180                 if (tmp)
3181                         DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3182                                   i, tmp);
3183                 I915_WRITE(GEN8_GT_IMR(i), ~gt_interrupts[i]);
3184                 I915_WRITE(GEN8_GT_IER(i), gt_interrupts[i]);
3185         }
3186         POSTING_READ(GEN8_GT_IER(0));
3187 }
3188
3189 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3190 {
3191         struct drm_device *dev = dev_priv->dev;
3192         uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3193                 GEN8_PIPE_CDCLK_CRC_DONE |
3194                 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3195         uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3196                 GEN8_PIPE_FIFO_UNDERRUN;
3197         int pipe;
3198         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3199         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3200         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3201
3202         for_each_pipe(pipe) {
3203                 u32 tmp = I915_READ(GEN8_DE_PIPE_IIR(pipe));
3204                 if (tmp)
3205                         DRM_ERROR("Interrupt (%d) should have been masked in pre-install 0x%08x\n",
3206                                   pipe, tmp);
3207                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3208                 I915_WRITE(GEN8_DE_PIPE_IER(pipe), de_pipe_enables);
3209         }
3210         POSTING_READ(GEN8_DE_PIPE_ISR(0));
3211
3212         I915_WRITE(GEN8_DE_PORT_IMR, ~GEN8_AUX_CHANNEL_A);
3213         I915_WRITE(GEN8_DE_PORT_IER, GEN8_AUX_CHANNEL_A);
3214         POSTING_READ(GEN8_DE_PORT_IER);
3215 }
3216
3217 static int gen8_irq_postinstall(struct drm_device *dev)
3218 {
3219         struct drm_i915_private *dev_priv = dev->dev_private;
3220
3221         gen8_gt_irq_postinstall(dev_priv);
3222         gen8_de_irq_postinstall(dev_priv);
3223
3224         ibx_irq_postinstall(dev);
3225
3226         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3227         POSTING_READ(GEN8_MASTER_IRQ);
3228
3229         return 0;
3230 }
3231
3232 static void gen8_irq_uninstall(struct drm_device *dev)
3233 {
3234         struct drm_i915_private *dev_priv = dev->dev_private;
3235         int pipe;
3236
3237         if (!dev_priv)
3238                 return;
3239
3240         I915_WRITE(GEN8_MASTER_IRQ, 0);
3241
3242 #define GEN8_IRQ_FINI_NDX(type, which) do { \
3243                 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3244                 I915_WRITE(GEN8_##type##_IER(which), 0); \
3245                 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3246         } while (0)
3247
3248 #define GEN8_IRQ_FINI(type) do { \
3249                 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3250                 I915_WRITE(GEN8_##type##_IER, 0); \
3251                 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3252         } while (0)
3253
3254         GEN8_IRQ_FINI_NDX(GT, 0);
3255         GEN8_IRQ_FINI_NDX(GT, 1);
3256         GEN8_IRQ_FINI_NDX(GT, 2);
3257         GEN8_IRQ_FINI_NDX(GT, 3);
3258
3259         for_each_pipe(pipe) {
3260                 GEN8_IRQ_FINI_NDX(DE_PIPE, pipe);
3261         }
3262
3263         GEN8_IRQ_FINI(DE_PORT);
3264         GEN8_IRQ_FINI(DE_MISC);
3265         GEN8_IRQ_FINI(PCU);
3266 #undef GEN8_IRQ_FINI
3267 #undef GEN8_IRQ_FINI_NDX
3268
3269         POSTING_READ(GEN8_PCU_IIR);
3270 }
3271
3272 static void valleyview_irq_uninstall(struct drm_device *dev)
3273 {
3274         struct drm_i915_private *dev_priv = dev->dev_private;
3275         unsigned long irqflags;
3276         int pipe;
3277
3278         if (!dev_priv)
3279                 return;
3280
3281         intel_hpd_irq_uninstall(dev_priv);
3282
3283         for_each_pipe(pipe)
3284                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3285
3286         I915_WRITE(HWSTAM, 0xffffffff);
3287         I915_WRITE(PORT_HOTPLUG_EN, 0);
3288         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3289
3290         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3291         if (dev_priv->display_irqs_enabled)
3292                 valleyview_display_irqs_uninstall(dev_priv);
3293         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3294
3295         dev_priv->irq_mask = 0;
3296
3297         I915_WRITE(VLV_IIR, 0xffffffff);
3298         I915_WRITE(VLV_IMR, 0xffffffff);
3299         I915_WRITE(VLV_IER, 0x0);
3300         POSTING_READ(VLV_IER);
3301 }
3302
3303 static void ironlake_irq_uninstall(struct drm_device *dev)
3304 {
3305         struct drm_i915_private *dev_priv = dev->dev_private;
3306
3307         if (!dev_priv)
3308                 return;
3309
3310         intel_hpd_irq_uninstall(dev_priv);
3311
3312         I915_WRITE(HWSTAM, 0xffffffff);
3313
3314         I915_WRITE(DEIMR, 0xffffffff);
3315         I915_WRITE(DEIER, 0x0);
3316         I915_WRITE(DEIIR, I915_READ(DEIIR));
3317         if (IS_GEN7(dev))
3318                 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
3319
3320         I915_WRITE(GTIMR, 0xffffffff);
3321         I915_WRITE(GTIER, 0x0);
3322         I915_WRITE(GTIIR, I915_READ(GTIIR));
3323
3324         if (HAS_PCH_NOP(dev))
3325                 return;
3326
3327         I915_WRITE(SDEIMR, 0xffffffff);
3328         I915_WRITE(SDEIER, 0x0);
3329         I915_WRITE(SDEIIR, I915_READ(SDEIIR));
3330         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3331                 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
3332 }
3333
3334 static void i8xx_irq_preinstall(struct drm_device * dev)
3335 {
3336         struct drm_i915_private *dev_priv = dev->dev_private;
3337         int pipe;
3338
3339         for_each_pipe(pipe)
3340                 I915_WRITE(PIPESTAT(pipe), 0);
3341         I915_WRITE16(IMR, 0xffff);
3342         I915_WRITE16(IER, 0x0);
3343         POSTING_READ16(IER);
3344 }
3345
3346 static int i8xx_irq_postinstall(struct drm_device *dev)
3347 {
3348         struct drm_i915_private *dev_priv = dev->dev_private;
3349         unsigned long irqflags;
3350
3351         I915_WRITE16(EMR,
3352                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3353
3354         /* Unmask the interrupts that we always want on. */
3355         dev_priv->irq_mask =
3356                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3357                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3358                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3359                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3360                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3361         I915_WRITE16(IMR, dev_priv->irq_mask);
3362
3363         I915_WRITE16(IER,
3364                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3365                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3366                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3367                      I915_USER_INTERRUPT);
3368         POSTING_READ16(IER);
3369
3370         /* Interrupt setup is already guaranteed to be single-threaded, this is
3371          * just to make the assert_spin_locked check happy. */
3372         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3373         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3374         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3375         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3376
3377         return 0;
3378 }
3379
3380 /*
3381  * Returns true when a page flip has completed.
3382  */
3383 static bool i8xx_handle_vblank(struct drm_device *dev,
3384                                int plane, int pipe, u32 iir)
3385 {
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3388
3389         if (!drm_handle_vblank(dev, pipe))
3390                 return false;
3391
3392         if ((iir & flip_pending) == 0)
3393                 return false;
3394
3395         intel_prepare_page_flip(dev, plane);
3396
3397         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3398          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3399          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3400          * the flip is completed (no longer pending). Since this doesn't raise
3401          * an interrupt per se, we watch for the change at vblank.
3402          */
3403         if (I915_READ16(ISR) & flip_pending)
3404                 return false;
3405
3406         intel_finish_page_flip(dev, pipe);
3407
3408         return true;
3409 }
3410
3411 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3412 {
3413         struct drm_device *dev = (struct drm_device *) arg;
3414         struct drm_i915_private *dev_priv = dev->dev_private;
3415         u16 iir, new_iir;
3416         u32 pipe_stats[2];
3417         unsigned long irqflags;
3418         int pipe;
3419         u16 flip_mask =
3420                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3421                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3422
3423         iir = I915_READ16(IIR);
3424         if (iir == 0)
3425                 return IRQ_NONE;
3426
3427         while (iir & ~flip_mask) {
3428                 /* Can't rely on pipestat interrupt bit in iir as it might
3429                  * have been cleared after the pipestat interrupt was received.
3430                  * It doesn't set the bit in iir again, but it still produces
3431                  * interrupts (for non-MSI).
3432                  */
3433                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3434                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3435                         i915_handle_error(dev, false,
3436                                           "Command parser error, iir 0x%08x",
3437                                           iir);
3438
3439                 for_each_pipe(pipe) {
3440                         int reg = PIPESTAT(pipe);
3441                         pipe_stats[pipe] = I915_READ(reg);
3442
3443                         /*
3444                          * Clear the PIPE*STAT regs before the IIR
3445                          */
3446                         if (pipe_stats[pipe] & 0x8000ffff)
3447                                 I915_WRITE(reg, pipe_stats[pipe]);
3448                 }
3449                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3450
3451                 I915_WRITE16(IIR, iir & ~flip_mask);
3452                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3453
3454                 i915_update_dri1_breadcrumb(dev);
3455
3456                 if (iir & I915_USER_INTERRUPT)
3457                         notify_ring(dev, &dev_priv->ring[RCS]);
3458
3459                 for_each_pipe(pipe) {
3460                         int plane = pipe;
3461                         if (HAS_FBC(dev))
3462                                 plane = !plane;
3463
3464                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3465                             i8xx_handle_vblank(dev, plane, pipe, iir))
3466                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3467
3468                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3469                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3470
3471                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3472                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3473                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3474                 }
3475
3476                 iir = new_iir;
3477         }
3478
3479         return IRQ_HANDLED;
3480 }
3481
3482 static void i8xx_irq_uninstall(struct drm_device * dev)
3483 {
3484         struct drm_i915_private *dev_priv = dev->dev_private;
3485         int pipe;
3486
3487         for_each_pipe(pipe) {
3488                 /* Clear enable bits; then clear status bits */
3489                 I915_WRITE(PIPESTAT(pipe), 0);
3490                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3491         }
3492         I915_WRITE16(IMR, 0xffff);
3493         I915_WRITE16(IER, 0x0);
3494         I915_WRITE16(IIR, I915_READ16(IIR));
3495 }
3496
3497 static void i915_irq_preinstall(struct drm_device * dev)
3498 {
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         int pipe;
3501
3502         if (I915_HAS_HOTPLUG(dev)) {
3503                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3504                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3505         }
3506
3507         I915_WRITE16(HWSTAM, 0xeffe);
3508         for_each_pipe(pipe)
3509                 I915_WRITE(PIPESTAT(pipe), 0);
3510         I915_WRITE(IMR, 0xffffffff);
3511         I915_WRITE(IER, 0x0);
3512         POSTING_READ(IER);
3513 }
3514
3515 static int i915_irq_postinstall(struct drm_device *dev)
3516 {
3517         struct drm_i915_private *dev_priv = dev->dev_private;
3518         u32 enable_mask;
3519         unsigned long irqflags;
3520
3521         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3522
3523         /* Unmask the interrupts that we always want on. */
3524         dev_priv->irq_mask =
3525                 ~(I915_ASLE_INTERRUPT |
3526                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3527                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3528                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3529                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3530                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3531
3532         enable_mask =
3533                 I915_ASLE_INTERRUPT |
3534                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3535                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3536                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3537                 I915_USER_INTERRUPT;
3538
3539         if (I915_HAS_HOTPLUG(dev)) {
3540                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3541                 POSTING_READ(PORT_HOTPLUG_EN);
3542
3543                 /* Enable in IER... */
3544                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3545                 /* and unmask in IMR */
3546                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3547         }
3548
3549         I915_WRITE(IMR, dev_priv->irq_mask);
3550         I915_WRITE(IER, enable_mask);
3551         POSTING_READ(IER);
3552
3553         i915_enable_asle_pipestat(dev);
3554
3555         /* Interrupt setup is already guaranteed to be single-threaded, this is
3556          * just to make the assert_spin_locked check happy. */
3557         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3558         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3559         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3560         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3561
3562         return 0;
3563 }
3564
3565 /*
3566  * Returns true when a page flip has completed.
3567  */
3568 static bool i915_handle_vblank(struct drm_device *dev,
3569                                int plane, int pipe, u32 iir)
3570 {
3571         struct drm_i915_private *dev_priv = dev->dev_private;
3572         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3573
3574         if (!drm_handle_vblank(dev, pipe))
3575                 return false;
3576
3577         if ((iir & flip_pending) == 0)
3578                 return false;
3579
3580         intel_prepare_page_flip(dev, plane);
3581
3582         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3583          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3584          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3585          * the flip is completed (no longer pending). Since this doesn't raise
3586          * an interrupt per se, we watch for the change at vblank.
3587          */
3588         if (I915_READ(ISR) & flip_pending)
3589                 return false;
3590
3591         intel_finish_page_flip(dev, pipe);
3592
3593         return true;
3594 }
3595
3596 static irqreturn_t i915_irq_handler(int irq, void *arg)
3597 {
3598         struct drm_device *dev = (struct drm_device *) arg;
3599         struct drm_i915_private *dev_priv = dev->dev_private;
3600         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3601         unsigned long irqflags;
3602         u32 flip_mask =
3603                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3604                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3605         int pipe, ret = IRQ_NONE;
3606
3607         iir = I915_READ(IIR);
3608         do {
3609                 bool irq_received = (iir & ~flip_mask) != 0;
3610                 bool blc_event = false;
3611
3612                 /* Can't rely on pipestat interrupt bit in iir as it might
3613                  * have been cleared after the pipestat interrupt was received.
3614                  * It doesn't set the bit in iir again, but it still produces
3615                  * interrupts (for non-MSI).
3616                  */
3617                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3618                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3619                         i915_handle_error(dev, false,
3620                                           "Command parser error, iir 0x%08x",
3621                                           iir);
3622
3623                 for_each_pipe(pipe) {
3624                         int reg = PIPESTAT(pipe);
3625                         pipe_stats[pipe] = I915_READ(reg);
3626
3627                         /* Clear the PIPE*STAT regs before the IIR */
3628                         if (pipe_stats[pipe] & 0x8000ffff) {
3629                                 I915_WRITE(reg, pipe_stats[pipe]);
3630                                 irq_received = true;
3631                         }
3632                 }
3633                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3634
3635                 if (!irq_received)
3636                         break;
3637
3638                 /* Consume port.  Then clear IIR or we'll miss events */
3639                 if ((I915_HAS_HOTPLUG(dev)) &&
3640                     (iir & I915_DISPLAY_PORT_INTERRUPT)) {
3641                         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3642                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
3643
3644                         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
3645
3646                         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3647                         POSTING_READ(PORT_HOTPLUG_STAT);
3648                 }
3649
3650                 I915_WRITE(IIR, iir & ~flip_mask);
3651                 new_iir = I915_READ(IIR); /* Flush posted writes */
3652
3653                 if (iir & I915_USER_INTERRUPT)
3654                         notify_ring(dev, &dev_priv->ring[RCS]);
3655
3656                 for_each_pipe(pipe) {
3657                         int plane = pipe;
3658                         if (HAS_FBC(dev))
3659                                 plane = !plane;
3660
3661                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3662                             i915_handle_vblank(dev, plane, pipe, iir))
3663                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3664
3665                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3666                                 blc_event = true;
3667
3668                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3669                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3670
3671                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3672                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3673                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3674                 }
3675
3676                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3677                         intel_opregion_asle_intr(dev);
3678
3679                 /* With MSI, interrupts are only generated when iir
3680                  * transitions from zero to nonzero.  If another bit got
3681                  * set while we were handling the existing iir bits, then
3682                  * we would never get another interrupt.
3683                  *
3684                  * This is fine on non-MSI as well, as if we hit this path
3685                  * we avoid exiting the interrupt handler only to generate
3686                  * another one.
3687                  *
3688                  * Note that for MSI this could cause a stray interrupt report
3689                  * if an interrupt landed in the time between writing IIR and
3690                  * the posting read.  This should be rare enough to never
3691                  * trigger the 99% of 100,000 interrupts test for disabling
3692                  * stray interrupts.
3693                  */
3694                 ret = IRQ_HANDLED;
3695                 iir = new_iir;
3696         } while (iir & ~flip_mask);
3697
3698         i915_update_dri1_breadcrumb(dev);
3699
3700         return ret;
3701 }
3702
3703 static void i915_irq_uninstall(struct drm_device * dev)
3704 {
3705         struct drm_i915_private *dev_priv = dev->dev_private;
3706         int pipe;
3707
3708         intel_hpd_irq_uninstall(dev_priv);
3709
3710         if (I915_HAS_HOTPLUG(dev)) {
3711                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3712                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3713         }
3714
3715         I915_WRITE16(HWSTAM, 0xffff);
3716         for_each_pipe(pipe) {
3717                 /* Clear enable bits; then clear status bits */
3718                 I915_WRITE(PIPESTAT(pipe), 0);
3719                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3720         }
3721         I915_WRITE(IMR, 0xffffffff);
3722         I915_WRITE(IER, 0x0);
3723
3724         I915_WRITE(IIR, I915_READ(IIR));
3725 }
3726
3727 static void i965_irq_preinstall(struct drm_device * dev)
3728 {
3729         struct drm_i915_private *dev_priv = dev->dev_private;
3730         int pipe;
3731
3732         I915_WRITE(PORT_HOTPLUG_EN, 0);
3733         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3734
3735         I915_WRITE(HWSTAM, 0xeffe);
3736         for_each_pipe(pipe)
3737                 I915_WRITE(PIPESTAT(pipe), 0);
3738         I915_WRITE(IMR, 0xffffffff);
3739         I915_WRITE(IER, 0x0);
3740         POSTING_READ(IER);
3741 }
3742
3743 static int i965_irq_postinstall(struct drm_device *dev)
3744 {
3745         struct drm_i915_private *dev_priv = dev->dev_private;
3746         u32 enable_mask;
3747         u32 error_mask;
3748         unsigned long irqflags;
3749
3750         /* Unmask the interrupts that we always want on. */
3751         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3752                                I915_DISPLAY_PORT_INTERRUPT |
3753                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3754                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3755                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3756                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3757                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3758
3759         enable_mask = ~dev_priv->irq_mask;
3760         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3761                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3762         enable_mask |= I915_USER_INTERRUPT;
3763
3764         if (IS_G4X(dev))
3765                 enable_mask |= I915_BSD_USER_INTERRUPT;
3766
3767         /* Interrupt setup is already guaranteed to be single-threaded, this is
3768          * just to make the assert_spin_locked check happy. */
3769         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3770         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3771         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3772         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3773         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3774
3775         /*
3776          * Enable some error detection, note the instruction error mask
3777          * bit is reserved, so we leave it masked.
3778          */
3779         if (IS_G4X(dev)) {
3780                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3781                                GM45_ERROR_MEM_PRIV |
3782                                GM45_ERROR_CP_PRIV |
3783                                I915_ERROR_MEMORY_REFRESH);
3784         } else {
3785                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3786                                I915_ERROR_MEMORY_REFRESH);
3787         }
3788         I915_WRITE(EMR, error_mask);
3789
3790         I915_WRITE(IMR, dev_priv->irq_mask);
3791         I915_WRITE(IER, enable_mask);
3792         POSTING_READ(IER);
3793
3794         I915_WRITE(PORT_HOTPLUG_EN, 0);
3795         POSTING_READ(PORT_HOTPLUG_EN);
3796
3797         i915_enable_asle_pipestat(dev);
3798
3799         return 0;
3800 }
3801
3802 static void i915_hpd_irq_setup(struct drm_device *dev)
3803 {
3804         struct drm_i915_private *dev_priv = dev->dev_private;
3805         struct drm_mode_config *mode_config = &dev->mode_config;
3806         struct intel_encoder *intel_encoder;
3807         u32 hotplug_en;
3808
3809         assert_spin_locked(&dev_priv->irq_lock);
3810
3811         if (I915_HAS_HOTPLUG(dev)) {
3812                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3813                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3814                 /* Note HDMI and DP share hotplug bits */
3815                 /* enable bits are the same for all generations */
3816                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3817                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3818                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3819                 /* Programming the CRT detection parameters tends
3820                    to generate a spurious hotplug event about three
3821                    seconds later.  So just do it once.
3822                 */
3823                 if (IS_G4X(dev))
3824                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3825                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3826                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3827
3828                 /* Ignore TV since it's buggy */
3829                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3830         }
3831 }
3832
3833 static irqreturn_t i965_irq_handler(int irq, void *arg)
3834 {
3835         struct drm_device *dev = (struct drm_device *) arg;
3836         struct drm_i915_private *dev_priv = dev->dev_private;
3837         u32 iir, new_iir;
3838         u32 pipe_stats[I915_MAX_PIPES];
3839         unsigned long irqflags;
3840         int ret = IRQ_NONE, pipe;
3841         u32 flip_mask =
3842                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3843                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3844
3845         iir = I915_READ(IIR);
3846
3847         for (;;) {
3848                 bool irq_received = (iir & ~flip_mask) != 0;
3849                 bool blc_event = false;
3850
3851                 /* Can't rely on pipestat interrupt bit in iir as it might
3852                  * have been cleared after the pipestat interrupt was received.
3853                  * It doesn't set the bit in iir again, but it still produces
3854                  * interrupts (for non-MSI).
3855                  */
3856                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3857                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3858                         i915_handle_error(dev, false,
3859                                           "Command parser error, iir 0x%08x",
3860                                           iir);
3861
3862                 for_each_pipe(pipe) {
3863                         int reg = PIPESTAT(pipe);
3864                         pipe_stats[pipe] = I915_READ(reg);
3865
3866                         /*
3867                          * Clear the PIPE*STAT regs before the IIR
3868                          */
3869                         if (pipe_stats[pipe] & 0x8000ffff) {
3870                                 I915_WRITE(reg, pipe_stats[pipe]);
3871                                 irq_received = true;
3872                         }
3873                 }
3874                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3875
3876                 if (!irq_received)
3877                         break;
3878
3879                 ret = IRQ_HANDLED;
3880
3881                 /* Consume port.  Then clear IIR or we'll miss events */
3882                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
3883                         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
3884                         u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
3885                                                                   HOTPLUG_INT_STATUS_G4X :
3886                                                                   HOTPLUG_INT_STATUS_I915);
3887
3888                         intel_hpd_irq_handler(dev, hotplug_trigger,
3889                                               IS_G4X(dev) ? hpd_status_g4x : hpd_status_i915);
3890
3891                         if (IS_G4X(dev) &&
3892                             (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X))
3893                                 dp_aux_irq_handler(dev);
3894
3895                         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
3896                         I915_READ(PORT_HOTPLUG_STAT);
3897                 }
3898
3899                 I915_WRITE(IIR, iir & ~flip_mask);
3900                 new_iir = I915_READ(IIR); /* Flush posted writes */
3901
3902                 if (iir & I915_USER_INTERRUPT)
3903                         notify_ring(dev, &dev_priv->ring[RCS]);
3904                 if (iir & I915_BSD_USER_INTERRUPT)
3905                         notify_ring(dev, &dev_priv->ring[VCS]);
3906
3907                 for_each_pipe(pipe) {
3908                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3909                             i915_handle_vblank(dev, pipe, pipe, iir))
3910                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3911
3912                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3913                                 blc_event = true;
3914
3915                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3916                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3917
3918                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3919                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3920                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3921                 }
3922
3923                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3924                         intel_opregion_asle_intr(dev);
3925
3926                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3927                         gmbus_irq_handler(dev);
3928
3929                 /* With MSI, interrupts are only generated when iir
3930                  * transitions from zero to nonzero.  If another bit got
3931                  * set while we were handling the existing iir bits, then
3932                  * we would never get another interrupt.
3933                  *
3934                  * This is fine on non-MSI as well, as if we hit this path
3935                  * we avoid exiting the interrupt handler only to generate
3936                  * another one.
3937                  *
3938                  * Note that for MSI this could cause a stray interrupt report
3939                  * if an interrupt landed in the time between writing IIR and
3940                  * the posting read.  This should be rare enough to never
3941                  * trigger the 99% of 100,000 interrupts test for disabling
3942                  * stray interrupts.
3943                  */
3944                 iir = new_iir;
3945         }
3946
3947         i915_update_dri1_breadcrumb(dev);
3948
3949         return ret;
3950 }
3951
3952 static void i965_irq_uninstall(struct drm_device * dev)
3953 {
3954         struct drm_i915_private *dev_priv = dev->dev_private;
3955         int pipe;
3956
3957         if (!dev_priv)
3958                 return;
3959
3960         intel_hpd_irq_uninstall(dev_priv);
3961
3962         I915_WRITE(PORT_HOTPLUG_EN, 0);
3963         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3964
3965         I915_WRITE(HWSTAM, 0xffffffff);
3966         for_each_pipe(pipe)
3967                 I915_WRITE(PIPESTAT(pipe), 0);
3968         I915_WRITE(IMR, 0xffffffff);
3969         I915_WRITE(IER, 0x0);
3970
3971         for_each_pipe(pipe)
3972                 I915_WRITE(PIPESTAT(pipe),
3973                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3974         I915_WRITE(IIR, I915_READ(IIR));
3975 }
3976
3977 static void intel_hpd_irq_reenable(unsigned long data)
3978 {
3979         struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3980         struct drm_device *dev = dev_priv->dev;
3981         struct drm_mode_config *mode_config = &dev->mode_config;
3982         unsigned long irqflags;
3983         int i;
3984
3985         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3986         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3987                 struct drm_connector *connector;
3988
3989                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3990                         continue;
3991
3992                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3993
3994                 list_for_each_entry(connector, &mode_config->connector_list, head) {
3995                         struct intel_connector *intel_connector = to_intel_connector(connector);
3996
3997                         if (intel_connector->encoder->hpd_pin == i) {
3998                                 if (connector->polled != intel_connector->polled)
3999                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4000                                                          drm_get_connector_name(connector));
4001                                 connector->polled = intel_connector->polled;
4002                                 if (!connector->polled)
4003                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4004                         }
4005                 }
4006         }
4007         if (dev_priv->display.hpd_irq_setup)
4008                 dev_priv->display.hpd_irq_setup(dev);
4009         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4010 }
4011
4012 void intel_irq_init(struct drm_device *dev)
4013 {
4014         struct drm_i915_private *dev_priv = dev->dev_private;
4015
4016         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4017         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4018         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4019         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4020
4021         /* Let's track the enabled rps events */
4022         dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4023
4024         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4025                     i915_hangcheck_elapsed,
4026                     (unsigned long) dev);
4027         setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4028                     (unsigned long) dev_priv);
4029
4030         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4031
4032         if (IS_GEN2(dev)) {
4033                 dev->max_vblank_count = 0;
4034                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4035         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4036                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4037                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4038         } else {
4039                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4040                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4041         }
4042
4043         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4044                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4045                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4046         }
4047
4048         if (IS_VALLEYVIEW(dev)) {
4049                 dev->driver->irq_handler = valleyview_irq_handler;
4050                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4051                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4052                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4053                 dev->driver->enable_vblank = valleyview_enable_vblank;
4054                 dev->driver->disable_vblank = valleyview_disable_vblank;
4055                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4056         } else if (IS_GEN8(dev)) {
4057                 dev->driver->irq_handler = gen8_irq_handler;
4058                 dev->driver->irq_preinstall = gen8_irq_preinstall;
4059                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4060                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4061                 dev->driver->enable_vblank = gen8_enable_vblank;
4062                 dev->driver->disable_vblank = gen8_disable_vblank;
4063                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4064         } else if (HAS_PCH_SPLIT(dev)) {
4065                 dev->driver->irq_handler = ironlake_irq_handler;
4066                 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4067                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4068                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4069                 dev->driver->enable_vblank = ironlake_enable_vblank;
4070                 dev->driver->disable_vblank = ironlake_disable_vblank;
4071                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4072         } else {
4073                 if (INTEL_INFO(dev)->gen == 2) {
4074                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4075                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4076                         dev->driver->irq_handler = i8xx_irq_handler;
4077                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4078                 } else if (INTEL_INFO(dev)->gen == 3) {
4079                         dev->driver->irq_preinstall = i915_irq_preinstall;
4080                         dev->driver->irq_postinstall = i915_irq_postinstall;
4081                         dev->driver->irq_uninstall = i915_irq_uninstall;
4082                         dev->driver->irq_handler = i915_irq_handler;
4083                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4084                 } else {
4085                         dev->driver->irq_preinstall = i965_irq_preinstall;
4086                         dev->driver->irq_postinstall = i965_irq_postinstall;
4087                         dev->driver->irq_uninstall = i965_irq_uninstall;
4088                         dev->driver->irq_handler = i965_irq_handler;
4089                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4090                 }
4091                 dev->driver->enable_vblank = i915_enable_vblank;
4092                 dev->driver->disable_vblank = i915_disable_vblank;
4093         }
4094 }
4095
4096 void intel_hpd_init(struct drm_device *dev)
4097 {
4098         struct drm_i915_private *dev_priv = dev->dev_private;
4099         struct drm_mode_config *mode_config = &dev->mode_config;
4100         struct drm_connector *connector;
4101         unsigned long irqflags;
4102         int i;
4103
4104         for (i = 1; i < HPD_NUM_PINS; i++) {
4105                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4106                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4107         }
4108         list_for_each_entry(connector, &mode_config->connector_list, head) {
4109                 struct intel_connector *intel_connector = to_intel_connector(connector);
4110                 connector->polled = intel_connector->polled;
4111                 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4112                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4113         }
4114
4115         /* Interrupt setup is already guaranteed to be single-threaded, this is
4116          * just to make the assert_spin_locked checks happy. */
4117         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4118         if (dev_priv->display.hpd_irq_setup)
4119                 dev_priv->display.hpd_irq_setup(dev);
4120         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4121 }
4122
4123 /* Disable interrupts so we can allow runtime PM. */
4124 void hsw_runtime_pm_disable_interrupts(struct drm_device *dev)
4125 {
4126         struct drm_i915_private *dev_priv = dev->dev_private;
4127         unsigned long irqflags;
4128
4129         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4130
4131         dev_priv->pm.regsave.deimr = I915_READ(DEIMR);
4132         dev_priv->pm.regsave.sdeimr = I915_READ(SDEIMR);
4133         dev_priv->pm.regsave.gtimr = I915_READ(GTIMR);
4134         dev_priv->pm.regsave.gtier = I915_READ(GTIER);
4135         dev_priv->pm.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
4136
4137         ironlake_disable_display_irq(dev_priv, 0xffffffff);
4138         ibx_disable_display_interrupt(dev_priv, 0xffffffff);
4139         ilk_disable_gt_irq(dev_priv, 0xffffffff);
4140         snb_disable_pm_irq(dev_priv, 0xffffffff);
4141
4142         dev_priv->pm.irqs_disabled = true;
4143
4144         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4145 }
4146
4147 /* Restore interrupts so we can recover from runtime PM. */
4148 void hsw_runtime_pm_restore_interrupts(struct drm_device *dev)
4149 {
4150         struct drm_i915_private *dev_priv = dev->dev_private;
4151         unsigned long irqflags;
4152         uint32_t val;
4153
4154         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4155
4156         val = I915_READ(DEIMR);
4157         WARN(val != 0xffffffff, "DEIMR is 0x%08x\n", val);
4158
4159         val = I915_READ(SDEIMR);
4160         WARN(val != 0xffffffff, "SDEIMR is 0x%08x\n", val);
4161
4162         val = I915_READ(GTIMR);
4163         WARN(val != 0xffffffff, "GTIMR is 0x%08x\n", val);
4164
4165         val = I915_READ(GEN6_PMIMR);
4166         WARN(val != 0xffffffff, "GEN6_PMIMR is 0x%08x\n", val);
4167
4168         dev_priv->pm.irqs_disabled = false;
4169
4170         ironlake_enable_display_irq(dev_priv, ~dev_priv->pm.regsave.deimr);
4171         ibx_enable_display_interrupt(dev_priv, ~dev_priv->pm.regsave.sdeimr);
4172         ilk_enable_gt_irq(dev_priv, ~dev_priv->pm.regsave.gtimr);
4173         snb_enable_pm_irq(dev_priv, ~dev_priv->pm.regsave.gen6_pmimr);
4174         I915_WRITE(GTIER, dev_priv->pm.regsave.gtier);
4175
4176         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4177 }